
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Bachelor’s Thesis

Correctness of Tableau-Based
Decision Procedures with

Backjumping
submitted by

Tobias Tebbi

submitted on
5.4.2011

Supervisor
Prof. Dr. Gert Smolka

Advisors
Mark Kaminski, M.Sc.
Prof. Dr. Gert Smolka

Reviewers
Prof. Dr. Gert Smolka

Prof. Bernd Finkbeiner, Ph.D.

2

Eidesstattliche Erklärung
Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.

Statement in Lieu of an Oath
I hereby confirm that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Einverständniserklärung
Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent
I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, ____________
Date

Signature

Abstract

Implementations of tableau-based decision procedures often use an optimization
called backjumping. The goal of this thesis is to prove the correctness of the
backjumping optimization. To do so, we define an abstract class of terminating
tableau systems and show the correctness of a concomitant decision procedure
performing depth-first search with backjumping. Based on this framework we
obtain the correctness of a backjumping decision procedure for modal logic. To
the best of our knowledge, this is the first rigorous correctness proof for such a
procedure.

5

Acknowledgment

I would like to express my thankfulness for my advisors Mark Kaminski and
Gert Smolka. The countless discussions, advices and suggestions have helped me
profoundly to develop the results and to write the thesis. This allowed me to gain
invaluable insight in the subject as well as in scientific writing in general.
I would also like to thank Gert Smolka and Bernd Finkbeiner for reviewing this
thesis.

7

Contents

Introduction 11

1 The Propositional Case 15
1.1 Tableau Systems . 15

1.1.1 Fundamental Notions . 15
1.1.2 Termination . 16
1.1.3 Correctness . 16
1.1.4 Comparison to Other Propositional Tableau Systems . . . 18
1.1.5 Compact Notation For Tableaux 18

1.2 Depth-First Search . 19
1.3 Backjumping . 20

2 Abstract Tableau systems 23
2.1 Rules . 23
2.2 Consistency . 25
2.3 Termination . 26

3 Correctness of Depth-First Search 27

4 Correctness of Backjumping 31
4.1 Dependency Sequents . 31

4.1.1 Example . 31
4.1.2 Relation to Propositional Logic 34
4.1.3 Dependency Sequent Rules 34

4.2 DFS with Backjumping . 35
4.3 Learning . 40

5 The Modal Case 41
5.1 Syntax and Semantics of K . 41
5.2 Rules . 42
5.3 Example . 44

6 Discussion and Future Work 49
6.1 Blocking . 49
6.2 Non-terminating Tableau Systems 49
6.3 Monotonicity . 49

9

Introduction

Tableau methods are used for various purposes in logic, especially as the basis for
decision procedures. Fitting [6] sees tableau methods as formal proof procedures
that try to refute a formula by “[breaking it] down syntactically, generally splitting
things into several cases”. They were invented by Beth [4] and Hintikka [12] and
later refined by Lis [22] and Smullyan [29]. Originally developed as proof proce-
dures for first-order logic, they were later extended to modal logics [7], description
logics [1], higher-order logic [2] and many more (see [6]).
Tableau methods have found use as decision procedures in theorem provers for
modal and description logics (e.g., FaCT++ [31], HTab [13], RACER [11] or Spar-
tacus [10]). These implementations use optimization techniques that are essential
for the practical performance. A particularly important optimization technique,
used by all of the above implementations, is backjumping.
Backjumping is a search optimization technique originally developed for constraint
satisfaction problems (CSPs). We will now give an example of backjumping for a
CSP, the satisfiability problem for propositional logic. Assume, for instance, we
search a satisfying assignment of the propositional formula (x1∨x4)∧ (x1∨¬x4)∧
(x1 ∨ ¬x2 ∨ ¬x3). Every clause is a constraint on a satisfying assignment. In our
case, every assignment where x1 = 1 is a solution.
The search space of a search problem can be represented by a search tree. In
our case, the search tree is a decision tree. Every node corresponds to a partial
assignment. For a node that is labeled with xi, the nodes in the left subtree
correspond to assignments that set xi to 0 and the nodes in the right subtree
correspond to assignments that set xi to 1. For example, Figure 0.1 is a search
tree for (x1 ∨ x4) ∧ (x1 ∨ ¬x4) ∧ (x1 ∨ ¬x2 ∨ ¬x3).
If a node violates a constraint, then it is labeled with ⊥ and called failed. We
search for a node satisfying all constraints, which is labeled with >. The usual
approach is to perform a depth-first search in the search tree. This is indicated
with dotted arrows in Figure 0.1. When the search reaches a failed node, then
it walks up in the tree until it comes to a node with an unvisited child. This
process is called backtracking. The whole algorithm, that is, depth-first search in
the search tree of a CSP, is also called backtracking search [27].
Backjumping is an improvement of backtracking search. It prevents exploring
certain useless parts of the search tree. For example, consider the subtree in
Figure 0.1 where x1 = 0. It cannot contain a solution because every assignment

11

Introduction

x1

x2

x3

x4

⊥

0

⊥

1

0

x4

⊥

0

⊥

1

1

0

x3

x4

⊥

0

⊥

1

0

⊥

1

1

0

>

1

Figure 0.1: Search tree for the formula (x1 ∨ x4) ∧ (x1 ∨ ¬x4) ∧ (x1 ∨ ¬x2 ∨ ¬x3)

x1

x2

x3

x4

⊥

0

⊥

1

0

x4

⊥

0

⊥

1

1

0

x3

x4

⊥

0

⊥

1

0

⊥

1

1

0

>

1

Figure 0.2: Search tree from Figure 0.1 with backjumping

12

where x1 = 0 violates either x1∨x4 or x1∨¬x4, depending on the value of x4. For
this reason, trying different values for x2 and x3, as done by naive backtracking
search in Figure 0.1, is a waste of time since it cannot possibly yield a satisfying
assignment.
Backjumping improves backtracking search by analyzing the reasons for failures.
In the case at hand, it determines that x2 and x3 are independent from the failures
in the first two leaves. Consequently, it does not try other values for x2 and x3
but directly “jumps back” in the tree to the node where x1 is set to a different
value, that is, 1. This is depicted in Figure 0.2.
The basic ideas of backjumping were introduced in different forms by Gaschnig [8]
and Stallman and Sussman [30]. The version of backjumping we are going to con-
sider is the one presented by Prosser [26] and Ginsberg [9]. Ginsberg also gives a
formal proof of the correctness of backjumping for CSPs. As the propositional sat-
isfiability problem can be seen as a CSP, backjumping can be used in DPLL-style
theorem provers. Nieuwenhuis et al. [25] give a correctness proof of backjumping
for a DPLL-style calculus that does not rely on a translation from propositional
satisfiability to a CSP. Backjumping has also been adapted to tableau methods
for modal logics and description logics [14, 15, 17, 19]. It has been observed to
yield a considerable performance improvement for reasoners deciding these logics
[16, 19]. Although backjumping has been used in the implementation of many
tableau-based theorem provers (see above), its correctness for tableau procedures
was only argued informally relying on the intuition that modal satisfiability can
be represented as a CSP.

Contributions

The goal of this thesis is to give a formal correctness proof of backjumping in
the context of tableau systems. For this, we define an abstract framework of
tableau systems and use it to give a formal description of a tableau procedure
with backjumping. Then we prove this procedure to be correct. This way, one
obtains a correct tableau procedure with backjumping for every tableau system
that is an instance of the abstract framework. As an example of such an instance,
we present a tableau system for the basic modal logic K. To the best of our
knowledge, this is the first rigorous correctness proof for a tableau procedure with
backjumping for modal logic.

Overview

In Chapter 1, we informally introduce the fundamental concepts of this thesis.
We present a tableau system for propositional logic and use it to explain how to
build a tableau using a depth-first strategy and backjumping.

13

Introduction

In Chapter 2, we define an abstract framework of tableau systems and discuss how
the propositional tableau system from Chapter 1 fits into this framework.
In Chapter 3, we present depth-first search for tableaux as a recursive procedure
and prove its correctness.
In Chapter 4, we first introduce the notion of a dependency sequent, which ex-
presses dependencies between nondeterministic decisions and inconsistencies or
formulas on a tableau. Then we use this notion to formulate a tableau algorithm
with backjumping as a recursive procedure. Finally, we prove this procedure to
be correct.
In Chapter 5, we present a tableau system for the basic modal logic K as a second
example of a tableau system that fits into our abstract framework besides the
propositional tableau system from Chapter 1.

14

1 The Propositional Case

In this chapter, we will use an example tableau system for propositional logic to
give an overview of the techniques and algorithms used in this thesis.

1.1 Tableau Systems

1.1.1 Fundamental Notions

A tableau is a binary tree whose nodes are labeled with formulas. For a node
with two child nodes, the first child node is called the left child and the second
one the right child. The paths from the root to a leaf are called the branches
of the tableau. We say a formula is on a branch if the branch contains a node
labeled with the formula. Tableaux are constructed using tableau rules. We
consider rules of the form s1,··· ,sn , s1,··· ,sn

t
or s1,··· ,sn

t1 | t2 where s1, . . . , sn, t, t1 and t2 are
formulas. The set of formulas above the line is called premise, the formulas below
build the set of up to two possible conclusions. The rules are used to extend
a branch of a tableau. When a rule is applied to a branch, then the conclusions
of the rule are appended as new children to the leaf of the branch. A rule only
applies to a branch if the branch contains all formulas of the premise and none of
the conclusions. Note that this ensures that a branch contains a formula at most
once. A rule with two conclusions is called branching because it transforms one
branch into two branches. A rule with zero conclusions is called clashing. When
a clashing rule applies to a branch, then the branch is called clashed. A branch to
which no rule applies is called evident. A tableau for a formula s is a tableau
built using the rules of the tableau system starting with s, i.e., the tableau with a
single node labeled with s. A tableau system consists of a set of tableau rules.
Figure 1.1 shows a tableau system for negation-normal propositional formulas.
The rules are to be read as schemas. Every rule schema stands for infinitely many
rule instances, which are obtained from the schema by replacing the metavariables

T∧
s1 ∧ · · · ∧ sn

si
i∈[1,n] T∨

s1 ∨ s2

s1 | s2
T⊗
s,¬s

Figure 1.1: Rules of a tableau system for propositional logic

15

1 The Propositional Case

1
�� ��p ∧ (¬p ∨ q) initial

2
�� ��p T∧

3
�� ��¬p ∨ q T∧

4
�� ��¬p T∨ 4

�� ��q T∨

Figure 1.2: Tableau for p ∧ (¬p ∨ q)

s1, . . . , sn with propositional formulas. For example, p∧q
p

and p∧q∧¬q
q

are instances
of the schema T∧. Instances of T∨ are branching, instances of T⊗ are clashing.
An example of a tableau for the formula p ∧ (¬p ∨ q) is shown in Figure 1.2. It
consists of two branches. The left branch is clashed because the rule T⊗ applies
to it. The right branch is evident. The numbers on the left denote the order in
which the tree nodes are added. On the right, the tableau rule used to add the
respective formula is given. Note that T∨ always adds two formulas at the same
time.

