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Abstract. Feature Constraint Systems have been proposed as a log-
ical data structure for constraint (logic) programming. They provide
a record-like view to trees by identifying subtrees by keyword rather
than by position. Their atomic constraints are finer grained than in the
constructor-based approach. The recently proposed CF'T [15]in fact gen-
eralizes the rational tree system of Prolog II.

We propose a new feature constraint system EF which extends CF'T by
considering features as first class values. As a consequence, EF' contains
constraints like z[v]w where v is a variable ranging over features, while
CF'T restricts v to be a fixed feature symbol.

We show that the satisfiability of conjunctions of atomic EF-constraints
is NP-complete. Satisfiability of quantifier-free EF-constraints is shown
to be decidable, while the 3*V*3* fragment of the first order theory is
undecidable.

1 Introduction

Feature constraints provide records as logical data structure for constraint (log-
ic) programming. Their origins are the feature descriptions from computational
linguistics (see [13] for references) and Ait-Kacis’s ¢-terms [1] which have been
employed in the logic programming language Login [2]. Smolka [13] gives a uni-
fied logical view of most earlier feature formalisms and presents an expressive
feature logic.

The predicate logic view to feature constraints, which has been pioneered by
[13], laid the ground for the development of the constraint systems FT [3, 5] and
CFT [15]. The latter constraint system subsumes Colmerauer’s classical rational
tree constraint system [6], but provides for finer grained and more expressive
constraints. An efficient implementation of tests for satisfiability and entailment
in CFT has been given in [16]. In fact, satisfiability of CFT-constraints can be
tested in at most quadratic time, and for a mildly restricted case in quasi-linear
time. CFT is the theoretical base for the constraint system of Oz [14].

CFT’s standard model consists of so-called feature trees, that is possibly
infinite trees where the nodes are labeled with label symbols and the edges are
labeled with feature symbols. The labels of the edges departing from a node,
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called the features of that node, are pairwise distinct. The atomic constraints of
CFT are equations, label constraints Ax (“x has label A”), feature constraints
z[fly (“yis achild of « via feature f”) and arity constraints x{f1,..., fo} (“x has
exactly the features fi,..., f,”). A rational tree constraint » = K(y1,...,¥n)
can now be expressed in CFT as

KeAe{l,...,on}Ae[llyn A .. x[n]y, .

Note that in CFT we can express the fact that z has the child y at feature f by
z[f]y, which is inconvenient to express in the rational tree constraint system if
the signature is finite and impossible if the signature is infinite. CFT’s atomic
constraints are finer grained and hence lead to an elegant and powerful tree
constraint system for logic programming. A complete axiomatization of FT (that
is CFT without arity constraints) has been given in [5], while the question of
complete axiomatizability of CFT is still open.

In this paper we are concerned with an extension of CFT which is desirable
for logic programming and which also leads to a more basic view of feature
constraints. Instead of considering a family of binary feature constraints «[f]y,
indexed by feature symbols f, we consider features to be first-class values and
introduce one ternary variable feature constraint z[v]y, where v ranges over
a distinguished sort of feature symbols. The interesting point is that we now
get quantification over features for free from predicate logic, which leads to
a dramatic gain in expressiveness. In contrast to [15], we can now for instance
express the fact that y is a direct subtree of @ by Jva[v]y, and an arity constraint
z{f1,..., fn} can now be seen as a mere abbreviation for

n

Yoy z[v]y & \/ v=f;).

i=1

It turns out that in certain (intended) models the subtree relation between fea-
ture trees is expressible (see Section 7).

Feature descriptions with first class features have already been considered by
Johnson [10]. In contrast to our work, Johnson was not concerned with quantifiers
or with arity constraints.

After fixing the constraint system EF in Section 2, we will address the prob-
lem of satisfiability of positive constraints, that is of conjunctions of atomic
constraints, in Section 4. Although redundant for the first order theory, we keep
the arity constraint since adding arity constraints to the fragment of quantifier-
free formulae still leads to a gain in expressiveness. For the same reason, we
add a constraint z[t]1 standing for Vy(—x[t]y). We present a nondeterministic
algorithm with polynomial complexity. Note that, as an easy corollary of [4],
satisfiability of constraints without arity constraints is decidable using the algo-
rithm of [15]. In Section 5 we show the problem to be NP-hard, which results in
positive constraint satisfaction to be NP-complete.

