
Universität des Saarlandes
Fachrichtung 6.2 – Informatik

Diplomarbeit

Linearisation, Minimisation and
Transformation
of Data Graphs
with Transients

Guido Tack

Mai 2003

Betreut von
Prof. Dr. Gert Smolka

und
Dipl.-Inform. Leif Kornstaedt

Erklärung

Hiermit erkläre ich, Guido Tack, an Eides statt, dass ich die vorliegende Diplom-
arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel verwendet habe.

Saarbrücken, den 16. Mai 2003

iii

iv

Abstract

This thesis introduces data graphs as a formal model for the objects in a pro-
gramming system’s memory, and describes three services on such data graphs:
linearisation, minimisation, and transformation.

The SEAM system offers an abstract store that provides a programming language’s
implementor with a platform- and language-independent abstraction layer, hiding
the complex issues of memory management. This thesis aims at giving a formal
description of this store and of the services mentioned above.

Data graphs are presented here as a formal model for the objects that reside in
such a store. Starting from this model, an abstract store can be described by an
abstract data type (ADT) that implements data graphs as imperative objects.

The linearisation service (also known as “pickling”) translates a data graph into a
linear, external, platform-independent representation (a pickle) from which a copy
of the original graph can be reconstructed. Pickles can be written to files for per-
sistence, or distributed over a network, implementing inter-process communica-
tion. Linearisation and delinearisation are described formally in terms of the data
graph, and the SEAM implementation of pickling and unpickling is discussed.

Minimisation applies graph minimisation techniques to data graphs, yielding a
store service that eliminates redundancy in the graph. The formal background
as well as implementation issues of this service are presented, and its applicability
to data graphs is evaluated.

Finally, the store is extended by transients, a mechanism essential for an efficient
implementation of futures, logic variables and lazy evaluation. Transients are ap-
plied to both minimisation and linearisation; for the latter, they allow for the im-
plementation of a powerful transformation mechanism that translates between an
internal and an external representation of data graphs during pickling and unpick-
ling.

v

vi

Acknowledgements

I would like to thank Gert Smolka and Leif Kornstaedt for supervising this project.
Most of the formal work is based on long discussions with Gert Smolka; I am grate-
ful for the time he invested and the way he helped me think in new directions.
Leif Kornstaedt was responsible for keeping this work grounded, he helped me
synchronising the formal models with the SEAM architecture. Both my supervisors
read drafts of this thesis, their comments improved my understanding of scientific
writing quite a lot.

Leif Kornstaedt, Thorsten Brunklaus and Andreas Rossberg answered all my ques-
tions concerning Alice and the SEAM architecture; without their help I would not
have been able to implement the algorithms presented in this thesis.

I am grateful to Marco Kuhlmann, mainly for being a friend, but also for many
detailed comments on drafts of this thesis, and for sharing his LATEX experience.

I have to thank everyone at Programming Systems Lab for creating an atmosphere
that has made me enjoy working here for the last two and a half years.

Finally, I would like to thank my family for the support through all my life, and
Monika Schwarz for being there.

vii

viii

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Related Work . 4
1.3 Contributions of this Thesis . 4
1.4 Organisation of this Thesis . 5

2 The Data Graph 7
2.1 Definition of a Data Graph . 7
2.2 Structural and Token Equality . 10
2.3 Levels of Structure . 12
2.4 Related Work . 13

3 An Abstract Store 15
3.1 Design Decisions . 15
3.2 The Store Interface . 16
3.3 Language Layers . 17
3.4 Garbage Collection . 19

4 Pickles 23
4.1 Related Work . 23
4.2 Constructing Data Graphs . 25
4.3 Pickling Data Graphs . 28
4.4 Resources . 31
4.5 Implementation Details . 32
4.6 Comparison with other Pickling Mechanisms 36

5 Minimisation 39
5.1 Definition of Minimal Graphs . 39
5.2 The Minimisation Algorithm . 41
5.3 Areas of Application . 43
5.4 Incremental Minimisation . 44
5.5 Implementation Details . 45

ix

6 Transients 49
6.1 The “become” Operation . 49
6.2 Concurrency: Futures and Promises . 52
6.3 Minimisation . 53
6.4 Pickling and Unpickling with Transformations 56

7 Discussion and Outlook 61
7.1 Summary . 61
7.2 Outlook . 62

8 Bibliography 67

x

1 Introduction

Computer memory can be regarded at different levels of abstraction: On the phys-
ical hardware level, there are chips and transistors. The operating system provides
the programmer with a “logical memory” that hides these low-level issues and looks
like a continuous array of words, indexed also by words.

Programming languages all have their own memory model. C and C++, for example,
adhere to the array view of memory, but provide syntactic support for objects of
more than one word in size (and the corresponding address arithmetics). In other
programming languages like Java or SML, the underlying memory architecture is
completely abstracted away, the programmer only knows how objects can be cre-
ated and manipulated, rather than how they are represented in memory.

1.1 Overview

In this thesis, I present an abstract store, an interface between low-level and high-
level memory. This store interface is independent of platform and programming
language and hides the complex low-level issues connected with memory manage-
ment. On top of this interface, high-level programming languages can be imple-
mented. Figure 1.1 illustrates these levels of abstraction.

Java / SML / Alice

Abstract Store / SEAM

C, C++

Array of Words

Hardware Memory

Figure 1.1: Computer memory, levels of abstraction

1

1 Introduction

The motivation for this thesis was to put the implementation of a virtual machine
for the Alice project [2] on solid formal ground. I have implemented the algorithms
described here for the SEAM [5] system (Simple Extensible Abstract Machine – the
virtual machine implemented for Alice), and the formal models closely fit its store
architecture.

Data Graphs and Abstract Stores

In the context of garbage collection, the state of the memory is often described by
a data graph [19]. I extend the concept of a data graph to a formal model for the
objects in an abstract store. Chapter 2 presents this model.

In Chapter 3, I develop an abstract data type (ADT) that implements imperative
data graphs. This ADT is the abstract store mentioned above, and its interface re-
sembles the SEAM store interface. The abstract store provides several services, the
most well-known is probably garbage collection. I investigate three other services
in this thesis, the linearisation, minimisation and transformation of data graphs.

Both data graph model and abstract store are language-independent. They provide
a generic abstraction that can be used by language layers to implement a store that
provides the abstractions needed by the specific programming language.

As one application of the data graph model, I describe how the equality type of
some value (whether it can be compared using structural or token equality) can
be annotated directly on the data graph level. For these annotated data graphs, I
define an equivalence relation expressing semantic equality, which is needed for
the minimisation service.

Linearisation

One of the abstract store services I present is pickling, a means of linearising parts
of the data graph. A data graph in linearised form (a pickle) can be used to re-
construct (unpickle) an isomorphic copy of this data graph, possibly in a different
abstract store.

The pickle contains an external, platform-independent representation of the data
graph. It can be written to a file from where the graph can be reconstructed at a
later point in time; this is often called persistence. As another application of pick-
ling, the pickled graph can be interchanged between two processes, for example via
a network connection. That way, inter-process communication can be realised.

This thesis discusses what pickling means formally in Chapter 4, describing it in
terms of the data graph and relating it to standard graph algorithms. Furthermore,
I discuss the details needed to implement pickling in the SEAM system. Three other

2

1.1 Overview

programming systems that also provide pickling – Java, SML/NJ and Mozart – are
compared to the solution I present here.

Minimisation

Another service that is investigated is the minimisation of data graphs. Minim-
isation in this context means to maximise the sharing of equivalent subgraphs.
This makes minimisation a form of garbage collection, as it reduces the “structural
garbage” in an abstract store.

It is known that graph minimisation is closely related to automaton minimisation.
So far, this technique has not been applied to data graphs. In Chapter 5 of this
thesis, I present a minimisation algorithm in the context of data graphs with an-
notated equality types and discuss the main issues of an efficient implementation.
For one sample application, the minimisation of pickles, I give concrete benchmark
results that suggest that pickles offer a significant potential for minimisation while
the overhead of minimising the data graph is reasonably small.

Transients

A transient is a store node that can be dynamically made equal to another store
node; all of the node’s incoming edges are redirected to the other node. Based on
this mechanism, lazy evaluation, futures and logic variables can be explained.

This thesis presents transients in the data graph formalism and the modifications
to the abstract store that are necessary to support transients efficiently. Further-
more, minimisation and pickling are reconsidered: Both services can benefit from
transients. The minimisation algorithm can delete more redundant nodes if it is
implemented using transients. In the case of pickling, transients lead to a powerful
transformation mechanism. All these issues are discussed in Chapter 6.

Transformation

The transformation mechanism allows to define internal and external representa-
tions for certain nodes in the data graph. That means that the abstract store con-
tains a data graph in its internal representation, but if this data graph is pickled,
it will be automatically converted into an external format. Unpickling applies the
reverse transformation to yield again an internal data graph.

The most important application of the transformation mechanism is the pickling
of code: A pickle has to store code in a platform-independent way. On unpick-
ling, a transformation can be applied that compiles the abstract, external code for

3

1 Introduction

example to native code for the current platform. Pickling the code must again
produce the external, platform-independent version.

1.2 Related Work

A model similar to data graphs is often used in the context of garbage collection,
for example by Jones and Lins [19]. Scheidhauer [34] introduces a similar model
for the data structures in the store of the Mozart virtual machine.

A lot of high-level programming languages offer some kind of linearisation mech-
anism, beginning with CLU [16] over Modula-3 [27], Java [18], and Microsoft .NET
[24] to SML/NJ [3], Mozart [9] or Alice [2].

Work on minimisation has first been done in the context of finite automata (for
example by Hopcroft [17]), and was later extended to graphs by Cardon and Cro-
chemore [7].

Transients can be found in many languages: Smalltalk’s [11] become primitive is
based on similar techiques, logic programming languages like Prolog [1] or Mozart
use transients to implement logic variables, and functional programming languages
implement lazy evaluation (for example in Haskell [20]) or futures (as in Multilisp
[14] or Alice [35]) using transients.

Transformations similar to the ones I present were already investigated in CLU,
where they were implemented on the level of the language itself. In Java, the user
can customise what fields of an object will be serialised, this is a weak form of
transformation. Transformation as I describe it is based on work by Brunklaus and
Kornstaedt [5] in the SEAM context.

1.3 Contributions of this Thesis

Data graphs in conjunction with the abstract store are powerful models: I describe
all services in this thesis in terms of data graphs, and the correspondence between
data graph and abstract store leads to direct implementations of all algorithms.

I present a careful analysis of the pickling service, relating it to standard algorithms
for graphs and trees. The bottom-up approach I follow in this thesis seems to
be natural, but unique: Most other picklers (CLU, Modula-3, Java, Microsoft .NET,
Python, Mozart) use a top-down pickling strategy.

4

1.4 Organisation of this Thesis

This thesis presents a completely new store service, minimisation. Although the
techniques are several decades old, graph minimisation has not yet been applied to
data graphs in such a generic, platform- and language-independent way. The key
to minimisation is the annotation of the equality type on the node level.

Brunklaus and Kornstaedt already described a transformation mechanism for
Alice/SEAM. This was however tightly coupled with the pickler and unpickler. Un-
derstanding pickling better made it easy to separate it from the transformations. I
can now describe the transformation mechanism as just another layer of abstrac-
tion between abstract store and pickler/unpickler.

1.4 Organisation of this Thesis

This figure shows the layers of the abstract store and the services built on top of
it. It also illustrates how the remaining chapters of this thesis are organised.

Abstract Store

Store Interface

Garbage Collection

Minimisation
Pickling

Transformation

Language Layers Chapter 3

Chapter 4

Chapter 6

Chapter 6: Transients

Chapter 2: Formal model

Chapter 3: Store interface

Chapter 5

5

1 Introduction

6

2 The Data Graph

This chapter introduces the formal notion of a data graph. It is the model used
throughout the remaining chapters of the thesis.

Data graphs are models for the objects that a program builds in memory while
it is running. The definition given here is abstract enough to be independent of a
specific platform or programming language. Data graphs are suited well as a model
for the data structures that are needed to implement a programming system, and to
describe platform- and language-independent algorithms that implement generic
services of programming systems.