1.1.2 Termination

The purpose of a tableau system is to serve as a proof procedure for a logic. We
will only consider terminating tableau systems in this thesis. A tableau system
is terminating if it is impossible to extend a tableau infinitely often. This means
that after finitely many steps, all branches are clashed or evident. We call such a
tableau maximal.

The propositional tableau system terminates because every branch only contains
subformulas of the initial formula. Thus the length of a branch is bounded by the
number of subformulas of the initial formula because a branch contains a formula
at most once. Binary trees with bounded depth have bounded size.

1.1.3 Correctness

Terminating tableau systems are usually used to decide the satisfiability of for-
mulas. This is done as follows. One builds a tableau for a formula s by stepwise
applying the rules of the tableau system. This can be seen as a search for an
evident branch. If the search succeeds, that is, one has built a tableau containing
an evident branch, then one concludes s to be satisfiable. Else, one can extend the

16

1.1 Tableau Systems

tableau until it consists only of clashed branches and conclude s to be unsatisfi-
able. Such a tableau is called clashed. This reasoning can be shown to be correct
for the tableau system in Figure 1.1 by proving the following two properties.

refutational soundness: A formula that has a clashed tableau is unsatisfiable.
So a clashed tableau for a formula s is a proof that s is unsatisfi-
able. As an example, consider the clashed tableau for the formula
p ∧ (¬p ∨ q) ∧ (¬q ∨ ¬p) depicted in Figure 1.3. The tableau consists
of three branches. All of them are clashed because the rule T⊗ ap-
plies to them. Thus, the tableau is a proof for the unsatisfiability of
p ∧ (¬p ∨ q) ∧ (¬q ∨ ¬p).
We sketch the proof of the contraposition of refutational soundness:
A satisfiable formula has no clashed tableau.
We require that if a tableau rule applies to a satisfiable branch, then at
least one of its conclusions yields a satisfiable extension of the branch.
One easily verifies this for the rules in Figure 1.1. For example, look
at the rule T∨. If a satisfiable branch B contains s ∨ t, then either B
extended with s or B extended with t is satisfiable.
Since clashing rules have no conclusions, they must not apply to sat-
isfiable branches.
Following [29], we give semantics to tableaux. We see a branch as
the conjunction of the formulas it contains and a tableau as the dis-
junction of its branches. Therefore we call a branch satisfiable if the
conjunction of all formulas on this branch is satisfiable and we call a
tableau satisfiable if it contains a satisfiable branch.
Because the rules maintain the satisfiability of branches, they also
maintain the satisfiability of tableaux. Thus if s is satisfiable, then
every tableau for s is satisfiable. A satisfiable tableau contains a sat-
isfiable branch, which is not clashed because a clashing rules cannot
apply to a satisfiable branch. So a satisfiable formula has no clashed
tableau.

refutational completeness: If s is unsatisfiable, then all maximal tableaux for
s are clashed.
Again, we sketch the proof of the contraposition: If s has a maximal
tableau that contains an evident branch, then s is satisfiable. This is
the contraposition because every maximal tableau that is not clashed
contains an evident branch.
For the propositional tableau system, one can show that evident branches
are satisfiable by constructing a propositional model from the evident
branch. Since every branch of the tableau contains the initial formula,
the existence of a satisfiable branch implies that the initial formula is
satisfiable.
As an example, consider the tableau in Figure 1.2 presented before.

17

1 The Propositional Case

1
�� ��p ∧ (¬p ∨ q) ∧ (¬q ∨ ¬p) initial

2
�� ��p T∧

3
�� ��¬p ∨ q T∧

4
�� ��¬q ∨ ¬p T∧

5
�� ��¬p T∨ 5

�� ��q T∨

6
�� ��¬q T∨ 6

�� ��¬p T∨

Figure 1.3: Tableau for (p1 ∨ p2) ∧ (q ∧ ¬q)

Its right branch is evident. Thus, the tableau proves that the formula
p ∧ (¬p ∨ q) is satisfiable.

1.1.4 Comparison to Other Propositional Tableau Systems

We use a rule for n-ary conjunctions to obtain smaller examples. Usually (e.g.,
Smullyan [29]), one uses a rule for binary conjunctions and writes it as s1∧s2

s1, s2
.

Note the additional difference that this rule adds two formulas to the branch at
once. To simplify the formalization, we want a tableau rule to add exactly one
formula to every new branch at a time. These differences are inessential because
an application of s∧t

s, t
can be simulated by applying the rule T∧ twice.

1.1.5 Compact Notation For Tableaux

So far, we have drawn tableaux as one usually draws trees. However, for large
examples this quickly becomes cumbersome. Therefore we will use a more compact
notation for tableaux. Figure 1.4 represents the same tableau as Figure 1.3. The
symbol ⊗ is used to mark clashed branches.

18

1.2 Depth-First Search

p ∧ (¬p ∨ q) ∧ (¬q ∨ ¬p)
p

¬p ∨ q
¬q ∨ ¬p

¬p
⊗

q

¬q
⊗

¬p
⊗

Figure 1.4: A more compact notation for tableaux

1 (q1 ∨ ¬q2) ∧ q2 ∧ (p1 ∨ p2) ∧ (¬q1 ∨ ¬q2)
2 q1 ∨ ¬q2
3 q2
4 p1 ∨ p2
5 ¬q1 ∨ ¬q2

6 q1

7 p1

8 ¬q1
9 ⊗

a

8 ¬q2
10 ⊗

b

7 p2

11 ¬q1
12 ⊗

c

11 ¬q2
13 ⊗

d

6 ¬q2
14 ⊗

e

Figure 1.5: A clashed tableau built with DFS

1.2 Depth-First Search

How can we build tableaux systematically? One usually uses a particular strategy
to extend tableaux: depth-first search (DFS). DFS is a well-known search strategy
in graphs. For tableaux, it can be realized as follows. One always extends the
leftmost branch that is not clashed. When this branch cannot be extended because
it is evident, then the procedure stops because the evident branch proves that
the initial formula is satisfiable. If all branch are clashed, then the tableau is
clashed and hence the procedure stops because the clashed tableau proves the
initial formula to be unsatisfiable.
DFS is used because it is memory efficient. As the contents of clashed branches do
not influence the result of the procedure, one only has to store the open branches.
For tableaux produced by DFS, the number of nodes in open branches is linear in
the depth of the tableau.
As an example of DFS, look at the clashed tableau in Figure 1.5. The numbers
on the left denote the order in which formulas are added and clashes are detected.
The tableau has five clashed branches (a, b, c, d, e). DFS first explores the leftmost
branch a until it detects a clash in step 9. Then it tries to explore the next branch

19

1 The Propositional Case

b but directly detects a new clash in step 10. Then, it explores the branches c, d
and e in the same way.
Note that branch a is similar to branch c and branch b is similar to branch d.
The only difference is that a and b contain p1 while c and d contain p2. But p1
and p2 do not contribute to any clash. The clashes in branch a and branch b are
independent of p1 and so the same clashes reappear in branch c and branch d.
Thus, exploring c and d is unnecessary work, which backjumping will allow us to
avoid.

1.3 Backjumping

Backjumping is an optimization technique which aims at pruning the search space
of a search procedure. In the context of tableaux, backjumping is an optimization
of DFS that allows that certain unsatisfiable branches do not need to be explored.
Backjumping avoids the exploration of branches that differ only in inessential
details from branches that were already determined to be clashed. For DFS, when
we detect a clash, then we continue exploration at the next possible branching
point above the clash. If the clash is independent of the formula added to the
clashed branch at this branching point, then we know that also the unexplored
branch of this branching point is unsatisfiable. Therefore we do not need to explore
this branching point any further and can continue with the next branching point
above. This is what backjumping does. In other words, when backtracking from
a clash, we jump over branching points that are independent of the clash.
In order to find irrelevant branching points, we need to determine the branching
points a clash depends on. Since clashes are derived from formulas, we trace the
branching points a formula depends on for every formula on the tableau. This
can be done as follows. We associate an index with every branching point. For
every formula, we store the set of indices of branching points the formula depends
on. These sets are called dependency sets. Backjumping works by performing
a DFS and simultaneously deriving dependency sets for all new formulas and
clashes. The dependency set of a clash is used to determine irrelevant branching
points, which are then not explored further.
For an example of backjumping, consider the tableau in Figure 1.6, which avoids
the unnecessary work done in the tableau in Figure 1.5. The three branching
points have the indices 1, 2 and 3. On the left of every formula, the respective
dependency set is given.
The initial formula is always assigned the dependency set {0}. A formula derived
from a conjunction inherits the dependency set of the conjunction. Therefore
q1∨¬q2, q2, p1∨p2 and ¬q1∨¬q2 also obtain the dependency set {0}. The left
formula of a branching point with index i is always assigned the dependency set
{i}. This applies to q1, p1 and ¬q1. The dependency set of a clash is the union of

20

1.3 Backjumping

1

0 ⇒ (q1 ∨ ¬q2) ∧ q2 ∧ (p1 ∨ p2) ∧ (¬q2 ∨ ¬q1)
0 ⇒ q1 ∨ ¬q2
0 ⇒ q2
0 ⇒ p1 ∨ p2
0 ⇒ ¬q1 ∨ ¬q2