Section 6 extends the solvability result to conjunctions of positive and nega-
tive atomic constraints, which yields decidability of the 3* fragment of the first
order theory. We finally show in Section 7 that the canonical models of EF have



undecidable first order theories. The proofs missing in this paper can be found

in [18].

2 F- and EF-Constraints

In this section we define the constraint system F and its extension EF. We
assume a fixed set FEA of feature symbols, ranged over by f, ¢, and a fixed set
LAB of label symbols?, ranged over by A, B. The language of the constraint
system F has two sorts, feat and free, and an infinite supply of variables of
each sort. We use letters z,y, z to denote {ree variables and letters v, w for feat
variables. The constant symbols of sort feat are the elements of FEA, there
are no further constant or function symbols. The predicate symbols are, besides
equality =:

— A unary predicate symbol L of type tree for each L € LAB. We use prefix
notation Lz for the so-called label constraints.

— A ternary predicate symbol -[-]- of sort tree x feat x tree. We use mixfix
notation @[v]y for the so-called feature constraints.

A constraint p is a possibly empty conjunction of literals, where we identify
as usual a finite multiset with the conjunction of its members. A constraint ¢
is a clause if ¢ contains no equation. A constraint 5y (resp. clause ) which
contains no negated atom is called positive. We write 9/1 (§|/,L) for the universal
(existential) closure of .

Now we describe three F-structures which are candidates for being “natural”
models. All three structures are in fact models of the axiom system presented in
Section 3.

The structure J consists of all finite and infinite feature trees (see Section 1).
3§ consists of all finitely branching (but probably infinite) feature trees. The
structure R consists of all finitely branching (probably infinite) feature trees
which have only finitely many subtrees (these trees are called rational). In the
three models, a constraint Az holds if and only if the root of x is labeled with
label symbol A, and z[v]y holds if y is a child of # via feature v. Hence, we have
the substructure relationship R C § C J.

A first indication of the great expressivity of F is the fact that these models
are not elementarily equivalent, in contrast to the situation of constructor trees
where the model of all infinite trees and the model of rational trees cannot
be distinguished by a single first order logic sentence [12]. This can be seen as
follows: We take y < @ as an abbreviation for Jv z[v]y (read: y is a child of z).
Now the formula

fs(x) = 3y(x<yAVz1,z2 (z2<z1/\z1<y—>z2<y))
2 Labels have been called sorts in earlier publications on feature constraint systems

(e.g. [15]). We changed this name here in order to avoid confusion with the sorts of
predicate logic.



expresses in some sense that x can be “flattened”. The reader will easily verify
that Y& fs(x) is valid in S, but neither in § nor in J. In fact, fs(z) holds in F iff
x 1s rational, and holds in J iff x has at most cardmahty(FEA) many subtrees.

The following formula expresses that there is a feature tree & with an infi-
nite sequence of children which have themselves a strictly increasing number of
children. This formula holds in J but not in §.

x(Fyy < e AVyr(yr <2 = Jya(ya < 2 AVz(z < y1 = 2 < y2)A
Az(mz <y Az < y2))))

Note that the formula J2Vy y < = does not hold 1in J, since the cardinality of J
is strictly greater than the cardinality of FEA.

We now extend the constraint system F to the system EF by adding the
following predicates symbols:

— A unary predicate symbol F' for each finite subset F' of FEA. We use postfix
notation x I for the so-called arity constraints.
— A binary predicate symbol -[-]1 of sort tree x feat.

The additional predicate symbols of EF have explicit definitions in F:

e{fi,. e VwByehly e Viojv="Fi)  «#y
z[v]t & —Fy [v]y x#y

Hence, we will consider J, § and fR to be EF-structures as well as F-structures.