The services discussed in this thesis (pickling, minimisation, and transformation)
are all explained in terms of data graphs. While this chapter deals with the formal
model, the next chapter introduces an abstract data type (called abstract store) that
implements data graphs, yielding a direct correspondence between formalisation
and implementation.

2.1 Definition of a Data Graph

A data graph is basically a multi-graph with ordered edges, or simply an ordered
graph.

Definition 2.1 (Ordered graph)
An ordered graph is a function g such that

Ran(g) ⊆ Dom(g)∗

If the function g is finite, the graph is called finite, too.

An element of Dom(g) is called a node, and a pair of a node v and a natural num-
ber n is an edge if the nth component of g(v) is defined. An ordered graph is thus
a function mapping nodes to a tuple of their successors. Figure 2.1 illustrates this

7

2 The Data Graph

v g(v)

0 〈1,2〉
1 〈2〉
2 〈3〉
3 〈1〉

1

0

2

3

Figure 2.1: An ordered graph

with an example where Dom(g) = {0,1,2,3}. The edges are implicitly numbered
from left to right.

For a data graph, some more structure is needed. Given a set Lab of so called labels
and a set Str of so called strings, a data graph can be defined:

Definition 2.2 (Data graph)
A data graph is a finite function g such that

Ran(g) ⊆ Lab× (Str]Dom(g)∗)

The strings reflect the fact that scalar data is usually treated differently from the
other nodes.

A node v′ is a successor (the ith successor) of a node v in a data graph g, written
v →g v′ (v →i,g v′), if and only if there exists some i ∈ N such that g(v) =
(l, 〈. . . , vi, . . .〉) and vi = v′. If v →g v′, v is called a predecessor of v′. The set
of (ith) successors of a node u is defined as succ(u) = {v|u →g v} (succi(u) =
{v|u→i,g v}).

A node v′ is reachable from a node v in g if and only if there exist nodes v1, . . . , vn
such that v = v1 →g v2 →g · · · →g vn = v′. In this case, v is an ancestor of v′.

Figure 2.2(a) shows an example of a data graph. Here, the set Lab is assumed to be
Lab = {int, string,float,block}.

A data graph can be seen as a mapping from addresses to nodes, which are labelled
objects with outgoing edges. Such a mapping is just what one would expect an
abstract store to provide: A means to access the content (in this case the label and
string) and successors of a node through its address.

Figure 2.2(b) shows the data graph from Figure 2.2(a) seen as a store.

The algorithms given in Chapters 4 and 5 operate on subgraphs of the data
graph:

8

2.1 Definition of a Data Graph

"alice"
string int

"42"
block

block

block

string
"Hello World"

float
"42.42"

(a) A data graph

address label contents

0 block 3 4 5 6

1 string ”Hello World”

2 float ”42.42”

3 string ”alice”

4 block 1 2

5 int ”42”

6 block 4 0

(b) . . . seen as a store

Figure 2.2: Data graphs

Definition 2.3 (Subgraph)
A data graph g′ is a subgraph of a data graph g if and only if

g′ = g|A for some A ⊆ Dom(g)

As this definition requires g′ to be a data graph as well, the subgraph is closed,
meaning that every node occuring as a successor of a node in Dom(g) is itself in
Dom(g); g′ is the subgraph that is reachable from the nodes in A.

Until now, the domain of g was not restricted in any way. As a model for objects
in an abstract store, however, it seems natural to assume that Dom(g) is a set of
addresses (a subset of the natural numbers).

Rooted Data Graphs

Based on Definition 2.2, a more specialised form of data graphs can be defined:

Definition 2.4 (Rooted data graph)
A data graph g is called rooted if and only if there is at least one node r ∈ Dom(g)
such that for all nodes v ∈ Dom(g), v is reachable from r . Consequently, every
such r is called a root of the data graph.

Rooted data graphs play an important rôle, because every program that traverses
the graph will start at one single node and traverse the subgraph reachable from
this node. Examples for such programs are the store services garbage collection,
pickling and minimisation, which are introduced in the following chapters.

9

2 The Data Graph

tuple

string
"Hello"

string
"Hello"

tuple

string
"Hello"

Figure 2.3: Two structurally equivalent data graphs

Such graphs with one explicit root node can be defined as a pair (g, r) of a data
graph g and a distinguished root node r ∈ Dom(g).

2.2 Structural and Token Equality

This section investigates how much of the data graph’s structure a program can
witness. As an example, consider these two SML expressions:

val x1 = let
val t = "Hello"

in
(t,t)

end

val x2 = let
val t1 = "Hello"
val t2 = "Hello"

in
(t1,t2)

end

These two values can be represented by the data graphs in Figure 2.3. In SML,
tuples and strings are defined with structural equality, meaning that two values
have to be considered equal if their structures are isomorphic. This is the case for
x1 and x2, although, of course, the structures of the underlying data graphs are
not isomorphic.

The other type of equality is called token equality (or sometimes referential equal-
ity). It means that two values are only considered the same if they are in fact
represented by the same node in the data graph. The next three SML expressions
make clear why this is necessary:

val y1 = let
val t = ref "Hello"

in
(t,t)

end

10

2.2 Structural and Token Equality

val y2 = let
val t1 = ref "Hello"
val t2 = ref "Hello"

in
(t1, t2)

end

val z = let
val (t1, t2) = y2

in
t2 := "World";
y2

end

After evaluation of the first two expressions (y1 and y2), the data graphs describing
their values look similar to those in Figure 2.3. If structural equality was allowed
for references, too, a program accessing them in a read-only fashion could not
distinguish between y1 and y2. After the evaluation of z, however, it is clear that
y1 and y2 differ. So it is essential that y1 and y2 are not defined to be equal in the
first place. Two references can only be equal if they are in fact the same reference,
if they are represented by the same node in a data graph.

In order to annotate the equality type of a node directly on the data graph level,
the set Lab can be partitioned:

Lab = Labstructural] Labtoken

This yields data graphs with slightly more structure. The minimisation algorithm
presented in Chapter 5 makes use of this additional structure.

Equality between nodes in a data graph can be described by equality relations ∼∈
Dom(g)×Dom(g) satisfying the following conditions:

1. If v ∼ v′, g(v) = (l,) and l ∈ Labtoken, then

• v = v′

2. If v ∼ v′, g(v) = (l, s) and s ∈ Str, then

• g(v′) = g(v)

3. If v ∼ v′ and g(v) = (l, 〈v0, . . . , vn〉), then

• g(v′) = (l, 〈v′0, . . . , v′n〉) and

• ∀i ∈ {0, . . . , n} : vi ∼ v′i

11

2 The Data Graph

It is easy to see that the union of two equality relations is again an equality relation.
It is also clear that the relation ∼=, which is defined as v ∼= v′ :a v = v′, is an
equality relation. These two observations justify the definition of ∼S as the (non-
empty) union of all equality relations:

∼S=
⋃
∼
∼

As equality relations are closed under union, ∼S is also an equality relation and
hence the unique largest equality relation. It exactly expresses semantic equality
of two nodes in a data graph, meaning that these two nodes are semantically in-
distinguishable by any client. It is necessary to consider the largest such relation,
because any smaller relation does not yield the required equivalences for cyclic
graphs.

The definition of semantic equality is similar to Scheidhauer’s [34]. The difference
is that each node explicitly carries its equality type, and that the relation ∼S is
defined for both nodes with structural and with token equality type.

2.3 Levels of Structure

The same data can be described at different levels of structure:

In a data base, the full structure of all objects is known – their types and relations.
The same is the case for data in a strictly typed programming language. At the
other extreme is the memory of a computer at the hardware level. Here, only
words of a certain width exist at addresses that are themselves words interpreted
as integers. Pointers cannot be distinguished from scalar data.

The level of structure of the data graph as defined above lies in between. Only
the connections established by edges between nodes can be seen, while nothing is
known about the semantics, function, or type of a node.

This resembles the structure found in XML documents, which define the semantics
of an individual node by a tag, while only the connection structure is known dir-
ectly. XML documents are often said to be semi-structured [6], and this term seems
to be appropriate for data graphs as well.

Different services may require different amounts of information about the graph.
The services presented in this thesis require only little more information than
provided by Definition 2.2. Minimisation, for example, needs to talk about se-
mantic equality of nodes as introduced in the section above.

12

2.4 Related Work

2.4 Related Work

There are other abstract models for the store of a programming system. Reynolds
[31], for example, uses such a model to get an extended version of Hoare logic for
low-level imperative programs.

On the other hand, the Java language specification [12] only specifies what the store
(called “memory”) looks like on a high level. This allows to explain the effects of
concurrency.

For Mozart, there is both a high-level and a low-level description. Scheidhauer [34]
models the data graph of the virtual machine for Oz in a similar way as it is done in
this thesis. The language Oz itself is defined in terms of a constraint store [37, 38],
an abstract store model talking only about constraints, variables and records.

13

2 The Data Graph

14

3 An Abstract Store

This chapter presents an interface to an abstract store. The abstract store is an ab-
stract data type (ADT) that implements imperative graphs – nodes can be created,
and edges can be redirected. Data graphs as introduced in the preceding chapter
are the natural formal model for the objects that reside in the abstract store. Of
course data graphs can only model the static aspects of abstract store graphs, they
model the state of the store at one moment in time.

The programs that use the abstract store will be called clients. In the context of
garbage collection, they are often called mutators, but in this thesis clients seems
more appropriate because programs acting in a read-only fashion are interesting
as well.

The abstract store developed in this thesis is supposed to hold all data structures
that a programming system uses at run-time; it is not restricted to heap allocated
data. That way, the abstract store gains full control over every cell of memory
that a client program uses, so that store services like garbage collection can be
implemented in a generic way.

3.1 Design Decisions

Implementing an abstract store requires a lot of design decisions concerning the
internal representation of the high-level objects that the store provides.

This thesis cannot go into much detail, but for the store interface one has to con-
sider the following points:

• Some data structures need a special representation. Numbers, for example,
should be stored in the computer’s native format to make computations reas-
onably fast.

15

3 An Abstract Store

• For each node, its arity and label have to be stored. Restrictions have to
be placed on arity and number of different labels so that operations can be
performed fast and still the space overhead is reasonable for nodes with small
arity.

3.2 The Store Interface

The interface to the abstract store is described by means of an SML signature.

The store contains nodes that it stores at addresses. The nodes can be either in-
tegers, blocks or chunks. Each block or chunk node has a label, realised as an
integer.

type addr
datatype node_t = INT | BLOCK | CHUNK
type label = int
type size = int

A block of size n corresponds to an n-ary data graph node, and a data graph node
with a string stands for a chunk. Chunks are sequences of bytes, so this fixes the
set Str to the strings over bytes.

The store as introduced below is a little less general than the definition of data
graphs in that it knows of integer nodes. In the data graph, they will appear as
nodes with the label int and a string with a platform-independent representation of
the number. The abstract store can take advantage of a clever encoding of integers
into addresses. That way, no store allocation is necessary for integers, and they
can be used without the overhead of extracting them from a string.

The following functions allocate nodes:

val intToAddr : int -> addr
val allocBlock : label * size -> addr
val allocChunk : label * size -> addr

The type of a node can be inspected:

val typeOfNode : addr -> node_t

And of course it is possible to access the nodes’ contents:

16

3.3 Language Layers

val addrToInt : addr -> int
val getBlockArg : addr * int -> addr (* Subscript *)
val getChunkArg : addr * int -> byte (* Subscript *)

As the abstract store provides an imperative data structure, blocks and chunks can
be updated at a given index:

val setBlockArg : addr * int * addr -> unit (* Subscript *)
val setChunkArg : addr * int * byte -> unit (* Subscript *)

The (*Subscript *)-comment means that an error can occur if an element at an
invalid index is accessed.

3.3 Language Layers

The store model given above is general enough to support data structures of ar-
bitrary programming languages. The following examples show how some general-
purpose data structures, as well as the run-time data structures of a typical abstract
machine can be mapped to this model.