2
1 ⇒ q1

3
2 ⇒ p1

3 ⇒ ¬q1
1, 3 ⇒ ⊗

a

0, 1 ⇒ ¬q2
0, 1 ⇒ ⊗

b

p2

c

0 ⇒ ¬q2
0 ⇒ ⊗

d

Figure 1.6: A tableau refutation with backjumping

the dependency sets of the two clashing terms. Thus the clash in branch a is the
union of the dependency sets of q1 and ¬q1, that is, {1, 3} = {1} ∪ {3}.
The right-hand formula of a branching point i can first obtain a dependency set
when the subtree of the left-hand formula is finished. It is labeled with the union
of the dependency set of the disjunction which caused the branching point and the
dependency set of the last clash in the left subtree except for i. So the dependency
set of ¬q2 in branch b is {0, 1} = {0} ∪ ({1, 3} − {3}), which is the union of the
dependency set of the disjunction ¬q1 ∨ ¬q2 and the dependency set of the clash
in branch a except for 3. The disjunction implies that either the left-hand or
the right-hand formula is a satisfiable extension of branch above the branching
point. The clash showed that the left alternative of the branching point yields an
unsatisfiable branch. Thus the right-hand formula must be a satisfiable extension.
This is why the right-hand formula depends on the clash.
The clash in branch b is assigned the dependency set {0, 1} = {0}∪{0, 1} because
it is derived from the formulas q2 and ¬q2. Now something interesting happens.
DFS without backjumping would continue exploration with branch c, which is the
right-hand side of branching point 2. But because the dependency set of the clash
does not contain 2, one can conclude that the clash is independent of branching
point 2. Thus it is unnecessary to explore branch c. For this reason, DFS with
backjumping directly continues with branch d.
Backjumping can result in an exponential speed-up of the search. An example for
this is the following formula.

(p1 ∨ p2) ∧ (p3 ∨ p4) ∧ · · · ∧ (p2n−1 ∨ p2n) ∧ (¬q1 ∨ ¬q2) ∧ q1 ∧ q2

If DFS first expands the n irrelevant disjunctions pi ∨ pi+1 before analyzing the
unsatisfiable part (¬q1 ∨ ¬q2) ∧ q1 ∧ q2, then one obtains a huge tableau. It is a

21

1 The Propositional Case

1

0 ⇒ (p1 ∨ p2) ∧ (p3 ∨ p4) ∧ · · · ∧ (p2n−1 ∨ p2n) ∧ (¬q1 ∨ ¬q2) ∧ q1 ∧ q2
0 ⇒ p1 ∨ p2
0 ⇒ p3 ∨ p4
...

...
...

0 ⇒ p2n−1 ∨ p2n
0 ⇒ ¬q1 ∨ ¬q2
0 ⇒ q1
0 ⇒ q2

2
1 ⇒ p1

3
2 ⇒ p3
... . .

.

n
n− 1 ⇒ p2n−3

n+ 1
n ⇒ p2n−1

n+ 1 ⇒ ¬q1
0, n+ 1 ⇒ ⊗

0 ⇒ ¬q2
0 ⇒ ⊗

p2n

p6

p4

p2

Figure 1.7: A tableau refutation where backjumping saves exponential work

balanced binary tree of depth≥ n and size≥ 2n. Although tableaux of exponential
size are inevitable in general due to the computational hardness of propositional
logic, backjumping always solves this particular formula in linear time. Consider
the tableau in Figure 1.7. In the second branch, we obtain a clash that has just
the dependency set {0}, which means that all remaining branching points are
irrelevant and do not need to be explored.

22

2 Abstract Tableau systems
So far, we introduced tableau systems only informally. The informal notions from
before will now be defined formally.
We assume some set F of formulas to be fixed. (For propositional logic, F is the
set of all propositional formulas.)
The formalization of tableaux will not model trees explicitly. Instead we will only
formalize branches and state all properties regarding tableaux as properties of
branches. We define a branch as a finite nonempty set of formulas B ⊆ F . Note
that unlike our informal notion of branches, the formal definition represents the
formulas on a tableau branch without any additional structure.

2.1 Rules

Wemodel tableau rules as pairs P
C
of a premise P and a set of possible conclusions

C.
Definition 2.1. A tableau system is a set of tableau rules T with

T ⊆ {P
C
| P,C ⊆ F where P is finite and |C| ≤ 2}

We fix some tableau system T . All following definitions are relative to T .
The informal presentation of rule schemas like the ones depicted in Figure 1.1
corresponds to formal tableau rules as shown in the following table. Recall that a
rule schema corresponds to infinitely many rule instances.
s1 ∧ · · · ∧ sn

si
i∈[1,n] {{s1∧···∧sn}

{si} | s1, . . . , sn ∈ F , i ∈ [1, n]} ⊆ T

s1 ∨ s2

s1 | s2
 {{s1∨s2}

{s1,s2} | s1, s2 ∈ F} ⊆ T

s,¬s
 {{s,¬s}{} | s ∈ F} ⊆ T

To define when a tableau rule applies to a branch, we introduce the notion of
steps. A step B

C
models the fact that the tableau system allows to extend the

branch B with the conclusions C.

23

2 Abstract Tableau systems

Definition 2.2. We define T̃ := {B
C
| B is a branch, P

C
∈ T for some P ⊆ B}.

The step closure T̂ of a tableau system T is defined as
T̂ := {B

C
∈ T̃ | C = {} or B

{} /∈ T̃ and C ∩B = {}}

Elements of T̂ are called steps.
A rule P

C
∈ T applies to a branch B if there is a step B

C
∈ T̂ with P ⊆ B.

A branch B is called evident if there is no step B
C
∈ T̂ and clashed if B

{} ∈ T̂ .

In other words, a clashing rule P
{} applies to a branch B if P ⊆ B and a non-

clashing rule P
C

applies to a branch B if P ⊆ B, B is not clashed and does not
contain any of the possible conclusions in C.
For instance, the tableau rule {s1∨s2}

{s1,s2} contributes the set of steps

{ B
{s1,s2} |B is a branch, s1 ∨ s2 ∈ B, B{} /∈ T̃ , B ∩ {s1, s2} = {}}

Note that instances of branching rule schemas like s1∨s2
s1 | s2

can be non-branching if
the conclusions are identical. For example, we have the formal tableau rule {p∨p}{p} .
This cannot cause harm because if such a rule was applied as a branching rule, it
would lead to two identical branches.
We require the conclusions of a step to be disjoint from the premise to make sure
every step enlarges the current branch for every possible conclusion. Else we could
apply rules without making any progress. For instance, if {s∨t,s}{s,t} was a step, then
we would be able to build the following infinite tableau.

s ∨ t
s

s

s

. .
. t

t

t

t

Proposition 2.3 (Monotonicity).
1. Let B

{} ∈ T̃ and B ⊆ B′ for some branch B′. Then B′

{} ∈ T̂ .

2. Let B
C
∈ T̃ and B ⊆ B′ as well as C ∩ B′ = {} for some branch B′ that is

not clashed. Then B′

C
∈ T̂ .

Proof.
1. Let B and B′ be as requested. By the definition of T̃ , there is some P ⊆ B

such that P
{} ∈ T . Because P ⊆ B′, it follows that B′

{} ∈ T̃ . By the definition
of T̂ , we have B′

{} ∈ T̂ .

24

2.2 Consistency

2. Let B and B′ be as requested. By the definition of T̃ , there is some P ⊆ B
such that P

C
∈ T . Because P ⊆ B′, it follows that B′

C
∈ T̃ . Since C∩B′ = {}

and B′ is not clashed, we have B′

C
∈ T̂ .

Lemma 2.4. If a branch B is evident, then for all steps B′

C
∈ T̃ with B′ ⊆ B,

C ∩B 6= {}.

Proof. Let B be an evident branch. Because B is evident, it is not clashed. Thus
for every B′

C
∈ T̂ where B′ ⊆ B, we have that C ∩B 6= {} because else B

C
∈ T̂ by

Proposition 2.3 contradicting the evidence of B.

2.2 Consistency

Definition 2.5. A branch B is called consistent if there is an evident branch
B′ ⊇ B and inconsistent otherwise. A formula s is called consistent if the
branch {s} is consistent.
Proposition 2.6. Every evident branch is consistent. If a branch B is consistent,
then every subset B′ ⊆ B is consistent.

A branch is consistent iff it can be extended to an evident branch. Note that
the definition of a consistent formula matches our previous informal notion of
consistency.
What about inconsistency? We would like to show that every formula that has a
clashed tableau is inconsistent. Since we do not want to formalize tableaux, we
instead show the following statements about branches.
Lemma 2.7. Every clashed branch is inconsistent.

Proof. Let B be a clashed branch. Then we have B
{} ∈ T̂ . Suppose, for contradic-

tion, that there is an evident branch B′ ⊇ B. By Lemma 2.4, we have B′∩{} 6= {}.
Contradiction.
Lemma 2.8. If there is a step B

C
∈ T̂ such that for all t ∈ C, the branch B ∪ {t}

is inconsistent, then B is inconsistent.

Proof. Let B
C
∈ T̂ be as required. We show that no branch B′ ⊇ B is evident.

Let B′ ⊇ B be a branch. We make a case distinction.
• If B′ ∩ C = {}, then B′ is not evident by Lemma 2.4.
• If B′ ∩ C 6= {}, then there is some t ∈ C such that B ∪ {t} ⊆ B′. Because
B ∪ {t} is inconsistent, no branch that is a superset of B ∪ {t} is evident.
Thus B′ is not evident.

Consider some clashed tableau. By Lemma 2.7, all its branches are inconsistent.
By induction from the leaves to the root using Lemma 2.8, the initial formula is
inconsistent.

25

2 Abstract Tableau systems

2.3 Termination

Definition 2.9. The step relation is the smallest relation (→) such that for
every step B

C
∈ T̂ and for every t ∈ C, we have that B → (B ∪ {t}). A tableau

system T is called terminating if (→) is terminating.

