
E�cient Logic Variables for Distributed ComputingSEIF HARIDISwedish Institute of Computer Science (SICS)PETER VAN ROYUniversit�e Catholique de Louvain and SICSPER BRANDSwedish Institute of Computer ScienceMICHAEL MEHL and RALF SCHEIDHAUERGerman Research Center For Arti�cial Intelligence (DFKI)andGERT SMOLKAUniversit�at des Saarlandes and DFKIWe de�ne a practical algorithm for distributed rational tree uni�cation and prove its correctnessin both the o�-line and on-line cases. We derive the distributed algorithm from a centralized one,showing clearly the trade-o�s between local and distributed execution. The algorithm is used torealize logic variables in the Mozart Programming System, which implements the Oz language(see http://www.mozart-oz.org). Oz appears to the programmer as a concurrent object-orientedlanguage with dataow synchronization. Logic variables implement the dataow behavior. Weshow that logic variables can easily be added to the more restricted models of Java and ML,thus providing an alternative way to do concurrent programming in these languages. We presentcommon distributed programming idioms in a network-transparent way using logic variables. Weshow that in common cases the algorithm maintains the same message latency as explicit messagepassing. In addition, it is able to handle uncommon cases that arise from the properties of latencytolerance and third-party independence. This is evidence that using logic variables in distributedcomputing is bene�cial at both the system and language levels. At the system level, they improvelatency tolerance and third-party independence. At the language level, they help make network-transparent distribution practical.Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-ming|distributed programming; D.3.2 [Programming Languages]: Language Classi�cations|concurrent, distributed, and parallel languages; constraint and logic languages; data-ow lan-This research is funded in Sweden by the Swedish national board for industrial and technicaldevelopment (NUTEK) and SICS. This research is partially funded in Belgium by the WalloonRegion. The development of Mozart at DFKI is supported by the BMBF through Project PER-DIO (FKZ ITW 9601).Author's addresses: S. Haridi and P. Brand, Swedish Institute of Computer Science, S-164 28Kista, Sweden; email: fseif; perbrandg@sics.se; P. Van Roy, Department of Computing Scienceand Engineering, Universit�e Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; email:pvr@info.ucl.ac.be; M. Mehl and R. Scheidhauer, German Research Center for Arti�cial Intel-ligence (DFKI), D-66123 Saarbr�ucken, Germany; email: fmehl; scheidhrg@dfki.de; G. Smolka,Universit�at des Saarlandes, D-66123 Saarbr�ucken, Germany; email: smolka@ps.uni-sb.de.Permission to make digital/hard copy of all or part of this material without fee is grantedprovided that the copies are not made or distributed for pro�t or commercial advantage, theACM copyright/server notice, the title of the publication, and its date appear, and notice is giventhat copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copyotherwise, to republish, to post on servers, or to redistribute to lists requires prior speci�cpermission and/or a fee.

2 � Seif Haridi et alguages; multiparadigm languages; D.3.3 [Programming Languages]: Language Constructsand Features|concurrent programming structures; constraints; F.1.2 [Computation by Ab-stract Devices]: Modes of Computation|online computation; F.3.2 [Logics and Meaningsof Programs]: Semantics of Programming Languages|operational semantics; F.3.3 [Logicsand Meanings of Programs]: Studies of Program ConstructsGeneral Terms: Algorithms, Languages, TheoryAdditional Key Words and Phrases: Distributed algorithms, Oz, Mozart1. INTRODUCTIONLogic variables were �rst studied in the context of logic programming [Robinson1965; Warren 1977]. They remain an essential part of logic programming andconstraint programming systems [Van Roy 1994; Ja�ar and Maher 1994]. In thecontext of the Distributed Oz project, we have come to realize their usefulnessto distribution [Haridi et al. 1997; Smolka et al. 1995]. Logic variables expressdependencies between computations without imposing an execution order. Thisproperty can be exploited in distributed computing:|Two basic concerns in distributed computing are latency tolerance and third-party independence. We say a program is third-party independent if its executionis una�ected by sites that are not currently involved in the execution. We showthat using logic variables instead of explicit message passing can reduce the e�ectof both concerns with little programming e�ort.|With logic variables we can express common distributed programming idioms ina network-transparent manner that results in optimal or near-optimal messagelatency. That is, the same idiom that works well in a centralized setting alsoworks well in a distributed setting.The main contribution of this article is a practical distributed algorithm for rationaltree uni�cation that realizes these bene�ts. The algorithm is used to implementlogic variables in the Mozart system. We formally de�ne the algorithm and provethat it satis�es safety and liveness properties in both the o�-line and on-line cases.From the programmer's point of view, the use of logic variables adds a dataowcomponent to program execution. In a �rst approximation, this component can becompletely ignored. That is, it is invisible to the programmer whether or not athread temporarily blocks while waiting for a variable's value to arrive. Programscan be developed using well-known techniques of concurrent object-oriented pro-gramming [Lea 1997]. In a second approximation, the dataow component greatlysimpli�es many concurrent programming tasks [Haridi and Franz�en 1999; Bal et al.1989].This article consists of two parts that may be read independently of each other.The �rst part, Section 2, motivates and discusses in depth the use of logic vari-ables in concurrent and distributed programming. Section 2.1 introduces a generalexecution model, its distributed extension, and the concept of the logic variable.Section 2.2 gives the key ideas of the distributed uni�cation algorithm. Section 2.3shows how to express basic concepts in concurrent programming using logic vari-ables. Section 2.4 expresses common distributed programming idioms in a network-

Logic Variables for Distributed Computing � 3
(Section 4)

CU algorithm

DU algorithm
(Section 5)

RCU algorithm
(Section 6.2)

RCU is correctredundant work
of DU algorithm

Proof that

(Section 6.2)

Proof that DU implements
RCU (Section 6)

Generalize to
distributed setting

Extend to model

Fig. 1. De�ning the algorithm and proving it correct.transparent manner with logic variables. We show that the algorithm provides goodnetwork behavior for these examples. Finally, Section 2.5 shows how to add logicvariables in an orthogonal way to Java and ML, taken as representative examplesof object-oriented and functional languages.The second part, Section 3 and following, de�nes the distributed uni�cation algo-rithm, proves its total correctness (see Figure 1), and discusses its implementation.Section 3 de�nes the formal representation of logic variables and data structures.This section also de�nes con�gurations and executions and introduces the reduc-tion rule notation used to de�ne algorithms. Section 4 de�nes the CU algorithm,which implements o�-line centralized uni�cation, and summarizes well-known re-sults about its correctness. By o�-line we mean that the set of equations is �niteand initially known. Section 5 de�nes the DU algorithm, which implements o�-linedistributed uni�cation. Section 6 de�nes the RCU algorithm, which modi�es thecentralized algorithm to reect the redundant work done by the DU algorithm.The section then proves that the DU algorithm is a correct implementation of theCU and RCU algorithms. Section 7 de�nes on-line versions of the CU and DUalgorithms. By on-line we mean that new equations can nondeterministically beintroduced at any moment. We de�ne the �nite-size property and prove, that, givenweak fairness, every introduced equation that satis�es this property is eventuallyentailed by the store for both algorithms. Section 8 de�nes the algorithm used inthe Mozart system, which implements the on-line DU algorithm.2. LOGIC VARIABLES IN CONCURRENT AND DISTRIBUTED SETTINGSThis section motivates our uni�cation algorithm by showing its usefulness to dis-tributed programming. First Section 2.1 introduces our execution model and itsnotation. Then Section 2.2 gives the key ideas of the algorithm. This is followedby Section 2.3 which gives programming examples showing the usefulness of logicvariables for basic tasks in concurrent programming. Section 2.4 continues withtasks in distributed programming. We explain in detail the network behavior ofour algorithm for these tasks. Finally, Section 2.5 shows how to add logic variablesto other languages including the Java and ML families.

4 � Seif Haridi et al
S2 S3S1 Sn

p1:proc {$ A} A=Y+1 end

p2:proc {$} skip end

Cells

c2:X

c1:Z

Q=p1Y=42

X
W=c1

Z=person(age: Y)

Variables Procedures

...

Store

Threads

Fig. 2. The Oz execution model.2.1 Basic Concepts and NotationAs a framework for logic variables, we introduce a general execution model that canaccommodate most programming languages. Underlying it is a formal model calledconcurrent constraints [Smolka 1995; Saraswat 1993] that contains logic variablesas a basic ingredient. Some uses of logic variables, e.g., synchronization and com-munication, already appear in this model. The general execution model, called theOz execution model, extends the concurrent constraint model with explicit stateand higher-orderness. Other uses of logic variables, e.g., locks, become possiblewhen explicit state is added.This section gives the essential characteristics of the Oz execution model andhow it is distributed. Later on, we show how to add logic variables to the morerestricted models of Java and ML. The advantage of using a general formal modelis that it allows us to de�ne precisely what the examples do. It is straightforwardto compile Java or ML to Oz; the converse is not as easy.The Oz language has advanced support for logic programming and constraintprogramming [Smolka 1996; Schulte 1997]. This support shows up in both the Ozexecution model and kernel language. We do not present this support here since itis outside the scope of the article.2.1.1 The Oz Execution Model. The Oz execution model consists of a store anda set of dataow threads that reference logic variables in the store (see Figure 2).Threads contain statement sequences Si and communicate through shared refer-ences. A thread is a dataow thread if it only executes its next statement whenall the values the statement needs are available. Data availability is implementedusing logic variables. If the statement needs a value that is not yet available, thenthe thread automatically blocks until the value is available. We add the fairnesscondition that if all values are available then the thread will eventually execute itsnext statement.The shared store is not physical memory; rather it is an abstract store thatonly allows legal operations for the entities involved, i.e., there is no direct way toinspect their internal representations. The store consists of three compartments,namely logic variables (with optional bindings), cells (named mutable pointers,i.e., explicit state), and procedures (named lexically scoped closures, i.e., higher-orderness). Variables can reference the names of procedures and cells. Cells point to

Logic Variables for Distributed Computing � 5S ::= S S Sequencej X=f(l1:Y1 ... ln:Yn) j ValueX=<number> j X=<atom> j {NewName X}j local X1 ... Xn in S end j X=Y Variablej proc {X Y1 ... Yn} S end j {X Y1 ... Yn} Procedurej {NewCell Y X} j {Exchange X Y Z} j {Access X Y } Statej if X then S else S end Conditionalj thread S end j {GetThreadId X} Threadj try S catch X then S end j raise X end ExceptionFig. 3. The Oz kernel language.variables. The external references of threads and procedures are variables. When avariable is bound, it disappears, i.e., all threads that reference it will automaticallyreference the binding instead. Variables can be bound to any entity, includingother variables. The variable and procedure stores are monotonic, i.e., informationcan only be added to them, not changed or removed. Because of monotonicity, athread that is not blocked is guaranteed to stay not blocked until it executes itsnext statement.2.1.2 The Oz Language. All Oz execution can be de�ned in terms of a kernellanguage whose semantics are outlined in Haridi and Franz�en [1999] and Van Royet al. [1997]. The current Oz language is called Oz 2 to distinguish it from anearlier language, Oz 1, whose kernel language is called the Oz Programming Model(OPM) [Smolka 1995]. Oz 1 was designed for �ne-grained concurrency and implicitexploitation of parallelism. Oz 2 abandons this model in favor of explicit controlover concurrency by means of a thread creation construct. We do not discuss Oz 1further in this article.Figure 3 de�nes the abstract syntax of a statement S in the Oz kernel language.Statement sequences are reduced sequentially inside a thread. All variables arelogic variables, declared in an explicit scope de�ned by the local statement. Val-ues (records, numbers, names, etc.) are introduced explicitly and can be equatedto variables. A name is a unique unforgeable constant that has no external repre-sentation. A new name is created by calling NewName. Procedures are de�ned atrun-time with the proc statement and referred to by a variable. Procedure appli-cations block until the �rst argument references a procedure name. State is createdexplicitly by NewCell, which creates a cell, a mutable pointer into the variablestore. Cells are updated by Exchange and read by Access. The if statementde�nes a conditional that blocks until its condition is true or false in the variablestore. Threads are created explicitly with the thread statement. Each thread hasa unique identi�er that is used for thread-related operations. Exception handling isdynamically scoped. The try statement de�nes a scope, and the raise statementraises an exception that is caught by the innermost enclosing scope.The full Oz language is de�ned by transforming all its statements into this ker-nel language. Oz supports idioms such as objects, classes, reentrant locks, and avariety of channels called \ports" [Smolka 1995; Van Roy et al. 1997]. The sys-tem implements them e�ciently while respecting their de�nitions. We give a briefsummary of each idiom's de�nition. For clarity, we have made small conceptualsimpli�cations. Full de�nitions are given in Haridi and Franz�en [1999].

6 � Seif Haridi et al|Object: An object is essentially a one-argument procedure {Obj M} that refer-ences a cell, which is hidden by lexical scoping. The cell holds the object's state.The argument M indexes into the method table. A method is a procedure that isgiven the message and the object state and calculates the new state.|Class: A class is essentially a record that contains the method table and attributenames. A class is de�ned through multiple inheritance, and any conicts areresolved at de�nition time when building its method table.|Reentrant lock: A reentrant lock is essentially a one-argument procedure {Lck
P} used for explicit mutual exclusion, e.g., of method bodies in objects used con-currently. P is a zero-argument procedure de�ning a critical section. Reentrantmeans that the same thread is allowed to reenter the lock. Calls to the lock maytherefore be nested. The lock is released automatically if the thread in the bodyterminates or raises an exception that escapes the lock body.|Port: A port is an asynchronous channel that supports many-to-one communi-cation. A port P encapsulates a stream S. A stream is a list with an unboundtail. The operation {Send P M} adds M to the end of S. Successive sends fromthe same thread appear in the order they were sent.2.1.3 The Distribution Model. The Mozart system implements Distributed Oz,which is a conservative extension to the centralized Oz language [DFKI Oz 1998]that completely separates functionality from distribution structure. That is, Ozlanguage semantics are unchanged,1 while adding predictable and programmablecontrol over network communication patterns. Porting existing Oz programs toDistributed Oz requires essentially no e�ort.Allowing a successful separation of the functionality from the distribution struc-ture puts severe restrictions on a language. It would be almost impossible in C++because of its complex, informal semantics and because the programmer has full ac-cess to all underlying representations [Stroustrup 1997]. It is possible in Oz becauseof the following properties:|Oz has a simple formal foundation that does not sacri�ce expressiveness or ef-�cient implementation. Oz appears to the programmer as a concurrent object-oriented language whose basic functionality is comparable to modern languagessuch as Java. The current emulator-based implementation is competitive withJava emulators [Henz 1997b; 1997a]. Standard techniques for concurrent object-oriented design apply to Oz [Lea 1997]. Furthermore, Oz introduces powerfulnew techniques that are not supported by Java [Haridi and Franz�en 1999]. Someof these techniques are presented in this article.|Oz is both a state-aware and dataow language. That is, language entities canbe classi�ed naturally into stateless, single assignment, and stateful. This helpsgive the programmer control over network communication patterns in a naturalmanner. Stateless data include procedures and values, which can safely be copiedto many sites [Alouini and Van Roy 1999]. Stateful data include objects, which atany instant must reside on just one site [Van Roy et al. 1997]. Single-assignment1Only ports are changed slightly to better model asynchronous FIFO communication betweensites [Van Roy et al. 1997].

Logic Variables for Distributed Computing � 7data include logic variables, whose dataow synchronization allows us to decouplecalculating a value from sending it across the network.|Oz is a fully dynamic and compositional language. That is, Oz is dynamicallytyped, and all entities are �rst-class. By dynamically typed we mean that its typestructure is checked at run-time. This makes it easy to implement fully opendistribution, in which independent computations can connect and disconnect atwill. When connected they can communicate as if they were in the same central-ized process. For example, it is possible to de�ne a class C in one computation,pass C to an independent computation that has never before heard of C, let theindependent computation de�ne a class D inheriting from C, and pass D back tothe original computation [Van Roy et al. 1999; Haridi et al. 1998].|Oz provides language security. That is, all references to language entities arecreated and passed explicitly. An application cannot forge references nor accessreferences that have not been explicitly given to it. The underlying representationof language entities is inaccessible to the programmer. This is a consequence ofthe abstract store and a kernel language with lexical scoping and �rst-class pro-cedures. These are essential properties to implement a capability-based securitypolicy, which is important in open distribution.The Distributed Oz execution model extends the Oz execution model by giving adistributed semantics to each language entity. The distributed semantics de�nesthe network behavior when language entities are shared between sites. The se-mantics is chosen carefully to give predictable control over network communicationpatterns. The centralized semantics is unchanged: we say the model is network-transparent [Cardelli 1995]. In the current system, language entities are put in fourcategories. Each category is implemented by a family of distributed protocols:|Stateless: records, numbers, procedures, and classes. Since they do not change,these entities can be copied at will.2 There is a trade-o� between when to copy,how many times to copy to a site, and access time. This gives a family of protocolsto de�ne their distributed behaviors [Alouini and Van Roy 1999].|Single assignment: logic variables. Assignment is done by a distributed uni�-cation algorithm, which is the subject of this article. To be precise, logic variablesprovide consistent multiple assignment, i.e., there can be multiple assignmentsas long as they are uni�able. We keep the phrase \single assignment" to avoidmultiplying terminology.|Stateful: cells, objects, reentrant locks, ports, and threads. For e�ciency rea-sons, these entities' state pointers are localized to a site. If the state pointer's sitecan change, we say that the entity is mobile. Currently there are two mobilitybehaviors: a mobile state protocol (cells, objects, locks, ports) and a stationaryaccess protocol (threads). The mobile state protocol ensures coherent state up-dates with controlled mobility of the state pointer [Van Roy et al. 1997]. Thestationary access protocol is used for entities that cannot move.|Resource: entities external to the shared store. References to resources can bepassed around the network at will, but the resource can only be executed on2This is true only for the entity, not for its external references. An external reference has its ownprotocol that corresponds to its category.