3.3.1 General Purpose Data Structures

Strings, arrays, and structured data types like structs in C, records in Pascal,
or ML datatypes, are important data structures. All of them have straightforward
implementations using the abstract store model.

Strings

Strings are mapped one-to-one to a chunk with label string. Depending on the
semantics of the programming language, they can be given structural or token
equality type.

Arrays

An array of size n can be implemented as a block of size n. It is identified by a label
array and given token equality type. A non-mutable, single assignment array (like
vectors in the ML standard library) can of course implement structural equality.

There is another way of representing arrays of fixed-length scalar data: n items of
size m each can be stored in a chunk of length n×m.

17

3 An Abstract Store

"alice"
string

CONS

"alice"
string

CONS

"alice"
string

CONS

NIL

CONS("alice",CONS("alice",CONS("alice", NIL)))

Figure 3.1: A data graph of a list

Structured Data

Every kind of structured data can be seen as an array of its contents. Constructor
data types in ML for example can be mapped to blocks with the constructor’s name
as label and its arity as size. Lists, for instance, are realised as the data type

datatype ’a list =
CONS of ’a * ’a list

| NIL

Figure 3.1 illustrates what a list looks like as a data graph. The equality type of
CONS nodes has to be chosen according to whether these lists are mutable or not.

3.3.2 Abstract Machine Data Structures

Most abstract machines (for example those discussed by Wilhelm [41] or Scheid-
hauer [34]) use a scheme of three different types of memory areas:

The Program Store

The program store is the container for the program’s instructions. Its implementa-
tion depends on the representation of code: Byte code instructions can be stored in
a scalar array, more complex instructions in an array or a list. Functional program-
ming languages need a representation of first class procedures as heap objects,
often called closures. A closure must contain a pointer to the code implementing
the procedure, realised as a pointer to and an index into the program store.

As code can only be referenced through closures, it can become garbage when
there is no more live closure referencing it. To enable automatic garbage collection

18

3.4 Garbage Collection

of code, the program store can be split into several smaller parts, down to one
program store per procedure definition.

The Stack

Stacks can be implemented as usual, based on arrays or lists. If direct access to
stack cells other than the topmost one is desired, the array approach fits best.
Often, several stacks are used, for example one for each thread of computation in
concurrent languages, or a call stack and a trail for logic programming languages.

The Heap

Objects in the heap only require a suitable encoding into data graphs. In most
abstract machines, heap objects are tagged, allowing for efficient case distinctions.
Labelled store nodes are the natural implementation of tagged objects.

3.4 Garbage Collection

The abstract store interface as defined above conceals the fact that there is only a
finite amount of memory available. Internally, the store must provide a garbage
collection [19] mechanism that reclaims memory that is not used any longer.

3.4.1 Liveness

For garbage collection, it is essential to know which nodes in the store are still alive,
meaning that there is still a client that has references to these nodes. In order to
scan all the clients’ references, these usually have to be put into a root set. The
garbage collector then computes the set of live nodes as the set of nodes that are
reachable from the root set.

As the abstract store is intended to hold all client data, it seems natural to repres-
ent the root set inside the store itself. This way, the store has one root node (the
“entry point” of the root set) from which every live store node is reachable. The
SEAM abstract store implements a root set in such a way.

19

3 An Abstract Store

3.4.2 Garbage Collection in the Data Graph Model

The live part of a store with a root node is described exactly by a rooted data graph
(Definition 2.4). If a data graph g describes the state of an abstract store while the
live part of the same store yields the rooted data graph glive, the task of garbage
collection is to “delete” all nodes in Dom(g)\Dom(glive). This means that after
garbage collection, any data graph describing the state of the store is rooted.

3.4.3 Implementation of Garbage Collection

To implement garbage collection efficiently, a lot of knowledge about store intern-
als is needed. That is why garbage collection is a service that cannot be implemen-
ted on top of the store but is at its very base.

Copying Garbage Collection

The most widely used implementations of garbage collection are so called copying
garbage collectors as introduced by Minsky [25], often in their improved variant
that needs only constant stack space, developed by Cheney [8]. Since these al-
gorithms copy the live objects into a fresh memory region, the objects’ addresses
change. Garbage collection in the abstract store can be regarded as a function that
takes the root node of the store and returns the new root node. After a garbage
collection, the returned root node is the only valid address. Hence, every client of
the abstract store can only access the data in the store relative to the root node.
It must not store addresses somewhere outside the store and use them at a later
point in time, unless it can be sure that no garbage collection happened in the
meantime.

Generational Garbage Collection

A more advanced garbage collection method divides the store into several genera-
tions, accounting for the fact that long-lived objects should be collected less often
than short-lived ones [40, 21].

A drawback of generational garbage collection is that so called inter-generational
edges have to be tracked, edges from nodes in older generations to nodes in
younger generations. This can be realised by write barriers, imposing the need
for a slightly modified store interface with an additional function:

val initBlockArg : addr * int * addr -> unit (* Subscript *)

20

3.4 Garbage Collection

initBlockArg may only be used if it is guaranteed that since allocation of the
block no garbage collection happened. That way, initBlockArg never creates
inter-generational edges. In all other cases, setBlockArg has to be used, hence
creating an inter-generational edge.

21

3 An Abstract Store

22

4 Pickles

This chapter deals with the construction of a linear, external, platform-independent
representation of a data graph, called pickle. A pickle is a string that contains
enough information to reconstruct the original data graph, an operation known as
unpickling. The pickle can be written to a file or passed to another process, allowing
for persistent storage of the data graph as well as inter-process communication.

The algorithms in this chapter are described in terms of the data graph, and they
can be implemented as a service that is based on the abstract store interface. This
makes pickling and unpickling language- and platform-independent.

The term “linearisation” comes of course from the data graph perspective; intern-
ally, the abstract store has to represent data graphs in a linear way, so that linear-
ising a data graph is in fact a conversion from one linear format into another.

In practice, only rooted subgraphs of a data graph will be pickled. This is due to
the fact that the pickling algorithm is applied to one node of the data graph and
returns a pickle of the subgraph reachable from that node. The data graphs in this
chapter are always assumed to be rooted.

4.1 Related Work

Pickling is a quite common mechanism, implemented in a number of different pro-
gramming languages and systems. The term “pickling” was coined in a paper about
small data bases [4].

An early publication [16] presents a generic mechanism for encoding objects in CLU
[22] (a language derived from Pascal) into messages and transferring them over the
network. The Modula-3 language [27] inherited some of the concepts from CLU and
also comes with a pickling mechanism.

23

4 Pickles

The most prominent implementation of pickling can be found in Java, where pick-
ling is called serialization. It is described in detail in the Java Object Serializa-
tion Specification [18]; there also is a compact introduction to the internals [32],
revealing the roots of Java serialisation in CLU and Modula-3. Section 4.6.1 com-
pares Java’s flexible serialisation mechanism with the algorithms investigated in
this chapter.

Microsoft’s .NET Framework [24] offers a library module that provides a serialisa-
tion mechanism similar to Java’s. In contrast to Java, the .NET specification only
talks about the interface, not about the mechanism itself. The .NET system offers
serialisation to different formats: an unspecified binary format, the “Simple Ob-
ject Access Protocol” (SOAP, an XML format used for inter-process communication
[10]), and plain XML.

Some other languages like Ruby [33] or Python [30] also implement methods of seri-
alisation, but in a rather ad-hoc way: In Python, there is one mechanism that can
pickle code, but no cyclic data structures and does not preserve sharing between
objects. Another mechanism can cope with cycles and sharing, but not with code.
Ruby specifies nothing at all about the mechanism or the pickle format. Both lan-
guages provide Java-like custom serialisation, which allows objects to provide their
own string representation.

SML/NJ uses pickling to generate binary modules for separate compilation [3]. Pick-
ling is done with the help of the garbage collector; this idea again comes from the
Modula-3 world [27]. Section 4.6.2 discusses its advantages and disadvantages.

OCaml [28] offers a library module Marshal which allows for persistence and dis-
tribution of values. As for Python and Ruby, no internals are specified, except that
it is not possible to pickle code (which is no surprise in a language that can be
compiled to native code).

Mozart/Oz uses pickling for persistence and distribution of arbitrary data, includ-
ing the so called functors, which implement the Oz module system. This is prob-
ably the most extensively used application of pickling. Alice and SEAM inherited
many ideas from Mozart; Section 4.6.3 compares Mozart’s pickling with the al-
gorithms described in this chapter.

This list is not exhaustive, because most high-level programming languages provide
some implementation of persistence or distribution. Most of them do not specify
any details though and concentrate on the high-level features like type-safety and
customisation.

24

4.2 Constructing Data Graphs

4.2 Constructing Data Graphs

Pickles can be regarded as sequences of instructions for an interpreter that recon-
structs the corresponding data graph in the abstract store. This section explores
the basic functionality such an interpreter must provide, beginning with the recon-
struction of trees and then generalising to acyclic and finally cyclic graphs.

4.2.1 Constructing Trees

Often trees are described as constructor terms, and a natural way of building them
is the bottom-up approach: Beginning with the leaves, always build the children of
a node and then the node itself, up to the root node.

The usual way of implementing bottom-up construction of terms is a stack-based
interpreter. Its commands are pairs of a node’s label and its arity: A command
(l,n) results in popping n nodes off the stack and constructing a new node with
label l and these nodes as its children. The new node is then placed on top of the
stack. When the interpreter finishes, the stack contains only the root node of the
constructed tree.

The data graph model provides nodes that contain strings as a special node type
for scalar data. These nodes can be constructed just as easily with the above inter-
preter, they are built by instructions (l, s), where l is again the label and s is the
string.

A pickle is a sequence of instructions for the interpreter, which is therefore called
pickle interpreter. The language that it accepts is the pickle language.

Implementing a pickle interpreter on top of the abstract store interface is
straight-forward: A (l,n) instruction creates the corresponding node via a call to
allocBlock, then pops the addresses of the children from the stack and fills them
in using setBlockArg. Finally, the address of the newly created node is placed on
top of the stack. For (l, s) nodes, the allocChunk and setChunkArg store opera-
tions are used. The stack can of course be itself realised as a data structure in the
abstract store.

Figure 4.1(a) shows a tree and the corresponding sequence of instructions, the
pickle from which it can be built.

25

4 Pickles

4.2.2 Constructing Acyclic Graphs

The bottom-up approach also works for directed, acyclic graphs (DAGs), but the
interpreter has to be extended by a set of registers: Each node that has more than
one predecessor – these nodes are called shared nodes – has to be placed in a
register when it is first built, and loaded when it is needed again. Therefore the
pickle language has to be extended by STORE i and LOAD i instructions, where i is
the register where the node is stored into or loaded from.

Again, the implementation on top of the abstract store is easy: STORE i stores the
address on top of the stack into register i (without popping the stack), and LOAD i
fetches the address from register i and pushes it on the stack. The registers are
realised as an array in the abstract store.

A DAG with its corresponding pickle can be found in Figure 4.1(b).

4.2.3 Constructing Arbitrary Graphs

The pickle interpreter up to this point cannot construct cyclic data structures, be-
cause it can only build a node when all its children are already constructed. Hence,
cycles must be made explicit: A PROMISE instruction creates a temporary node that
promises to once become one node on the cycle. That way, all the other nodes
on the cycle can be built before the promise is fulfilled (by a corresponding FULFIL
instruction).

The pickle interpreter implements the PROMISE and FULFIL instructions by a tech-
nique called back-patching: A PROMISE for a node with label l and arity n con-
structs a node with that label and arity but arbitrary children (for example a 0
for every child). Fulfilling this promise then simply means replacing the “dummy”
children by the real children. The interpreter needs both label and arity when
promising a node, so the PROMISE instructions gets these as arguments. For ful-
filling, it needs to find the previously created promise, so both instructions need a
register as an argument.

Figure 4.1(c) shows an example of a cyclic graph, and the pickle containing the
instructions to construct that graph.