Termination guarantees that an attempt to build a tableau cannot diverge because
a path in a tableau cannot be extended infinitely often. So, if we have a termi-
nating tableau system, then we can decide the consistency of a formula because
after finitely many steps, we always obtain a tableau which cannot be extended
any longer. The initial formula is consistent iff this tableau contains an evident
branch. If consistency of formulas coincides with satisfiability in a given logic,
then the tableau method gives us a decision procedure for this logic.
For example, the tableau system for propositional logic from Figure 1.1 is ter-
minating. Every branch obtained by extending B1 contains only subformulas of
formulas in B1. Thus the cardinality of these branches is bounded. Since the
cardinality of a branch strictly increases for every step of (→), this gives an upper
bound for the length of a path B1 → B2 → · · · → Bn.
In the following, we assume that T is terminating.

26

3 Correctness of Depth-First Search

Next, we will define depth-first search for tableaux. We describe DFS as the
recursive procedure in Figure 3.1. The syntax is ML-like. DFS(B) yields whether
the branch B is consistent. The algorithm “walks” through the tableau tree,
where the argument B always contains the current branch and every recursive
call corresponds to going one step down in the tree. It can be read as follows.
• If B is evident, then return “true”.
• Else select some step to be applied. We assume this selection to be determin-

istic but do not specify it. An implementation might apply some intelligent
heuristics at this point.
• If a clashing step B

{} has been selected, then return “false”.

• If a step with a single conclusion B
{s} has been selected, then continue with

B∪{s} by calling DFS(B∪{s}). This corresponds to a node in the tableau
that has a single child.
• If a branching step B

{s,t} has been selected, then first call DFS(B ∪ {s}).
If this yields “true”, then return “true”. If this yields “false”, then call
DFS(B ∪ {t}).
This corresponds to a branching point in the tableau. We first try to extend
B with s. This corresponds to the left subtree of the branching point. We
always first fully explore the left subtree before considering the right subtree.

DFS : {B | B is a branch} → {true, false}

DFS(B) = if B evident
then true
else

choose some B
C
∈ T̂

case C of
{} : false
{s} : DFS(B ∪ {s})
{s, t} : DFS(B ∪ {s}) or DFS(B ∪ {t})

Figure 3.1: The DFS-algorithm

27

3 Correctness of Depth-First Search

DFS({p ∧ (¬p ∨ q)})

DFS({p ∧ (¬p ∨ q), p})

DFS({p ∧ (¬p ∨ q), p,¬p ∨ q})

DFS({p ∧ (¬p ∨ q), p,¬p ∨ q,¬p}) DFS({p ∧ (¬p ∨ q), p,¬p ∨ q, q})

Figure 3.2: Recursion tree of DFS({p ∧ (¬p ∨ q)})

If DFS(B∪{s}) = true, then we know that also B is consistent and we return
true. If DFS(B ∪ {s}) = false, then we know that B ∪ {s} is inconsistent.
Thus we try B∪{t}. This corresponds to the right subtree of the branching
point.

As an example, the recursion tree of DFS({{p∧(¬p∨q)}}) is depicted in Figure 3.2.
Every node corresponds to one procedure call. The paths in the tree from left to
right correspond to the call stacks during the execution. Note that the recursion
tree in Figure 3.2 has the same structure as the tableau tree in Figure 1.2. The
procedure call DFS({p∧ (¬p∨ q), p,¬p∨ q,¬p}) yields “false” because the branch
{p∧ (¬p∨ q), p,¬p∨ q,¬p}, which corresponds to the left branch in Figure 1.2, is
clashed. Thus the procedure tries the other alternative of the branching point and
calls DFS({p∧(¬p∨q), p,¬p∨q, q}). This call yields “true” because the argument is
an evident branch. This value propagates upwards and hence DFS({p∧(¬p∨q)}) =
true.
One easily verifies that the result of the procedure is always well-defined. One
can always choose a step if the branch is not evident and the case distinction is
exhaustive because |C| ≤ 2.
Since we assume that the tableau system terminates, we can show termination
of the procedure. From the terminating step relation (→), we obtain a well-
founded order containing the terminating relation by taking the transitive closure
(>) := (→∗). We call (>) the step order. Since we have B > (B ∪ {s}) and
B > (B ∪ {t}) for all s, t ∈ F s.t. B

{s} ∈ T̂ or B
{s,t} ∈ T̂ , the recursive calls are

always done on strictly smaller arguments. Hence the procedure terminates.
Now we can show the soundness and completeness of DFS in following sense.
Theorem 3.1. Let T be a terminating tableau system and let DFS be the proce-
dure defined in Figure 3.1. Then for all branches B, we have DFS(B) = true iff
B is consistent.

Proof. We show the statements by induction on the size of the argument with
respect to the step order (>).

28

“⇒”: Let DFS(B) = true. We show that B is consistent. If B is evident, then
it is consistent. Else the procedure chooses some step B

C
∈ T̂ . We make a case

distinction on C.
• It is impossible that C = {} because this would yield DFS(B) = false

contradicting DFS(B) = true.
• If C = {s}, then DFS(B) = DFS(B ∪ {s}) and hence by assumption

DFS(B∪{s}) = true. By the inductive hypothesis, this means that B∪{s}
is consistent. By Proposition 2.6, it follows that B is consistent.
• If C = {s, t}, then DFS(B ∪ {s}) = true or DFS(B ∪ {t}) = true. By the

inductive hypothesis, this means that B ∪ {s} or B ∪ {t} is consistent. In
both cases, it follows that B is consistent.

“⇐”: Let DFS(B) = false. We show that B is inconsistent. By assumption, B
cannot be evident because this would yield DFS(B) = true. Thus the procedure
chooses some step B

C
∈ T̂ . We again make a case distinction on C.

• If C = {}, then B
{} ∈ T̂ . Thus B is clashed and hence inconsistent.

• If C = {s}, then we have B
{s} ∈ T̂ and DFS(B∪{s}) = false. By the inductive

hypothesis, this means that B∪{s} is inconsistent. By Lemma 2.8, it follows
that B is inconsistent.
• If C = {s, t}, then we have B

{s,t} ∈ T̂ , DFS(B ∪ {s}) = false and DFS(B ∪
{t}) = false. By the inductive hypothesis, this means thatB∪{s} andB∪{t}
are inconsistent. By Lemma 2.8, it follows that B is inconsistent.

29

4 Correctness of Backjumping

In this chapter, we will formalize and prove correct DFS with backjumping.

4.1 Dependency Sequents

To prove backjumping correct, we give semantics to dependency sets. For this,
from now on, we use dependency sets A ⊆ F , which consist of formulas instead of
numbers. A dependency sequent A⇒ s is a pair of a formula s and its dependency
set A. The dependency sequent of a clash is written as A⇒ ⊗. Backjumping will
only use valid dependency sequents.

Definition 4.1. A dependency sequent is a pair A ⇒ s or A ⇒ ⊗ where
s ∈ F , A ⊆ F and A is finite. A dependency sequent A⇒ s is called valid if for
every evident branch B ⊇ A, we have s ∈ B. A sequent A ⇒ ⊗ is valid if there
is no evident branch B ⊇ A.
We use the usual notation for sequents and write
• s1, . . . , sn ⇒ t for {s1, . . . , sn} ⇒ t

• A,A′ ⇒ s for (A ∪ A′)⇒ s

• A, s⇒ t for (A ∪ {s})⇒ t

Proposition 4.2. The dependency sequent A⇒ ⊗ is valid iff A is inconsistent.

Therefore, to prove that s is inconsistent, it suffices to show that the sequent
s⇒ ⊗ is valid. This is what backjumping will do.

4.1.1 Example

We will now show how dependency sequents can be used to prove that the branches
c and d in Figure 1.5 are unnecessary. This also constitutes an example of a tableau
search with backjumping, which we will define later. We take the tableau from
Figure 1.6 and derive a valid dependency sequent for every formula on an explored
branch. This is done in the same order as before (depth-first). We require that
a formula on a branch B is labeled with a dependency set A ⊆ B. The resulting
tableau is depicted in Figure 4.1.

31

4 Correctness of Backjumping

1

s ⇒ s
s ⇒ q1 ∨ ¬q2
s ⇒ q2
s ⇒ p1 ∨ p2
s ⇒ ¬q1 ∨ ¬q2

2
q1 ⇒ q1

3
p1 ⇒ p1

¬q1 ⇒ ¬q1
q1,¬q1 ⇒ ⊗

a

s, q1 ⇒ ¬q2
s, q1 ⇒ ⊗

b

p2

c

s ⇒ ¬q2
s ⇒ ⊗

d

where s := (q1 ∨ ¬q2) ∧ q2 ∧ (p1 ∨ p2) ∧ (¬q1 ∨ ¬q2)

Figure 4.1: A tableau refutation with backjumping

Note how the numbers in the dependency sets in Figure 1.6 correspond to the
formulas in the dependency sets in Figure 4.1. The initial formula s corresponds
to the number 0 and the left child of a branching point replaces the index of this
branching point.
The initial formula (q1 ∨ ¬q2) ∧ q2 ∧ (p1 ∨ p2) ∧ (¬q1 ∨ ¬q2), abbreviated as s,
is assigned the dependency set {s}. This is possible because s ⇒ s is trivially
valid. The formula q1 ∨ ¬q2 is derived from s. Because of the rule {s}