3 An Axiomatization

In this section we give a system EF of axioms which describe the “intended”
structures of EF. We begin with five straightforward axiom schemes.

D)= g€ FEA; f 4y
(L) Vxﬁ(Ax/\Bx) A+4B
(F)VYz,y, z,v(z[vly Az[v]zs = y = 2)

(A) Ye(x{fi,..., fo} &Yo@y 2]y < Vie v = fi)) 4y

() Vo, o(ao]t ¢ ~Ty 2[ely) .

One possible model of these axioms interprets all relation symbols as the
empty relation. We wish to exclude those models by requiring that certain clauses
like

Aw Na{f, g} Ae[fle Axlgly Ayt Aylw]z (1)

have a solution. In order to state the axiom scheme for the satisfiability of clauses
we need some more definitions. A solved positive clause is a positive clause ¢
which satisfies:



if Ax A Bz C ¢ then A = B,

if 2[t]ly A 2[t]z C ¢ then y = z;

if z[tly A z[s]T C ¢ then t £ s;

if eF AxG C ¢ then F = G

if e F AN a[tl]y C ¢ then t € F;

if e F A a[t]t C ¢ then t is a variable.

Oy O W N =

For example (1) is a solved positive clause. A variable x is constrained in a clause
¢ if ¢ contains a constraint of the form Az, «F, «[t]y or «[t]t. We say that ¢
constrains x at t if ¢ contains [t]y, [t]1 or «F with ¢ € F'. We use C¢ to denote
the set of constrained variables of ¢. For a clause ¢ we define

A¢ = {-(v=1) | ¢ constrains some z at v and at ¢, v # ¢, v is a variable}

Now the axiom scheme stating satisfiability of solved positive clauses reads

(Con) 9(Aq/> — 3Co ¢) if ¢ 1s a solved positive clause

Taking the solved positive clause (1), we obtain the axiom

Yz, v, w(—w =w— Ju,y(Ax Ae{f, g} ANz[fle A zlgly Aylv]T A y[w]z))

Note that —v = w is satisfiable in every model of the axioms, hence (1) is
satisfiable in every model of the axioms.

Taking the clause (1) we know that in the three structures of Section 2 the
solution to « 1s unique if y and z are fixed. This 1s what the last axiom scheme
expresses. We write oW (read: “there is at most one x such that ¥”) as an
abbreviation for

Vyla Yo (W[$ — yl] A W[l‘ — yz] — Y1 = yz)

and accordingly for sets of variables. This quantifier has the important property
that for all formulas @, ¥

VIX (P AW) AVIXT = V(0 — D).

A variable x is determined in a clause ¢ if ¢ contains a label constraint Az, an
arity constraint «F and for each f € F a feature constraint of the form z[f]y.
We use D¢ to denote the set of all determined variables in ¢. If for instance ¢
is the clause from (1) then D¢ = {z}. The axiom scheme on the uniqueness of
solutions reads

(Det) vID¢ ¢ if ¢ 1s a solved positive clause

Taking for ¢ the clause from (1) we get the following instance of (Det):

Yy, z, v, w élx(Ax Ax{f, g} Nx[fle A x[gly A ylv]T A ylw]z)

Lemmal. The structures J, § and R are models of EF.



4 Satisfiability of Positive EF-Constraints is in NP

In this section, we present a nondeterministic algorithm which decides satisfia-
bility of positive constraints in the models of EF. The algorithm consists of a
rewrite relation = p such that in all models of EF the constraint v is equiva-
lent to the disjunction of its = p-normal forms. Every = p-irreducible form is
either L or of the form § A ¢, where § is an idempotent substitution, ¢ is solved
positive constraint and d¢ = ¢. In the following, y ranges over variables of sort
feat or tree, and t ranges over arbitrary terms (that is, variables or feature sym-
bols). The first set of rules ensures that the equational part of an irreducible
constraint (if different from L) is an idempotent substitution which is applied
to the remainder.

pyy L=1AG Po X=tAd
(1) T=IRE (P2) D xeVo
(py) L=08 Py IELRE gy

The rules of the second set coincide with the conditions of the definition
of solved positive clauses. (P5) guarantees condition 1, (P6) condition 2, (P7)
condition 3, (P8) condition 4, (P9) and (P10) condition 5 and (P11} and (P12)

condition 6.