26

4.2 Constructing Data Graphs

"alice"
s

b c

a

c

Instruction Arity

s ”alice” 0
c 0
b 2
c 0
a 2

(a) A Tree

"alice"
s

b

a

c

Instruction Arity

s ”alice” 0
c 0
STORE 0 –
b 2
LOAD 0 –
a 2

(b) An acyclic graph

"alice"
s

b

a

c

Instruction Arity

s ”alice” 0
PROMISE 0 a 2
c 1
STORE 1 –
b 2
LOAD 1 –
FULFIL 0 2

(c) A cyclic graph

Figure 4.1: Data graphs and their pickles

27

4 Pickles

4.3 Pickling Data Graphs

The remaining problem is how to construct, given a data graph, a corresponding
pickle. The observation that leads to a solution is the following:

Linear data structures are sequences of nodes. In a data graph, however, nodes
contain only part of the information; the relations between nodes are located in the
edges. The first step towards a linearised data graph is to shift some information
from edges to nodes.

This can be achieved by converting the graph into a tree. A tree has the property
that every node has exactly one predecessor, except the root node, which has none.
Tree edges therefore carry less structural information than graph edges.

4.3.1 Pickle Trees

A pickle tree of a rooted data graph (g, r) is supposed to contain all the structural
information that the graph contains. Hence, it has to express sharing of nodes
explicitly. A data graph node v ∈ Dom(g) is called a shared node if it has more
than one predecessor, or if it is the root r of the graph and has at least one prede-
cessor.

A pickle tree of g has as many edges as g, but possibly more nodes: For any shared
node v ∈ Dom(g) with n+1 predecessors, the pickle tree of g contains a node for
v plus n leaf nodes. If {v0, . . . , vn} is the set of shared nodes, the node for vi is
labelled with i : l (if l is its label) and called indexed node. The new leaf nodes carry
the label → i and are called reference nodes.

The pickle trees of one data graph can differ in their structure, but they all have
the same set of nodes (modulo renaming of the sharing indices).

Figure 4.2(a) shows a data graph, Figure 4.2(b) one of its pickle trees. The data
graph nodes labelled a and c are shared nodes, the pickle tree nodes with the
labels 0:a and 1:c their respective indexed nodes, and the → 0 and → 1 nodes are
reference nodes.

4.3.2 Shared Nodes

It is crucial for pickles to retain the sharing information expressed through indexed
and reference nodes:

28

4.3 Pickling Data Graphs

"alice"
s

b

a

c

(a) A data graph

0

1

0: a

1: cs "alice"

b

(b) A pickle tree

Node Arity

s ”alice” 0
→ 0 –
1:c 1

b 2
→ 1 –
0:a 2

(c) Postorder linearisation

Instruction Arity

s ”alice” –
PROMISE 0 a 2
c 1
STORE 1 –
b 2
LOAD 1 –
FULFIL 0 2

(d) Resulting pickle

Figure 4.2: From data graph to pickle

29

4 Pickles

• For nodes with token equality type, sharing is semantically visible (as dis-
cussed in Section 2.2).

• Pickles become bigger without sharing of nodes, an exponential blowup is
possible.

• Cyclic data structures cannot be represented without sharing, and trying to
pickle them would result in an infinite loop.

4.3.3 Linearisation of Pickle Trees

The classical algorithms for linearising a tree are preorder and postorder traversal
of the tree (as described by Sedgewick [36]). For both, the only structural inform-
ation that has to be added in order to fully encode the tree is the number of suc-
cessors of each node (called its arity). Representing edges implicitly in the order
of the nodes makes the linear version of the tree compact.

Preorder and postorder tree traversal usually traverse a node’s children from left
to right (or from child 0 to child n), but the reverse order may be just as suitable
for pickling.

Figure 4.2(c) shows a postorder linearisation of the pickle tree from Figure 4.2(b).
This linearisation corresponds directly to a pickle that the pickle interpreter un-
derstands (as illustrated in Figure 4.2(d)). Only the reference and indexed nodes
have to be adjusted:

Given an indexed node i : l with arity n and a set of corresponding reference nodes
{(→ i)1, . . . , (→ i)m}, the following conversions have to be done:

• If the linearisation places any of the reference nodes before its indexed node,
the first such reference node is replaced by
PROMISE i l n
and the indexed node by
FULFIL i n.
Every other reference node becomes a
LOAD i.

• Otherwise, the indexed node becomes
l n
STORE i
and the reference nodes become
LOAD i
instructions.

30

4.4 Resources

4.3.4 Preorder Linearisation and Top-down Construction

The previous section showed that a postorder traversal of a pickle tree yields a
pickle that can be used to reconstruct the data graph in a bottom-up way. A pre-
order traversal implies just the dual approach, a top-down reconstruction.

A pickle interpreter for a preorder or top-down pickle language has to construct a
node before its children are constructed; this looks similar to the PROMISE/FULFIL
mechanism for bottom-up pickles, and the same back-patching technique can be
applied.

For each data graph, one can find a pickle tree that has a preorder linearisation
in which no reference node comes before its corresponding indexed node. This
means that a top-down unpickler only needs stack and registers, but no PROMISE
and FULFIL instructions.

4.3.5 Depth First Search

Depth first search (DFS) is a classical algorithm for graph traversal. R. Tarjan in-
vented it in 1972 [39], and it is discussed in detail in most textbooks on algorithms
(for example by Sedgewick [36]).

When applied to trees, DFS does just a preorder or postorder traversal. In a graph,
it detects sharing and cycles, building the DFS tree on its way. A DFS tree of a data
graph is very similar to a pickle tree. Using Sedgewick’s terminology, DFS classifies
a graph’s edges into tree edges, down edges, cross edges and back edges.

DFS can build a pickle tree by creating ordinary tree nodes for each graph node
with only one predecessor, indexed nodes for each shared node, and reference
nodes for each down, cross and back edge.

Building the pickle tree and linearising it can thus both be performed by DFS. This
makes DFS the natural choice for a pickling algorithm.

4.4 Resources

Resources are objects in an abstract store for which no meaningful representation
exists outside this store. The classical example is operating system file descriptors.
They could be stored in a pickle, as they are merely integer numbers, but they make
no sense at all to any other process.

31

4 Pickles

Generally, every store node that in some way refers to something outside the ab-
stract store but local to the current process is a resource. This includes pointers to
native code outside the abstract store – for example library functions implemented
in a language like C.

The pickling algorithm should be able to recognise resources and reject to pickle
any graph containing resources. As for the equality type of a node, resources can
be marked by partitioning the set of labels:

Lab = Labresource] Labnon−resource

Section 6.4 presents a mechanism that can automatically convert resources into
non-resource descriptions upon pickling. The unpickler can then reconstruct a
new resource from this description.

4.5 Implementation Details

The pickler and unpickler implemented for SEAM are basically straightforward im-
plementations of the algorithms sketched above: The pickler uses a variant of DFS
to traverse the data graph, and the unpickler interprets the pickle as a stack-based
programming language.

In the following, some optimisations and facts to consider are discussed which are
deemed essential for an efficient implementation.

4.5.1 Marking Nodes

DFS has to mark nodes as visited in order to detect sharing and cycles. There are
two ways of marking a node in the abstract store: Either the store reserves a special
mark bit in the node itself, or it provides hash tables that can have store nodes as
keys (an indirect way of marking a node).

Mark bits have three major disadvantages: They require space (which is usually
quite expensive, because there already has to be quite a lot of information stored
in the node header), and they have to be cleared after the algorithm has finished.
But the biggest problem is that mark bits cannot be used in a concurrent setting: If
two pickler processes are working on the same nodes, marking is ambiguous and
therefore useless.

32

4.5 Implementation Details

Hash tables with nodes as keys require active support from the store: The only
information that can be used as a hash key for a node is its address, which may
change through garbage collection. The garbage collector must be aware of node
hash tables and adjust them appropriately after garbage collection has finished.

Hashing has another advantage: Arbitrary data can be associated with a node. The
pickling algorithm can use this to store bookkeeping information (like the DFS
preorder and postorder numbers) with each node.

4.5.2 Pre-Computing the Maximum Stack Height

The maximum height of the stack that the unpickler needs for interpreting a certain
pickle can already be computed at pickling time. The function that computes the
stack height of a node v in a pickle tree looks like this:

height(v) =


1

if v is a leaf node

max{height(v0)+ 0, height(v1)+ 1, . . . , height(vn)+n}
if v has children 〈v0, . . . , vn〉

This function assumes that the pickle-tree is linearised in a left-to-right way.

If the maximum stack height is stored at the beginning of the pickle, the unpickler
can allocate the stack once for the whole unpickling operation. Otherwise, it would
need to use a dynamic stack implementation.

4.5.3 The SEAM Pickle Language

The pickle language used in the concrete implementation on SEAM is shown in Fig-
ure 4.3 in BNF form. <uint> stands for an unsigned integer. The CHUNK and BLOCK
instructions create the corresponding store nodes, and STORE, LOAD, PROMISE and
FULFIL work exactly as described above. The INIT instruction specifies how many
registers the pickle uses, and how much stack the pickler needs. The unpickler is
realised as an interpreter of this stack-based language.

An example of a SEAM pickle can be found in Figure 4.4. It represents the graph
from Figure 4.2(a) (for readability the labels have not been coded into integers).

33

4 Pickles

pickle ::= init instrs ENDOFSTREAM
init ::= INIT stackSize noOfRegisters
stackSize ::= <uint>
noOfRegisters ::= <uint>
instrs ::= instr instrs

| ε
instr ::= simpleInstr

| complexInstr
simpleInstr ::= STORE register

| LOAD register
| CHUNK label size <byte>*size

complexInstr ::= PROMISE register complexInstr’
| FULFIL register size
| complexInstr’

complexInstr’ ::= BLOCK label arity
register ::= <uint>
size ::= <uint>
arity ::= <uint>
label ::= <uint>

Figure 4.3: The SEAM pickle language

INIT 2 2
CHUNK s "alice"
PROMISE 0 BLOCK a 2
BLOCK c 1
STORE 1
BLOCK b 2
LOAD 1
FULFIL 0 2
ENDOFSTREAM

Figure 4.4: Example of a SEAM pickle

34

4.5 Implementation Details

4.5.4 Exploring Depth-First Rightmost

In functional programming languages like ML, run time data structures tend to be
either balanced or recursive to the right. Lists in ML, for instance, are represented
as “degenerate trees”.

A leftmost exploration strategy is not optimal for this kind of data: On unpickling,
a stack is needed that is at least as large as the length of – for example – the list.
For the ML implementation Alice it proved useful to pickle depth-first rightmost,
decreasing the average stack height by one order of magnitude. This is especially
due to the fact that the representation of code is right recursive.

4.5.5 Two-Pass Pickling

The pickler as implemented for SEAM builds the pickle tree, linearises it, and com-
putes the stack height in a first pass, using one depth-first traversal. This traversal
fills a buffer containing the resulting pickle except for the STORE instructions. They
have to be placed after shared nodes, but the sharing can only be detected later
during DFS. STORE instructions therefore have to be remembered during DFS and
inserted afterwards, in a second pass.

4.5.6 Some Numbers

The pickler/unpickler implementation is based on the previous version by Brunk-
laus and Kornstaedt. This older version used a preorder (and thus top-down) pickle
format without explicit LOAD/STORE operations. It therefore needed dynamic data
structures during unpickling and a register for every node, which made it less effi-
cient. The pickle format, however, was a bit more compact than the one suggested
in this thesis and implemented in the new (un)pickler.

Both pickler and unpickler are written in C++, making up around 1500 and 1200
lines of code, respectively. The next table shows some benchmarks comparing old
and new implementation:

Task No. of pickles Old (un)pickler New (un)pickler gain

Alice bootstrap 106994 32m19s 29m30s 9%
Bootstrap, only pickling 572 24.5s 25.0s −0.2%
Bootstrap, only unpickling 106422 320.5s 263.5s 18%
Invoking Alice toplevel 77 3.45s 2.73s 21%

35

4 Pickles

The interactive Alice toplevel depends on 77 components (and thus pickles) to be
loaded on startup, so the improvement here is only due to the faster unpickler.
The bootstrap process is faster by 2 minutes and 49 seconds, but the benchmarks
counting only pickling and unpickling can explain only 57 seconds. The remaining
acceleration is reached because the new unpickler use less memory, resulting in
less garbage collections.