{q1∨¬q2} , every
evident branch B that contains s also contains q1 ∨ ¬q2. So s ⇒ q1 ∨ ¬q2 is a
valid dependency sequent. Analogously, the formulas q2, p1 ∨ p2 and ¬q1 ∨ ¬q2
have the same dependency set. The formula q1 is assigned the dependency set
{q1} because it is the left child of a branching point. Again, q1 ⇒ q1 is trivially
valid. Analogously for p1 and ¬q1.
The clash in branch a is labeled with the dependency set {q1,¬q1} = {q1}∪{¬q1},
because it is derived from the formulas q1 and ¬q1 that have the dependency sets
{q1} and {¬q1}, respectively. This yields the valid sequent q1,¬q1 ⇒ ⊗ because
there is no evident branch B containing both q1 and ¬q1.
Because ¬q1, the left child of branching point 3, is contained in the dependency
set of the clash, branching point 3 is responsible for the clash. Thus we backtrack
to branching point 3 and continue with branch b. We have now to find a valid
dependency set A for ¬q2. We derive it from the dependency set of the clash in
branch a and from the dependency set of the disjunction ¬q1∨¬q2 that caused the
branching point. Consider an evident branch B ⊇ A. We take the dependency set
of ¬q1∨¬q2, that is {s}, to be in A. Thus we know that either ¬q1 or ¬q2 is in B.
Additionally, we take the dependency set of the clash {q1,¬q1} except for ¬q1, that
is {q1}, to be in A. Thus we know that B does not contain ¬q1. Altogether, we
know that ¬q2 must be in B. Hence we can take A = {s} ∪ ({q1,¬q1}− {¬q1}) =

32

4.1 Dependency Sequents

1

s ⇒ s
s ⇒ p ∨ q1
s ⇒ ¬q1 ∨ ¬q2
s ⇒ q1
s ⇒ q2

2
p ⇒ p

¬q1 ⇒ ¬q1
s,¬q1 ⇒ ⊗

a

s ⇒ ¬q2
s ⇒ ⊗

b

q1

c

where s := (p ∨ q1) ∧ (¬q1 ∨ ¬q2) ∧ q1 ∧ q2

Figure 4.2: Another tableau with backjumping

{s, q1} yielding the valid dependency sequent s, q1 ⇒ ¬q2.
The dependency set of the clash of branch b is then derived from the dependency
sets of q2 and ¬q2, which are {s} and {s, q1}, respectively. So we obtain the
valid dependency sequent s, q1 ⇒ ⊗. The dependency set {s, q1} is then used for
backtracking. We know that every branch containing {s, q1} is inconsistent. We
do not need to explore any of them. So we have to backtrack until one element
of the dependency set of the clash is no longer on the current branch. Thus we
can safely backtrack to branching point 1 continuing with branch d because the
other branches all contain {s, q1}. Hence we save the work of exploring branch c,
which corresponds to the branches c and d in Figure 1.5. In branch d, we derive
the sequent s ⇒ ¬q2 with the same argument as for ¬q2 in branch b. Then we
can conclude that the sequent s⇒ ⊗ is valid. This means that s is inconsistent.
We realize backjumping by deriving valid dependency sequents while computing
a tableau. Having these sequents at hand, we can avoid exploring parts of the
tableau. We do not miss evident branches since all the branches that we skip
are provably inconsistent. We will show that if backjumping terminates with-
out finding an evident branch, then the sequent s ⇒ ⊗ is valid and hence s is
inconsistent.
To determine the branching point to which we backtrack, it suffices to know the
most recent formula in the dependency set of a clash, i.e., the formula referencing
the most recent branching point. Why do we then store the whole dependency
set? Let us look at the example in Figure 4.2. If we just knew that the dependency
set of the first clash contains ¬q1, then we would have to give ¬q2 the dependency
set {s, p} since we would not know whether the dependency set of the first clash
contained p or not. Then the clash in branch b would have the dependency set
{s, p} forcing us to explore branch c. Hence backjumping would not have any
effect.

33

4 Correctness of Backjumping

D0
s⇒ s

Dα

A1 ⇒ s1 · · · An ⇒ sn

A1, . . . , An ⇒ t
{s1,...,sn}
{t} ∈ T

Dβ

A1 ⇒ s1 · · · An ⇒ sn A′, t1 ⇒ ⊗
A1, . . . , An, A′ ⇒ t2

{s1,...,sn}
{t1,t2} ∈ T

D⊗
A1 ⇒ s1 · · · An ⇒ sn

A1, . . . , An ⇒ ⊗
{s1,...,sn}
{} ∈ T

Figure 4.3: Derivation rules for valid dependency sequents

4.1.2 Relation to Propositional Logic

Note that for the propositional tableau system, the sequent s1, . . . , sn ⇒ t is valid
iff the propositional formula (s1 ∧ · · · ∧ sn) → t is valid, where “→” stands for
logical implication. This formula is equivalent to the formula ¬s1 ∨ · · · ∨ ¬sn ∨ t.
Analogously, a clash sequent s1, . . . , sn ⇒ ⊗ corresponds to the formula ¬s1 ∨
· · · ∨ ¬sn.
For DPLL, Nieuwenhuis et al. [25] use a propositional disjunction of literals ¬l1 ∨
· · ·∨¬ln to express the backjumping information about a clash. The literals li are
possibly negated propositional variables that stand for nondeterministic decisions.
These disjunctions are called “backjump clauses” in this paper and correspond to
a clash sequent l1, . . . , ln ⇒ ⊗ in our system. The other sequents do not have
counterparts in [25] because backjump clauses are calculated from scratch after a
clash has been detected.

4.1.3 Dependency Sequent Rules

The reasoning we used to justify the validity of the sequents in Figure 4.1 can
be generalized. This is done by the rules in Figure 4.3, which derive valid de-
pendency sequents from valid dependency sequents. The rule Dα corresponds to
the application of a tableau rule with a single conclusion. D0 is used for the left
conclusion of a branching tableau rule and Dβ for its right conclusion. The rule
D⊗ corresponds to the application of a clashing tableau rule. The instantiation
of these rules for the propositional tableau system is depicted in Figure 4.4.
Figure 4.5 shows how the rules in Figure 4.4 can be used to derive the sequents
in Figure 4.1.

Lemma 4.3. The rules in Figure 4.3 derive valid dependency sequents.

34

4.2 DFS with Backjumping

Dprop
0 s⇒ s

Dprop
α

A⇒ s1 ∧ · · · ∧ sn
A⇒ si

i∈[1,n]

Dprop
β

A⇒ s ∨ t A′, s⇒ ⊗
A,A′ ⇒ t

Dprop
⊗

A⇒ s A′ ⇒ ¬s
A,A′ ⇒ ⊗

Figure 4.4: Instantiation of the rules in Figure 4.3 for the propositional tableau
system

Proof. For every rule in Figure 4.3, we show that the derived dependency sequent
is valid under the assumption that the sequents in the premise are valid.

D0 Validity of the sequent s⇒ s is immediate by definition.

Dα A1, . . . , An ⇒ t is valid iff every evident branch B ⊇ A1 ∪ · · · ∪ An
contains t. Let B be such a branch. It suffices to show that t ∈ B.
Because the sequents in the premise are valid, {s1, . . . , sn} ⊆ B. Since
{s1, . . . , sn} ⊆ B and {s1,...,sn}

{t} ∈ T , we have that t ∈ B by Lemma 2.4.

Dβ A1, . . . , An ⇒ t2 is valid iff every evident branch B ⊇ A1∪· · ·∪An∪A′
contains t2. LetB be such a branch. It suffices to show that t2 ∈ B. By
assumption, {s1, . . . , sn} ⊆ B. Since {s1, . . . , sn} ⊆ B and {s1,...,sn}

{t1,t2} ∈
T , we have that B ∩ {t1, t2} 6= {} by Lemma 2.4. Thus either t1 ∈ B
or t2 ∈ B. Because A′, t1 ⇒ ⊗ is valid, there is no evident branch
containing A′ and t1. Since B contains A′, it cannot contain t1 and
therefore t2 ∈ B.

D⊗ A1, . . . , An ⇒ ⊗ is valid iff there is no evident branch B ⊇ A1 ∪
· · · ∪An. Suppose, for contradiction, that such a branch B exists. By
assumption, {s1, . . . , sn} ⊆ B. Since {s1, . . . , sn} ⊆ B and {s1,...,sn}

{} ∈
T , we have B ∩ {} 6= {} by Lemma 2.4. Contradiction.

4.2 DFS with Backjumping

We will now formulate DFS with backjumping, which we just call backjumping
from now on. We present backjumping as a recursive procedure as we have done
for DFS. It is shown in Figure 4.6.

35

4 Correctness of Backjumping

sequent sequent rule

1 s⇒ s Dprop
0

2 s⇒ q1 ∨ ¬q2 Dprop
α (1)

3 s⇒ q2 Dprop
α (1)

4 s⇒ p1 ∨ p2 Dprop
α (1)

5 s⇒ ¬q1 ∨ ¬q2 Dprop
α (1)

6 q1 ⇒ q1 Dprop
0

7 p1 ⇒ p1 Dprop
0

8 ¬q1 ⇒ ¬q1 Dprop
0

9 q1,¬q1 ⇒ ⊗ Dprop
⊗ (6, 8)

10 s, q1 ⇒ ¬q2 Dprop
β (5, 9)

11 s, q1 ⇒ ⊗ Dprop
⊗ (3, 10)

12 s⇒ ¬q2 Dprop
β (2, 11)

13 s⇒ ⊗ Dprop
⊗ (3, 12)

Figure 4.5: Derivation of the sequents from Figure 4.1

36

4.2 DFS with Backjumping

BJ : {Σ | Σ is an annotated branch} → {A⇒ ⊗ | A ⊆ F} ∪ {true}

BJ(Σ) = if B(Σ) evident
then true
else

choose some {s1,...,sn}
C

∈ T that applies to B(Σ)
choose A1, . . . , An s.t. {A1 ⇒ s1, . . . , An ⇒ sn} ⊆ Σ
case C of
{} :

A1, . . . , An ⇒ ⊗
{t} :

BJ(Σ ∪ {(A1, . . . , An ⇒ t)})
{t1, t2} :

case BJ(Σ ∪ {t1 ⇒ t1}) of
true :

true
(A′ ⇒ ⊗) :

if t1 /∈ A′
then (A′ ⇒ ⊗)
else BJ(Σ ∪ {(A1, . . . , An, (A′ − {t1})⇒ t2)})

Figure 4.6: The backjumping procedure

37

4 Correctness of Backjumping

The procedure operates on sets of dependency sequents instead of formulas. We
use the following notions.

Definition 4.4. We call a finite set Σ ⊆ {A ⇒ s | A ⊆ F , A is finite, s ∈ F}
an annotated branch. We call an annotated branch Σ valid if all dependency
sequents in Σ are valid.