Az ANBz A ¢ e[ty Aeft]z A ¢
(p5) ~AELTELS A4 B (Po) - Y
e[ty Nx[t]t A ¢
(P7) :
(P8) xF/\je_G/\qb F+d xF/\xJ[_f]y/\qS FEF
eF A2t A S 2F Aalflt A é
(P11) n fEF Y fer
(P10) zF Az[v]ly A ¢ Fer

v=FfAeF AelflyAdfv  f]

Note that only the rule (P10) is indeterministic by allowing for an arbitrary
choice of v among the members of F'. The rewriting relation = p defined by the
above rewrite system is terminating, as the reader easily verifies. A theory T
is satisfaction complete [9] if for every positive constraint v either T = gl'y or
T |= =3y holds. Hence we obtain

Theorem 2. EF s satisfaction complete. A positive constraint v is satisfiable
wn EF aff there is an = p-irreducible form of ~ different from L.

Note that the length of a rewriting sequence starting from v is polynomial
in the size of ~.

Corollary 3. Satisfiability of positive EF -constraints is decidable in NP time.



5 Satisfiability of Positive EF-Constraints is NP-hard

We employ a reduction of the Minimum Cover Problem [8] to the satisfiabil-
ity problem of positive EF-constraints. Since the Minimum Cover Problem is
known to be NP-complete and since our reduction is polynomial, this will prove
satisfiability to be NP-hard.

The Minimum Cover Problem reads as follows:

Given a collection Sy, ..., S, of finite sets and a natural number £ < n.
Is there a subset I C {1,...,n} with cardinality(I) < k such that

U si=
Jjel

n
Sy 7
i=1

Let an instance (Si,...,Sp;k) of the Minimum Cover Problem be given. We
define U := |J!_, S; and for any w € U: §, := {j | ¢ € S;}. Without loss of
generality, we assume that 1,...,n € FEA. We construct a constraint ¥ :=
W) AWy A\ W5 that is satisfiable if and only if the instance of the minimum cover
problem has a solution. We use variables #, (u € U) for the elements of U and
variables z1, ..., z, to denote the sets S1,...,S,. The first formula ¥; requires
that z; is a direct subtree of x, if and only if u € S;:

/\ Tyuluy A /\ /\ zulf]z; .

uel uelU j€d;

The choice of an appropriate set [ is now expressed as an assignment of labels
to the variables z;. The idea is to assign the label IN to the variable z; if ¢ € T,
and oUT otherwise. The formula W5 expresses the fact that at least n L &k of the
z; have the label IN . It is defined as

n n—k
dz (aj{l,...,n} A /\x[z]zZ A /\ Elv,y(x[v]y/\OUTy/\y{i})) .

The arity constraints for y forces for each ¢ a different choice of y. The formula
W3 expresses the fact that each z; has an immediate subtree with label IN , which
according to the definition of ¥; must be one of the z;.

/\ v, z(z;[v]z ANIN z) .

€U

The length of the formula ¥ is in fact linear in the size of the representation of
the minimum cover problem. Hence, together with Corollary 3 we obtain

Theorem4. Satisfiability of positive EF-constraints is NP-complete.



6 Satisfiability of Constraints

In this section, we extend the results of Section 4 to conjunction of positive
and negative atomic constraints. This extension is complicated by the fact that
the independence of constraints[6] does not hold in our case, in contrast to
the constraint system CFT of [15]. A counter example to the Independence
Property? is

e{f, g} N z[flyAz[gls N Ay A Bz A z[v]e’ Egp Az’ V B’

but the left hand side does not imply any of the two disjuncts alone.
We define a rewrite system = by the rules of Section 4 plus the following
ones:

vy Azncdne (N2) Agﬁ—qu‘/’ A+ B
vs) EEATIE NG (i) HERERCRE rza
(N5) % (N6) az(x[t]:;xA[t]j/zAjy) ne
(N7) % 2 new