All benchmark times were measured on an Intel Pentium III with 1400 MHz and
1 Gigabyte of RAM.

4.6 Comparison with other Pickling Mechanisms

This section compares the pickler presented in this chapter with the Java, SML/NJ
and Mozart picklers. Java was chosen because it is the most widely used system
that has a well-defined pickling mechanism. SML/NJ employs an interesting ap-
proach in that it reuses the garbage collector for pickling. The comparison with
the Mozart pickler is interesting because Alice and SEAM inherited a lot of ideas
from their predecessor Mozart.

4.6.1 Java Serialization

The Java pickling mechanism [32, 18] combines a lot of high-level and low-level
aspects. It uses Java objects as its central metaphor and is always applied to the
object graph that is reachable from some root object.

Low-Level

On the low-level side, the exact byte stream format is specified. A pickle con-
tains the objects’ representations in depth-first preorder. Each object is assigned a
unique handle that makes it possible to reference the object later on in the stream
for sharing preservation and creation of cycles (similar to indexed and reference
nodes).

The low-level realisation is not too different from the one given in this thesis. A
suitable coding of Java objects into abstract store data structures would directly
produce an alternative way of serialising Java data structures.

One advantage of Java’s commitment to objects as the low-level metaphor is
however a certain degree of inherent type-safety. Every object that can be recon-
structed from a serialised stream obeys the type constraints of its class. The SEAM

36

4.6 Comparison with other Pickling Mechanisms

unpickler can only check that the reconstructed graph is in fact a data graph; it is
impossible to check that this data graph satisfies the type constraints imposed by
a language layer.

High-Level

The high-level serialisation interface offers a lot of flexibility:

• Objects can implement their own serialisation method, giving them the op-
portunity to define their external format.

• There are techniques for resolving versioning conflicts, making it possible to
load serialised object streams by a version of a class different from the one
they were written by.

• Certain object fields can be marked “transient”. These fields are not serial-
ised, so this is a mechanism for hiding parts of the object.

The last point can be modelled easily with the pickling algorithm presented in
this thesis: The object graph would have to be traversed and copied, doing all
the necessary transformations before the transformed copy is pickled. The Java
approach however has the advantage that no copy has to be created and no ad-
ditional graph traversal is necessary: Transformation and serialisation are inter-
twined. Chapter 6.4 introduces a mechanism that allows for the transformation of
data graphs during pickling and unpickling.

In Java, code cannot be pickled. The only way to make code persistent is to compile
it to a class file. This of course means that the objects in a pickle are separated from
the definition of their classes and thus from the implementation of the methods
that are applied to them.

4.6.2 Reusing the Garbage Collector for Pickling

The idea to reuse the garbage collection infrastructure for pickling was first for-
mulated in the context of Modula-3 [27]. It is based on the observation that the
garbage collector does a job quite similar to pickling: It has to traverse the data
graph.

One of the most well-known garbage collection algorithms is Cheney’s copying
garbage collector [8]. Appel and MacQueen [3] give a hint how it can be used for
pickling: Make a copying garbage collection of the subgraph you want to pickle into
a fresh area of memory (usually called semi-space in this context), applying some
sort of address translation. Then simply write the contents of this semi-space to

37

4 Pickles

a file. Unpickling involves another address translation, it becomes a process like
linking, but for data instead of code.

The problem is that the pickling format has to be exactly the internal format of
objects in the store. This internal format is most probably platform-dependent, so
that the pickle format cannot be used for platform-independent communication.

If no other transformation than an address translation is done, the pickle contains
all edges between nodes explicitly (as in the store). The pickle does not take ad-
vantage of the fact that the nodes are ordered and will thus yield a less compact
format than the one described in this chapter.

4.6.3 Mozart Pickles

Mozart [9] provides a generic traversal engine for the data graph, which employs
a depth-first strategy. There are 22 different node types in the Mozart store, and
a client of the graph traversal engine has to provide one method for each type of
node.

The pickler acts as such a graph traversal client, and it traverses the graph twice.
On the first traversal, the pickler gathers information about resources and sharing
of nodes. On the second traversal, it generates the pickle.

The Mozart pickler uses both left-to-right and right-to-left exploration, depending
on the type of the node, for efficiency reasons. The serialisation of the nodes
happens in DFS preorder, implying a top-down construction on unpickling.

As Mozart is a language with advanced concurrency features, pickling can be done
in a concurrent setting. Chapter 6 shows how this fits into the abstract store model
given in this thesis.

Procedures are first-class citizens in Mozart, and it is possible to pickle values con-
taining procedures (and thus containing code). This is a unique feature of Mozart,
and Mozart’s module system makes heavy use of pickling. Code is, however, not
represented as ordinary store data structures, so that it requires special treatment
from the pickler on a low level.

Alice inherited the idea of a pickle-based module system. For Alice/SEAM, code is
nothing but another data structure, so no special treatment as in Mozart is neces-
sary.

38

5 Minimisation

Minimisation in the context of data graphs means to transform one graph into an
equivalent one with a minimal number of nodes. This is defined formally in this
chapter, and an algorithm is given that can do this transformation efficiently.

One straightforward application of the minimisation mechanism is to minimise a
data graph before it is pickled. This has proved to have a positive impact on both
pickle size and the time needed for unpickling. This chapter presents this and
other areas of application for a generic minimisation mechanism.

5.1 Definition of Minimal Graphs

Minimality of a data graph means, in short, that token equality and semantic equal-
ity of nodes coincide:

Definition 5.1 (Minimal data graphs)
A data graph is called minimal if and only if for any two nodes v and v′ the
following holds:

v ∼S v′ =⇒ v = v′

Each data graph g is equivalent to the graph g/∼S , the minimal data graph that has
as nodes the equivalence classes of the nodes in g.

Figure 5.1 shows some data graphs and their minimal equivalents. Nodes with
labels that are prefixed with “t:” have token equality type.

The goal of the minimisation algorithm is to compute ∼S for a graph g and trans-
form g into g/∼S by collapsing equivalent nodes into one representative per equi-
valence class.

39

5 Minimisation

CONS

"alice"
string

"alice"
string CONS

CONS

NIL
"alice"
string

CONS

NIL

CONS

"alice"
string

CONS

(a) Sharing of equivalent leaves

block

block

block

block block

(b) Shrinking cycles

block

block

"alice"
string int

"42"

block

"alice"
string int

"42"

block

block

"alice"
string int

"42"

(c) Sharing of equivalent subgraphs

CONS

"alice"
string

"alice"
string CONS

CONS

NIL
"alice"
t:string

CONS

NIL

CONS

"alice"
string

CONS

"alice"
t:string

(d) Sharing in the presence of token equality nodes

Figure 5.1: Some data graphs on the left and their minimal equivalents on the right

40

5.2 The Minimisation Algorithm

5.2 The Minimisation Algorithm

Minimisation was first investigated in the context of finite automata. Algorithms
for minimising the number of states in a finite automaton can be found in text-
books from the sixties (for example Harrison [15]), and in 1971 Hopcroft gave an
algorithm with n logn worst case time complexity [17]. Cardon and Crochemore
[7] generalised Hopcroft’s algorithm to the minimisation of arbitrary graphs. This
section presents an application of Cardon’s and Crochemore’s results to data
graphs.

5.2.1 Partitioning a Graph

Cardon and Crochemore describe an algorithm that can partition a graph, meaning
that it computes an equivalence relation on the nodes of the graph. Formally,
they describe their algorithm in terms of regular congruences and refinement of
equivalence relations. These notions can be analogously defined for data graphs:

A congruence C ∈ Dom(g)× Dom(g) on a data graph g is an equivalence relation
that commutes with the successor relation of the graph:

∀u,v,w ∈ Dom(g) ∀i ∈ N :[
(u,v) ∈ C ∧ v →i,g w ⇒ ∃w′ ∈ Dom(g) : u→i,g w′ ∧ (w′,w) ∈ C

]
A congruence C is called regular if and only if for every equivalence class D of C,
the following holds:

∀u,v ∈ Dom(g) ∀i ∈ N : (u,v) ∈ C ⇒ |succi(u)∩D| = |succi(v)∩D|

An equivalence relation G is a refinement of an equivalence relation F if and only
if

∀u,v ∈ Dom(g) : (u,v) ∈ G ⇒ (u,v) ∈ F

If G is a refinement of F , F is also called coarser than G.

Cardon’s and Crochemore’s algorithm takes an initial equivalence relation F and
refines it. Each step of refinement produces a new equivalence relation Πi. When
the algorithm finishes after some N steps, ΠN is the coarsest regular congruence
that is a refinement of F .

41

5 Minimisation

5.2.2 Computing ∼S

The graph minimisation algorithm can be used to compute ∼S on a data graph,
because there is an equivalence relation F such that ∼S is the coarsest regular
congruence that is a refinement of F .

The following arguments prove this:

Proposition: ∼S is a regular congruence.

For two nodes u ∼S v , their successors have to be pairwise ∼S -equivalent. This
makes ∼S a regular congruence.

Proposition: ∼S is a refinement of some F .

Let F ∈ Dom(g)×Dom(g) be defined as follows:

For any two nodes v,v′ ∈ Dom(g), (v, v′) ∈ F if and only if

• v = v′ or

• g(v) = (l, 〈v0, . . . , vn〉) and
g(v′) = (l, 〈v′0, . . . , v′n〉) and
l ∈ Labstructural

or

• g(v) = (l, s) and
g(v′) = (l, s) and
s ∈ Str and
l ∈ Labstructural

It follows from the definition of equality relations that every equality relation, and
hence ∼S , is a refinement of F .

Proposition: ΠN , which refines F , is an equality relation.

The proof of this proposition follows the definition of equality relations:

1. If (v, v′) ∈ ΠN , g(v) = (l,) and l ∈ Labtoken, then

• v = v′ (ΠN refines F)

2. If (v, v′) ∈ ΠN , g(v) = (l, s) and s ∈ Str, then

• g(v′) = g(v) (ΠN refines F)

42

5.3 Areas of Application

3. If (v, v′) ∈ ΠN and g(v) = (l, 〈v0, . . . , vn〉), then

• g(v′) = (l, 〈v′0, . . . , v′n〉) (ΠN refines F)

• ∀i ∈ {0, . . . , n} : (vi, v′i) ∈ ΠN (ΠN is a regular congruence)

Corollary: ∼S is the coarsest regular congruence that is a refinement of F .

As ΠN is an equality relation, it follows from the definition of ∼S that ΠN ⊆∼S . As
∼S is a regular congruence and a refinement of F , it follows from the fact that ΠN
is the coarsest such congruence, that ∼S⊆ ΠN . The conclusion is that ∼S= ΠN .

5.3 Areas of Application

Especially in functional languages, where a lot of data structures can be implemen-
ted so that they support structural equality, the potential for minimisation seems
promising. This section investigates general approaches of applying the minimisa-
tion algorithm.

5.3.1 A High-Level Interface to the Minimiser

The minimisation functionality can be made available at language level. In Alice,
for example, it can be accessed through a structure with the following signature:

signature Minimiser =
sig
val minimise : ’a -> unit

end

The function minimise takes an arbitrary value and minimises the subgraph that
is reachable from the node that represents this value. This interface allows user
programs to make use of the minimiser in a type safe way.

5.3.2 Minimised Pickles

One application that quickly comes to mind is to minimise a data graph before it
is pickled. Pickling seems to be the right time to do minimisation because of three
reasons:

43

5 Minimisation

Normal size Minimal size % gain

Alice run-time 9316 6608 29%
Code pickle 3359 2009 40%

Signature pickle 78 63 19%

Table 5.1: Pickle sizes with and without minimisation

1. Most pickles are written once and loaded often so that the cost of minimising
can be compensated.

2. The pickle becomes more compact, resulting in a faster unpickling.

3. Pickling takes some time anyway, so if one is willing to spend time on pick-
ling, minimisation can be done with reasonable overhead.

Alice makes heavy use of pickling, because its entire component system is based
on it. Alice components are pickles that contain – besides other things – both the
values (including functions and thus code) that make up the component and the
type (the signature) of the component.