8 � Seif Haridi et alits home site [Van Roy et al. 1999]. This includes computational and memoryresources, which can be made visible in the language, e.g., by means of virtualsites [Haridi et al. 1998].The single-assignment category can be seen as an optimization of the stateful cate-gory in which a variable is bound to only one value, instead of repeatedly to di�erentvalues. That is, the distributed uni�cation algorithm is more e�cient than the mo-bile state protocol. However, it turns out that logic variables have many more usesthan simply as an optimization of stateful entities. These uses are explained below.2.1.4 Logic Variables. A logic variable conceptually has a �xed value from themoment of its creation. The value is unknown at �rst, and it remains unknownuntil the variable is bound. At all times, the variable can be used as if it were thevalue. If the value is needed, then the thread requiring the value will block untilthe variable is bound. If the value is not needed then execution continues.A logic variable can be passed among sites arbitrarily. At all times, it \remembersits origins," i.e., when the value becomes known then the variable will receive it.The communication needed to bind the variable is part of the variable and not partof the program manipulating the variable. This means that the variable can bepassed around at will, and the value will always arrive at the variable. This is onekey reason why logic variables are useful in distributed computing.Logic variables can replace standard (assignable) variables in all cases where theyare assigned only one value, i.e., where they are used as placeholders for values. Thealgorithm used to bind logic variables must ensure that the result is independentof binding order. In a centralized system, the algorithm is called uni�cation andis usually implemented as an extension of a union-�nd algorithm. Union-�nd han-dles only the binding of variables with variables [Mehlhorn and Tsakalidis 1990].Uni�cation generalizes this to handle nonvariable terms as well. In a good imple-mentation, binding a new variable to a nonvariable (the common case) compiles toa single register move or store operation [Van Roy 1994].A logic variable may be bound to another logic variable. A legitimate question iswhether variable-variable binding is useful in a practical system. As we shall see, onereason that variable-variable binding is important is that it allows us to maintainmaximum latency tolerance and third-party independence when communicatingamong more than two sites, independent of uctuating message delays. A secondreason is that it has a very simple logical semantics.It is possible to disallow variable-variable binding to obtain a slightly simplerimplementation. The simpler implementation blocks any attempt to do variable-variable binding until at least one of the variables is bound to a value. The priceof the simpler implementation is that third-party dependencies are not removedin all cases. Futures [Halstead 1985] and I-structures [Arvind and Thomas 1980;Veen 1986; Iannucci 1990] resemble this weaker version of logic variables (see Sec-tion 9.2.1). There remains a crucial di�erence with logic variables, namely thatfutures and I-structures can be assigned only once, whereas logic variables can beassigned more than once, as long as the assignments are consistent with each other.The e�ciency di�erence between full and weak logic variables is small. Thedistributed binding algorithm is almost identical for the full and weak versions.Furthermore, the full version has a simple logical semantics. For these three reasons

Logic Variables for Distributed Computing � 9
y f(y1)

y f(y1)

y f(y1)

Centralized

Site 1 Site 2

Distributed

x

y1=foo
y1

x1

Site 3

Equations Store

x=f(x1) x

x1

y1y1=foo

x=y

x=f(x1)

x=y x1

y1

x=f(x1)
x

y1
(none)

=

variable’s
Marks

owner site

x=f(x1)

Fig. 4. Initial con�guration of example.we have implemented the full version in the Distributed Oz implementation.2.2 Distributed Uni�cationFor logic variables to be practical in a distributed setting they must be e�cientlyimplementable. This section gives the key ideas of the distributed algorithm thatrealizes this goal. We explain the algorithm in just enough detail so that its networkbehavior becomes clear. This will allow us to infer the algorithm's behavior in theprogramming examples that follow. A formal de�nition of the algorithm and proofsof its correct behavior are given starting from Section 3.The two basic operations on logic variables are binding and waiting until bound.Waiting until bound is easy: the variable has a list containing threads that needits value. These threads are blocked. When the value arrives, the threads areawoken. Binding is harder: it requires cooperation between sites. If a variableexists on several sites, then it must be bound to the same value on all sites, despiteconcurrent binding attempts. Uni�cation implements the binding operation. Atany instant there can be any number of bindings in various stages of completion.Both the centralized and distributed algorithms cause each binding request to beeventually incorporated into the store, if it is consistent with the store.The basic distributed operation is binding a variable to a value. This is imple-mented by making one site the \owner" of the variable. In the current system, thesite that declares the variable is its owner. A binding request is sent to the owner,and the owner forwards the binding to each site that knows the variable. In termsof network behavior, one message is sent to the owner, and one message is sent bythe owner to each site that knows the variable. The owner's sends can be done by areliable multicast, if the network supports it e�ciently. The owner accepts the �rstbinding request and ignores all subsequent binding requests. An ignored requestwill be retried by its initiating site after it receives the binding. As we will see inthe programming examples, in the majority of cases a variable is declared either ona site that will need its value or on the site that will bind the variable. In both ofthese cases, the network behavior of the algorithm is very good.A logic variable X can be bound to a data structure or to another variable. The

10 � Seif Haridi et al
y1 foo y1 foo

y f(y1)y f(y1)

y1 foo

Site 3Site 2Site 1

x1

x

x=f(x1) (none)

x

x1

x=f(x1)

x=yFig. 5. Con�guration after executing the equation Y1=foo.algorithm is the same in both cases. By default the binding is eager, i.e., the newvalue is immediately sent to all sites that know about X. This means that a boundvariable is guaranteed to eventually disappear from the system. The same bindingeventually appears on each site that has the variable. For example, executing theequation X=f(X1) causes the binding X f(X1) to appear in the store on all sitescontaining X. Furthermore, X1 is added to the known variables of all of these sitesthat did not know X1.2.2.1 An Example. We illustrate the algorithm with an example. Figure 4 showsa centralized con�guration (on the left) and one way to distribute it (on the right).Each con�guration has a set of equations and a store. For the algorithm, an equationis simply a request to perform a binding. In the formal discussion (Section 3 andfollowing), we need more kinds of requests than just equations. We call all therequests actions. The same equation may exist more than once. The store containsthe variables and their bindings, if the latter exist.In the distributed case, each site has a set of equations and a store. The central-ized equations are distributed among the sites. Each variable is visible on a subsetof the sites. If there is only one site, then the distributed algorithm is identical tothe centralized algorithm. Each variable occurrence on a site is called a \proxy."One of the sites is the variable's owner. In Figure 4, site 1 is the owner of X, andsite 3 is the owner of both X1 and Y1. If the variable is bound, then the bindingwill eventually arrive on each site that sees the variable. Variable Y is bound tof(Y1) on sites 2 and 3.Site 1 requests the binding Y1=foo. This sends a message to site 3, the ownerof Y1. The owner sends a message to all proxies of Y1. That is, the owner sendsthree messages, to sites 1, 2, and 3. When a message arrives on a site, then thebinding Y1 foo appears on that site (see Figure 5). Since the owner is on site 3,its message to site 3 does not need any network operations.2.2.2 Lazy and Eager Variables. Logic variables can have di�erent distributedbehaviors, as long as network transparency is satis�ed in each case. As explainedabove, by default a logic variable is eager on all sites, i.e., its binding is sent imme-diately to all sites that reference the variable. This gives maximal latency toleranceand third-party independence. However, this may cause the binding to be sentto sites that do not need it. We say that a logic variable is lazy on a site if itsvalue is only sent to that site when the site needs it, e.g., when a thread is wait-ing for the variable. Binding a lazy variable typically needs fewer messages, sincenot all sites that know the variable need its value. Both eager and lazy variablesare implemented by the on-line DU algorithm of Section 5. They di�er only in

Logic Variables for Distributed Computing � 11the scheduling of one reduction rule. The Mozart implementation currently onlyprovides eager variables; with a minor change it can provide both. A programmerannotation can then decide whether a variable is eager or lazy. The implementationissues of laziness are further explored in Section 8.5.6.2.3 Examples of Concurrent ProgrammingIt turns out that logic variables su�ce to express most concurrent programmingidioms in an intuitive and concise manner. Additional concepts such as semaphores,critical sections, or monitors are not needed. Bal et al. [1989] conclude that logicvariables are \spectacularly expressive" in concurrent programming even withoutexplicit state. We give examples of four important idioms, namely synchronization,communication, mutual exclusion, and �rst-class channels. Many other idioms canbe found in the concurrent logic programming literature [Shapiro 1989; Haridi andFranz�en 1999].2.3.1 Synchronization and Communication. The following fragment creates twothreads and synchronizes their execution:
local X in

thread {Print a} X=unit end
thread {Wait X} {Print b} end

endThe statement {Wait X} blocks until X's value is known. Therefore \a" is alwaysprinted before \b." The value of X is communicated from the �rst to the secondthread. {Wait X} is not a new notion; it can be de�ned as if X=1 then skip

else skip end .2.3.2 Mutual Exclusion. A critical section can be de�ned by means of logicvariables and one cell. The cell is used to manage access to a token, which is passedfrom one thread to the next. Assume that a cell C exists with initial content unit ,e.g., de�ned by {NewCell unit C}. Then the following fragment de�nes a criticalsection:
local X Y in

{Exchange C X Y} {Wait X} % Enter
... % Body
Y=unit % Exit

endWe show that only one thread at a time can be executing the body. A threadthat tries to enter is given C's previous state Xn and current state Yn. The threadthen waits on Xn. When the previous thread leaves, it binds Yn�1=unit . Since
Yn�1 = Xn, this allows the next thread to enter. This works even if many threadstry to enter concurrently, since the exchanges are serialized. Section 2.4.6 uses thisidea to de�ne a procedure NewSimpleLock that can create any number of locks.2.3.3 First-Class Channels. A simple kind of FIFO channel is the stream, alist with an unbound tail. Reading from the stream is receiving from the channel.Appending to the stream is sending through the channel. Each element of thestream can be a record containing both the query and an answer channel. Forexample, here is a fragment that handles queries appearing on the stream X0:

12 � Seif Haridi et al
case X0 of query(Q1 A1)|X1 then % Wait for query Q1 and channel A1

A1={CalcAnswerStream Q1} % Calculate answer stream on A1
case X1 of query(Q2 A2)|X2 then % Wait for Q1 and A2

A2={CalcAnswerStream Q2} % Calculate answer stream on A2
...

end
endWe assume that Q1 is a database query that gives multiple answers, which appearincrementally on A1. The case statement is a useful idiom: it waits until X0 issu�ciently bound to read the pattern query(Q1 A1)|X1. The pattern variables
Q1, A1, X1 are declared implicitly. Typically, the above fragment would be writtenas part of a loop:

local P in
proc {P M}

case M of query(Q A) then A={CalcAnswerStream Q} end
end
{ForAll X0 P}

end

ForAll takes a list X0 and a one-argument procedure, and applies the procedureto all the list's elements. The above example can be written more compactly as anested statement with exactly the same meaning:
{ForAll X0

proc {$ M}
case M of query(Q A) then A={CalcAnswerStream Q} end

end}The \$" is used as a nesting marker; it implicitly declares a logic variable. This is asyntactic short-cut that avoids explicitly declaring P. Using ForAll is e�cient; thereare no memory leaks, and the stream is not consumed faster than it is produced.It may be produced faster than it is consumed, however. Usually, a stream isassociated to an Oz port, and one writes to the port (see Section 2.1.2).2.4 Examples of Distributed ProgrammingThe purpose of this section is to show the usefulness of logic variables when ex-tending concurrent object-oriented programming to a distributed setting. Sec-tions 2.4.1{2.4.7 present a series of common programming idioms in distributedprogramming. We show how to express them in a concurrent object-oriented lan-guage that contains logic variables. The resulting solutions have two properties:|The solutions perform correctly, independently of how they are partitioned amongsites. That is, the programming idioms underlying the communication patternscan be expressed in a network-transparent manner.|No matter how the solutions are partitioned among sites, the resulting messagetra�c is optimal or nearly optimal (in the common cases) or at least reasonable(in the uncommon cases). That is, given logic variables, the same programmingidioms perform well in both centralized and distributed settings.This shows, that, at least in the cases presented here, using logic variables allowsus to keep useful programming idioms of centralized object-oriented programming,

Logic Variables for Distributed Computing � 13while allowing the implementation to extend e�ciently to a distributed setting.This is evidence that controlling execution through data availability, which is whatlogic variables provide, is a natural way to keep good performance while mappinga program to arbitrary distribution structures.The examples show a variety of distributed programming techniques using logicvariables. Some of them, e.g., barrier synchronization and distributed locking, willnormally be provided as primitives by the system. Others, e.g., stream communi-cation, will normally be programmed by the user. We do not distinguish betweenthe two cases, since our goal is to show the expressiveness of logic variables.2.4.1 Latency Tolerance and Third-Party Independence. From the viewpoint ofexecution order of basic language operations, a distributed execution cannot bedistinguished from a concurrent execution. Distinguishing them requires lookingat the e�ects of partitioning an execution over several sites. This a�ects systemproperties such as network properties (e.g., delays and limited bandwidth) and siteresources (e.g., disks and main memory). At the language level, the latter showsup as the restriction of some operations to be local or remote only (such as localmemory operations and remote message sends).Logic variables decouple the declaration of a variable from its binding. Once avariable is declared, it can be passed to other sites, even before it is bound. Whenit is bound, the binding will be transferred automatically and e�ciently to thesites needing it. This decoupling allows programs to provide a degree of latencytolerance, i.e., their execution is less a�ected by changes in network latency. Forexample, in the following code fragment
local Ans in

thread
{DataBase query("How far is up?" Ans)}

end
thread

{RemoteClient inform(Ans)}
end

endthe database query and the client transfer are initiated concurrently. Assume thatthe database and the client are on di�erent remote sites. The initiator site owns
Ans. As soon as Ans is bound, the binding will be sent from the database site tothe initiator site, which forwards it to the client site. This is all done independentlyof the initiator.A logic variable can be bound to another logic variable. This allows programsto improve third-party independence. For example, assume variable X exists onsites 1 and 2, and variable Y exists on sites 2 and 3. Assume that X and Y arebound together on site 2. Then binding X to 99 on site 1 should be visible on site3 independent of what happens to site 2.2.4.2 Stream Communication. This second example has a producer Generatethat creates a data stream and a consumer Sum that reads this stream (see Figure 6).We �rst examine the program in a centralized setting. Then we explain whathappens when the producer and consumer run on di�erent sites. As we saw before,a stream is a list whose tail is a logic variable. The producer thread repeatedly

14 � Seif Haridi et al
proc {Generate N Max L} % Return list of integers from N to Max-1

if N < Max then L1 in
L=N|L1
{Generate N+1 Max L1}

else L=nil end
end

fun {Sum L A} % Return (A + sum of elements of list L)
case L
of nil then A
[] X|Ls then {Sum Ls A+X}
end

end

local CS L S in % Generate a list and sum its elements
CS={NewComputeServer ´ sinuhe.sics.se´ } % Remote compute server
thread L = {Generate 0 150000} end % Producer thread (local)
{CS proc {$} S={Sum L 0} end} % Consumer thread (remote)
{Print S} % Print result (local)

end Fig. 6. Stream Communication.
proc {Generate N L} % Return list L of integers starting with N

case L of X|Ls then % Wait until the next element is asked for
X=N
{Generate N+1 Ls}

else skip end
end

fun {Sum N L A} % Return (A + sum of first N elements of L)
if N>0 then X L1 in

L=X|L1 % Ask for the next element
{Sum N-1 L1 A+X}

else
A

end
end

local CS L S in
CS={NewComputeServer ´ sinuhe.sics.se´ } % Remote compute server
{CS proc {$} {Generate 0 L} end} % Producer thread (remote)
thread S={Sum 150000 L 0} end % Consumer thread (local)
{Print S} % Print result (local)

end Fig. 7. Stream communication with ow control.