For every annotated branch Σ, we define the corresponding branch B(Σ) := {s |
(A⇒ s) ∈ Σ} and the set of dependencies D(Σ) := ⋃{A | (A⇒ s) ∈ Σ}.

We apply the procedure only to valid annotated branches Σ. As we will see,
the procedure maintains the invariant that the argument Σ is a valid annotated
branch, that is, all sequents in Σ are valid.

As for the DFS-procedure, one easily verifies that the procedure is well-defined.
The first choose-construct always finds a rule because if B(Σ) is not evident, then
there is some rule that applies to B(Σ). The second choose-construct always finds
A1, . . . , An because {s1, . . . , sn} ⊆ B(Σ) and hence, by the definition of B, there
have to be sequents for s1, . . . , sn in Σ. Again, we assume these selections to be
deterministic. One can even show that the procedure maintains the invariant that
for every formula s ∈ B(Σ), there is exactly one (A ⇒ s) ∈ Σ. Thus the second
choose-construct is deterministic by construction provided that one applies BJ
only to annotated branches satisfying this invariant.

The termination argument stays the same, too. If BJ(Σ) can call BJ(Σ′), then
B(Σ) > B(Σ′) for the step order (>), which is well-founded. Thus BJ always
terminates.

BJ(Σ) either yields that B(Σ) is a consistent branch or it yields a valid clash
sequent whose dependency set is a subset of D(Σ).

Lemma 4.5. Let Σ be some valid annotated branch. If BJ(Σ) = true, then B(Σ)
is consistent. If BJ(Σ) = (A ⇒ ⊗), then A ⇒ ⊗ is a valid dependency sequent
and A ⊆ D(Σ).

Proof. We show the statements by induction on the size of the argument with
respect to the step order (>). We use the rules in Figure 4.3 to argue the validity
of sequents.

Let BJ(Σ) = true. We show that B(Σ) is consistent. If B(Σ) is evident, then B(Σ)
is consistent. Else the algorithm chooses some rule {s1,...,sn}

C
∈ T that applies to

B(Σ) and A1, . . . , An such that {A1 ⇒ s1, . . . , An ⇒ sn} ⊆ Σ. We make a case
distinction on C.

• It is impossible that C = {} because this would yield BJ(Σ) = (A1, . . . , An ⇒
⊗) contradicting BJ(Σ) = true.

38

4.2 DFS with Backjumping

• Let C = {t}. By Dα, we have that A1, . . . , An ⇒ t is valid. Thus Σ ∪
{(A1, . . . , An ⇒ t)} is a valid annotated branch.
We have BJ(Σ ∪ {(A1, . . . , An ⇒ t)}) = BJ(Σ) = true. By the inductive
hypothesis, this means that B(Σ ∪ {(A1, . . . , An ⇒ t)}) = B(Σ) ∪ {t} is
consistent. By Proposition 2.6, it follows that B(Σ) is consistent.
• Let C = {t1, t2}. By D0, we have that t1 ⇒ t1 is valid. Thus Σ ∪ {t1 ⇒ t1}

is a valid annotated branch.
If BJ(Σ ∪ {t1 ⇒ t1}) = true, then by the inductive hypothesis, B(Σ) ∪ {t1}
is consistent. Thus B(Σ) is consistent.
Else BJ(Σ∪{t1 ⇒ t1}) = (A′ ⇒ ⊗) and BJ(Σ∪{(A1, . . . , An, (A′−{t1})⇒
t2)}) = true. By the inductive hypothesis, A′ ⇒ ⊗ is valid. Using this,
by Dβ, we have that A1, . . . , An, (A′ − {t1}) ⇒ t2 is valid. Hence Σ ∪
{(A1, . . . , An, (A′ − {t1}) ⇒ t2)} is a valid annotated branch. Using the
inductive hypothesis on BJ(Σ∪{(A1, . . . , An, (A′−{t1})⇒ t2)}) = true, we
obtain that B(Σ) ∪ {t2} is consistent and hence B(Σ) is consistent.

Let BJ(Σ) = (A′′ ⇒ ⊗). We show that A′′ ⇒ ⊗ is a valid dependency sequent
and A′′ ⊆ D(Σ). It is impossible that B(Σ) is consistent because this would yield
BJ(Σ) = true contradicting BJ(Σ) = (A′′ ⇒ ⊗). Thus the algorithm chooses
some rule {s1,...,sn}

C
∈ T that applies to B(Σ) and A1, . . . , An such that {A1 ⇒

s1, . . . , An ⇒ sn} ⊆ Σ. We make a case distinction on C.

• Let C = {}. We have {s1,...,sn}
{} ∈ T and A′′ = A1, . . . , An. By D⊗, we have

that A1, . . . , An ⇒ ⊗ is valid. A1 ∪ · · · ∪ An ⊆ D(Σ) holds by construction.
Thus A′′ ⇒ ⊗ is as requested.
• Let C = {t}. We have BJ(Σ ∪ {(A1, . . . , An ⇒ t)}) = (A′′ ⇒ ⊗). By Dα,
A1, . . . , An ⇒ t is valid. Therefore, by the inductive hypothesis, we have
that A′′ ⇒ ⊗ is a valid sequent with A′′ ⊆ D(Σ ∪ {(A1, . . . , An ⇒ t)}) =
D(Σ) ∪ A1 ∪ · · · ∪ An = D(Σ) since A1 ∪ · · · ∪ An ⊆ D(Σ).
• Let C = {t1, t2}. We have BJ(Σ ∪ {t1 ⇒ t1}) = (A′ ⇒ ⊗). By D0, t1 ⇒ t1

is valid. Thus, by the inductive hypothesis, we have that A′ ⇒ ⊗ is a valid
sequent with A′ ⊆ D(Σ ∪ {t1 ⇒ t1}) = D(Σ) ∪ {t1}.
If t1 /∈ A′, then A′ ⊆ D(Σ) and A′′ = A′. Thus A′′ ⇒ ⊗ is as requested.
If t1 ∈ A′, then BJ(Σ ∪ {(A1, . . . , An, (A′ − {t1}) ⇒ t2)}) = (A′′ ⇒ ⊗).
By Dβ, we have that A1, . . . , An, (A′ − {t1}) ⇒ t2 is valid. Again, by the
inductive hypothesis, we have that A′′ ⇒ ⊗ is a valid dependency sequent
with A′′ ⊆ D(Σ ∪ {(A1, . . . , An, (A′ − {t1}) ⇒ t2)}) = D(Σ) ∪ (A′ − {t1}).
Since A′ ⊆ D(Σ) ∪ {t1}, we have A′′ ⊆ D(Σ).

Theorem 4.6. Let T be a terminating tableau system and let BJ be the procedure
defined in Figure 4.6. Then for all branches B = {s1, . . . , sn}, we have BJ({s1 ⇒
s1, . . . , sn ⇒ sn}) = true iff B is consistent.

Proof. BJ always yields a result because it is terminating.

39

4 Correctness of Backjumping

If BJ({s1 ⇒ s1, . . . , sn ⇒ sn}) = true, then B is consistent by Lemma 4.5.
Else BJ({s1 ⇒ s1, . . . , sn ⇒ sn}) = (A ⇒ ⊗). We have to show that B is
inconsistent. The sequent A⇒ ⊗ is valid and A ⊆ B({s1 ⇒ s1, . . . , sn ⇒ sn}) =
B, again by Lemma 4.5. Thus B is inconsistent.

Note that the rules for dependency sequents in Figure 4.3 can be seen as an
independent calculus. Since the backjumping procedure only derives sequents
according to these rules, one can derive potentially more sequents if one uses the
rules freely like in resolution. Since BJ({s ⇒ s}) can derive {s} ⇒ ⊗ for every
inconsistent formula s, we also get a completeness result for the free calculus
provided that the tableau system terminates. Obviously, the shortest possible
derivation of s⇒ ⊗ in the free system is at most as long as the shortest tableau-
proof with backjumping. So this way, one can transform any tableau system
fitting in our framework to a resolution-like proof system. However, a further
investigation lies out of the scope of this thesis.

4.3 Learning

Nieuwenhuis et al. [25] also suggest to use backjump clauses for clause learning.
This means that after a backjump clause has been computed, it is added to the set
of clauses of the original problem and used in the following computations. Clause
learning is a standard optimization technique for SAT-solvers [24].
Thus, it might be beneficial to learn clash sequents globally. In our setting, this
could be realized as follows. While constructing a tableau, we store a global set
L of learned valid clash sequents. It collects clash sequents from all branches of
the tableau. If one has learned a clash sequent A⇒ ⊗, i.e., if (A⇒ ⊗) ∈ L, then
one knows that all branches that contain A are inconsistent. Therefore, one can
stop exploring a branch as soon as it contains A. This can be expressed with the
following tableau rule.

A
(A⇒⊗)∈L

For every set of valid clash sequents L, this is a sound rule. The dependency set
of a clash caused by this rule is the union of the dependency sets of the formulas
in A.

40

5 The Modal Case

In the following, we will present a tableau system for the basic modal logic K
that fits in our framework and can thus be extended with backjumping. It is
similar to the prefixed tableau systems developed by Fitting [7] and Massacci [23].
These systems use freshness conditions (see Section 5.2) that cannot be expressed
directly in our framework. So we needed to devise a tableau system that does not
need freshness conditions.

5.1 Syntax and Semantics of K

The basic modal logic K augments propositional logic with the two modal
operators ♦ and �. The description logic ALC is a syntactic variant of K. The
complexity of the satisfiability problem is PSPACE-complete [21].
We define syntax and semantics of K based on Kaminski and Smolka [20]. The
syntax of formulas is given by the grammar

p, q ::= predicate
s, t, u ::= p | ¬p | s ∧ s | s ∨ s | ♦s | �s

where p and q range over a countable set of names, called predicates. To save
parentheses, we assume that the modal operators bind strongest. For example,
♦p ∧ q = (♦p) ∧ q. We only consider formulas in negation normal form. Formulas
with general negation can be transformed to negation normal form in linear time
using the propositional De Morgan’s laws and the equations ¬♦s = �¬s and
¬�s = ♦¬s.
We give the relational semantics of K. The models of formulas are transition
systems whose states are labeled with predicates. The modal formula p is satisfied
by a state in a model iff this state is labeled with p. The formula ♦s is satisfied
by a state iff there is a successor state that satisfies s. The formula �s is satisfied
by a state iff all successor states satisfy s.
Formally, a modelM consists of the following components:
• A nonempty set |M| of states.