The part of the Alice system that is written in Alice itself has been compiled with
and without minimisation to investigate how much a real world application can
profit from pickle minimisation. Table 5.1 shows the results, as well as the sizes
of one test pickle containing mostly code, and one containing mostly signature
information. The code pickle contains a linked version of the Alice compiler, with
all signature information stripped. The signature pickle imports a large part of the
Alice library (and hence has big import and export signatures) but contains only
little code. All sizes are given in kilobytes.

5.3.3 Minimisation as a Garbage Collection Stage

The redundant information deleted by minimisation can be regarded as a form of
“structural garbage”. In a generational garbage collection framework, minimisa-
tion could be used as an additional stage, applied before a “major collection” (a
collection of the oldest generation).

5.4 Incremental Minimisation

Mauborgne [23] describes a modification of Hopcroft’s algorithm allowing for incre-
mental minimisation of a graph – in this context, incremental means that a larger

44

5.5 Implementation Details

graph is kept minimal and it is possible to add new graphs to it without minimising
the whole resulting graph again.

Mauborgne’s paper deals with sets of regular trees represented as graphs. The
algorithm he presents can incrementally add new regular trees to a given set of
minimal regular trees in time O(n logn), where n is the size of the added regular
tree.

Woop and Horbach [42] give an improved description of the algorithm including
proofs of correctness and asymptotic complexity.

The drawback of incremental minimisation is that a lot of additional bookkeeping
information is needed: The graph has to be analysed for its strongly connected
components (SCCs); a hash table is needed that maps each node to its SCC. This
information has to be kept between invocations of the minimiser, so there probably
is a large memory overhead. It has to be investigated whether there are applications
where the incremental algorithm can outperform the non-incremental one.

5.5 Implementation Details

A näıve implementation of the algorithm, especially of its bookkeeping data struc-
tures, would result in poor performance. This section discusses some key issues
that are crucial for efficiency.

A modification of Hopcroft’s algorithm (as described and implemented by Horbach
and Woop [42]) serves as the base for the SEAM implementation. This algorithm
computes the same congruence as Cardon’s and Crochemore’s (Horbach and Woop
proved this) and can be realised with efficient data structures as discussed below.

5.5.1 Partitions

The main data structure that the minimiser uses has to represent equivalence
classes and provide an operation that splits a class into two. This scheme is known
as partition refinement, and Habib et al. [13] develop a generic approach to it. Their
implementation uses an array and a list of pointers into the array as the partition
data structure. Figure 5.2 illustrates the idea.

With this data structure, the operation that removes n arbitrary members of a class
and puts them into a new class has an asymptotic complexity of O(n). Addition-
ally, the initial partition can be computed by sorting the array with respect to a
suitable order.

45

5 Minimisation

1 2 3 4 5 6 7 8 9 10 11

10 − 124 − 91− 3

12 Elements

Classes

Figure 5.2: Implementation of partitions

This technique can be directly applied to Hopcroft’s minimisation algorithm,
whereas Cardon’s and Crochemore’s approach needs different (heavily list-based)
data structures. Hopcroft’s algorithm can be easily adjusted to deal with data
graphs; the SEAM minimiser is a modified version of Hopcroft’s algorithm com-
bined with Habib’s ideas.

5.5.2 Filling the Data Structures

As its first step, the algorithm has to create the partition data structure and fill
it with the nodes of the subgraph that will be minimised. In addition, a table has
to be filled that contains an inverse version of the edges: For each node, the list
of its predecessors is stored, together with some more bookkeeping information.
This involves a traversal of the graph, similar to the pickling algorithm; again, a
depth-first traversal is the natural choice.

5.5.3 Collapsing of Nodes

When ∼S has been computed, all the nodes in one equivalence class have to be
replaced by one representative of that class: The edges of all direct predecessors
of a node have to be redirected to the chosen representative.

This can easily be done, because Hopcroft’s algorithm needs a backwards version
of every edge anyway, making it possible to access a node’s predecessors.

An alternative way of replacing nodes will be presented in the next chapter.

5.5.4 Implementation on SEAM

The basis for the implementation of the minimisation algorithm was the SML ver-
sion by Horbach and Woop [42], combined with Habib’s partition refinement tech-
niques.

46

5.5 Implementation Details

The original algorithm was tuned for clarity and correctness of the worst case run-
time analysis. For the actual implementation on SEAM, some compromises were
made:

• As the average in-degree of nodes is small, a list of incoming edges is used
instead of an array of lists that is indexed by the incoming edges’ numbers.

• The initial partition is created using a quicksort algorithm (see Section 5.5.1).
This has complexity O(n logn) instead of O(n) for the original implementa-
tion that used hashing. In practice, this does not change the overall complex-
ity but instead improves the performance.

• The order used to create the initial partition is extended such that two block
nodes are only in the same class if all their successors containing integers
are equal. This makes the comparison during quicksort a bit more complex
(scanning all the successors of a node), but that way no integer nodes have to
be processed afterwards.

The minimiser comprises around 1700 lines of C++ code. In addition, some parts
of the Alice library have to be changed to make use of it.

Section 5.3.2 already gave some numbers indicating that pickles can be shrinked
considerably using minimisation. The following table shows the time needed to
bootstrap the Alice system with and without minimisation. The figures suggest
that the performance overhead is rather small. The minimised pickles even reduce
the start-up time of the interactive toplevel.

Task No. of pickles w/o minimisation w/ minimisation gain

Alice bootstrap 106944 29m24s 30m34s −4%
Invoking Alice toplevel 77 2.73s 2.27s 17%

47

5 Minimisation

48

6 Transients

In this chapter, an extension to the data graph and the abstract store is investig-
ated: Transients are nodes that can become other nodes, a powerful concept with
a lot of applications.

A similar mechanism can be found in several programming systems: Prolog and
Mozart use transient-like objects to implement logic variables. They can be created
without being bound to a value, and later, when they are bound, disappear. In
Prolog, such a binding can be undone for backtracking.

In lazy functional programming languages, the evaluation of expressions is sus-
pended until their value is needed. This is achieved by creating suspensions (often
also called closures) containing the code that evaluates the expression, and after
evaluation replacing the suspension with the resulting value. Peyton Jones [20]
describes this in the context of Haskell.

Smalltalk provides a primitive become operation that exchanges the identity of two
objects [11]. It is, for example, used to implement dynamically growing collections
of objects: When the collection gets too small, a new collection is allocated, the
objects from the old collection are put into the new one, and the identities of
old and new collection are swapped. That way, every subsequent access to the
collection will be performed on the new one. The next garbage collection removes
the old collection.

6.1 The “become” Operation

The store has to provide only one additional operation in order to support transi-
ents: become(v1,v2) substitutes the node v2 for the node v1.

49

6 Transients

block block block

block

block

block

block block block

block

block

become(v1,v2)

v1 v2 v2
block

v1

Figure 6.1: The become operation

6.1.1 Intended Semantics

Figure 6.1 shows two data graphs, the left one before and the right one after an
application of the become(v1,v2) operation: All the incoming edges of v1 are
redirected to point to v2 instead.

The node v1 is not connected to the data graph any longer, as all its incoming
edges have been redirected. The next garbage collection will thus delete the node.
Note, however, that its successors could stay alive, as they may be referenced by
other nodes.

The become operation is the only way of explicitly deleting a node in the store,
and it deletes nodes in a safe way: No dangling pointers are created, because all
pointers to the deleted node are redirected to another node. These nodes that are
replaced by other nodes are called transients.

6.1.2 Implementation Using Redirection Nodes

The operation become(v1,v2) cannot be implemented efficiently using the normal
abstract store interface, as this would imply a traversal of the whole data graph in
order to find all predecessors of v1.

An efficient solution for this problem is to introduce a special internal node type
called a redirection node. Then become(v1,v2) transforms v1 into a redirection
node with an edge to v2 (shown in Figure 6.2). The store operations transparently
follow chains of redirection nodes, so that client programs do not witness these
internal structures.

Garbage collection eliminates redirection chains. That way, scanning for v1’s pre-
decessors is postponed to a time when a scan of the data graph has to be done
anyway.

50

6.1 The “become” Operation

block block block

block

blockredirect

block block block

block

block

block

become(v1,v2)

v1 v2 v1 v2

Figure 6.2: Redirection nodes

Redirection nodes are a well-known technique already used in the context of the
Warren Abstract Machine [1] (where they are called “REF cells”).

How Redirection Nodes can be Realised

Basically, a redirection node is an ordinary store node with a special label and
one child – the target node. Redirecting a node v1 to a node v2 means changing
v1’s label to the redirection label and setting its first child to v2. This reveals a
drawback: Only nodes with outgoing edges can be turned into redirection nodes.

This limitation can be worked around by not allowing 0-ary nodes in the first place –
a node without children can always be represented by an integer node. Redirection
of integer nodes is not necessary, because they are not allocated but represented
directly as an address (as discussed in Section 3.2), and thus are always shared
anyway.

6.1.3 Optimisations

The implementation suggested above implies that every store operation must test
for redirection nodes. This can become a performance issue, because redirection
nodes will probably be rare.

As an optimisation, the store interface is extended by the following functions:

val directTypeOfNode : addr -> node_t

val directAddrToInt : addr -> int
val directGetBlockArg : addr * int -> addr (* Subscript *)
val directGetChunkArg : addr * int -> byte (* Subscript *)

val directSetBlockArg : addr * int * addr -> unit (* Subscript *)
val directSetChunkArg : addr * int * byte -> unit (* Subscript *)

51

6 Transients

The “direct” functions behave exactly like their counterparts but assume that the
addresses do not contain redirection nodes. They can thus omit the test, which
makes them more efficient but less safe.

6.2 Concurrency: Futures and Promises

This section discusses futures and promises, which are the main applications of
transients in Alice/SEAM.

6.2.1 Futures and Promises

Futures were first introduced in Multilisp (as described by Halstead [14]). They
can be used to model synchronisation in a concurrent programming language and
provide a means of introducing lazy evaluation into otherwise strict functional
languages. These concepts were discussed formally for Alice by Schwinghammer
[35].

In the abstract store, futures are transient nodes. Binding a future f to the node
representing its value v simply means invoking become(f,v). The future disap-
pears, and subsequent operations accessing the former future will get the value
instead.

In Multilisp, bound futures are called determined. They are also realised as chains
of redirection nodes, but there is no abstraction layer that dereferences those
chains automatically. The garbage collector shortens chains of determined futures,
just as described above.

6.2.2 Synchronisation of Concurrent Threads

Before the future gets bound, it contains a list of threads that are waiting for the
future, and – in case of a byneed future – a pointer to a procedure that can compute
the future’s value.

Triggering the evaluation of a byneed future and waking the waiting threads when
a future gets bound are complex operations involving the thread scheduler. Brun-
klaus and Kornstaedt [5] describe this in detail.

52

6.3 Minimisation

6.2.3 Concurrent Pickling and Minimisation

Concurrency in combination with destructive update always requires special care:
Programs have to be implemented in a thread-safe way, meaning that no race con-
ditions occur when two threads access the same objects.

This is especially true for pickler and minimiser: Their results are not predictable
if the subgraph they are working on is changed during pickling or minimisation.
The only way to make both operations thread-safe is to make them atomic, not
allowing any other thread to become runnable before they are finished.

This implies a simple strategy for dealing with futures: As they refer to a suspen-
ded computation, they are resources and as such cannot be pickled. The minimiser
has to treat them as ordinary nodes with token equality type but may not wait for
them, as that would make minimisation a non-atomic operation again.

In order to ensure that some data graph does not contain futures, an operation

val awaitAll : addr -> unit

can be implemented that triggers evaluation of all byneed futures in the subgraph
reachable from the given address and blocks on all futures. When a future gets
determined, the whole process has to be started again, because the thread that
computed the value of the future can have modified parts of the data graph and
that way introduced new futures.

The awaitAll operation can be called before pickling or minimising a data graph.
It must be ensured, however, that between leaving awaitAll and entering the pick-
ler, no other thread is run.