A clause 9 1s a solved clause, if 1ts positive part is a solved positive clause, if
¥ does not contain constraints of the form —xz[{]t or —«[t]y, and if ¢ contains a
negative label (resp. arity) constraint for #, then it does not contain a positive
label (resp. arity) constraint for x. Note that every = y-normal form of a con-
straint is either L or of the form d A ¢ A T, where § is an idempotent substitution
with 6(¢ A7) = ¢ A 7 (hence, § is not relevant for satisfiability), ¢ is a solved
clause and 7 1s a conjunction of negated equations.

Lemma 5. Fuvery solved clause is satisfiable in every model of EF .

We still need a criterion whether some solved clause together with some in-
equations is satisfiable. We say that a set 7 of equations 18 complete wrt. i, if
n 2 =y and z[t]e’ Ay[t]y C ¢ imply that n |= 2’ = . Given ¢ and 7, it is
easy to compute a set 7' of equations such that ¥ Ay Brgr ¢ An'. (7' can be
seen as the equational part of the congruence closure of 5 A ¢, see [15].)

Lemma 6. Let ¢ be a solved clause, and n be complete wrt. . If ¥ A7 is
satisfiable in EF and if V) C D, then ¢ =pp 1.

A clause 9 is called saturated if «F € ¢ and f € F imply that «[f]y € ¢ for
some y. Every solved clause can be transformed into an equivalent saturated
clause, with existentially quantifiers for the new variables.

® A constraint system is independent [6] if: ¢ A =1 A ... A —¢s is satisfiable iff ¢ A =¢;
is satisfiable for every i This equivalent to: ¢ = ¢1 V... ¢y iff ¢ = ¢; for some 3.



Lemma 7. Let i) be a solved and saturated clause and let n1, ... 0, be conjunc-
tions of equations such that for every i: Vn; € Dy. Then.

PEF§(¢A—W1A~~AﬁmJ.

Theorem 8. EF is complete for X1, that is for every quantifier-free formula w,
either =pp w or Epp —Jw.
It is decidable whether for an quantifier-free w: Egpr Jw.

Proof. We transform a given quantifier-free formula w into disjunctive normal
form and test every disjunction (i.e., constraint) u for satisfiability as follows:
We compute all = y-normal forms of u. (Note that = is terminating.) p is
satisfiable iff one of its normal forms v is. If v = L, then v is of course not satis-
fiable in any model of EF. Otherwise we extend v to an (modulo new variables)
equivalent saturated clause v/. If there is an inequation —& = y in v’ such that
all variables of the completion of = y wrt. v’ are determined in v/, then v/
is by Lemma b and Lemma 6 not satisfiable in any model of EF. Otherwise, by
Lemma 7, v’ is satisfiable in every model of EF.

7 Undecidability of the First Order Theory

In this section we will just give the key argument why the first order theories of
the 3, § and R are undecidable. For complete proofs we refer to [18]. Venkatara-
man [19] has shown that the first order theory of constructor trees with the
subterm relation is undecidable (see also [17]). Since feature constraints are in
fact even more expressive than constructor tree constraints, it suffices to show
that we can express the subterm relation between feature trees as a first order
logic formula. To be more specific, we don’t have to code the subterm relation
in its full generality. It is sufficient that for each structure under consideration
there is a set Rep of feature trees that contains at least the rational feature trees
such that s(z,y) holds iff # € Rep und y is a subtree of #:

s(z,y) = 3z (x%z/\Vxl,xz(m%xl/\xl<z—>x2<z))/\
Vz((x%z/\Vxl,xz(m%xl/\xl<z—>x2<z))
—y=<2)

With a direct coding of the Post Correspondence Problem into the three
theories along the technique given in [17] we can show (see [18]):

Theorem 9. The F*V*3* fragment of the first order theories of the structures
R, J and F are undecidable.

I am grateful to Gert Smolka for discussions on an earlier version of this
paper and to an anonymous referee for useful comments.
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