Logic Variables for Distributed Computing � 15binds the tail to a pair of an element and a new tail. The consumer thread canstart reading the stream while the producer is still creating it. In the programof Figure 6, the producer generates a list of integers from 0 to 149999 and theconsumer sums them, giving 11249925000.This example will run in a distributed way if the producer thread and consumerthread are started on di�erent sites. This is what the main program of Figure 6does; it executes the producer locally and the consumer remotely. In the producer,binding L to N|L1 adds one element to the stream. In the distributed executionthis will send exactly one message to the consumer.The consumer Sum is run remotely by packaging the call S={Sum L 0} into azero-argument procedure that is passed to the compute server CS. The procedure'scompiled code is sent across the network. The logic variable S is shared between thelocal and remote sites, and therefore transparently becomes a distributed variable.When Sum �nishes its calculation then the result is bound to S. This sends theresult back to the local site.A compute server is a one-argument procedure that takes work packaged as azero-argument procedure, and executes it in its own thread on the remote machine.The compute server is created by calling the function NewComputeServer with ahostname. This creates a process on the remote machine and returns a computeserver.Because of network transparency, all possible code fragments can be used as workto be transferred to the compute server. However, if the work uses resources, thenit cannot be packaged in a procedure. This is because resources are site-speci�c (seeSection 2.1.3). Instead, Oz allows such work to be packaged in a functor, whichdescribes the resources that the work needs. Just like procedures, functors arestateless and can be passed across the network transparently. Functors are beyondthe scope of this article; for more information see [Duchier et al. 1998; Van Royet al. 1999].2.4.3 Stream Communication with Flow Control. This third example extendsthe second example by adding end-to-end ow control (see Figure 7). A streamelement is only generated when the consumer asks for it. The second example hasno ow control, i.e., the producer will create elements eagerly independent of whatthe consumer needs. Unless the list's maximum size is small, ow control is neededto avoid problems with memory utilization. This is true in both centralized anddistributed settings.The consumer asks for an element by binding the stream's tail to a pair of a logicvariable and a new tail. The producer waits until this pair exists and then bindsthe logic variable to the next element. The consumer can terminate the producerby binding L to nil, i.e., by replacing the \else A end" in its de�nition by \else

L=nil A end ." The producer terminates when it detects the end of L.In this example the producer and consumer will execute in lock step. The mainprogram of Figure 7 executes the producer locally and the consumer remotely.Therefore one round-trip message delay is needed for each element of the stream.To relax this tight synchronization, an n-element bu�er can be programmed.2.4.4 Stream Communication with Multiple Readers. Now let the stream beread by multiple consumers. Figure 8 shows how to do it with consumers on three

16 � Seif Haridi et al
local CS1 CS2 CS3 L S1 S2 S3 in

CS1={NewComputeServer ´ sinuhe.sics.se´ }
CS2={NewComputeServer ´ norge.info.ucl.ac.be´ }
CS3={NewComputeServer ´ tinman.ps.uni-sb.de´ }
thread {Generate 0 L} end % Producer (local)
{CS1 proc {$} S1={Sum L 150000 0} end} % Consumer 1 (on Site 1)
{CS2 proc {$} S2={Sum L 150000 0} end} % Consumer 2 (on Site 2)
{CS3 proc {$} S3={Sum L 150000 0} end} % Consumer 3 (on Site 3)

end Fig. 8. Stream communication with multiple readers.sites. We assume three compute servers referenced by CS1, CS2, and CS3. Bothprevious examples of stream communication (with and without ow control) willwork with multiple consumers. This is an excellent illustration of the di�erencebetween logic variables and I-structures. It is allowed for multiple readers to bindthe list's tail, since they bind it in a consistent way. This would not work withordinary single assignment, e.g., as provided by I-structures.The example without ow control is straightforward: one message is sent to eachconsumer per element. The example with ow control is more interesting; it isshown in Figure 8. In this case, each consumer sends a message to request thenext element when it is needed. The network behavior is as follows. To makethings interesting, we assume a fast, a medium, and a slow consumer. The fastconsumer sends a message to the producer, which is the owner of the �rst streamvariable. The message contains two variables: one for the element and one for thenext stream variable. Both of these variables are owned by the fast consumer. Itfollows, that, from this point on, the fast consumer will be the owner of all streamvariables. Therefore all further stream elements will be sent by the producer tothe fast consumer, who will multicast them to the other consumers. After the �rstmessage, the medium consumer will send requests to the fast consumer, since itis the owner. These requests will be ignored, since the fast consumer will alreadyhave bound the stream variable. The slow consumer will send no requests at all; itreceives the elements before asking for them.2.4.5 Barrier Synchronization. We would like to create a set of concurrent tasksand be informed as soon as all tasks have �nished. This should work e�cientlyindependently of how the tasks are partitioned over a set of sites. Figure 9 givesa simple solution that works well in both centralized and distributed settings. Toexplain how it works, we need �rst of all to understand how to synchronize on thetermination of a single thread. This is done as follows, where statement S representsa task:
local X in thread S X=unit end ... {Wait X} endThe main thread creates a new thread whose body is S X=unit . The new threadwill bind X after S is �nished, and the main thread detects this with a {Wait X}. Astatement S �nishes when it reduces to skip in its thread. Other threads may becreated during the execution of S; these are independent of S. If the task is executedremotely, then binding X sends a single message to the main site, which owns X.

Logic Variables for Distributed Computing � 17
proc {BarrierSync Ps}

proc {Conc Ps L}
case Ps of P|Pr then X Ls in

L=X|Ls
thread {P} X=unit end
{Conc Pr Ls}

else
L=nil

end
end
L

in
{Conc Ps L}
{ForAll L proc {$ X} {Wait X} end}

end

{BarrierSync [proc {$} E1 end % Task 1
proc {$} E2 end % Task 2
proc {$} E3 end]} % Task 3Fig. 9. Barrier synchronization.This informs the thread of the task's completion. The message sent back to thetask's site is a simple acknowledgment that does not a�ect the barrier's latency,which is one message.We generalize this idea to multiple tasks. The general scheme is as follows:

local X1 ... Xn in
thread S1 X1=unit end
thread S2 X2=unit end
...
thread Sn Xn=unit end
{Wait X1} ... {Wait Xn} S

endThe main thread waits until all Xi are bound. When Si terminates then its threadbinds Xi=unit . When all tasks terminate then all Xi are bound, so the main threadruns S.Assume now that the tasks are distributed over a set of sites. Each Xi is ownedby the main thread's site. Therefore binding Xi=unit sends a message from thetask site to the main site. When all variables are bound, the main thread resumesexecution. Concurrently, the main site sends a message back for each message itreceived. These messages do not a�ect the barrier's latency.2.4.6 Distributed Locking. If a program fragment may be executed by manythreads, then it is important to be able to guarantee mutual exclusion. A threadthat attempts to execute the fragment should block and be queued. Multiple re-quests should be correctly queued and blocked, independent of whether the threadsare on the same site or on another site. We show that it is possible to implementthis concisely and e�ciently in the language. As explained in Section 2.3, Figure 10

18 � Seif Haridi et al
proc {NewSimpleLock ?Lock}

Cell = {NewCell unit }
in

proc {Lock Code}
Old New in
try

{Exchange Cell Old New} {Wait Old} % Enter
{Code} % Body

finally New=unit end % Exit
end

end Fig. 10. Distributed locking.shows one way to implement a lock that handles exceptions correctly.3 If multiplethreads attempt to access the lock body, then only one is given access, and theothers are queued. The queue is a sequence of logic variables. Each thread blockson one variable in the sequence, and will bind the next variable after it has exe-cuted the lock body. Each thread desiring the lock therefore references two logicvariables: one to wait for the lock and one to pass the lock to the next thread.Each logic variable is referenced by two threads.If the threads are on di�erent sites, then the queue is distributed. A singlemessage will be sent to transfer the lock from one site to another. This implementsdistributed token passing, which is a well-known distributed algorithm for mutualexclusion [Chow and Johnson 1997]. We explain how it works. When a threadtries to enter the lock body, the Exchange gives it access to the previous thread's
New variable. The previous thread's site is New's owner. When the previous threadbinds New, the owner sends the binding to the next thread's site. This requires asingle message.2.4.7 Remote Method Invocation (RMI). Let us invoke an object from within athread on a given site. Where will the object execute? On a network-transparentsystem there are several possible answers to this question. Here we give just enoughinformation to justify our RMI implementation. For a full discussion of the issueswe refer the reader to Van Roy et al. [1997; 1998]. In Mozart, objects synchronouslymigrate to the invoking site by default. Therefore the object executes locally withrespect to the invoking thread. This makes it easy for the object to synchronizewith respect to the thread. If the object raises an exception, then it is passed tothe thread. Object migration is implemented by a lightweight mobility protocolthat serializes the path of the object's concurrent state pointer among the invokingsites.It is possible in Oz to de�ne a generic procedure that takes any object and returnsa stationary object, i.e., such that all its methods will execute on the same site.This works because Oz has �rst-class messages and dynamic typing [Henz 1997a].This is not possible in Java [Gosling et al. 1996]. Figure 11 de�nes NewStationary,which, given any object class, creates a stationary object of that class. It works by3A thread-reentrant lock is de�ned in Van Roy et al. [1997].

Logic Variables for Distributed Computing � 19
proc {NewStationary Class Init ?StatObj}

Obj={New Class Init}
S P={NewPort S}
N={NewName}

in
proc {StatObj M}

R in
{Send P M#R}
if R=N then skip
else raise R end
end

end
thread

{ForAll S
proc {$ M#R}

thread
try {Obj M} R=N
catch X then R=X end

end
end}

end
end Fig. 11. RMI de�nition: Create a stationary object from any class.
% Create class Counter on local site
class Counter

attr i
meth init i <- 0 end
meth inc i <- @i+1 end
meth get(X) X=@i end
meth error raise e(someError) end end

end

% Create object Obj on remote site
{CS proc {$} Obj={NewStationary Counter init} end}

% Invoke object from local site
{Obj inc}
{Obj inc}
local X in {Obj get(X)} {Print X} end
try {Obj error} catch X then {Print X} endFig. 12. RMI example: A stationary counter object.

20 � Seif Haridi et alpublic class List {final unknown int car;final unknown List cdr;List(unknown int car, unknown List cdr) {this.car=:=car;this.cdr=:=cdr;}public void cons(unknown int car, unknown List cdr) {this.car=:=car;this.cdr=:=cdr;}} Fig. 13. List implementation in CC-Java.wrapping the object inside a port, which is a stationary entity to which messagescan be sent asynchronously. Therefore the object always executes on the same site,namely the site on which it was created. As before, the object synchronizes withrespect to the invoking thread, and exceptions are passed to the invoking thread.The logic variable R is used both to synchronize and to pass back exceptions.Figure 12 de�nes Obj remotely and invokes it from the local site. For example,
{Obj get(X)} {Print X} queries the object and prints the result on the localsite. The object responds by binding the variable X with the answer. Since thelocal site owns X, the binding request sends one message from the remote site tothe local site. With the initial invocation, this gives a total message latency of twofor the remote call, just like an RPC. There is a third message back to the remotesite that does not a�ect the message latency.2.5 Adding Logic Variables to Other LanguagesThis section shows how to add logic variables in an orthogonal way to Java andML, representative examples of object-oriented and functional languages.2.5.1 Java. Sundstr�om [1998] has recently de�ned and implemented a Java vari-ant, CC-Java (Concurrent Constraint Java), which replaces monitors by logic vari-ables and adds statement-level thread creation. Except for these di�erences, CC-Java has the same syntax and semantics as Java.CC-Java provides logic variables through a single new modi�er, unknown, whichcan be used in declarations of local variables, �elds, formal parameters, and func-tions. For example, a variable i declared as unknown int i; is initially assignedan unknown value. Standard Java variables can be freely replaced by unknownvariables. The result is always a legal CC-Java program. Variables with Java typeswill never be assigned unknown values|any attempt will block the thread until thevalue is known.An unknown variable is bound by the new operator \=:=", which does uni�cation.Each of the two operands can be known (i.e., be a standard Java variable) orunknown. Doing i=:=23 binds i to 23. For correctness, the assignment operator\=" must overwrite (not unify) any reference to an unknown variable on the left-hand side. Declaring an unknown variable as final means that it is only assigned

Logic Variables for Distributed Computing � 21public class StreamExample {// Return list of integers from n to max-1static List generate(int n, int max) {final unknown List l;unknown List ptr=l;for (int i=n; i<max; i+=1) {final unknown List tail;ptr=:=new List(i,tail);ptr=tail;}ptr=:=null;return l;}// Return (a + sum of elements of list l)static int sum(unknown List l, int a) {int sum=a;unknown List ptr=l;while (ptr!=null) {final unknown int x;final unknown List ls;ptr.cons(x,ls); // Wait until ptr is a list pairsum+=x; // Wait until x is an integerptr=ls;}return sum;}// Generate a list and sum its elementspublic static void main(String[] args) {unknown List l;int sum;thread l=:=generate(0,1500); // Using 150000 would overflowsum=sum(l,0);System.out.println(sum);}} Fig. 14. Stream communication in CC-Java.once, i.e., when it is declared. A final unknown variable is therefore equivalent toan Oz logic variable. An unknown variable is equivalent to an Oz cell that pointsto a logic variable.Figure 13 shows how to implement lists in CC-Java. Each list pair containstwo logic variables, and therefore lists can be partially instantiated just like in Oz.Using logic variables does not imply any memory penalty for lists: when compiledto Oz, a CC-Java list pair uses just two memory words. Threads can synchronizeon the instantiation state of lists.Figure 14 uses these lists to write the stream communication example of Figure 6in CC-Java (see Section 2.4.2). The thread statement of CC-Java is used to gener-ate the list in another thread. The example has been written in a natural style inOz and CC-Java, where Oz uses recursion, while CC-Java uses iteration to de�nethe generate and sum functions. Comparing the two examples, we see that there is

22 � Seif Haridi et alvery little di�erence in clarity between these two styles. Their run-time e�cienciesare comparable.When examining the CC-Java program, two observations can be made. First,the example has two synchronization points: the statements ptr.cons(x,ls) andsum+=x inside the sum function. The former waits until ptr contains a list pair, andthe latter waits until x is an integer. Second, the example shows that both finalunknown and unknown variables are useful. The former are used as �xed referencesto data structures. The latter are used in loops that use a di�erent logic variablein each iteration. In the sum method, the assignment statement ptr=ls makes ptrpoint to ls instead of what it pointed to in the previous iteration.It is straightforward to compile CC-Java to either Oz or Java. A prototype CC-Java-to-Oz compiler has been implemented that understands the full Java syntaxand compiles most of the Java language. Benchmarks show that CC-Java and Ozhave comparable performance on the Mozart implementation of Distributed Oz.Both CC-Java and Oz on Mozart have performance comparable to Java on JDK1.1.4, except that threads are much faster in Mozart [Henz 1997a; 1997b].We outline how to implement a CC-Java-to-Java compiler. All Java code thatdoes not use logic variables is unchanged. For each class C of which unknowninstances are declared, the compiler adds a second class de�nition UnknownC to theJava code. The class UnknownC includes all methods of C and additional methodsto unify the variable and to obtain its value. At each point where the value of anobject of class UnknownC is needed, the compiler inserts a call to obtain the value.If the value is not yet available, then the calling thread is blocked until the valuebecomes available through uni�cation.2.5.2 ML. Smolka [1998] has recently shown how logic variables can be addedas a conservative extension to a functional language very similar to Standard ML.We outline how the extension is done. Several new operations are added, includingthe following:|lvar: unit -> 'a. The operation lvar() creates a fresh logic variable andreturns its address.|<-: 'a * 'a -> 'a. The operation x <- y binds x, which must be a logicvariable, to y.|==: 'a * 'a -> 'a. The operation x == y uni�es x and y. This raises anexception if x and y are not uni�able.|wait: 'a -> 'a. The operation wait x is an identity function that blocks untilits argument is nonvariable.|spawn e. This operation spawns a new thread evaluating expression e and returns().Execution states map addresses to anyML entity including primitive values, records,and reference cells. Execution states are extended so that a state may also map anaddress to a logic variable or to another address. The entity corresponding to anaddress is obtained by iterating the state function until the result is no longer anaddress. This iteration is the dereferencing operation. If a thread needs an entityand encounters a logic variable, then it blocks until the entity is available.

