
Feature Constraints with First-Class FeaturesRalf Treinen?German Research Center for Arti�cial Intelligence (DFKI), Stuhlsatzenhausweg 3,66123 Saarbr�ucken, Germany, email: treinen@dfki.uni-sb.deAbstract. Feature Constraint Systems have been proposed as a log-ical data structure for constraint (logic) programming. They providea record-like view to trees by identifying subtrees by keyword ratherthan by position. Their atomic constraints are �ner grained than in theconstructor-based approach. The recently proposed CFT [15] in fact gen-eralizes the rational tree system of Prolog II.We propose a new feature constraint system EF which extends CFT byconsidering features as �rst class values. As a consequence, EF containsconstraints like x[v]w where v is a variable ranging over features, whileCFT restricts v to be a �xed feature symbol.We show that the satis�ability of conjunctions of atomic EF-constraintsis NP-complete. Satis�ability of quanti�er-free EF-constraints is shownto be decidable, while the 9�8�9� fragment of the �rst order theory isundecidable.1 IntroductionFeature constraints provide records as logical data structure for constraint (log-ic) programming. Their origins are the feature descriptions from computationallinguistics (see [13] for references) and A��t-Kacis's  -terms [1] which have beenemployed in the logic programming language Login [2]. Smolka [13] gives a uni-�ed logical view of most earlier feature formalisms and presents an expressivefeature logic.The predicate logic view to feature constraints, which has been pioneered by[13], laid the ground for the development of the constraint systems FT [3, 5] andCFT [15]. The latter constraint system subsumes Colmerauer's classical rationaltree constraint system [6], but provides for �ner grained and more expressiveconstraints. An e�cient implementation of tests for satis�ability and entailmentin CFT has been given in [16]. In fact, satis�ability of CFT-constraints can betested in at most quadratic time, and for a mildly restricted case in quasi-lineartime. CFT is the theoretical base for the constraint system of Oz [14].CFT's standard model consists of so-called feature trees, that is possiblyin�nite trees where the nodes are labeled with label symbols and the edges arelabeled with feature symbols. The labels of the edges departing from a node,? Supported by the Bundesminister f�ur Forschung und Technologie (contract ITW9105), the Esprit Basic Research Project ACCLAIM (contract EP 7195) and theEsprit Working Group CCL (contract EP 6028).In Andrzej M. Borzyszkowski and Stefan Soko lowski, eds., Mathematical Foundations ofComputer Science, Gda�nsk, Poland, 30 August{3 September, LNCS vol. 711, pp 734{743



called the features of that node, are pairwise distinct. The atomic constraints ofCFT are equations, label constraints Ax (\x has label A"), feature constraintsx[f ]y (\y is a child of x via feature f") and arity constraints xff1; : : : ; fng (\x hasexactly the features f1; : : : ; fn"). A rational tree constraint x := K(y1; : : : ; yn)can now be expressed in CFT asKx ^ xf1; : : : ; ng ^ x[1]y1 ^ : : : x[n]yn :Note that in CFT we can express the fact that x has the child y at feature f byx[f ]y, which is inconvenient to express in the rational tree constraint system ifthe signature is �nite and impossible if the signature is in�nite. CFT's atomicconstraints are �ner grained and hence lead to an elegant and powerful treeconstraint system for logic programming.A complete axiomatization of FT (thatis CFT without arity constraints) has been given in [5], while the question ofcomplete axiomatizability of CFT is still open.In this paper we are concerned with an extension of CFT which is desirablefor logic programming and which also leads to a more basic view of featureconstraints. Instead of considering a family of binary feature constraints x[f ]y,indexed by feature symbols f , we consider features to be �rst-class values andintroduce one ternary variable feature constraint x[v]y, where v ranges overa distinguished sort of feature symbols. The interesting point is that we nowget quanti�cation over features for free from predicate logic, which leads toa dramatic gain in expressiveness. In contrast to [15], we can now for instanceexpress the fact that y is a direct subtree of x by 9vx[v]y, and an arity constraintxff1; : : : ; fng can now be seen as a mere abbreviation for8v(9y x[v]y$ n_i=1 v := fi) :It turns out that in certain (intended) models the subtree relation between fea-ture trees is expressible (see Section 7).Feature descriptions with �rst class features have already been considered byJohnson [10]. In contrast to our work, Johnson was not concerned with quanti�ersor with arity constraints.After �xing the constraint system EF in Section 2, we will address the prob-lem of satis�ability of positive constraints, that is of conjunctions of atomicconstraints, in Section 4. Although redundant for the �rst order theory, we keepthe arity constraint since adding arity constraints to the fragment of quanti�er-free formulae still leads to a gain in expressiveness. For the same reason, weadd a constraint x[t]" standing for 8y(:x[t]y). We present a nondeterministicalgorithm with polynomial complexity. Note that, as an easy corollary of [4],satis�ability of constraints without arity constraints is decidable using the algo-rithm of [15]. In Section 5 we show the problem to be NP-hard, which results inpositive constraint satisfaction to be NP-complete.Section 6 extends the solvability result to conjunctions of positive and nega-tive atomic constraints, which yields decidability of the 9� fragment of the �rstorder theory. We �nally show in Section 7 that the canonical models of EF have