41

5 The Modal Case

M∧
σ:s1∧· · ·∧sn

σ:si
M∨

σ:s∨t
σ:s | σ:t i∈[1,n] M⊗

σ:s, σ:¬s

M♦
σ:♦s
σs:s M�

σ:�s, σt:t
σt:s

Figure 5.1: Tableau system for K

• A transition relation →M⊆ |M| × |M|.

• For every predicate p, the set of statesMp ⊆ |M| that are labeled with p.

The relationM, v |= s is the set of all triples such that the state v ∈ |M| satisfies
s. It is defined by induction on the structure of s.

M, v |= p :⇔ v ∈Mp

M, v |= ¬p :⇔ v /∈Mp

M, v |= s ∧ t :⇔ M, v |= s andM, v |= t

M, v |= s ∨ t :⇔ M, v |= s orM, v |= t

M, v |= ♦s :⇔ there is some v′ ∈ |M| such that v →M v′ andM, v′ |= s

M, v |= �s :⇔ for all v′ ∈ |M| with v →M v′ we haveM, v′ |= s

A formula s is called satisfiable if there is a modelM and a state v ∈ |M| such
thatM, v |= s.

5.2 Rules

Now we will define a tableau system for K and show how it fits into our framework.
We use prefixed formulas σ:s that consist of a prefix σ and a modal formula s.
Every prefix σ stands for a state. The prefixed formula σ:s means that the state
represented by σ satisfies s. A prefix σ is a possibly empty sequence of formulas
σ = s1s2 · · · sn. The empty prefix is written as ε.

The elements of F , that is, the objects on the tableau, are prefixed formulas σ:s.
To determine whether a modal formula s is satisfiable, we build a tableau starting
with the prefixed formula ε:s.

The rule schemas in Figure 5.1 describe a tableau system for K. The main differ-
ence to the tableau systems by Fitting [7] and Massacci [23] is that these systems

42

5.2 Rules

use sequences of numbers as prefixes and require prefixes introduced by the equiv-
alent of the M♦-rule to be fresh, that is, not to appear on the branch so far. It
is impossible to directly express freshness in our framework. However, our rules
ensure the necessary freshness conditions by construction without the need for
explicit global conditions. This is achieved by computing a new prefix from the
♦-formula that created it in a way that it cannot collide with existing prefixes.
This idea also appears in [3]. See Section 6.3 for further discussion.
In the following, we argue the soundness, completeness and termination of the
tableau system.

Soundness

We have to show that the rules maintain the satisfiability of branches. From this,
it follows that satisfiable branches are consistent. A branch B is satisfiable if
there is a modelM and an interpretation [·] that maps every prefix σ to a state
of the model [σ] such that [σ] satisfies s for all σ:s ∈ B and [σ]→M [σs] whenever
σs:s ∈ B. Thus the branch {ε:s} is satisfiable iff s is satisfiable.
We only show the soundness of M♦ and M�. The soundness of the other rules can
be verified easily.
First note that a prefix σs can only be introduced by an application of M♦ to the
prefixed formula σ:♦s that adds σs:s to the branch. Thus if M♦ adds σs:s to a
branch, then the prefix σs did not appear on the branch before (that is, there was
no u such that σs:u was on the branch).
The rule M♦ creates a new prefix for the successor state required by a ♦-formula.
Consider a step B

{σs:s} where σ:♦s ∈ B and B is satisfiable. We have to show that
the branch B∪{σs:s} is satisfiable. Since σ:♦s ∈ B, we have that [σ] satisfies ♦s.
Thus there has to be a successor of [σ] that satisfies s. Because B

{σs:s} is a step, we
have σs:s /∈ B. Hence the prefix σs does not appear on B. Thus we can interpret
σs as a successor of [σ] where s holds. Hence B ∪ {σs:s} is satisfiable.
The rule M� propagates a �-formula to a prefix that stands for a successor state.
Consider a step B

{σt:s} where σ:�s ∈ B, σt:t ∈ B and B is satisfiable. Then [σ]
satisfies �s. Thus all successors of [σ] satisfy s. Because σt:t ∈ B, we have that
[σ]→M [σt]. Thus [σt] satisfies s. Hence B ∪ {σt:s} is satisfiable.

Completeness

To prove completeness, one can show that every evident branch B corresponds to
a modelM that satisfies every formula on the branch. From this, it follows that
consistent branches are satisfiable. The model is constructed as follows. The set
of states |M| is the set of prefixes that appear on the branch. A state σ is labeled

43

5 The Modal Case

with p, that is σ ∈ Mp, iff σ:p ∈ B. The transition relation is obtained from the
structure of the prefixes. We set σ →M σs iff σs:s ∈ B. Then one can show that
M, σ |= s for all σ:s ∈ B by induction on the size of s.

Termination

The tableau system terminates. First note that all modal formulas and all elements
of prefixes are subformulas of the initial formula. Thus it suffices to show that
the length of the prefixes is bounded. We write |σ| for the length of a prefix σ,
i.e., the number n such that σ = s1 · · · sn. We define the modal depth d(s) of a
formula s as follows.

d(p) = 0
d(¬p) = 0

d(s ∧ t) = max{d(s), d(t)}
d(s ∨ t) = max{d(s), d(t)}
d(♦s) = 1 + d(s)
d(�s) = 1 + d(s)

Let d0 be the modal depth of the initial formula. We have the following invariant
for all prefixed formulas σ:s on the tableau.

|σ|+ d(s) ≤ d0

Thus the length of all prefixes is bounded by d0.
Since the tableau system terminates and a branch is consistent iff it is satisfiable,
the tableau system fits in our framework.

5.3 Example

An example of a tableau for the formula s := ♦((�q1∨♦¬q2)∧ (p1∨p2)∧♦q2∧
�(¬q1∨¬q2)) is depicted in Figure 5.5. Note that sq2 : q2 and s¬q2 : ¬q2 do not
clash because they have different prefixes. Branch e is evident. It contains the
prefixes ε, s, sq2 and s¬q2. Thus this branch corresponds to a model with 4 states,
which is depicted in Figure 5.3. Each state is annotated with the predicates that
hold at the state.

44

5.3 Example

1
ε

:s
2
s

:(
�
q 1
∨
♦
¬q

2)
∧

(p
1∨
p 2

)∧
♦
q 2
∧
�

(¬
q 1
∨
¬q

2)
M

♦
(1

)

3
s

:�
q 1
∨
♦
¬q

2
M
∧

(2
)

4
s

:p
1∨
p 2

M
∧

(2
)

5
s

:♦
q 2

M
∧

(2
)

6
s

:�
(¬
q 1
∨
¬q

2)
M
∧

(2
)

7
sq

2
:q

2
M

♦
(5

)

8
sq

2
:¬
q 1
∨
¬q

2
M

�
(6
,7

)

9
s

:�
q 1

M
∨

(3
)

10
sq

2
:q

1
M

�
(9
,7

)

11
s

:p
1

M
∨

(4
)

12
sq

2
:¬
q 1

M
∨

(8
)

13
⊗ a

M
⊗

(1
0,

12
)

14
sq

2
:¬
q 2

M
∨

(8
)

15
⊗ b

M
⊗

(7
,1

4)

16
s

:p
2

M
∨

(4
)

17
sq

2
:¬
q 1

M
∨

(8
)

18
⊗ c

M
⊗

(1
0,

17
)

19
sq

2
:¬
q 2

M
∨

(8
)

20
⊗ d

M
⊗

(7
,1

9)

21
s

:♦
¬q

2
M
∨

(3
)

22
s¬
q 2

:¬
q 2

M
♦

(2
1)

23
s

:p
1

M
∨

(4
)

24
sq

2
:¬
q 1

e

M
∨

(8
)
sq

2
:¬
q 2

s
:p

2

w
he
re
s

:=
♦

((
�
q 1
∨
♦
¬q

2)
∧

(p
1∨
p 2

)∧
♦
q 2
∧
�

(¬
q 1
∨
¬q

2)
)

Fi
gu

re
5.
2:

Ex
am

pl
e
of

a
ta
bl
ea
u
fo
r
m
od

al
lo
gi
c

45

5 The Modal Case

ε s

p1

sq2

q2

s¬q2

Figure 5.3: Model of the initial formula from Figure 5.2

Since the tableau system fits in our framework, we automatically obtain a back-
jumping procedure for it. Figure 5.4 shows the instantiation of the dependency
sequent rules from Figure 4.3 for the modal tableau system. In Figure 5.5, we
present an example of a tableau with backjumping for the same formula as in the
tableau in Figure 5.2. Note that the backjump from branch b to the branch d
results from a clash of formulas with prefix sq2, but allows to jump over branching
point 2, whose formulas have prefix s. Thus this backjumping calculus allows to
jump over formulas with different prefixes.