Logic Variables for Distributed Computing � 23With this extension, existing ML programs continue to work, and logic variablesmay be freely intermixed with ML entities. ML provides explicit stateful entitieswhich are called references and behave like typed Oz cells. As in Oz and CC-Java,the combination of logic variables and state allows us to easily express powerfulconcurrent programming techniques. Smolka outlines the semantics of the extensionand illustrates some of these programming techniques.3. BASIC CONCEPTS AND NOTATIONThis section introduces the basic concepts and notation used for the CU and RCUalgorithms, which do centralized uni�cation. Most of this notation remains validfor the distributed algorithms. The extra notation they need will be given later on.3.1 Terms and ConstraintsIn the usual case, a variable will be bound to a data structure. However, becauseof unpredictable network behavior, it may also be necessary to bind variables tovariables or data structures to data structures. The result should not depend onthe order in which the bindings occur. This justi�es using a constraint system(D,C) to model the data structures and their bindings [Ja�ar and Maher 1994].The domain D is the set of data structures of interest; for generality we assumethese are rational trees, i.e., trees with only �nitely many subtrees. A rational treeis a good model for data structures with pointers since the tree can be represented(though not uniquely represented) by a rooted directed graph. Unfolding the graphto remove its cycles yields the tree [Courcelle 1983; Podelski and Smolka 1997].The constraints C model bindings; we assume they are equalities between termsthat describe sets of rational trees. For example, the constraint x = f(y) meansthat the trees described by the variable x all have a root labeled f and a singlesubtree, which is a tree described by the variable y. In this way, we express clearlywhat it means to bind terms that may contain unbound variables. If y is unbound,then nothing is known about the subtree of x.Wnot e introduce a uniform notation for terms, which can be either variablesor trees that may contain variables. Terms are denoted by u, v, w. Variables aredenoted by x, y, z. Nonvariable terms are denoted by t, t1, t2. A term can either bea variable or a nonvariable. A nonvariable term is a record of the form f(x1; :::; xn)with arity n � 0, where x1, ..., xn are variables and where the label f is an atomicconstant taken from a given set of constants. A constraint has the general formVi ui = vi where ui and vi are terms. A basic constraint has the form x = u.To bind u and v means to add the constraint u = v to the system. This issometimes called telling the constraint. The operation of binding u and v is calleduni�cation. This is implementable in a time and space essentially equivalent tothat needed for manipulating data structures in imperative languages [Van Roy1994]. For more on the constraint-solving aspects of uni�cation see Ja�ar andMaher [1994].For the purpose of variable-variable uni�cation, we assume a partial order be-tween terms such that all variables are in a total order and such that all nonvariableterms are less than all variables. That is, we assume a transitive antisymmetric rela-tion less(u; v) such that for any distinct variables x and y, exactly one of less(x; y)or less(y; x) holds. In addition, for any nonvariable term t and any variable x,

24 � Seif Haridi et alless(t; x) holds. The algorithm uses the order to avoid creating binding cycles (e.g.,x bound to y and y bound to x). This is especially important in a distributedsetting.3.2 Con�gurationsA con�guration c = (�;�;�) of a centralized execution is a triple containing anaction �, a store �, and a memo table �:� = Vi ui = vi ^ Vi false ^ Vi true � = Si xi ui � = Si xi = yiThe action � is a multiset of three kinds of primitive actions, of the form u = v, false,and true. The equation u = v is one kind of primitive action. The notation x urepresents the binding of x to u. The store is a set of bindings. All variables xi inthe store are distinct, and there are no cycles xa1 xa2 , :::, xan�1 xan , xan xa1 .It is easy to show that con�gurations always have this form in the CU algorithm.The notation x u; � will be used as shorthand for fx ug [�. The functionlhs(�) = Si xi gives the set of bound variables in �, which are exactly the variableson the left-hand sides of the binding arrows.The memo table � is used to store previously encountered variable-variable equal-ities so that the algorithm does not go into an in�nite loop when unifying termsrepresenting rational trees with cycles. For example, consider the equation x = ywith store x f(x) ^ y f(y). Dereferencing x and y and decomposing the re-sulting equation f(x) = f(y) gives x = y again (see Section 4). This loop is brokenby putting x = y in the memo table and testing for its presence. The memo tablehas two operations, ADD and MEM, de�ned as follows:ADD(x = y; �) = � [fx = ygADD(x = t; �) = �MEM(x = u; �) = true if x = u 2 �MEM(x = u; �) = false otherwiseIf the number of variables is �nite, then the number of possible variable-variableequations in the memo table is �nite also. Therefore all possible loops are broken.In the o�-line case this is always true. In the on-line case this is true if the �nite-sizeproperty holds (see Section 7).3.3 AlgorithmsWe de�ne an algorithm as a set of reduction rules, where a rule de�nes a transitionrelation between con�gurations. The algorithms in this article all have a straight-forward translation into an e�cient imperative pseudocode. We do not de�ne thealgorithms in this way, since this would complicate reasoning about them. Rulereduction is an atomic operation. If more than one rule is applicable in a givencon�guration, then one is chosen nondeterministically. A rule is de�ned accordingto the following diagram: � �0�; � �0; �0 CA rule becomes applicable for a given action � when (1) the actual store matchesthe store � given in the rule and (2) the optional condition C is satis�ed. The

Logic Variables for Distributed Computing � 25rule's reduction atomically replaces the current con�guration (�;�;�) by the resultcon�guration (�0;�0;�0).Both the centralized and the distributed algorithms are de�ned in the context ofa structure rule and a congruence:Structure �1 ^ �2 �01 ^ �2�; � �0 ; �0 if �1 �01�; � �0 ; �0Congruence � �1 ^ �2 � �2 ^ �1true ^ � � �Because of the congruence, the number of occurrences of the true action is irrelevant.This is not true of the other primitive actions, which form a multiset.3.4 ExecutionsAn execution e of a given algorithm is a (possibly in�nite) sequence of con�gura-tions such that the �rst con�guration is an initial con�guration and such that eachtransition corresponds to the reduction of one rule:c1 R1�! c2 R2�! � � � Rn�1�! cnIn any execution, distributed or centralized, we assume that the rules are reducedin some total order. This is done without loss of generality, since the results weprove in this article will hold for all possible executions. Therefore, reductions thatare not causally related may be assumed to execute in any order.An initial con�guration of the CU algorithm is of the form (�1;;;;), where �1 isa �nite conjunction of equations, while the store and memo table are both empty.A terminal con�guration (if it exists) is a con�guration where no rules are appli-cable. The last con�guration of a �nite execution is not necessarily a terminalcon�guration, since rules may still be applicable. A valid con�guration is one thatis reachable by an execution of a given algorithm. We speak of centralized execu-tions (using the CU or RCU algorithms; see Sections 4 and 6.2) and distributedexecutions (using the DU algorithm; see Section 5).3.5 Adapting Uni�cation to Reactive SystemsA store represents a logical conjunction of constraints. Adding a constraint that isinconsistent with the store results in the conjunction collapsing to a \false" state.This behavior is incompatible with a long-lived reactive system. Furthermore, itis expensive in a distributed system, since it requires a global synchronization.Rather, we want an inconsistent constraint to be agged as such (e.g., by raising anexception), without actually being put in the store. This requires two modi�cationsto the uni�cation algorithm:|Incremental tell, i.e., information that is inconsistent with the store is not putin the store [Smolka 1995]. The CU and DU algorithms both implement incre-mental tell by decomposing a rational tree constraint into the basic constraintsx = y and x = t and by not collapsing the store when an inconsistency is detectedwith a basic constraint. Inconsistency is represented as a new action \false" in-stead of being incorporated into the store. This new action can be used to informthe program, e.g., by raising an exception.

26 � Seif Haridi et al|Full failure reporting, i.e., every case of inconsistency is agged to the pro-gram. Neither the CU nor the DU algorithms do this. If the inconsistent equationx = y is present more than once, then the CU algorithm ags this only once.The DU algorithm ags the inconsistency of (x = y)s only once per site s. Thatis, both algorithms will ag an inconsistent equation x = y with given variablesx and y only once per memo table. Inconsistencies can be agged more oftenby introducing more memo tables. This may sometimes do redundant work. Forexample, if equations reduce within a thread and each thread is given its ownmemo table, then multiple occurrences of an inconsistent equation will be aggedonce per thread. The Mozart implementation will ag an inconsistency at leastonce per program-invoked uni�cation (see Section 8).4. CENTRALIZED UNIFICATION (CU) ALGORITHMThis section de�nes a centralized algorithm for rational tree uni�cation. The de�-nition is given as a set of transition rules with an interleaving semantics. That is,rule reductions do not overlap in time. Only their order is important. Nothing islost by using an interleaving semantics, since we prove properties that are true forall interleavings that are valid executions [Alford et al. 1985].The CU algorithm is the base case for the DU algorithm of Section 5. There aremany possible variant de�nitions of uni�cation. The de�nition presented here isdeterministic and constrained by the requirement that it must be extensible to apractical distributed algorithm. That is, the use of global conditions is minimized(see Section 5.1).4.1 De�nitionWe de�ne the CU algorithm by the following seven rules.Interchange u = x x = u�; � �; � less(u; x)Bind x = u true�; � x u; �; � less(u; x); x =2 lhs(�)Memo x = u truex v; �; � x v; �; � less(u; x),MEM(x = u; �)Dereference x = u v = ux v; �; � x v; �; ADD(x = u; �) less(u; x),:MEM(x = u; �)Identify x = x true�; � �; �Conflict t1 = t2 false�; � �; � t1 = f1(x1; :::; xm), t2 = f2(y1; :::; yn),(f1 6= f2 _m 6= n)Decompose t1 = t2 V1�i�n xi = yi�; � �; � t1 = f(x1; :::; xn),t2 = f(y1; :::; yn)

Logic Variables for Distributed Computing � 274.2 PropertiesThis section presents a basic result from uni�cation theory, namely the total cor-rectness of the CU algorithm. With this result, we can prove correctness of thedistributed uni�cation algorithms by reducing them to centralized uni�cation.Logical Formula of a Con�guration. A con�guration c = (�;�;) has an associatedlogical formula "(c) = "a(�) ^ "s(�), where"a(�1 ^ �2) = "a(�1) ^ "a(�2)"a(u = v) = u = v"a(true) = true"a(false) = false"s(�1 [�2) = "s(�1) ^ "s(�2)"s(fx ug) = x = u .Theorem (Logical Equivalence Property). In every transition ci ! ci+1of every execution of the CU algorithm, the logical equivalence "(ci)$ "(ci+1) holdsunder the standard equality theory.Proof. By standard equality theory we mean the theory E given by Lloyd [1987,p. 79], minus the acyclicity axioms (i.e., rule 4). This theory has the usual axiomsimplying nonequality of distinct symbols; term equality implies argument equal-ity and vice versa; substitution by equals is allowed; and identity. What we wantto prove is E j= �8"(ci) $ "(ci+1), where the quanti�cation is over all free vari-ables. This is a standard result in uni�cation theory [Haridi 1981; Colmerauer1982; Martelli and Montanari 1982; Haridi and Sahlin 1984].Corollary (Entailment Property or CU Total Correctness). Givenany initial con�guration c1 = (�1;;;;) of the CU algorithm, then the algorithmalways reaches a terminal con�guration cn = (�n;�n;) with "(cn) $ "(c1). Fur-thermore, �n consists of zero or more false actions, and if there are zero, then"s(�n)$ "a(�1).Proof. Again, this is a standard result in uni�cation theory. The equivalencefollows from the previous theorem.5. DISTRIBUTED UNIFICATION (DU) ALGORITHMThis section de�nes a distributed algorithm for rational tree uni�cation. The sectionis organized as follows. Section 5.1 explains how to generalize the CU algorithmto a distributed setting. Section 5.2 sets the stage by giving the basic conceptsand notation needed in the DU algorithm. Section 5.3 gives an example execution.Section 5.4 de�nes the DU algorithm in two parts: the nonbind rules, which arethe local part of the algorithm, and the bind rules, which are the distributed part.Finally, Section 5.5 compares the CU and DU algorithms from the viewpoint of thedereference operation.5.1 Generalizing CU to a Distributed SettingA distributed algorithm must be de�ned by reduction rules that do local operationsonly, since these are the only rules we can implement directly. To be precise, two

28 � Seif Haridi et alconditions must be satis�ed. First, testing whether a rule is applicable shouldrequire looking only at one site. Second, reducing the rule should modify only thatsite, except that the rule is allowed to create actions annotated with other sites.In the distributed system these actions correspond to messages. Rules that satisfythese two conditions are called local rules. A distributed algorithm de�ned in termsof local rules is a transition system in an asynchronous non-FIFO network [Tel1994].We would like to extend each CU rule to become a local rule in the distributedsetting. In this way, we maintain a close correspondence between the centralizedand distributed algorithms, which simpli�es analysis of the distributed case. Fur-thermore, this minimizes costly communication between sites.The �rst step is to annotate the rule's actions and bindings with sites. Each CUrule reduces an input action and may inspect a binding in the store. We annotatethe input action by its site and the binding by the same site. This is correct ifwe assume that a binding will eventually appear on each site that references thevariable. We annotate the output action by the same site as the input action.A \true" output action does not need a site. Actions may remain unannotated,in which case the DU algorithm does not specify where they are reduced. Thisset of annotations su�ces for the rules Interchange, Identify, Conflict, andDecompose to become DU rules. An important property of Conflict is that aninconsistency is always agged on the site that causes it.The three remaining CU rules cannot be so easily extended, since they haveglobal conditions. To be precise, Bind has the unboundness condition x =2 lhs(�),4and Memo and Dereference both have the memoization condition MEM(x =u; �). It turns out that the memoization condition can be relaxed in the distributedalgorithm, so that it becomes a local condition there. In this way, the Memo andDereference rules become local rules. The idea is to give each site its own memotable, which is independent of the other memo tables. Section 6.2 proves that thisrelaxation is correct, but that redundant local work may be done.The unboundness condition of Bind cannot be eliminated in this way. Imple-menting it requires communication between sites. The single Bind rule thereforebecomes several local rules in the distributed setting. The Bind rule is replacedby four rules that exchange messages to implement a coherent variable eliminationalgorithm.The resulting DU algorithm consists of 10 local rules, namely six nonbind rules(Section 5.4.1) and four bind rules (Section 5.4.2). The six nonbind rules do notsend any messages. Of the four bind rules, only Initiate and Win send messages.All rules test applicability by looking at one site only, except for Win and Lose,which use information tied to a variable but not tied to any particular site, namelya ag unbound(x)=bound(x) and a binding request (x � u).5.2 Basic Concepts and NotationWe introduce a set S = f1; :::; kg of k sites, where k � 1. We model distributedexecution by placing each action and each binding on a site. A primitive action orbinding � is placed on site s by adding parentheses and a subscript (�)s. The same4The opposite condition, con�rming the existence of a binding, is local.

Logic Variables for Distributed Computing � 29
V
B

I
Is

Bs

All variables
Bound variables
Bound variables on site s
Initiated variables
Initiated variables on site s

V B Bs

IIs

Fig. 15. Bound variables and initiated variables.� may be placed on several sites, in which case the resulting actions or bindingsare considered separately. A con�guration of a distributed execution is a triple(A;�;M) consisting of an action A, a store �, and a memo table M . We denotethe action, store, and memo table on site s by As, �s, and Ms, respectively.5.2.1 Store. The store � contains sited bindings (x u)s, sited binding initia-tions (x ?)s, and ags to denote whether a variable is bound or not (bound(x)or unbound(x)). A store has the form� = � [[s2S�s�s = [xi2Bs(xi ui)s [[xi2Is(xi ?)s� = [xi2B bound(xi) [[xi2V�B unbound(xi):It is easy to show that con�gurations always have this form in the DU algorithm.The set V consists of all variables in A and �. The set B � V contains all thebound variables. The set Bs � B contains all the bound variables whose binding isknown on site s. The set I � V contains all the variables whose binding has beeninitiated on some site but whose binding (if it exists) is not yet known on that site.The set Is � I contains all the variables whose binding has been initiated on sites but is not yet known on that site. In terms of the bind rules of Section 5.4.2, Bcorresponds to those variables for which the Win rule has reduced. I correspondsto those variables for which the Initiate rule has reduced but the correspondingArrive rule has not yet reduced. Figure 15 illustrates the relationship betweenthese �ve sets.Two utility functions are used in the algorithm de�nition:lhs(�s) = fxj9u:(x u)s 2 �s _ (x ?)s 2 �sg = Bs [Isvar(�s) = lhs(�s) [fxj9y; u:((y u)s 2 �s ^ u � f(:::; x; :::))gThe function lhs(�s) returns all bound and initiated variables of �s. It generalizesthe function lhs(�) de�ned in Section 3.2. The function var(�s) returns all variablesmentioned in �s, including variables that are neither bound nor initiated.

30 � Seif Haridi et alTable I. Actions in Distributed Con�gurationsSame as centralized settingtrue Null actionfalses Failure noti�cation on site s(u = v)s Equation on site sNew for distributed settingx � u Binding request(x(u)s Binding in transit to site s5.2.2 Initial Con�guration. The initial con�guration is (Ainit;�init;;), with ini-tial actions Ainit that are all equations and �init = funbound(xi) j xi 2 V g. Wehave initially B = ; and I = ;.5.2.3 Action. An action A is a multiset containing two new primitive actions inaddition to the three primitive actions of the centralized setting (see Table I). Thenew actions are needed to implement the distributed operations of the algorithm.The exact meaning of these actions is de�ned by the reduction rules that manipulatethem. Intuitively, the action x � u represents a message requesting the binding ofx to u. For a given x, exactly one such action will cause a binding to be made; allothers are discarded. The algorithm does not specify where the binding decisionis made. An actual implementation can make the decision in a centralized ordistributed way. In the Mozart implementation, the decision is centralized; it ismade on the site where the variable was initially declared (see Section 8). Theaction (x(u)s represents a message containing a binding to x that may eventuallybecome visible in �s. As long as x is not in var(�s) then the binding stays \in thenetwork."5.2.4 Memo Table. The global memo table M is the juxtaposition of all thelocal memo tables. That is, M = f(x = y)sjx = y 2 Msg. Each local memotable Ms is a set of variable-variable equalities that has identical structure to thecentralized memo table �.5.3 An ExampleFigure 16 gives an example execution that does distributed variable elimination. Inthis �gure, thin solid arrows represent actions or bindings. Vertical bars \ " denoterule reductions, which happen in the numbered order shown. Thin dotted arrowsrepresent causal links.Initially, site 1 has equation (x = a)1, and site 2 has equation (x = b)2. Bothsites do an Initiate rule, which puts binding initiations (x ?)s in both localstores. This ensures that the two equations cannot reduce until the binding arrives.We say that the equations are suspended. Equation (x = b)2 is the �rst to do aWin rule, and b therefore becomes the global binding of x. The other equation isdiscarded by the Lose rule. The binding (x (b) is sent to all sites. It arrivesat each site through the Arrive rule. At that point, the suspended equations(x = a)1 and (x = b)2 become reducible again. The equation (x = a)1 will causean inconsistency to be agged on site 1.