6.3 Minimisation

The minimisation algorithm was always applied to a rooted subgraph of the data
graph. If the equivalent nodes are collapsed as suggested in section 5.5.3, a situ-
ation like the one shown in Figure 6.3 may arise: The subgraph reachable from
v is minimised, but yet a non-minimal copy of it has to be kept because it was
referenced from some node v’.

53

6 Transients

block

block

"alice"
string

"alice"
string

"alice"
string

"alice"
string

block

block

block

block

block

"alice"
string

"alice"
string

block

block

block

"alice"
string

v’ v’v v

Figure 6.3: Minimisation of subgraphs

6.3.1 Collapsing using Redirection Nodes

The use of transients can cure this: Collapsing of nodes v and v’ is done by call-
ing become(v,v’). This may be dangerous if the optimised “direct” store opera-
tions are used, because this become operation can arbitrarily introduce redirection
chains.

In the current Alice implementation, only data structures built by user programs
are minimised, and the “direct” operations are only used for internal data struc-
tures of the system. Such design guidelines have to be followed to make minimisa-
tion a safe operation.

6.3.2 A Minimal Store Area

The use of redirection nodes for collapsing allows for another application of min-
imisation: An abstract store containing an area which is always kept minimal.
Without redirection nodes, adding of a new node to the minimal store could end
up in a situation like the one in Figure 6.3.

A minimal store area offers an extremely cheap equality test: Two values that are
both in the minimal store are semantically equal exactly if they are represented by
the same node.

Figure 6.4 shows a simple implementation of a minimal store area in Alice, realised
as an abstract type. It makes use of the minimisation interface from Section 5.3.1.
The addVal function takes an arbitrary value, adds it to the minimal store (repres-
ented as a list) and minimises it. A value of an abstract type is returned so that
only minimised values can be tested for equality using the equal function. The
original value can be accessed through the getVal function.

54

6.3 Minimisation

signature MIN_STORE =
sig

type a
type t
val addVal : a -> t
val getVal : t -> a
val equal : t * t -> bool

end

functor MkMinStore(Arg:sig type a end) :> MIN_STORE
where type a = Arg.a =
struct

type a = Arg.a
type t = Arg.a
val addVal =

let
val minstore = ref nil

in
fn a =>
(minstore := a::(!minstore);
Minimizer.minimize (!minstore);
a)

end
fun getVal a = a
val equal = UnsafeValue.same

end

Figure 6.4: Implementation of a simple minimal store area

This kind of implementation reveals a problem: The root nodes of the graphs
contained in the minimal store area are kept alive as long as the minimal store
is alive. They are prevented from becoming garbage, possibly yielding a memory
leak. There are two ways of solving this problem: Either there is an operation
that deletes a node from the minimal store area, or the store itself provides a
mechanism called weak tables. A weak table is a table of store nodes that is not
scanned during garbage collection but cleaned after a garbage collection so that
each dead node is removed.

55

6 Transients

6.4 Pickling and Unpickling with Transformations

This section presents a generic framework that can transform data graphs when
they are pickled and unpickled. Herlihy and Liskov already discuss this idea in the
context of CLU [16], where these transformations are called encoding and decoding.
This thesis uses the terms abstraction (for the transformation done on pickling)
and instantiation (for the unpickling transformations), following the terminology
of Brunklaus and Kornstaedt [5].

6.4.1 Abstraction and Instantiation

Abstraction and instantiation are functions conforming to the following signa-
ture:

val abstract : addr -> addr
val instantiate : addr -> addr

Both functions can do arbitrary computations involving the whole subgraph reach-
able from their argument. They return a store node representing an abstract, ex-
ternal or instantiated, internal version of their argument, respectively.

Abstraction Model

Abstraction is done top-down, node-wise, and with memorisation of the already
abstracted nodes. In other words, abstraction uses a depth-first traversal of the
data graph, and the abstract function is applied to each child of a node before
the traversal descends into that child.

Instantiation Model

Nodes are instantiated in the depth-first postorder, thus in a bottom-up way. Shar-
ing as well as cycles have to be treated specially: Any edge leading to a node v must
be redirected to the node instantiate(v).

Example

The following figure illustrates the ideas behind abstraction and instantiation. In
this example, instantiation only changes nodes with label A (for abstract) and cre-
ates a new node with label C (for concrete). This conrete node has the abstract
node as its first and a chunk as its second child (depicted by a box). Abstraction

56

6.4 Pickling and Unpickling with Transformations

of such an instantiated, concrete node is just a projection to its first child (hence
recovering the original abstract node).

A

A

A

A

C

C

Abstract data graph Instantiated data graph

A model similar to this is used in SEAM for transforming code during pickling and
unpickling – this is discussed below as a potential application.

Reasoning about Transformations

The transformation model introduced above is quite similar to the one investigated
by Herlihy and Liskov [16]. They reason about soundness of those transformations
by stating invariants that abstraction and instantiation (which they call encoding
and decoding) have to obey. Finally, they discuss problems connected with cyc-
lic data structures: Using the terminology introduced above, this means that an
instantiation operation may not use a node’s children – for example by descend-
ing further – unless it can be sure that they have already been instantiated (which
cannot be guaranteed generally for cyclic data graphs).

6.4.2 Modifications to Pickler and Unpickler

Applying transformations during pickling is easy: The abstract function has to be
applied during the depth first traversal before descending into a node’s children,
thus descending into the abstracted children of the node instead. This can be
achieved by providing a modified version of getBlockArg that the pickler uses to
access nodes:

val getBlockArg’ = abstract o getBlockArg

57

6 Transients

In addition, the pickler must be invoked with abstract(r) instead of r as the root
node.

For the implementation of instantiation, transients are essential: The unpickler
cannot predict the result of the instantiation when it encounters a PROMISE, so it
cannot create a node with the right label and arity that is later back-patched when
its children are available. A promise realised as a future, though, can be created
and bound to the result of the instantiation afterwards. Implementing promises
this way also respects the instantiation model as described above, because all edges
originally pointing to the promise will be redirected to its instantiated version when
the future is bound.

The implementation of the unpickler remains the same as before, but a new layer
of abstraction is put between store and unpickler. This layer provides the following
operations:

val allocBlock’ : label * addr list -> addr
val promiseBlock : unit -> addr
val fulfilBlock : addr * label * addr list -> addr

The lists of addresses are the children of the block that is created. promiseBlock
returns an addr that is a future, and fulfilBlock takes this future, allocates the
final block and binds the future to it.

Assuming that there is a function allocFuture returning a fresh future, the ab-
straction layer can be implemented as follows:

fun allocBlock’ (l, addrs) =
let

val block = allocBlock(l, List.length addrs)
in

List.appi (fn (i, n) => setBlockArg(block, i, n)) addrs;
instantiate block

end

fun promiseBlock () = allocFuture()

fun fulfilBlock (a, l, addrs) =
let

val block = allocBlock’(l, addrs)
in

become(a, block);
block

end

58

6.4 Pickling and Unpickling with Transformations

With this layer between abstract store and pickler/unpickler, neither abstraction
nor instantiation requires to build the complete transformed graph. Both opera-
tions can be performed on-the-fly during pickling and unpickling.

6.4.3 Possible Applications

The main application for this transformation mechanism is the representation of
code in pickles. The instantiate function can take code in an external, platform-
independent representation and generate an internal, possibly platform-dependent
or otherwise optimised representation. On pickling, the abstract function creates
an external representation again. This external representation can either be recom-
puted, or just returned if the instantiate function memorised it as part of the
internal representation.

Transformations offer a more dynamic way of coping with resources. Certain ob-
jects may be resources internally, but one can find an external, non-resource de-
scription for them. The mechanism presented here can automatically do the ne-
cessary transformations during pickling and unpickling. Numbers (integers and
floating point numbers) are candidates for such a conversion. Resources like op-
erating system file descriptors could be abstracted into an external representation
and bound to a corresponding resource on unpickling again – this is of course only
possible for resources that are present on every system, like for example stdin.
This technique is called resource re-binding.

Programming languages implemented on top of the abstract store could make the
transformation mechanism available on the language level; one interesting applic-
ation could be a Java-like, object based transformation mechanism as discussed
in 4.6.1. It is unknown, however, how this can be done in a type-safe way in a
strictly typed functional language like Alice.

6.4.4 Concrete Implementation

The transformation mechanism was already present in the former SEAM pickler im-
plementation by Brunklaus and Kornstaedt. It was however not well understood:
The transformations are inherently bottom-up (as a subgraph can only be trans-
formed after it has been completely built), but the pickler embarked on a top-down
strategy. The result was a mixed top-down/bottom-up unpickler.

59

6 Transients

In SEAM, transformation is mainly used for transforming code, but also resources
are realised this way: The transformation function raises an exception when ap-
plied to a resource.

The transformation function itself is not hard-wired into the system but can be
augmented with user-defined functions. The identification is not only done by the
label:

External nodes have the label TRANSFORM and as their first child a string with an
identifier. The corresponding transformation function is looked up in a table under
that identifier and then applied.

Internal nodes are identified by the label CONCRETE and directly reference their
transformation function via the first child.

60

7 Discussion and Outlook

This chapter concludes the thesis with a discussion of the concepts that were in-
troduced and an outlook onto future work.

7.1 Summary

This thesis introduced, as its basic notion, the formal model of data graphs. Based
on this, an architecture of a language-independent abstract store was developed,
together with some examples how high-level data structures can be encoded into
data graphs.

Pickling, encoding a data graph into an external, linear representation, was the
main abstract store service introduced in this thesis. Its application areas are
persistent storage and communication (distribution) of dynamically created data
structures over a network. The algorithms presented here offer an efficient, gen-
eric, platform- and language-independent way of storing and distributing data
structures.

The data graph model distinguishes between nodes with structural equality and
those with token equality. This information is needed for minimisation, which was
described as an algorithm computing a partition of the data graph. Every class in
this partition contains only semantically equal nodes, so that redundant nodes can
be deleted. Some technical details were discussed that are crucial for an efficient
implementation of the minimisation algorithm. Benchmark figures suggested that
if a data graph is minimised before it is pickled, the pickle sizes shrink consider-
ably, while the cost of pickling is increased only moderately.

As an extension of the data graph and abstract store models, transients were intro-
duced. They are nodes which can later be merged with other nodes. This concept
has interesting applications, as it can model logic variables and futures. The ab-
stract store had to be extended by just one operation, become, to efficiently sup-
port transients. Internally, binding a transient is done by introducing redirection

61

7 Discussion and Outlook

nodes that are hidden behind the store interface and eliminated by the garbage
collector.

One interesting application made possible by transients is the transformation of a
data graph while it is being unpickled. Neither unpickler nor abstract store inter-
face have to be modified, only an additional layer of abstraction is needed between
them.

7.2 Outlook

This section poses questions that were raised or remained open while I wrote this
thesis. All of them seem to be interesting starting points for future research.

7.2.1 Abstract Store

A question touching the base of the design is whether the abstract store’s level
of abstraction, its level of structure, is chosen well. The claim is that the data
structures of arbitrary languages can be encoded into store data structures. Some
more research has to be done whether this encoding is in fact efficient; the Java
implementation on SEAM [5] should be evaluated further.

Having an architecture that supports multiple languages, inter-language operability
suggests itself as a research topic. Especially the similarities between the abstract
store as a semi-structured data model and XML (which was originally designed with
language independence in mind) should be investigated, maybe some techniques
used in the context of XML can be reused for data graphs.

The store interface from Section 3.2 uses a general purpose type addr for nodes in
the store. The programmer always has to either test for the node type or be sure
by construction of the data structures that all operations are applied to the correct
node types. This is a potential source for type errors that cannot be discovered
statically. It is not clear but interesting how this interface can be realised in a
statically type-safe way.

7.2.2 Minimisation

The minimisation algorithm has been implemented successfully for SEAM. So far,
its only application is the minimisation of pickles. Neither of the two applications
suggested in Section 5.3.3 and Section 6.3.2 have been implemented yet.

62

7.2 Outlook

Especially the minimal store area is a unique, new concept that deserves attention.
On the implementation side, it should be investigated whether such a concept can
be integrated directly into the store: a separate memory area, such that it is always
known from a node’s address whether it is already minimised or not. This is a
low-level issue – the abstract store and the garbage collector have to treat this area
specially.