46

5.3 Example

Dmod
0 σ :s⇒ σ :s

Dmod
α,∧

A⇒ σ :s1∧· · ·∧sn
A⇒ σ :si

i∈[1,n]

Dmod
α,♦

A⇒ σ :♦s
A⇒ σs :s

Dmod
α,�

A⇒ σ :�s A′ ⇒ σt : t
A,A′ ⇒ σt :s

Dprop
β

A⇒ σ :s∨t A′, σ :s⇒ ⊗
A,A′ ⇒ σ : t

Dprop
⊗

A⇒ σ :s A′ ⇒ σ :¬s
A,A′ ⇒ ⊗

Figure 5.4: Instantiation of the rules in Figure 4.3 for the modal tableau system

47

5 The Modal Case

1

ε
:s
⇒

ε
:s

ε
:s
⇒

s
:(
�
q 1
∨
♦
¬q

2)
∧

(p
1∨
p 2

)∧
♦
q 2
∧
�

(¬
q 1
∨
¬q

2)
ε

:s
⇒

s
:�
q 1
∨
♦
¬q

2
ε

:s
⇒

s
:p

1∨
p 2

ε
:s
⇒

s
:♦
q 2

ε
:s
⇒

s
:�

(¬
q 1
∨
¬q

2)
ε

:s
⇒

sq
2
:q

2
ε

:s
⇒

sq
2
:¬
q 1
∨
¬q

2

2

s
:�
q 1
⇒

s
:�
q 1

ε
:s
,s

:�
q 1
⇒

sq
2
:q

1

3
s

:p
1
⇒

s
:p

1

sq
2
:¬
q 1
⇒

sq
2
:¬
q 1

ε
:s
,s

:�
q 1
,s
q 1

:¬
q 1
⇒

⊗ a

ε
:s
,s

:�
q 1
⇒

sq
2
:¬
q 2

ε
:s
,s

:�
q 1
⇒

⊗ b

s
: cp 2

4

ε
:s
⇒

s
:♦
¬q

2
ε

:s
⇒

s¬
q 2

:¬
q 2

5
s

:p
1
⇒

s
:p

1

sq
2
:¬
q 1
⇒

sq
2
: d¬q

1
sq

2
:¬
q 2

s
:p

2

w
he
re
s

:=
♦

((
�
q 1
∨
♦
¬q

2)
∧

(p
1∨
p 2

)∧
♦
q 2
∧
�

(¬
q 1
∨
¬q

2)
)

Fi
gu

re
5.
5:

Ta
bl
ea
u
fro

m
Fi
gu

re
5.
2
ex
te
nd

ed
w
ith

ba
ck
ju
m
pi
ng

48

6 Discussion and Future Work

We have formalized and proven correct backjumping with dependency sets for
a class of tableau systems and introduced dependency sequents as a semantic
characterization of dependency sets.
Now, we want to discuss possible extensions of our approach.

6.1 Blocking

Prefixed tableau systems for modal logics often employ a blocking technique to
ensure termination (e.g., [5, 18]). Blocking restricts the applicability of certain
tableau rules to a branch based on structural properties of the branch.
Interestingly, blocking does not interfere with backjumping. As long as blocking
does not forbid all applicable rules, it acts like a rule selection strategy. Hence
this does not affect the correctness of backjumping. When blocking does not
allow to apply any rule to a branch, then the branch is known to be satisfiable by
some external theorem provided that the blocking conditions are correct. At this
point, the algorithm stops and we have that the initial formula is satisfiable by
the external theorem regardless of what backjumping did before.
So we expect that our approach extends to tableau systems with blocking.

6.2 Non-terminating Tableau Systems

For undecidable logics like first-order logic, all complete tableau systems are non-
terminating. Non-terminating tableau systems need additional care because they
require to consider infinite evident sets and the rule application strategy has to be
fair, that is, no rule is ignored infinitely often. We conjecture that it is possible
to extend the present approach to non-terminating tableau systems.

6.3 Monotonicity

Another outstanding issue is the limited expressiveness of tableau rules. By defin-
ing tableau steps as the closure T̂ of the set T of tableau rules, we ensured that

49

6 Discussion and Future Work

if a rule applies to a branch B, then it applies to every larger branch B′ ⊇ B (up
to some restrictions, see Proposition 2.3). Thus a tableau rule that applies to a
branch B cannot require that a formula, say s, is not on the branch because the
rule automatically applies to B ∪ {s} (provided that B ∪ {s} is not clashed and
contains no conclusion of the rule). We call tableau systems whose steps satisfy
Proposition 2.3 monotone. Monotonicity is essential for our correctness proof.
But there are non-monotone tableau systems. A particularly simple case of non-
monotone tableau systems are tableau systems with freshness conditions. For
example, the prefixed tableau systems by Fitting [7] and Massacci [23] impose
fresh prefixes. They require that a prefix introduced by the ♦-rule is not on the
branch before. In Chapter 5, we showed how this requirement can be avoided by
computing prefixes in a way such that they cannot collide. This way, we obtained
a monotone tableau system.
But there are more severe cases where it is not obvious how to make a tableau
system monotone. For example, Schneider’s [28] tableau system for modal logic
with transitive closure uses a loop-check technique that requires lower as well as
upper bounds on the sets of formulas at the nodes of a loop in order to cause a
clash. Since an upper bound means that certain formulas are not on the branch,
Schneider’s system cannot be expressed within our current framework. Extending
the present approach to non-monotone tableau systems is future work.

50

Bibliography

[1] F. Baader and U. Sattler. An overview of tableau algorithms for description
logics. Studia Logica, 69:5–40, 2001.

[2] J. Backes and C. E. Brown. Analytic tableaux for higher-order logic with
choice. In IJCAR 2010, volume 6173 of LNCS/LNAI, pages 76–90. Springer,
2010.

[3] B. Beckert and R. Goré. Free variable tableaux for propositional modal logics.
In TABLEAUX 97, volume 1227 of LNCS/LNAI, pages 91–106. Springer,
1997.

[4] E. W. Beth. Semantic entailment and formal definability. Mededelingen
der Koninklijke Nederlandse Akademie van Wetenschappen, 18(13):309–342,
1955.

[5] T. Bolander and P. Blackburn. Termination for hybrid tableaus. Journal of
Logic and Computation, 17(3):517–554, 2007.

[6] M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors. Handbook of
tableau methods. Kluwer Academic Publishers, 1999.

[7] M. Fitting. Proof methods for modal and intuitionistic logics. Springer, 1983.
[8] J. Gaschnig. Experimental Case Studies of Backtrack vs. Waltz-type vs. New

Algorithms for Satisfying Assignment Problems. In Proceedings of the Second
National Conference of the Canadian Society for Computational Studies of
Intelligence, pages 268–277, 1978.

[9] M. Ginsberg. Dynamic Backtracking. Journal of Artificial Intelligence Re-
search, 1:25–46, 1993.

[10] D. Götzmann, M. Kaminski, and G. Smolka. Spartacus: A tableau prover for
hybrid logic. Electronic Notes in Theoretical Computer Science, 262:127–139,
2010.

[11] V. Haarslev and R. Müller. Racer system description. In IJCAR 2001, volume
2083 of LNCS/LNAI, pages 701–705. Springer, 2001.

[12] K. Hintikka. Form and content in quantification theory. Acta Philosophica
Fennica, 8:7–55, 1955.

[13] G. Hoffmann and C. Areces. HTab: a terminating tableaux system for hybrid
logic. Electronic Notes in Theoretical Computer Science, 231:3–19, 2009.

51

Bibliography

[14] I. Horrocks. Optimising tableaux decision procedures for description logics.
PhD thesis, University of Manchester, 1997.

[15] I. Horrocks. Implementation and optimization techniques. In The description
logic handbook, pages 306–346. Cambridge University Press, 2003.

[16] I. Horrocks and P. Patel-Schneider. FaCT and DLP. In TABLEAUX 98,
volume 1397 of LNCS/LNAI, pages 27–30. Springer, 1998.

[17] I. Horrocks and P. F. Patel-Schneider. Optimizing description logic subsump-
tion. Journal of Logic and Computation, 9(3):267–293, 1999.

[18] I. Horrocks, U. Hustadt, U. Sattler, and R. Schmidt. Computational modal
logic. In Handbook of Modal Logic. Elsevier, 2006.

[19] U. Hustadt and R. Schmidt. Simplification and backjumping in modal
tableau. In TABLEAUX 98, LNCS/LNAI, pages 187–201. Springer, 1998.

[20] M. Kaminski and G. Smolka. Terminating tableaux for hybrid logic with
eventualities. In J. Giesl and R. Hähnle, editors, IJCAR 2010, volume 6173
of LNCS/LNAI, pages 240–254. Springer, Jul 2010.

[21] R. Ladner. The computational complexity of provability in systems of modal
propositional logic. SIAM J. Comput., 6(3):467–480, 1977.

[22] Z. Lis. Wynikanie semantyczne a wynikanie formalne. Studia Logica, 10:
39–60, 1960.

[23] F. Massacci. Single step tableaux for modal logics. Journal of Automated
Reasoning, 24(3):319–364, 2000.

[24] D. Mitchell. A SAT solver primer. Bulletin of the European Association for
Theoretical Computer Science, 85(112-133):12, 2005.

[25] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo
Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure
to DPLL (T). Journal of the ACM, 53(6):937–977, 2006.

[26] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Com-
putational Intelligence, 9(3):268–299, 1993.

[27] F. Rossi, P. Van Beek, and T. Walsh, editors. Handbook of constraint pro-
gramming. Elsevier, 2006.

[28] S. Schneider. Terminating Tableaux for Modal Logic with Transitive Closure.
Bachelor’s thesis, Saarland University, 2009.

[29] R. Smullyan. First-Order Logic, volume 43 of Ergebnisse der Mathematik
und ihrer Grenzgebiete. Springer, 1968.

[30] R. Stallman and G. Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial Intel-
ligence, 9(2):135–196, 1977.

52

Bibliography

[31] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System
description. In IJCAR 2006, volume 4130 of LNCS/LNAI, pages 292–297.
Springer, 2006.

53

	Introduction
	1 The Propositional Case
	1.1 Tableau Systems
	1.1.1 Fundamental Notions
	1.1.2 Termination
	1.1.3 Correctness
	1.1.4 Comparison to Other Propositional Tableau Systems
	1.1.5 Compact Notation For Tableaux

	1.2 Depth-First Search
	1.3 Backjumping

	2 Abstract Tableau systems
	2.1 Rules
	2.2 Consistency
	2.3 Termination

	3 Correctness of Depth-First Search
	4 Correctness of Backjumping
	4.1 Dependency Sequents
	4.1.1 Example
	4.1.2 Relation to Propositional Logic
	4.1.3 Dependency Sequent Rules

	4.2 DFS with Backjumping
	4.3 Learning

	5 The Modal Case
	5.1 Syntax and Semantics of K
	5.2 Rules
	5.3 Example

	6 Discussion and Future Work
	6.1 Blocking
	6.2 Non-terminating Tableau Systems
	6.3 Monotonicity