Logic Variables for Distributed Computing � 31

∼(x a)

∼(x b)

∼(x a)

⊥)(x

(x b)

(x b)

⊥)(x
(x b)

(x b)⊥)(x

(x b)
(x b)

2. Initiate

1. Initiate

Site 2

Site 1
5. Arrive

6. Arrive

(x=b)

(x=a)

(x=a)
suspended

Binding in transit
Binding

Legend

Equation(x=a)
Binding request
Binding initiation

(x=b)
suspended

(x=b)
reducible

3. Win

4. Lose

reducible
(x=a)

Fig. 16. Distributed uni�cation with (x = a)1 and (x = b)2.5.4 De�nitionThe DU algorithm has a close relationship to the CU algorithm. The structure andcongruence rules continue to hold in the distributed setting. The only centralizedrule that is changed is the Bind rule; it is replaced by the four bind rules below. Itis clear from inspection that all six nonbind DU rules have identical behavior to thecorresponding CU rules, if the CU rules are considered as acting on a single site.5.4.1 Nonbind Rules. These rules correspond exactly to the nonbind rules ofthe centralized algorithm. An inconsistency is agged on the site that causes it bythe action falses.Interchange (u = x)s (x = u)s�; M �; M less(u; x)Memo (x = u)s true(x v)s;�;Ms [M (x v)s;�;Ms [M less(u; x),MEM(x = u;Ms)Dereference (x = u)s (v = u)s(x v)s;�;Ms [M (x v)s;�;ADD(x = u;Ms) [M less(u; x),:MEM(x = u;Ms)Identify (x = x)s true�; M �; MConflict (t1 = t2)s falses�; M �; M t1 = f1(x1; :::; xm), t2 = f2(y1; :::; yn),(f1 6= f2 _m 6= n)Decompose (t1 = t2)s V1�i�n(xi = yi)s�; M �; M t1 = f(x1; :::; xn),t2 = f(y1; :::; yn)

32 � Seif Haridi et al5.4.2 Bind Rules. These rules replace the Bind rule of the centralized algo-rithm. The binding initiation (x ?)s and the condition x =2 lhs(�s) in theInitiate rule together ensure that only one binding attempt can be made per site.Initiate (x = u)s x � u ^ (x = u)s�; M (x ?)s;�; M less(u; x), x =2 lhs(�s)Win x � u Vs2S(x(u)sunbound(x);�; M bound(x);�; MLose x � u truebound(x);�; M bound(x);�; MArrive (x(u)s true�; M (x u)s;�� f(x ?)sg; M x 2 var(�s)5.5 Dereference ChainsA dereference chain in a store � is a sequence of bindings x1 x2, ..., xn�1 unwith n � 1 and un unbound or nonvariable. We say the value of x1 in store � isun. To �nd un given x1, it is necessary to follow the chain. A major di�erencebetween CU and DU is that CU always constructs dereference chains, whereas DUwith eager variables forbids dereference chains to cross sites. Instead, DU copiesremote terms to make them local. In a centralized setting, pointer dereferencing isfast, so the penalty of using dereference chains is small. This makes sharing termsvery cheap. In a distributed setting, pointer dereferencing across sites is slow, andit makes the current site dependent on the other site. This makes copying termspreferable.Copying terms instead of creating dereference chains introduces redundant work.It is possible to reduce this work at the cost of more network operations. Forexample, one can eagerly bind to variables and lazily bind to (big) nonvariableterms. This guarantees that a cross-site dereference chain has a maximum lengthof one.DU with lazy variables allows dereference chains to cross sites. When the valueis needed, the binding is requested from the owner. If the binding is anothervariable, then the process is repeated. Each iteration of this process correspondsto a dereference operation.Taylor [1991] presents a centralized binding algorithm that avoids all dereferencechains. Variables that are bound together are put into a circular linked list. Whenone of them is bound to a value, the list is traversed and all members are bound.This makes accessing a variable's value a constant-time operation, at the price ofmaking binding more expensive. Taylor �nds no signi�cant performance di�erencebetween this algorithm and the standard algorithm when both are embedded in aProlog system whose performance is comparable to a good C implementation.6. OFF-LINE TOTAL CORRECTNESSThis section proves that the DU algorithm behaves as expected. We �rst de�nea mapping from any distributed to a centralized execution. Then we de�ne amodi�cation of the CU algorithm, the RCU algorithm, that models the redundant

Logic Variables for Distributed Computing � 33Table II. Mapping from Distributedto Centralized Con�gurationsDistributed CentralizedAction true truefalses false(u = v)s u = vx � u true(x(u)s x uStore bound(x) trueunbound(x) true(x ?)s true(x u)s x uwork done by the distributed algorithm. We prove safety and liveness properties ofthe DU algorithm by reducing it to the RCU algorithm. From this we show thatthe DU algorithm is correct.We distinguish between the o�-line total correctness and the on-line total correct-ness. In the o�-line case, we have to show that the distributed algorithm terminatesand gives correct results for any placement of a �xed set of initial equations. Thiscan be done without any fairness assumptions. This is not true for the on-line case,which is handled in Section 7.6.1 Mapping from Distributed to Centralized ExecutionsThe proofs in this section are based on a mapping m from any distributed con�g-uration (A;�;M) to a corresponding centralized con�guration (�;�;�). Distributedexecutions are mapped to centralized executions by mapping each of their con-�gurations. The mapping m was designed following the reasoning of Section 5.1.We show that m has very strong properties that lead directly to a proof that thedistributed algorithm implements the centralized algorithm.A primitive action is mapped to either a primitive action or a binding. A bindingis always mapped to a binding. Other store contents map to true. In this way wecan map any distributed con�guration to a centralized one:(A; �;M) m�! (�;�;�) = (ma(A);ms(A;�);mm(M))Table II de�nes the mappings ma and ms for primitive actions and store contents.The mapping for all of A and � is the union of these mappings for all primitiveactions in A and all store contents in �. The centralized memo table mm(M)is derived from the local memo tables Ms as follows. For each x = y such that9s : x = y 2 Ms, the centralized memo table contains (x = y; i), where i is thenumber of tables Ms that contain x = y:mm(M) = f(x = y; i)ji = #fsjx = y 2Msg ^ i > 0gThe following diagram relates a distributed execution e and its correspondingcentralized execution m(e):(A; �;M) e�! (A0; �0;M 0)m # # m(�;�;�) m(e)�! (�0;�0;�0)

34 � Seif Haridi et alTo show total correctness, i.e., that the distributed algorithm is an implementationof uni�cation, we need to show both safety and liveness properties. A su�cientsafety property is proved in Section 6.3: given any distributed execution e, thecorrespondingm(e) is a correct centralized execution. A su�cient liveness propertyis proved in Section 6.4: given any e, its execution eventually makes progress. Thatis, if the last con�guration of m(e) is nonterminal, then the last con�guration ofe is nonterminal, and continuing e will always eventually advance m(e). In thedistributed execution, the nonbind rules and the Win rule are called progressingrules, since they advance the centralized execution (see Table III). The other rulesare called nonprogressing.6.2 Redundant Centralized Uni�cation (RCU) AlgorithmThis section de�nes and justi�es a revised version of the CU algorithm, the RCUalgorithm, that models the redundant work introduced by distributing rational treeuni�cation. There are two sources of redundant work in the DU algorithm. The �rstsource is due to the decoupling of binding initiation from binding arrival. A bindinginitiation for (x = u)s inhibits reduction of all equations of the form (x = v)s.When a binding arrives on a site, these reductions become possible again, includingthe reduction of the original equation (x = u)s. To make the original equationdisappear, several rule reductions are needed including a Dereference, one ormore Identify, and possibly a Decompose. This redundant work can be avoidedin the implementation (see Section 8.5.4).The second source of redundant work cannot be avoided in the implementation.It is due to each site having its own local memo table. Memo tables are neededbecause of rational trees with cycles. However, they are in fact a general cachingtechnique that avoids doing any uni�cation more than once. In the distributedalgorithm, the information stored in each site's memo table is not seen by the othersites. Therefore each site has to reconstruct the part of the centralized memo tablethat it needs.To model the local memo tables it su�ces to weaken the memo table membershipcheck. This a�ects the two rules Memo and Dereference. Assume there are ksites. We introduce a weaker membership check MEMk that is true if and only ifthe equation has been entered at least k times. This is implemented by extendingthe memo table to store pairs of an equation and the number of times the equationhas been entered:ADD(x = y; �) = � [f(x = y; 1)g if (x = y;) =2 �ADD(x = y; �) = �� f(x = y; i)g [f(x = y; i+ 1)g if (x = y; i) 2 �ADD(x = t; �) = �MEM(x = u; �) = true if (x = u;) 2 �MEM(x = u; �) = false otherwiseMEMk(x = u; �) = true if (x = u; i) 2 � ^ i � kMEMk(x = u; �) = false otherwiseThe R-Memo rule uses the new de�nition of MEM. The R-Dereference ruleuses MEMk and the new de�nition of ADD. If an equation has been entered from1 to k � 1 times then both rules are applicable. This is an example of usingnondeterminism to model distributed behavior in a centralized setting.

Logic Variables for Distributed Computing � 35Table III. Correspondence betweenDistributed and Centralized RulesDistributed rule Centralized ruleMemo R-MemoDereference R-DereferenceInterchange InterchangeIdentify IdentifyConflict ConflictDecompose DecomposeInitiate SkipWin R-BindLose SkipArrive SkipNow we can update the CU algorithm to model the two sources of redundantwork. We model memo table redundancy by replacing Memo and Dereferenceby R-Memo and R-Dereference. We model bind redundancy by replacing Bindby R-Bind, as de�ned below. The three new rules are as follows:R-Bind x = u x = u�; � x u; �; � less(u; x); x =2 lhs(�)R-Memo x = u truex v; �; � x v; �; � less(u; x),MEM(x = u; �)R-Dereference x = u v = ux v; �; � x v; �; ADD(x = u; �) less(u; x),:MEMk(x = u; �)Theorem (RCU Total Correctness). Given any initial con�guration, thefollowing two statements hold:(1) The RCU algorithm terminates.(2) All terminal con�gurations of the RCU and CU algorithms are logically equiv-alent to each other according to the de�nition of Section 4.2.Proof. We handle termination and correctness separately.(1) We know that CU terminates. The redundant work introduced by RCU hasthe following e�ect:|Bind redundancy. The R-Bind rule introduces extra rule reductions. Thenumber of extra reductions is 2 if u is a variable and 2+a if u is a nonvariableand a is its arity.|Memo table redundancy. The memo table size for RCU is at most ktimes that of CU, which is �nite. Hence only a �nite number of extra rulereductions can be done.(2) For both bind and memo table redundancy, the additional equations are alwaysduplicates of existing equations or equations of some previous con�guration.Therefore they add no additional information, and the Entailment propertystill holds.This completes the proof.

36 � Seif Haridi et al6.3 SafetyTheorem (DU Safety). If e is any execution of the DU algorithm, then m(e)is an execution of the RCU algorithm, and the sequence of rules reduced in m(e)can be constructed from e.Proof. We will prove that Table III correctly gives the centralized rule of m(e)corresponding to a distributed rule in e. A \Skip" rule means that no rule isexecuted. The proof is by induction on the length of execution e. In the base case,the initial con�guration c1 of e has an empty store and memo table, and a set ofequations placed on di�erent sites. Therefore m(c1) is a valid initial con�gurationfor the centralized algorithm.In the induction case, we assume that the theorem holds for an execution e. Weneed to show that for each distributed rule applicable in the last con�guration ofe, that doing this rule maps to doing a corresponding centralized rule. We do acase analysis over the distributed rules. Section 6.3.1 covers the nonbind rules andSection 6.3.2 covers the bind rules.6.3.1 Nonbind Rules.6.3.1.1 Decompose. Assume that the distributed execution reduces a Decom-pose rule. Mapping the before and after con�gurations of the decomposition givesthe following diagram:(t1 = t2)s ^ A�;M DEC�! Vi(xi = yi)s ^ A�;Mm # # mt1 = t2 ^ma(A)ms(A;�);mm(M) X�! Vi xi = yi ^ma(A)ms(A;�);mm(M)It is clear from inspection that rule X is a centralized decomposition.6.3.1.2 Interchange, Identify, and Conict. These three rules are handled in thesame way as the Decompose rule.6.3.1.3 Memo. It is clear that the Memo rule maps correctly to an R-Memorule, since from Ms � � it follows that MEM(x = u;Ms)) MEM(x = u; �).6.3.1.4 Dereference. We now show that the Dereference rule maps to anR-Dereference rule. We have the following diagram (where �x = (x v)s;�):(x = u)s ^ A�x;Ms [M DRF�! (v = u)s ^ A�x;ADD(x = u;Ms) [Mm # # mx = u ^ma(A)ms(A;�x);mm(Ms [M) X�! v = u ^ma(A)ms(A;�x);mm(ADD(x = u;Ms) [M)We know that less(u; x)^:MEM(x = u;Ms). Since each site has its own local memotable, there can be only one redundant equation per site. Therefore :MEM(x =u;Ms) implies that :MEMk(x = u; �). That is, if at least one local memo tabledoes not contain x = u, then the centralized memo table contains x = u less than ktimes. It follows that rule X is an R-Dereference rule. This shows that relaxing

Logic Variables for Distributed Computing � 37the memoization condition to do only a check on the local part of the memo tableis correct but may introduce one redundant equation per site.6.3.2 Bind Rules.6.3.2.1 Initiate. (x = u)s ^ A�;M INI�! x � u ^ (x = u)s ^ A(x ?)s�;Mm # # mx = u ^ma(A)ms(A;�);mm(M) X�! x = u ^ma(A)ms(A;�);mm(M)It is clear from inspection that X is a Skip rule. After the Skip, we know thatless(u; x).6.3.2.2 Win. x � u ^ Aunbound(x);�;M WIN�! Vs2S(x(u)s ^Abound(x);�;Mm # # mma(A)ms(A;�);mm(M) X�! ma(A)(x u);ms(A;�);mm(M)It is not immediately clear that transition X maps to a rule. We will show that Xmaps to an R-Bind rule. First, we show that x = u is in ma(A). From x � u weknow that an Initiate has been done, while unbound(x) means no Win has yetbeen done; together this means that A contains (x = u)s, which maps to x = u.Second, we have less(u; x) because it is a condition of Initiate, and because itstruth value never changes. Third, x =2 lhs(ms(A;�)), since no Win has been done,and the only way to get a centralized binding for x is through a Win. Takentogether, these three statements imply that the centralized transition is an R-Bindreduction.6.3.2.3 Lose and Arrive. These rules trivially map to a Skip rule.This proves the theorem.6.4 LivenessIt remains to show that the DU algorithm always terminates in a con�guration thatmaps to a terminal con�guration of the RCU algorithm. The main step is to showthat the DU algorithm always \makes progress," in the sense of this section. As acorollary, it follows that the DU algorithm is deadlock-free. We �rst prove a smalllemma about the nonprogressing rules.Lemma (Finiteness of Nonprogressing DU Execution). Given any validcon�guration d of the DU algorithm, then the number of consecutive nonprogressingrules that can be reduced starting from d is �nite. All possible resulting con�gura-tions d0 satisfy m(d0) = m(d).Proof. The proof is by induction on the length of the execution e of which dis the last con�guration. We assume that the lemma holds for all con�gurations ofe before d. We show that it holds for d by enumerating all possible executions of

38 � Seif Haridi et al
Progressing
rules applicable

No rules applicable

Nonprogressing
rules applicableFig. 17. Nonprogressing transitions in the DU algorithm.nonprogressing rules. Consider all rules that manipulate actions based on the samevariable-term pair (say, x and u). Denote a con�guration in which a nonprogressingrule is applicable by the name of that rule. Denote by X a con�guration in whichno rules or only progressing rules are applicable. By inspecting the rules, we deducethe following graph of causal relationships:

InitiateArrive X
Lose X

XThat is, applying Initiate possibly leads to a con�guration in which Lose is appli-cable, and so forth. A graph identical to this one exists for all variable-term pairs.In all resulting sequences there are no cycles. Therefore a con�guration in whichsome nonprogressing rules are applicable will eventually lead to one in which nononprogressing rules are applicable.Theorem (DU Liveness). If e is any execution of the DU algorithm such thatm(e) is nonterminal in the RCU algorithm, then continuing e will always eventuallyreduce a progressing rule.Proof. Assume a distributed execution e with last con�guration di such thatc = m(di) is nonterminal. We must show that 9j > i : di ! � � � ! dj�1 ! djwhere dj�1 ! dj is an application of a progressing rule. Any execution startingfrom di and doing nonprogressing rules as long as possible must initially followthe state diagram of Figure 17. Applying the lemma, we can assume that nononprogressing rules are applicable in dj�1. It remains to show that a progressingrule is always applicable there. We do a case analysis over the RCU rules. Let theRCU con�guration be c, so that m(dj�1) = c. For each rule, we apply the inverseof mapping m, and we attempt to infer whether a progressing rule is applicable.6.4.1 Interchange. Assume that the Interchange rule is applicable in c. There-fore less(u; x) holds, and c contains u = x. For some site s, dj�1 contains (u = x)s.Therefore the Interchange rule is applicable in dj�1.6.4.2 R-Memo and R-Dereference. Except for the memo table, the conditionsfor these two rules are identical. For both R-Memo and R-Dereference, ccontains x = u and x v and we know less(u; x), Therefore for some site s,dj�1 contains (x = u)s. For this site, dj�1 contains one of (x v)s or (x (v)s.The case (x (v)s is impossible by the lemma, since in that case one of Arriveor Initiate is applicable depending on whether or not (x ?)s is in the store.If MEM(x = u;Ms) then a Memo is applicable. Otherwise, a Dereference isapplicable.