On a higher level, it is interesting to explore applications for such a minimal store;
they should take advantage of the fast equality test that is possible for minimised
data. Originally, the intention was to minimise the representation of run-time types
(RTTs) in Alice, because they seem to consume a lot of memory in the system. The
problem is that the current data type for RTTs is not suited for minimisation;
it is not obvious what a better representation may look like. Furthermore, the
algorithms that handle RTTs should take advantage of the unique representation
and use the cheap equality test. It should be a worthwhile topic for future research
to develop a RTT representation and algorithms with minimisation in mind.

7.2.3 Pickling

The implementation of the pickler in SEAM is stable, fast and usable. Yet there are
some issues that deserve a closer look (ordered from low-level to high-level):

Robustness of the Pickle Format

The current SEAM unpickler can only check implicit consistency of pickles: whether
there is no stack overflow, whether each register is assigned only once (which is a
property of the current pickler implementation), whether each LOAD instruction
has a corresponding STORE or PROMISE, and whether each PROMISE is fulfilled.

Transmission errors like swapped or missing bytes may remain undetected if they
occur inside scalar data or labels. As a solution, an explicit consistency check like
the Cyclic Redundancy Check (CRC) [29] should be integrated.

Of course this does not reduce the risk of forgery: Still, a malicious party can forge
pickles and tag them with a correct checksum.

Modal Pickling

Different contexts may impose the need for a different behaviour of the pickler.
Persistence and distribution, for example, could implement different strategies for
dealing with resources: Persistence should fail, while distribution could create a

63

7 Discussion and Outlook

“proxy”, a remote handle for the resource. Java implements modal pickling [32]
and considers it important.

Microsoft .NET also provides a sort of modal pickling, the three pickler back-ends
(for a binary format, SOAP, and XML) show differing behaviour concerning which
fields of an object get pickled. It is not clear whether this serves any purpose; if
so, it should be investigated whether the SEAM pickler can benefit from a similar
mechanism.

The question in SEAM is always whether a feature belongs to the abstract machine
level or to a language level. This has to be answered for modal forms of pickling.

Language-independent Security Features

Two features that could make the use of pickles more secure are authentication
and encryption.

Authentication means that the unpickler can verify that the pickle was created by
someone who is trusted. There are standard cryptographic tools to achieve this.

Encryption using strong cryptography yields a secure channel between the creator
of the pickle and its receiver. If the pickle is not directly written to a file but to
some kind of “stream”, this stream can be encrypted. Java follows this approach
[18]. For network transmission, standard techniques like for example SSL can be
applied.

For both authentication and encryption, some form of certificate or key manage-
ment is needed; the cryptographic public keys have to be stored, managed and
checked. This cannot be done without user interaction.

As these cryptographic methods do not rely on properties of the programming
language, it should be possible to implement them in a language-independent way
on the level of the pickler.

Language-dependent Security Features

The most important security feature currently implemented in Alice is the dynamic
type check at run-time. Unfortunately, this check only tests for the consistency at
the module level. It is not possible to check whether the actual data in a pickle
really is a representation of a value of that type. It is not obvious how this can be
guaranteed or tested.

Similar ideas exist for code: Java does a “byte-code verification”, testing for some
invariants that the code has to obey. Thinking out this concept leads to an inter-
esting area of research: proof-carrying code [26]. Perhaps these techniques can be

64

7.2 Outlook

implemented for Alice/SEAM and coupled with the code transformation mechan-
ism.

Type-Safe Transformations

As stated in Section 6.4, some work should be invested into making the transform-
ation mechanism available in Alice. It is not obvious at all how this can be done in
a type-safe way: The pickling and the unpickling process have to agree upon the
type of the pickled data, and furthermore, the transformation functions have to
be compatible. Herlihy and Liskov [16] discuss such transformations for abstract
types in CLU, and it should be investigated in how far their results can be used for
Alice.

65

7 Discussion and Outlook

66

8 Bibliography

[1] H. Ait-Kaci. Warren’s Abstract Machine. Logic Programming. MIT Press, Cam-
bridge, Massachusetts;London, England, 1991.

[2] The Alice Project. Available from http://www.ps.uni-sb.de/alice, 2003.
Homepage at the Programming Systems Lab, Universität des Saarlandes, Saar-
brücken.

[3] A. W. Appel and D. B. MacQueen. Separate compilation for Standard ML. In
Proceedings of the ACM SIGPLAN ’94 conference on Programming language
design and implementation, pages 13–23. ACM Press, 1994.

[4] A. Birrell, M. Jones, and E. Wobber. A simple and efficient implementation of a
small database. In Proceedings of the eleventh ACM Symposium on Operating
systems principles, pages 149–154. ACM Press, 1987.

[5] Th. Brunklaus and L. Kornstaedt. A virtual machine for multi-language execu-
tion. Technical report, Programming Systems Lab, Universität des Saarlandes,
Saarbrücken, November 2002. Available from
http://www.ps.uni-sb.de/Papers/abstracts/multivm.html.

[6] P. Buneman. Semistructured data. In Proceedings of the Sixteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May
12-14, 1997, Tucson, Arizona, pages 117–121. ACM Press, 1997. Invited Tu-
torial.

[7] A. Cardon and M. Crochemore. Partitioning a graph in O(|A| log2 |V |). Theor-
etical Computer Science, 19(1):85–98, July 1982.

[8] C. J. Cheney. A non-recursive list compacting algorithm. Communications of
the ACM, 13(11):677–8, November 1970.

[9] The Mozart Consortium. The Mozart programming system. Available from
http://www.mozart-oz.org, 2003.

67

http://www.ps.uni-sb.de/alice
http://www.ps.uni-sb.de/Papers/abstracts/multivm.html
http://www.mozart-oz.org

Bibliography

[10] World Wide Web Consortium. Simple Object Access Protocol (SOAP). Available
from http://www.w3.org/TR/SOAP, 2000.

[11] A. Goldberg and D. Robsen. Smalltalk-80. The Language. Addison-Wesley
Series in Computer Science. Addison-Wesley, 1989.

[12] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. The Java
Series. Addison-Wesley, 1996.

[13] M. Habib, Ch. Paul, and L. Viennot. Partition refinement techniques: An inter-
esting algorithmic tool kit. International Journal of Foundations of Computer
Science, 10(2):147–170, 1999.

[14] R. H. Halstead. Multilisp: a language for concurrent symbolic computa-
tion. ACM Transactions on Programming Languages and Systems (TOPLAS),
7(4):501–538, 1985.

[15] M. A. Harrison. Introduction to Switching and Automata Theory. McGraw-
Hill Series in Systems Science. McGraw-Hill, New York;St. Louis;San Francisco,
1965.

[16] M. P. Herlihy and B. Liskov. A value transmission method for abstract data
types. ACM Transactions on Programming Languages and Systems (TOPLAS),
4(4):527–551, 1982.

[17] J. Hopcroft. An n logn algorithm for minimizing states in a finite automaton.
In Z. Kohavi and A. Paz, editors, Theory of Machines and Computations, pages
189–196. Academic Press, 1971.

[18] Java Object Serialization Specification. Available from
http://java.sun.com/j2se/1.4/docs/guide/serialization/, 2001.

[19] R. E. Jones and R. D. Lins. Garbage Collection: Algorithms for Automatic Dy-
namic Memory Management. John Wiley & Sons, New York, 1996.

[20] S. L. Peyton Jones and J. Salkild. The spineless tagless g-machine. In Pro-
ceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture, pages 184–201, London, UK, Septem-
ber 1989. ACM Press.

[21] H. Lieberman and C. Hewitt. A real-time garbage collector based on the life-
times of objects. Communications of the ACM, 26(6):419–429, 1983.

[22] B. Liskov and St. Zilles. Programming with abstract data types. In Proceedings
of the ACM SIGPLAN symposium on Very high level languages, pages 50–59.
ACM Press, 1974.

68

http://www.w3.org/TR/SOAP
http://java.sun.com/j2se/1.4/docs/guide/serialization/

Bibliography

[23] L. Mauborgne. An incremental unique representation for regular trees. Nordic
Journal of Computing, 7(4):290–311, 2000.

[24] Microsoft. Microsoft .NET. Available from http://www.microsoft.com/net,
2003.

[25] M. L. Minsky. A Lisp garbage collector algorithm using serial secondary stor-
age. Technical Report Memo 58 (rev.), Project MAC, MIT, Cambridge, MA,
December 1963.

[26] G. C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Langauges (POPL ’97),
pages 106–119, Paris, January 1997. ACM Press.

[27] G. Nelson, editor. Systems Programming with Modula-3. Prentice Hall Series in
Innovative Technology. Prentice Hall, Englewood Cliffs, New Jersey, 1991.

[28] The OCaml programming system. Available from http://www.ocaml.org,
2003.

[29] W. H. Press, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C++:
The Art of Scientific Computing. Cambridge Univ. Press, Cambridge, second
edition, 2002.

[30] The Python programming language. Available from http://www.pyhton.org,
2003.

[31] J. C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS ’02; 17th Annual IEEE Symposium on Logic in Computer Science; July
22-25, 2002, Copenhagen, Denmark; Proceedings, Washington;Brussels;Tokyo,
2002. IEEE.

[32] R. Riggs, J. Waldo, A. Wollrath, and K. Bharat. Pickling state in the java(TM)
system. USENIX, Computing Systems, 9(4):291–312, 1996.

[33] The Ruby programming language.
Available from http://www.ruby-lang.org, 2003.

[34] R. Scheidhauer. Design, Implementierung und Evaluierung einer virtuellen
Maschine für Oz. Dissertation, Universität des Saarlandes, Fachbereich Infor-
matik, Saarbrücken, December 1998.

[35] J. Schwinghammer. A Concurrent Lambda-Calculus with Promises and Futures.
Diploma thesis, Programming Systems Lab, Universität des Saarlandes, Saar-
brücken, February 2002. Available from
http://www.cogs.susx.ac.uk/users/js35/publications/da.pdf.

69

http://www.microsoft.com/net
http://www.ocaml.org
http://www.pyhton.org
http://www.ruby-lang.org
http://www.cogs.susx.ac.uk/users/js35/publications/da.pdf

Bibliography

[36] R. Sedgewick. Algorithms in C++. Addison-Wesley, third edition, 2002.

[37] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Com-
puter Science Today: Recent Trends and Developments, volume 1000 of Lec-
ture Notes in Computer Science, pages 324–343. Springer-Verlag, Berlin, 1995.

[38] G. Smolka and R. Treinen. Records for logic programming. Journal of Logic
Programming, 18(3):229–258, April 1994.

[39] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[40] D. Ungar. Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In Proceedings of the first ACM SIGSOFT/SIGPLAN soft-
ware engineering symposium on Practical software development environments,
pages 157–167. ACM Press, 1984.

[41] R. Wilhelm and D. Maurer. Compiler Design. International Computer Science
Series. Addison-Wesley, 1995.

[42] S. Woop and M. Horbach. Incremental algorithms and a minimal graph repres-
entation for regular trees.
Available from http://www.ps.uni-sb.de/˜horbach/fopra.html, 2002.

70

http://www.ps.uni-sb.de/~horbach/fopra.html

	Introduction
	Overview
	Related Work
	Contributions of this Thesis
	Organisation of this Thesis

	The Data Graph
	Definition of a Data Graph
	Structural and Token Equality
	Levels of Structure
	Related Work

	An Abstract Store
	Design Decisions
	The Store Interface
	Language Layers
	Garbage Collection

	Pickles
	Related Work
	Constructing Data Graphs
	Pickling Data Graphs
	Resources
	Implementation Details
	Comparison with other Pickling Mechanisms

	Minimisation
	Definition of Minimal Graphs
	The Minimisation Algorithm
	Areas of Application
	Incremental Minimisation
	Implementation Details

	Transients
	The ``become'' Operation
	Concurrency: Futures and Promises
	Minimisation
	Pickling and Unpickling with Transformations

	Discussion and Outlook
	Summary
	Outlook

	Bibliography