Logic Variables for Distributed Computing � 396.4.3 R-Bind. Both less(u; x) and x =2 lhs(�) hold. For some site s, dj�1 con-tains (x = u)s. This site must also contain (x ?)s, since otherwise an Initiateis applicable. Since x =2 lhs(�), we know unbound(x), so the x � u of the Initiatestill exists, and a Win rule is applicable.6.4.4 Identify, Conict, and Decompose. These are straightforward.This proves the theorem.6.5 Total CorrectnessTheorem (DU Total Correctness). Given any �nite multiset of equations,then placing them on arbitrary sites and executing the DU algorithm will terminateand result in a con�guration that maps to a con�guration equivalent to that of aterminating CU execution.Proof. From DU Safety, any results obtained are correct results for the RCUalgorithm. From DU Liveness and the Finiteness Lemma, the DU algorithm willterminate and reach this correct result. From RCU Total Correctness, the result isequivalent to the result of a terminating CU execution.7. ON-LINE FINITE ENTAILMENTIn the real system, it is almost never the case that uni�cation is initiated with a�xed set of equations and runs to termination without any interaction with theexternal environment. Rather, the algorithm will be running inde�nitely, and fromtime to time an equation will be added to the current action. This is the on-linecase. The interesting property is not termination, but whether the equation willbe entailed by the store in a �nite number of reductions (�nite entailment). In thissection, we extend the CU and DU algorithms to the on-line case, and we show thatthe extended algorithms satisfy the �nite-entailment property. We use the standardweak fairness assumption that all rule instances applicable for an inde�nite period oftime will eventually be reduced. We show that this is not enough to guarantee thatthe equation will be entailed, but that we need an additional property, the �nite-size property, to bound the amount of work needed to incorporate the equation inthe store.7.1 On-Line CU and DU AlgorithmsWe extend the CU algorithm (from now on called the o�-line CU algorithm) witha new rule:Introduce true u = v�; � �; �This rule is always applicable, and it adds a new equation to the action when itreduces. The extended algorithm, also called the on-line CU algorithm, thereforedoes not terminate. We extend the DU algorithm in a similar way by an Introducerule that introduces (u = v)s for an arbitrary site s.

40 � Seif Haridi et al
y

x

x y f(x1, ..., xn)x

x

f/n

...x1 xnFig. 18. Mapping the store to its graph.7.2 Finite-Size PropertyAny store � can be mapped to a graph with two kinds of nodes, variables andrecords. The graph is de�ned in a straightforward way from the store's bindings(see Figure 18):|A binding x y maps to variable nodes x and y, with a directed edge from xto y.|A binding x f(x1; :::; xn) maps to a set of variable nodes x, x1, ..., xn and arecord node f=n, with directed edges from x to f=n and from f=n to every x1,..., xn.Given a variable node x, we de�ne graph(x; �) as the subgraph of �'s graph whosenodes and edges are reachable from x. We also de�ne size(x; �) as the number ofedges in this subgraph. This quanti�es the size of the data structure attached to x.Given a valid con�guration with store �, it is clear that size(x; �) is �nite. How-ever, the size may be unbounded when considering all con�gurations of a givenexecution. This leads us to de�ne the following property. We say a variable x hasthe �nite-size property for the execution e if9n � 0 : 8(;�k;) 2 e : size(x; �k) � n:That is, there is a �nite upper bound on the size of x that holds for the wholeexecution. We say that an equation u = v has the �nite-size property if all itsvariables do. The �nite-size property is used to avoid in�nite executions caused byrace conditions in two cases:(1) Dereference chains that increase in length inde�nitely: For example,consider the equation x0 = y0, which is accompanied by the in�nite sequenceof pairs of equations xi = xi+1 and yi = yi+1, starting with i = 0. Theseequations are added by an Introduce rule reductions at the appropriate times.We assume that the ordering condition enforces that lower-indexed variablesare bound to higher-indexed variables. For each i starting with 0, if xi = xi+1and yi = yi+1 are both introduced and bound before xi = yi is dereferenced,then the store will never entail x0 = y0.(2) Nested terms that increase in depth inde�nitely: For example, considerthe equation x0 = y0, which is accompanied by the equations xi = f(xi+1) andyi = f(yi+1), starting with i = 0. For each i starting with 0, if xi = f(xi+1)and yi = f(yi+1) are both introduced and bound before xi = yi is decomposed,then the store will never entail x0 = y0.

Logic Variables for Distributed Computing � 41It is remarkable that these two in�nite executions are possible even with the weakfairness assumption. One way to avoid in�nite executions would be to give theIntroduce rule lower priority than the others, i.e., as long as another rule isapplicable, do not reduce an Introduce rule. But this does not model the realworld, in which equations can arrive at any time. The �nite-size property doesnot have this de�ciency. It does not restrict in any way when new equations areintroduced. Rather, it forbids just those executions that would cause a problem.The �nite-size property can be enforced easily for dereference chains by requiringthat all new variables have higher order than all existing variables. Then the totallength of all dereference chains that need traversing is bounded by the number ofvariables in the system when the equation is introduced.In the case of nested structures, the �nite-size property can be enforced by notunifying terms whose nesting depth is potentially unbounded. This seems to be areasonable condition because when a potentially in�nite uni�cation is necessary inpractice, then it is su�cient that it always makes progress, not that it completes(e.g., see the streams of Section 2.4.2). The weak fairness assumption is enough byitself to guarantee progress of in�nite uni�cations and eventual termination of �niteuni�cations. The �nite-size property ensures that a uni�cation that is intended bythe programmer to be �nite will actually be �nite during the execution. These twoconditions su�ce for all practical programs we know of.7.3 Finite EntailmentUnder what conditions will the store entail a given equation after a �nite numberof reductions? In this section we show that two conditions are needed in additionto weak fairness. First, there must be no detected inconsistencies (false actions)within the context of the given memo table. Second, the amount of work neededto incorporate the equation into the store must be �nite (�nite-size property).An inconsistency is detected at most once per memo table. This is true for boththe centralized and distributed algorithms as well as the Mozart implementation. Inthe CU algorithm, there is only one memo table, so an inconsistency is detected atmost once. In the DU algorithm, there is a memo table per site, so an inconsistencycan be detected once per site.Theorem (Finite Entailment of On-Line CU). Given (1) weak fairness,(2) any valid con�guration c of the on-line CU algorithm that contains the equationu = v, and (3) any execution e that contains c and satis�es the �nite-size propertyfor u = v, then e will eventually contain either a false action or a store that entailsu = v.Proof. We outline the proof. We are given that size(u = v; �k) has a �niteupper bound in e. Therefore graph(u = v; �k) has a �nite limit graph. Let Vdenote the set of variables in this graph. Denote the store corresponding to thelimit graph as �V . Since V has a �nite limit, the set �V = fx = y 2 �kjx; y 2 V g,i.e., of equalities in �k whose variables are in V , also has a �nite limit. When thislimit is reached, then consider the equations �V , part of �k, whose variables are allin V . Consider an execution starting with (�V ;�V ;�V), without the Introducerule, and that reduces rules in the same order as e does. This is a continuation of ano�-line CU execution. If no false actions occur, then the Entailment Property (see

42 � Seif Haridi et alSection 4.2) implies that eventually we end up with a store that entails u = v.We now extend this result to the distributed case. First we extend the DUalgorithm to an on-line DU algorithm by an Introduce rule that introduces anequation on any site. It is easy to see that safety continues to hold. We now showliveness and �nite entailment for the on-line DU algorithm.Theorem (Liveness of On-Line DU). Given (1) weak fairness and (2) anyexecution e of the on-line DU algorithm such that m(e) is nonterminal in the RCUalgorithm, then continuing e will always eventually reduce a progressing rule.Proof. The proof follows by minor modi�cation of the proof of DU Liveness,using weak fairness to compensate for the Introduce rule.Theorem (Finite Entailment of On-Line DU). Given (1) weak fairness,(2) any valid con�guration d of the on-line DU algorithm that contains the equation(u = v)s, and (3) any execution e that contains d and such that m(e) satis�es the�nite-size property for u = v, then e will eventually contain either a falses actionor a store on site s that entails u = v.Proof. We outline the proof. The execution on site s has a local memo tableMsfor site s. We consider this execution to be a centralized execution with memo table� = Ms. By the previous theorem, the result holds for the centralized execution.Therefore the result holds also for the distributed execution on site s.8. THE MOZART IMPLEMENTATIONThe Mozart system contains a re�ned version of the on-line DU algorithm, called\Mozart algorithm" in what follows. Section 8.1 summarizes how the implemen-tation di�ers with respect to the on-line DU algorithm. Section 8.2 introducesthe distribution graph, which is the framework in which the Mozart algorithm isde�ned. Then Section 8.3 de�nes the properties of the network and the notationused to de�ne the distributed algorithm. After these preliminaries, the algorithmitself is de�ned. Section 8.4 de�nes the local algorithm, and Section 8.5 de�nes thedistributed algorithm.8.1 Di�erences with On-Line DUThe Mozart algorithm re�nes the on-line DU algorithm by making concrete deci-sions regarding several aspects that were left open. Furthermore, the Mozart algo-rithm does several optimizations to improve performance and has several extensionsincluding a model for failure detection and handling. This section summarizes thesere�nements, optimizations, and extensions.8.1.1 Re�nements.8.1.1.1 Separation into Local and Distributed Algorithms. The Mozart algo-rithm consists of two parts: a purely local algorithm (corresponding to the DUnonbind rules; see Section 8.4) and a distributed algorithm (corresponding to theDU bind rules; see Section 8.5). A thread wishing to tell an equation invokes thelocal algorithm. To bind a distributed variable to another one or to a record, thelocal algorithm invokes the distributed algorithm. The thread blocks, waiting for areply. When the variable binding is known locally, then the thread continues.

Logic Variables for Distributed Computing � 438.1.1.2 The Owner Site. Each distributed variable is managed from a specialsite, the owner site, which is where the variable was originally created. This sitecontains the variable's unbound/bound ag and other information, e.g., the registerlist (see below).8.1.1.3 Variable Ordering. The Mozart algorithm implements the order relationless(u; v) as follows. Records are less than distributed variables, which are less thanlocal variables. Distributed variables are totally ordered; local variables are totallyordered per site; and records are unordered. Local variables are ordered according toa per-site index i that is incremented for each new variable.5 Distributed variablesare ordered according to a pair (s; i) where s is the site number on which thevariable was initially created and where i is the index of the variable on that site.From this ordering relation it follows that if the number of sites is �nite and datastructures of unbounded depth are not created, then the Mozart algorithm satis�esthe �nite-size property (see Section 7.2).8.1.2 Optimizations.8.1.2.1 Globalization. The Mozart algorithm distinguishes between local anddistributed variables (see Section 8.5.1).8.1.2.2 Variable Registration. A variable binding is not sent to all sites, butonly to registered sites (see Section 8.5.2).8.1.2.3 Grouping Nested Data Structures. Binding a nested data structure toa distributed variable is done by the Mozart algorithm as a single operation (seeSection 8.5.3).8.1.2.4 Winner Optimization. When a variable is bound to a term, then theterm does not have to be sent back to the site that initiated the binding (seeSection 8.5.4).8.1.2.5 Asynchronous Streams. To allow streams to be created asynchronously,variables are given a set of registered sites as soon as they are globalized (seeSection 8.5.5).8.1.3 Extensions.8.1.3.1 Lazy and Eager Variables. The laziness property a�ects the momentwhen the variable is registered. Eager proxies are registered immediately. Lazyproxies delay registration until a binding attempt is made (see Section 8.5.6).8.1.3.2 Read-Only Logic Variables. Standard logic variables have two opera-tions, reading the value and binding. For security reasons, it is often useful toprohibit binding, for example, when building abstractions or when passing thevariable to a less-trusted site [Mehl et al. 1998; Mehl 1999].68.1.3.3 Garbage Collection. Distributed garbage collection is based on a creditmechanism that collects all garbage except cross-site cycles between stateful entities5For local variables, the index is simply the variable's address.6Read-only logic variables are confusingly called \futures" in these two references.

44 � Seif Haridi et al(see Section 8.2.1).8.1.3.4 The Failure Model. The Mozart algorithm is conservatively extendedwith a model for failure detection and handling that reects network and site failuresto the language level (see Section 8.2.2).
Thread (with references)Record (with fields) Unbound variableFig. 19. The three node types of the language graph.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

N1 P1 P2 P3 N3N3N2N1

Site 1 Site 2 Site 3 Site 1 Site 3Site 2

M

Language graph Distribution graph

access structure for N2

Fig. 20. An access structure in the distribution graph.8.2 The Distribution GraphWe model distributed executions in a simple but precise manner using the conceptof a distribution graph. We obtain the distribution graph in two steps from anarbitrary execution state of the system. The �rst step is independent of distribution.We model the execution state by a directed graph, called language graph, in whicha record, an unbound variable, and a thread each correspond to one node (seeFigure 19). A node can be considered as an active entity with internal state thatcan asynchronously send messages to other nodes and that can receive messagesfrom other nodes. The edges in the language graph denote the node's references: arecord and a thread refer to other nodes; an unbound variable has no references.In the second step, we distribute the execution over a set of sites. Assume a�nite set of sites, and annotate each node by its site (see Figure 20). If a variablenode, e.g., N2, is referenced by at least one node on another site, then map it toa set of nodes, e.g., fP1,P2,P3,Mg. This set is called the access structure of theoriginal node. An access structure consists of one proxy node Pi for each site thatreferenced the original node and one owner node M for the whole structure. Theresulting graph, containing both local nodes and access structures where necessary,is called the distribution graph. The execution of the distributed algorithm is de�nedin terms of this graph. Execution consists of atomic graph transformations thatare initiated by the nodes. A logic variable implemented as an access structure iscalled a distributed variable (as opposed to a local variable). A variable referencedon more than one site is certain to be represented by an access structure.

Logic Variables for Distributed Computing � 45Each access structure is given a global name n that is unique systemwide. InDistributed Oz, n is the pair (s; i) that is also used to order the distributed variables.The global name n encodes (among other things) the owner site s. Furthermore, aproxy node is uniquely identi�ed by the pair (n; s0), which contains the proxy sites0. On each site, n indexes into a table that refers to the proxy. This allows toenforce the invariant that each site has at most one proxy.Messages are sent between nodes in access structures. In terms of sites, a messageis sent from the source node's site to the destination node's site. The message maycontain a subgraph of the distribution graph. Just before the message leaves thesource site, a new access structure is created for each local variable in the subgraph.When in transit, the message refers only to proxy nodes, not to local variables.When the message arrives, the subgraph becomes known at the destination site.Each proxy node is looked up in the site table. If it is not present, then a new proxynode is created and entered in the table. This extends an existing access structurewith one new proxy. The process of creating or extending an access structure iscalled globalization (see Section 8.5.1).The behavior of a distributed variable is de�ned as a protocol between the nodesof its access structure. In general, nodes other than variable nodes can also haveaccess structures, and therefore obey a protocol. The Distributed Oz implementa-tion uses four nontrivial protocols. Three are designed for speci�c language entities,namely variables, object records, and state pointers. Variables use a variable bind-ing protocol, which is part of the distributed uni�cation algorithm and is presentedin this article. Object records use a lazy replication protocol. State pointers usea mobile state protocol. See Alouini and Van Roy [1999], Van Roy et al. [1997;1998], and Haridi et al. [1998] for more information on these protocols. The fourthprotocol is a distributed garbage collection algorithm using a credit mechanism.Garbage collection is part of the management of access structures, and it thereforeunderlies the other three protocols.8.2.1 Distributed Garbage Collection. Distributed garbage collection is based ona credit mechanism, which is a variant of weighted reference counting [Plainfoss�eand Shapiro 1995]. The credit mechanism interfaces with the local garbage collectorof each site. All distributed garbage is removed except for cross-site cycles betweenstateful entities on di�erent owner sites. The mechanism has four useful properties.First, creating a new proxy requires essentially zero network messages in additionto the messages sent by the application. Second, each proxy site does not need toknow any other site except the owner site. Third, the owner site does not need toknow any proxy site. Fourth, sites that no longer locally reference a proxy will,after a local garbage collection, no longer a�ect the access structure in any way.The global name of an access structure is associated with a pool of credits. Theowner site lends credits to sites and messages that know the global name. All proxysites and messages must hold at least one credit. The owner site has an integercorresponding to the total number of credits lent. The proxy site keeps a count ofhow many credits it has borrowed from the owner site. If local garbage collectionremoves the proxy node, then all its credits are returned to the owner site. Both theglobal name and the owner node can be reclaimed after all credits have returned tothe owner site. When that happens, the language entity becomes local again (see

46 � Seif Haridi et al
Record Local variable Proxy Owner

Thread

Fig. 21. The �ve node types of the distribution graph and their message interfaces.Section 8.5.1).8.2.2 The Failure Model. The failure model is designed according to the prin-ciple that an Oz program should be able to make all decisions regarding failurebehavior [Van Roy et al. 1999; Haridi et al. 1998; Brand et al. 1999; Van Roy 1999].That is, the implementation does not make any irrevocable decisions by default.Full treatment of the model is beyond the scope of this article. We briey summa-rize the main ideas. The failure model considers failures at the level of individuallanguage entities, e.g., logic variables. The model covers permanent site failuresand temporary and permanent network failures. The model has two e�ects at thelanguage level:|It extends each operation on an entity to have three possible results. If there isno failure then the operation succeeds. If there is a failure, then the operationeither waits inde�nitely until the problem goes away or aborts and is replacedby a user-de�ned procedure call. The call can retry the operation. There areno default time-outs; it is up to the program to decide whether to continue towait or not. For example, an entity can be con�gured so that all operations waitinde�nitely on network failures (in the hope that they are temporary) and raisean exception on a permanent site failure.|It allows to eagerly detect a problem with an entity, i.e., without having to do anoperation on the entity. When a user-speci�ed failure condition is detected thena user-de�ned procedure is called in its own thread. The failure condition doesnot necessarily keep the entity from working, i.e., it can just give information.For example, a remote proxy site failure will often have no e�ect at all on thebinding of a logic variable, but it may nonetheless be important to be noti�ed ofthis failure.This failure model is fully implemented as part of the Mozart system. We arecurrently developing more powerful abstractions in Oz on top of this model.8.3 Basic Concepts and Notation8.3.1 Network. Consider a single owner node M, a set of p proxy nodes Pi with1 � i � p, and a set of m thread nodes Ti with 1 � i � m. All nodes have state andinteract according to Figure 21. Thread, proxy, and owner nodes perform internaloperations. Proxy nodes communicate with thread and owner nodes. Record andlocal variable nodes communicate only with thread nodes. Let these nodes be linkedtogether by a network N that is a multiset containing messages of the form d : m

Logic Variables for Distributed Computing � 47Table IV. Node StateNode Attribute TypeAny node id NodeIdtype fRECORD,LOCVAR,PROXY,MANAGER,THREADgRecord label Atom(N.type=RECORD) arity Integerargs array[1..arity] of NodeLocal variable state fUNBOUND, BOUND(Node)g(N.type=LOCVAR) eager fFALSE, TRUEgProxy state fUNBOUND, INITIATED, BOUND(Node)g(N.type=PROXY) eager fFALSE, TRUEgreg fFALSE, TRUEgowner NodeIdOwner state fUNBOUND, BOUND(Node)g(N.type=MANAGER) reglist set of NodeIdThread(N.type=THREAD)where d identi�es a destination (thread, proxy, or owner node) and where m is amessage.The Mozart algorithm is de�ned using reduction rules of the formConditionAction .Each rule is de�ned in the context of a single node. Execution follows an interleavingmodel. The local algorithm imposes an order on how its rules are �red; see thepseudocode de�nition in Section 8.4. The distributed algorithm imposes no suchorder.At each reduction step, a rule with valid condition is selected. Its associatedactions are reduced atomically. A rule condition consists of boolean conditions onthe node state and one optional receive condition Receive(d,m). The conditionReceive(d,m) means that d : m has arrived at d. Executing a rule with a receivecondition removes d : m from the network and performs the action part of the rule.A rule action consists of a sequence of operations on the node state with optionalsends. The action Send(d,m) asynchronously sends message m to node d, i.e., itadds the message d : m to the network.We assume that the network and the nodes are fair in the following sense. Thenetwork is asynchronous, and messages to a given node take arbitrary �nite timeand may arrive in arbitrary order. All rule instances that remain applicable for aninde�nite period of time will eventually be reduced.8.3.2 Node State. Table IV de�nes the state of the �ve node types by listingthe attributes of each node. All nodes have attributes \id" and \type," whichhave constant values. The types NodeId, Atom, and Integer are atomic typesimplemented in a straightforward way. In the real system, threads, proxies, andowners have more attributes, e.g., threads have an execution state, while proxiesand owners maintain information for distributed garbage collection.8.3.3 Utility Operations. The memo table uses the function clearmemo(), theprocedure add(N1,N2,M), and the boolean function mem(N1,N2,M). The lattertwo are exactly the ADD and MEM operations de�ned in Section 3.2. The other

48 � Seif Haridi et aleq(N1,N2) = N1.id=N2.idlocvar(N) = N.type=LOCVARdisvar(N) = N.type=PROXYnonvar(N) = N.type=RECORDvar(N) = locvar(N) _ disvar(N)bound(N) = if var(N) ! N.state=BOUND() �initiated(N) = if disvar(N) ! N.state=INITIATED �deref1(N) = if var(N) ^ bound(N) !N1 where N.state=BOUND(N1) �compatible(N1,N2) = if nonvar(N1) ^ nonvar(N2) !N1.arity=N2.arity ^ N1.label=N2.label �proxyids(N) = if locvar(N) ! fg[] disvar(N) !if bound(N) ! proxyids(deref1(N))[] not bound(N) ! fN.idg �[] nonvar(N) ! S1�i�N.arity proxyids(N.args[i]) �Fig. 22. Utility operations.operations are de�ned in Figure 22.8.4 The Local AlgorithmFigure 23 de�nes the local algorithm, which executes in each thread that does auni�cation. The de�nition follows closely the nonbind rules of Section 5.4.1, wherea rule corresponds to a guard and its body. The two main di�erences are that thelocal algorithm maintains a memo table that is shared among the rules and that asequential order is imposed on rule reductions. The if is a guarded command thatsuspends until at least one of its guards is true.In the implementation, executions of the local and distributed algorithms are notinterleaved. Rather, the local algorithm is executed atomically until it exits (eithernormally or through an exception) or until it blocks after sending a binding request.Each invocation of unify is done within a thread. The uni�cation completes intwo ways: when it terminates normally or when an inconsistency is detected, inwhich case a failure exception is raised. During the uni�cation, the thread willblock when waiting for a binding request to complete. This works as follows. The�rst thread that tries to bind a variable will send a binding request (Initiate rule).Other threads that try to bind the same variable on the same site will not send anymessage. All threads then block at the if: no guard is true because the variablesatis�es disvar(N1) ^ not bound(N1) ^ initiated(N1). As soon as the bindingarrives, bound(N1) is true, and the if becomes reducible. All threads can thencontinue.The local algorithm is optimized to bind local variables locally. With a suit-able data representation, the algorithm is implementable very e�ciently [Gudeman1993; Van Roy 1994]. The implementation does binding in place and dereferencinginline. Common cases of uni�cation such as parameter passing and local variableinitialization do not need binding nor dereferencing, but reduce to single registermoves or stores.The local memo table is implemented by means of forwarding pointers betweenvariables [Haridi and Sahlin 1984]. That is, when the equation x = y is encountered

Logic Variables for Distributed Computing � 49
procedure unify(N1,N2)de�ne memotable Mde�ne procedure inner unify(N1,N2)if /**** Interchange ****/var(N2), less(N1,N2) ! inner unify(N2,N1)[] /**** Identify ****/var(N1), eq(N1,N2) ! skip[] /**** Memo ****/var(N1), less(N2,N1), bound(N1), mem(N1,N2,M) ! skip[] /**** Dereference ****/var(N1), less(N2,N1), bound(N1), not mem(N1,N2,M) !add(N1,N2,M)inner unify(deref1(N1),N2)[] /**** Bind ****/locvar(N1), less(N2,N1), not bound(N1) !N1.state BOUND(N2)[] /**** Initiate ****/disvar(N1), less(N2,N1), not bound(N1), not initiated(N1) !N1.state INITIATEDSend(N1.owner,binding request(N2))clearmemo(M)inner unify(N1,N2)[] /**** Decompose ****/nonvar(N1), nonvar(N2), compatible(N1,N2) !for i:=1 to N1.arity do inner unify(N1.args[i],N2.args[i])[] /**** Conflict ****/nonvar(N1), nonvar(N2), not compatible(N1,N2) !raise failure exception�endin clearmemo(M)inner unify(N1,N2)end Fig. 23. Distributed uni�cation part 1: Local algorithm.

50 � Seif Haridi et al/**** Win ****/Receive(M.id,binding request(N)) ^ M.state=UNBOUND8i 2 M.reglist: Send(i, binding in transit(N))M.state BOUND(N)/**** Lose ****/Receive(M.id,binding request()) ^ M.state=BOUND()skip/**** Arrive ****/Receive(P.id,binding in transit(N)) ^ (P.state=UNBOUND _ P.state=INITIATED)8i 2 proxyids(N): Send(i, reg)P.state BOUND(N)/**** Variable registration ****/Receive(P.id,reg) ^ P.reg=FALSEP.reg TRUESend(P.owner,register(P.id))Receive(P.id,reg) ^ P.reg=TRUEskipReceive(M.id,register(PId)) ^ M.state=UNBOUNDM.reglist M.reglist [fPIdgReceive(M.id,register(PId)) ^ M.state=BOUND(N)Send(PId,binding in transit(N))Fig. 24. Distributed uni�cation part 2: Distributed algorithm.for the �rst time, a forwarding pointer is installed from x to y. This allows a very fastcheck of memo table membership. Namely, if x = y or y = x is encountered later on,then dereferencing will reduce the equation to y = y, which does no further work.The forwarding pointers are installed in the context of a single atomic uni�cationoperation. They are removed when the local algorithm exits or blocks.Other operations can be performed on a site while a uni�cation is blocked. Forcorrectness, the forwarding pointers must be removed whenever execution leavesthe local algorithm. This is modeled in Figure 23 by creating a new memo tablewhen unify is called and by clearing the memo table after an Initiate rule. Thismeans that the memo table starts from empty at each atomic execution of the localalgorithm. The Mozart algorithm therefore potentially does more redundant workthan the on-line DU algorithm, because the DU algorithm never clears the localmemo tables.8.5 The Distributed AlgorithmFigure 24 de�nes the distributed algorithm, which extends the DU bind rules ofSection 5.4.2 with globalization and variable registration. The implementation doesthree other important optimizations, namely grouping nested data structures, thewinner optimization, and asynchronous streams. For clarity, we do not de�ne thelatter formally, but rather show how to extend the protocol to include them. Wealso explain how to extend the protocol for lazy and eager variables.

Logic Variables for Distributed Computing � 518.5.1 Globalization. Newly created variables are always local. When a messageis sent referencing a local variable, then a new distributed variable is created, andthe local variable is bound to it. This is called globalizing the local variable. Anaccess structure is created when a local variable is globalized. When the messagearrives then a new proxy will be created for the distributed variable if none existson the arrival site. Therefore globalization is part of the Send and Receive oper-ations [Alouini and Van Roy 1999]. The inverse operation, localization, consists ofremoving the access structure when the variable is only referenced on one site (seeSection 8.2.1). The distributed variable becomes a local variable again.All local variables and proxies have a boolean attribute \eager" that determineswhether the node is eager or lazy. The attribute a�ects only the network op-erations of the distributed algorithm. Assume we have a local variable L withL.state=UNBOUND and L.eager=b. After globalizing, the original site containsthree nodes, L, P, and M, with the following states:L.state=BOUND(P)P.state=UNBOUND, P.eager=b, P.reg=b, P.owner=M.idM.state=UNBOUND, M.reglist=if b then fP.idg else fg �8.5.2 Variable Registration. In the DU algorithm, a binding arrives on a siteif the variable exists in the site's store. In the Mozart algorithm, the variable'sowner keeps track of the sites that reference the variable. A site that receives adistributed variable for the �rst time (i.e., when a term containing the variable �rstarrives on the site) has to register with the owner in order to receive the variable'sbinding. When a variable is bound, then a binding in transit message is sent to allregistered sites. When this message reaches a site then the Arrive rule reduces(see Figure 24). This sends reg messages to all proxies in the binding. The regmessage causes all unregistered proxies to register with their owner. If the variableis already bound when the register message arrives then the binding is sent backimmediately.8.5.3 Grouping Nested Data Structures. The DU algorithm binds only a singlerecord at a time, namely the top level of the tree. The Mozart algorithm binds acomplete tree in a single operation. In this way, it avoids the creation of distributedvariables for the intermediate nodes. For example, the uni�cation x1 = f(g(a)), isrepresented in the DU algorithm as three actions x1 = f(x2)^x2 = g(x3)^x3 = a.In the DU algorithm, the arrival of x1 (f(x2) enables the arrival of x2 (g(x3),and similarly for x3. In the Mozart algorithm, the binding x1 (f(g(a)) arrives inone step, so the variables x2 and x3 are never created.8.5.4 Winner Optimization. The winner is the proxy that sent a successful bind-ing request(N). This proxy does not need to be sent N, since N already exists onthe proxy's site. The proxy can be sent a simple acknowledgment that its bindingrequest was successful. This avoids the redundant work done by the R-Bind rule(see Section 6.2).The winner optimization requires the following protocol extensions: an extendedproxy state INITIATED(N) where N is the binding, an extended message bind-ing request(N,PId) where PId identi�es the winning proxy, and a new messagebinding ack from the owner to the winning proxy. When the proxy receives bind-

52 � Seif Haridi et aling ack, then it retrieves N from the INITIATED(N) state.8.5.5 Asynchronous Streams. A variable that is exported from its owner site canbe preregistered. That is, the destination site is added to the owner's reglist withoutwaiting for a registration message. This is correct if there is a FIFO connection tothe destination site. Preregistering variables allows elements to be added to streamsasynchronously. The example of Section 2.4.2 relies on this behavior.Let us look closely to see what happens. Assume variable X0 exists on sites 1and 2. Binding X0=m1|X1 on site 1 causes m1|X1 to be sent to site 2. X1 will bepreregistered, i.e., MX1:reglist MX1:reglist[MX0:reglist when the binding leavessite 1. If X1 is later bound on site 1, then its binding will be sent immediately tosite 2 without waiting for a registration request from site 2.If preregistration is not done, then adding elements to a stream requires a round-trip message delay for each element. This is because remote proxies have to beregistered before they can receive a binding. In our example, binding X0=m1|X1 onsite 1 causes m1|X1 to be sent to site 2. When it arrives, an X1 proxy is createdon site 2 which promptly registers with site 1. Binding X1=m2|X2 on site 1 will notsend the binding to site 2 until the registration arrives on site 1. Therefore, eachnew element appears on site 2 only after a round trip.8.5.6 Lazy and Eager Variables. Lazy and eager logic variables are de�ned in-formally in Section 2.2.2. In terms of the on-line DU algorithm, they di�er only inthe scheduling of the Arrive rule. To be precise, laziness is a property of a variableproxy, not of a variable. A proxy is lazy if the reduction of Arrive is delayed untilafter Initiate reduces on that site. If no such delay is enforced then the proxy iseager.In terms of the Mozart algorithm, this is implemented by registering lazy andeager proxies at di�erent times. Eager proxies are registered as soon as they appearon a site (see Arrive rule in Figure 24). Lazy proxies are only registered after theInitiate rule is reduced (see Figure 23), i.e., when a binding request is made.When two proxies are bound together, the result must be eager if at least oneof the two was eager. When a local variable is bound to a proxy, the proxy mustbecome eager if the local variable was eager. Implementing this requires replacingthe reg message by three messages: (1) in theArrive rule, reg becomes reg if eager,(2) in the Initiate rule, a new message reg always is sent, and (3) in the Bindrule, a new message reg and make eager is sent if the local variable is eager.9. RELATED WORKThere are two main streams of related work. Some distributed implementationsof concurrent logic languages do distributed uni�cation (see Sections 9.1 and 9.3).Some imperative or dataow language implementations have a kind of synchronizingvariable (see Section 9.2). To our knowledge, the present article gives the �rst formalde�nition and correctness proof of a practical algorithm for distributed rational treeuni�cation. The present article also clearly explains for the �rst time the advantagesof using logic variables in a distributed system.

Logic Variables for Distributed Computing � 539.1 Concurrent Logic LanguagesMany concurrent logic languages have been implemented in distributed settings.These systems do not use logic variables primarily to improve latency toleranceand network transparency. Rather, logic variables are integral parts of their ex-ecution models, and the distributed extensions must therefore implement them.We summarize the distributed uni�cation algorithms used in Flat GHC, Parlog,Pandora, DRL, and KLIC.9.1.1 Flat GHC, Parlog, and D/C-Parlog. Among early implementations doingsome form of distributed uni�cation are a Flat GHC (Guarded Horn Clauses) im-plementation on the Multi-PSI [Ichiyoshi et al. 1987], a Parlog implementation ona network of workstations [Foster 1988], and designs for distributed implementa-tions of Parlog, Pandora, and D/C-Parlog [Leung 1993; Leung and Clark 1996].Pandora extends Parlog with determinacy-driven execution (the Andorra model).D/C-Parlog extends Parlog with linear real-number constraints, namely equations,inequalities, and disequalities. All the above distributed uni�cation algorithms arede�ned informally by explaining what happens with arguments of di�erent types.No formal de�nitions nor correctness arguments are given.The Parlog implementation contains an algorithm due to Foster [1988]. Variablesexist on one site and have remote references, which is similar to the owner/proxymodel of the Mozart algorithm. Variable-variable uni�cation avoids binding cyclesby ordering the variables, as is done in the DU algorithm. All remote referencesto variables are lazy, and dereference chains may cross sites. Preregistering is notdone, so asynchronous streams are not possible.Like early Prolog systems, Foster's algorithm does neither an occur-check normemoization. When unifying two cyclic structures it may go into an in�nite loop.The algorithm has proxy registration (called \ns read") similar to the Mozart algo-rithm and a novel form of registration (called \read") that sends the binding onlywhen the variable is bound to a nonvariable term. This is used to get the value foroperations that need a nonvariable.9.1.2 DRL. DRL [Diaz et al. 1997] (Distributed Real-time Logic language) is aconcurrent logic language extended with features for distribution and soft real-timecontrol. Distribution is introduced by allowing computations on di�erent sites tocommunicate through shared logic variables. In DRL, the representative of a logicvariable on a site is called a logic channel. A logic channel is always staticallymarked with a direction, which is either output or input. For a given logic variable,only one channel is marked output. Binding the output channel to a term causesthe term to appear at all corresponding input channels. The binding blocks untilthe term contains only ground subterms and logic channels. It follows that variablescan be transferred between sites only if they are statically declared as logic channels.Logic channels can be connected together. This operation is called \uni�cation"in DRL, but the shared logic variables are not actually uni�ed together. To beprecise, no variable elimination is done, but communication links are set up betweenvariables. Connecting two output channels causes a future binding of one of themto be sent also to the other. Connecting an input channel to another channelsuspends until the input channel receives a value. It follows that dependencies on

54 � Seif Haridi et alintermediate sites are not removed.9.1.3 KLIC. KLIC [Fujise et al. 1994] is an e�cient portable implementation ofthe concurrent logic language KL1 (Kernel Language 1) for distributed and shared-memory machines. KLIC achieves these goals by compiling into C. On one processorrunning a series of representative benchmarks, the performance of KLIC approachesthat of C and C++ implementations. The distributed implementation of KLICdoes distributed uni�cation [Rokusawa et al. 1996], including binding variables tovariables. However, the algorithm has several curious properties: binding cyclescan be created when binding variables to variables; inconsistencies are ignored; anda variable may be bound to di�erent values on di�erent sites. Apparently, thealgorithm is only intended to be used in settings where there is no possibility ofinconsistency.9.2 Languages Not Based on LogicWe �rst compare logic variables with futures and I-structures (see Section 9.2.1),which have been used to improve expressiveness of parallel languages and per-formance of parallel systems. Then we briey discuss traditional distributed ar-chitectures and how they could be extended to incorporate logic variables (seeSection 9.2.2).9.2.1 Futures and I-Structures. The purpose of futures and I-structures is toincrease the potential parallelism of a program by removing inessential dependen-cies between calculations. They allow concurrency between a computation thatcalculates a value and one that uses the value. This concurrency can be exploitedon a parallel machine. To our knowledge, they have not been used in distributedprogramming. We compare futures and I-structures with logic variables (see alsoSection 2.4.4).The call (future E) (in Lisp syntax) does two things: it immediately returns aplaceholder for the result of E, and it initiates a concurrent evaluation of E [Halstead1985]. When the value of E is needed, the computation blocks until the value isavailable. We model this as follows in Oz (where E is a zero-argument function):
fun {Future E}

thread {E} end
endAn important di�erence with a logic variable is that a future can only be boundby the concurrent computation that is created along with it. Therefore the abovede�nition is not quite right; to precisely model futures a read-only logic variableshould be used (see Section 8.1.3).An I-structure (for incomplete structure) is a single-assignment array whose ele-ments can be accessed before all the elements are computed [Arvind and Thomas1980; Veen 1986; Iannucci 1990]. It permits concurrency between a computationthat calculates the array elements and a computation that uses their values. Whenthe value of an element is needed, then the computation blocks until it is available.An I-structure di�ers from an array of logic variables in that its elements can onlybe bound by the computation that calculates them.

Logic Variables for Distributed Computing � 559.2.2 Two-Level Addressing. Systems with support for distributed computingcommonly provide two-level addressing. This provides the ability to use local andremote references interchangeably. References that arrive on a site are automati-cally converted to the local form if they refer to local entities. Typical examplesinclude Java RMI [Sun Microsystems 1997], CORBA [Otte et al. 1996], and theEricsson OTP (Open Telecom Platform) [Armstrong et al. 1996; Wikstr�om 1994].Two-level addressing can be extended to provide weak logic variables (see alsoSection 2.1.4). It su�ces to add an \unknown" state to variables: (1) threads blockwhen the variable is unknown, (2) when the value is available, all remote referencesto the variable leave the unknown state, and (3) no forwarding chains are created ifa reference travels among many sites. There should be no overhead if the variableis on one site only. To provide full logic variables this is further extended withvariable-variable uni�cation. As the CC-Java implementation illustrates, dynamictyping is not necessary (see Section 2.5.1).9.3 Sending a Bound TermA basic operation in distributed uni�cation is sending a bound term across thenetwork. Lamma et al. [1997] investigate the costs of this operation and sketch analgorithm to send only that part of a term required by a consumer. Sending toolittle increases the message latency, since multiple requests will be done. Sendingtoo much increases network load and memory consumption at the consumer. Theproposed algorithm sends exactly that part of a term required by a consumer. Forexample, a list-appending procedure requires only the spine of the list, and notthe terms in the list. The algorithm uses \consumption speci�cations," simple treegrammars extended with an additional terminal, Remote. These speci�cations canbe given by static analysis or by programmer annotation.10. CONCLUSIONSThis article has examined the use of logic variables in distributed computing. Wehave shown that if the logic variables are well implemented, then common dis-tributed programming idioms can be written in a network-transparent manner,and they behave e�ciently when distributed. We have de�ned the CU algorithm,a centralized algorithm for rational tree uni�cation, and the DU algorithm, its con-servative extension to a distributed setting. The DU algorithm has just two changeswith respect to the CU algorithm. First, CU's single Bind rule is replaced by fourrules that do coherent variable elimination. Second, CU's unique memo table isreplaced by a local memo table per site.We show that the DU algorithm has good network behavior for common dis-tributed programming idioms. We prove that the DU algorithm is a correct im-plementation of uni�cation, and we bound the amount of extra work it can docompared to the CU algorithm. We show that both lazy and eager logic variablesare implemented by the DU algorithm. They di�er only in the scheduling of a singlereduction rule.We extend both the CU and DU algorithms to the on-line case, in which newequations can be introduced inde�nitely during execution. We show that if a weakfairness condition holds and if all variables in the equation satisfy the �nite-sizeproperty, then any introduced equation will eventually be entailed by the store.

56 � Seif Haridi et alThe Mozart system implements the Distributed Oz language and was publiclyreleased in January 1999 [Mozart Consortium 1999]. Mozart contains an opti-mized version of the on-line DU algorithm. Distributed Oz, also known as Oz 3,conservatively extends Oz 2 to allow an e�cient distributed network-transparentimplementation [Haridi et al. 1998; Van Roy et al. 1997; Haridi et al. 1997]. Oz2 has a robust centralized implementation that was o�cially released in February1998 [DFKI Oz 1998]. Oz 3 keeps the same language semantics as Oz 2 and extendsit with support for mobile computations, open distribution, component-based pro-gramming, and orthogonal failure detection and handling within the language. Oz2 programs are portable to Oz 3 almost immediately.ACKNOWLEDGEMENTSMichael Mehl implemented the distributed uni�cation algorithm in the Mozart sys-tem. Per Brand and Erik Klintskog have extended it to incorporate orthogonalfailure detection and handling. Ili�es Alouini and Mustapha Hadim gave many valu-able comments on this article. We thank Andreas Podelski and all our colleaguesin the Mozart Consortium (DFKI, SICS, UCL, and UdS). Finally, we thank thereferees for comments that let us vastly improve the presentation.REFERENCESAlford, M. W., Lamport, L., and Mullery, G. P. 1985. Lecture Notes in Computer Science,vol. 190. Springer Verlag, Chapter 2. Basic Concepts, in Distributed Systems{Methods andTools for Speci�cation, An Advanced Course.Alouini, I. and Van Roy, P. 1999. Le protocole r�eparti de Distributed Oz (in French). InColloque Francophone sur l'Ing�enierie des Protocoles (CFIP 99). 283{298.Armstrong, J.,Williams, M.,Wikstr�om, C., and Virding, R. 1996. Concurrent Programmingin Erlang. Prentice-Hall, Englewood Cli�s, N.J.Arvind and Thomas, R. E. 1980. I-Structures: An e�cient data type for functional languages.Tech. Rep. 210, MIT, Laboratory for Computer Science.Bal, H. E., Steiner, J. G., and Tanenbaum, A. S. 1989. Programming languages for distributedcomputing systems. ACM Comput. Surv. 21, 3 (Sept.), 261{322.Brand, P., Van Roy, P., Collet, R., and Klintskog, E. 1999. A reliable mobile-state protocolfor constructing fault-tolerant applications. In preparation.Cardelli, L. 1995. A language with distributed scope. ACM Trans. Comput. Syst. 8, 1 (Jan.),27{59.Chow, R. and Johnson, T. 1997. Distributed Operating Systems and Algorithms. Addison-Wesley, San Francisco, Calif.Colmerauer, A. 1982. Prolog and In�nite Trees. Academic Press. In Logic Programming, KeithL. Clark and Sten-�Ake Tarnlund, eds.Courcelle, B. 1983. Fundamental properties of in�nite trees. Theoretical Computer Science 25,95{169.DFKI Oz 1998. DFKI Oz version 2.0. Available at http://www.ps.uni-sb.de.Diaz, M., Rubio, B., and Troya, J. M. 1997. DRL: A distributed real-time logic language.Comput. Lang. 23, 2{4, 87{120.Duchier, D., Kornstaedt, L., Schulte, C., and Smolka, G. 1998. A Higher-order ModuleDiscipline with Separate Compilation, Dynamic Linking, and Pickling. Tech. rep., ProgrammingSystems Lab, DFKI and Universit�at des Saarlandes. DRAFT.Foster, I. 1988. Parallel implementation of Parlog. In International Conference on ParallelProcessing. IEEE Computer Society, 9{16.Fujise, T., Chikayama, T., Rokusawa, K., and Nakase, A. 1994. KLIC: A portable implemen-tation of KL1. In Fifth Generation Computing Systems (FGCS '94). 66{79.

Logic Variables for Distributed Computing � 57Gosling, J., Joy, B., and Steele, G. 1996. The Java Language Speci�cation. Addison-Wesley.Available at http://www.javasoft.com.Gudeman, D. 1993. Representing type information in dynamically typed languages. Tech. Rep.TR93-27, University of Arizona, Department of Computer Science. Sept.Halstead, R. H. 1985. MultiLisp: A language for concurrent symbolic computation. ACM Trans.Program. Lang. Syst. 7, 4 (Oct.), 501{538.Haridi, S. 1981. Logic programming based on a natural deduction system. Ph.D. thesis, RoyalInstitute of Technology, Stockholm.Haridi, S. and Franz�en, N. 1999. Tutorial of Oz. Tech. rep. In Mozart documentation, availableat http://www.mozart-oz.org.Haridi, S. and Sahlin, D. 1984. E�cient implementation of uni�cation of cyclic structures. EllisHorwood Limited. In Implementations of Prolog, J. A. Campbell, ed.Haridi, S., Van Roy, P., Brand, P., and Schulte, C. 1998. Programming languages for dis-tributed applications. New Generation Computing 16, 3 (May).Haridi, S., Van Roy, P., and Smolka, G. 1997. An overview of the design of Distributed Oz. Inthe 2nd International Symposium on Parallel Symbolic Computation (PASCO 97). ACM.Henz, M. 1997a. Objects for Concurrent Constraint Programming. The Kluwer InternationalSeries in Engineering and Computer Science, vol. 426. Kluwer Academic Publishers, Boston.Henz, M. 1997b. Objects in Oz. Ph.D. thesis, Universit�at des Saarlandes, Fachbereich Informatik,Saarbr�ucken, Germany.Iannucci, R. A. 1990. Parallel Machines: Parallel Machine Languages. The Emergence of HybridDataow Computer Architectures. Kluwer, Dordrecht, the Netherlands.Ichiyoshi, N., Miyazaki, T., and Taki, K. 1987. A distributed implementation of Flat GHC onthe Multi-PSI. In 4th International Conference on Logic Programming. MIT Press, 257{275.Jaffar, J. and Maher, M. 1994. Constraint logic programming: A survey. J. Log. Prog. 19/20,503{581.Lamma, E., Mello, P., Stefanelli, C., and Van Hentenryck, P. 1997. Improving distributeduni�cation through type analysis. In Euro-Par '97 Parallel Processing. Lecture Notes in Com-puter Science, vol. 1300. Springer-Verlag, 1181{1190.Lea, D. 1997. Concurrent Programming in Java. Addison-Wesley.Leung, H.-F. 1993. Distributed Constraint Logic Programming. Series in Computer Science, vol.41. World Scienti�c, Singapore.Leung, H.-F. and Clark, K. L. 1996. Constraint satisfaction in distributed concurrent logicprogramming. J. Symbolic Computation 21, 699{714.Lloyd, J. 1987. Foundations of Logic Programming, Second Edition. Springer-Verlag.Martelli, A. and Montanari, U. 1982. An e�cient uni�cation algorithm. ACM Trans. Program.Lang. Syst. 4, 2 (Apr.), 258{282.Sun Microsystems. 1997. The Remote Method Invocation Speci�cation. Available athttp://www.javasoft.com.Mehl, M. 1999. The Oz virtual machine - records, transients, and deep guards. Ph.D. thesis,Technische Fakult�at der Universit�at des Saarlandes.Mehl, M., Schulte, C., and Smolka, G. 1998. Futures and by-need synchronization for Oz.Mehlhorn, K. and Tsakalidis, A. 1990. Data structures. In Handbook of Theoretical ComputerScience { Volume A: Algorithms and Complexity, J. van Leeuwen, Ed. Elsevier MIT Press,301{341.Mozart Consortium. 1999. The Mozart programming system (Oz 3). Available athttp://www.mozart-oz.org.Otte, R., Patrick, P., and Roy, M. 1996. Understanding CORBA: The Common Object RequestBroker Architecture. Prentice-Hall PTR, Upper Saddle River, N.J.Plainfoss�e, D. and Shapiro, M. 1995. A survey of distributed garbage collection techniques.In the International Workshop on Memory Management. Lecture Notes in Computer Science,vol. 986. Springer-Verlag, Berlin, 211{249.

58 � Seif Haridi et alPodelski, A. and Smolka, G. 1997. Situated simpli�cation. Theoretical Computer Science 173,209{233.Robinson, J. A. 1965. A machine-oriented logic based on the resolution principle. J. ACM 12,23{41.Rokusawa, K., Nakase, A., and Chikayama, T. 1996. Distributed memory implementation ofKLIC. New Generation Computing 14, 3, 261{280.Saraswat, V. A. 1993. Concurrent Constraint Programming. MIT Press.Schulte, C. 1997. Programming constraint inference engines. In Proceedings of the 3rd Inter-national Conference on Principles and Practice of Constraint Programming, G. Smolka, Ed.Lecture Notes in Computer Science, vol. 1330. Springer-Verlag, Schlo� Hagenberg, Austria,519{533.Shapiro, E. 1989. The family of concurrent logic programming languages. ACM Comput.Surv. 21, 3 (Sept.), 413{510.Smolka, G. 1995. The Oz programming model. In Computer Science Today. Lecture Notes inComputer Science, vol. 1000. Springer-Verlag, Berlin, 324{343.Smolka, G. 1996. Problem solving with constraints and programming. ACM Computing Sur-veys 28, 4es (Dec.). Electronic Section.Smolka, G. 1998. Concurrent constraint programming based on functional programming. InProgramming Languages and Systems, C. Hankin, Ed. Lecture Notes in Computer Science, vol.1381. Springer-Verlag, Lisbon, Portugal, 1{11.Smolka, G., Schulte, C., and Van Roy, P. 1995. PERDIO|Persistent and distributed pro-gramming in Oz. BMBF project proposal. Available at http://www.ps.uni-sb.de.Stroustrup, B. 1997. The C++ Programming Language, Third Edition. Addison-Wesley.Sundstr�om, A. 1998. Comparative study between Oz 3 and Java. Tech. rep., Uppsala Universityand Swedish Institute of Computer Science. July.Taylor, A. 1991. High-performance Prolog implementation. Ph.D. thesis, Basser Department ofComputer Science, University of Sydney.Tel, G. 1994. An Introduction to Distributed Algorithms. Cambridge University Press, Cam-bridge, United Kingdom.Van Roy, P. 1994. 1983{1993: The wonder years of sequential Prolog implementation. J. Log.Prog. 19/20, 385{441.Van Roy, P. 1999. On the separation of aspects in distributed programming: Application todistribution structure and fault tolerance in Mozart. In International Workshop on Parallel andDistributed Computing for Symbolic and Irregular Applications (PDSIA 99). Tohoku University,Sendai, Japan.Van Roy, P., Haridi, S., and Brand, P. 1999. Distributed programming in Mozart { A tutorialintroduction. Tech. rep. In Mozart documentation, available at http://www.mozart-oz.org.Van Roy, P., Haridi, S., Brand, P., and Smolka, G. 1998. Three moves are not as bad as a �re.In the Workshop on Internet Programming Languages, International Conference on ComputerLanguages (ICCL 98).Van Roy, P., Haridi, S., Brand, P., Smolka, G.,Mehl, M., and Scheidhauer, R. 1997. Mobileobjects in Distributed Oz. ACM Trans. Program. Lang. Syst. 19, 5 (Sept.), 804{851.Veen, A. H. 1986. Dataow machine architecture. ACM Comput. Surv. 18, 4 (Dec.), 365{396.Warren, D. H. D. 1977. Applied logic{its use and implementation as a programming tool. Ph.D.thesis, University of Edinburgh. Reprinted as Technical Note 290, SRI International.Wikstr�om, C. 1994. Distributed programming in Erlang. In the 1st International Symposiumon Parallel Symbolic Computation (PASCO 94). World Scienti�c, Singapore, 412{421.Received February 1998; revised September 1998; accepted December 1998