undecidable �rst order theories. The proofs missing in this paper can be foundin [18].2 F- and EF-ConstraintsIn this section we de�ne the constraint system F and its extension EF. Weassume a �xed set FEA of feature symbols, ranged over by f; g, and a �xed setLAB of label symbols2, ranged over by A;B. The language of the constraintsystem F has two sorts, feat and tree, and an in�nite supply of variables ofeach sort. We use letters x; y; z to denote tree variables and letters v; w for featvariables. The constant symbols of sort feat are the elements of FEA, thereare no further constant or function symbols. The predicate symbols are, besidesequality :=:{ A unary predicate symbol L of type tree for each L 2 LAB. We use pre�xnotation Lx for the so-called label constraints.{ A ternary predicate symbol �[�]� of sort tree � feat � tree. We use mix�xnotation x[v]y for the so-called feature constraints.A constraint � is a possibly empty conjunction of literals, where we identifyas usual a �nite multiset with the conjunction of its members. A constraint �is a clause if � contains no equation. A constraint  (resp. clause  ) whichcontains no negated atom is called positive. We write ~8� (~9�) for the universal(existential) closure of �.Now we describe three F-structures which are candidates for being \natural"models. All three structures are in fact models of the axiom system presented inSection 3.The structure I consists of all �nite and in�nite feature trees (see Section 1).F consists of all �nitely branching (but probably in�nite) feature trees. Thestructure R consists of all �nitely branching (probably in�nite) feature treeswhich have only �nitely many subtrees (these trees are called rational). In thethree models, a constraint Ax holds if and only if the root of x is labeled withlabel symbol A, and x[v]y holds if y is a child of x via feature v. Hence, we havethe substructure relationship R � F � I.A �rst indication of the great expressivity of F is the fact that these modelsare not elementarily equivalent, in contrast to the situation of constructor treeswhere the model of all in�nite trees and the model of rational trees cannotbe distinguished by a single �rst order logic sentence [12]. This can be seen asfollows: We take y � x as an abbreviation for 9v x[v]y (read: y is a child of x).Now the formulafs(x) := 9y�x � y ^ 8z1; z2 (z2 � z1 ^ z1 � y ! z2 � y)�2 Labels have been called sorts in earlier publications on feature constraint systems(e.g. [15]). We changed this name here in order to avoid confusion with the sorts ofpredicate logic.



expresses in some sense that x can be \attened". The reader will easily verifythat 8x fs(x) is valid in R, but neither in F nor in I. In fact, fs(x) holds in F i�x is rational, and holds in I i� x has at most cardinality(FEA) many subtrees.The following formula expresses that there is a feature tree x with an in�-nite sequence of children which have themselves a strictly increasing number ofchildren. This formula holds in I but not in F.9x(9y y � x ^ 8y1(y1 � x! 9y2(y2 � x ^ 8z(z � y1 ! z � y2)^9z(:z � y1 ^ z � y2))))Note that the formula 9x8y y � x does not hold in I, since the cardinality of Iis strictly greater than the cardinality of FEA.We now extend the constraint system F to the system EF by adding thefollowing predicates symbols:{ A unary predicate symbol F for each �nite subset F of FEA. We use post�xnotation xF for the so-called arity constraints.{ A binary predicate symbol �[�]" of sort tree � feat .The additional predicate symbols of EF have explicit de�nitions in F:xff1; : : : ; fng $ 8v(9y x[v]y$ Wni=1 v := fi) x 6= yx[v]" $ :9y x[v]y x 6= yHence, we will consider I, F and R to be EF-structures as well as F-structures.3 An AxiomatizationIn this section we give a system EF of axioms which describe the \intended"structures of EF. We begin with �ve straightforward axiom schemes.(D) :f := g f; g 2 FEA; f 6= g(L) 8x:(Ax ^Bx) A 6= B(F ) 8x; y; z; v(x[v]y ^ x[v]z ! y := z)(A) 8x(xff1; : : : ; fng $ 8v(9y x[v]y $ Wni=1 v := fi)) x 6= y(U ) 8x; v(x[v]" $ :9y x[v]y) x 6= yOne possible model of these axioms interprets all relation symbols as theempty relation.We wish to exclude those models by requiring that certain clauseslike Ax ^ xff; gg ^ x[f ]x ^ x[g]y ^ y[v]" ^ y[w]z (1)have a solution. In order to state the axiom scheme for the satis�ability of clauseswe need some more de�nitions. A solved positive clause is a positive clause �which satis�es:



1. if Ax ^Bx � � then A = B;2. if x[t]y ^ x[t]z � � then y = z;3. if x[t]y ^ x[s]" � � then t 6= s;4. if xF ^ xG � � then F = G;5. if xF ^ x[t]y � � then t 2 F ;6. if xF ^ x[t]" � � then t is a variable.For example (1) is a solved positive clause. A variable x is constrained in a clause� if � contains a constraint of the form Ax, xF , x[t]y or x[t]". We say that �constrains x at t if � contains x[t]y, x[t]" or xF with t 2 F . We use C� to denotethe set of constrained variables of �. For a clause � we de�ne�� := f:(v := t) j � constrains some x at v and at t, v 6= t, v is a variablegNow the axiom scheme stating satis�ability of solved positive clauses reads(Con) ~8(��! 9C� �) if � is a solved positive clauseTaking the solved positive clause (1), we obtain the axiom8z; v; w�:v := w! 9x; y(Ax ^ xff; gg ^ x[f ]x^ x[g]y ^ y[v]" ^ y[w]z)�Note that :v := w is satis�able in every model of the axioms, hence (1) issatis�able in every model of the axioms.Taking the clause (1) we know that in the three structures of Section 2 thesolution to x is unique if y and z are �xed. This is what the last axiom schemeexpresses. We write 9̂x	 (read: \there is at most one x such that 	") as anabbreviation for 8y1; y2�	 [x 7! y1] ^ 	 [x 7! y2]! y1 := y2�and accordingly for sets of variables. This quanti�er has the important propertythat for all formulas �, 	~89X(� ^ 	 ) ^ ~89̂X	 j= ~8(	 ! �) :A variable x is determined in a clause � if � contains a label constraint Ax, anarity constraint xF and for each f 2 F a feature constraint of the form x[f ]y.We use D� to denote the set of all determined variables in �. If for instance �is the clause from (1) then D� = fxg. The axiom scheme on the uniqueness ofsolutions reads(Det) ~89̂D� � if � is a solved positive clauseTaking for � the clause from (1) we get the following instance of (Det):8y; z; v; w 9̂x(Ax ^ xff; gg ^ x[f ]x ^ x[g]y ^ y[v]" ^ y[w]z)Lemma1. The structures I, F and R are models of EF.



4 Satis�ability of Positive EF-Constraints is in NPIn this section, we present a nondeterministic algorithm which decides satis�a-bility of positive constraints in the models of EF. The algorithm consists of arewrite relation )P such that in all models of EF the constraint  is equiva-lent to the disjunction of its )P -normal forms. Every )P -irreducible form iseither ? or of the form � ^�, where � is an idempotent substitution, � is solvedpositive constraint and �� = �. In the following, � ranges over variables of sortfeat or tree, and t ranges over arbitrary terms (that is, variables or feature sym-bols). The �rst set of rules ensures that the equational part of an irreducibleconstraint (if di�erent from ?) is an idempotent substitution which is appliedto the remainder.(P1) t := t ^ �� (P2) � := t ^ �� := t ^ �[� t] � 2 V�; � 6= t(P3) f := v ^ �v := f ^ � (P4) f := g ^ �? f 6= gThe rules of the second set coincide with the conditions of the de�nitionof solved positive clauses. (P5) guarantees condition 1, (P6) condition 2, (P7 )condition 3, (P8) condition 4, (P9 ) and (P10) condition 5 and (P11) and (P12)condition 6.(P5) Ax ^Bx ^ �? A 6= B (P6) x[t]y ^ x[t]z ^ �y := z ^ x[t]z ^ �(P7) x[t]y ^ x[t]" ^ �?(P8) xF ^ xG^ �? F 6= G (P9) xF ^ x[f ]y ^ �? f 62 F(P11) xF ^ x[f ]" ^ �? f 2 F (P12) xF ^ x[f ]" ^ �xF ^ � f 62 F(P10) xF ^ x[v]y ^ �v := f ^ xF ^ x[f ]y ^ �[v  f ] f 2 FNote that only the rule (P10) is indeterministic by allowing for an arbitrarychoice of v among the members of F . The rewriting relation )P de�ned by theabove rewrite system is terminating, as the reader easily veri�es. A theory Tis satisfaction complete [9] if for every positive constraint  either T j= ~9 orT j= :~9 holds. Hence we obtainTheorem2. EF is satisfaction complete. A positive constraint  is satis�ablein EF i� there is an )P -irreducible form of  di�erent from ?.Note that the length of a rewriting sequence starting from  is polynomialin the size of .Corollary 3. Satis�ability of positive EF-constraints is decidable in NP time.



5 Satis�ability of Positive EF-Constraints is NP-hardWe employ a reduction of the Minimum Cover Problem [8] to the satis�abil-ity problem of positive EF-constraints. Since the Minimum Cover Problem isknown to be NP-complete and since our reduction is polynomial, this will provesatis�ability to be NP-hard.The Minimum Cover Problem reads as follows:Given a collection S1; : : : ; Sn of �nite sets and a natural number k � n.Is there a subset I � f1; : : : ; ng with cardinality(I) � k such that[j2I Sj = n[i=1Si ?Let an instance (S1; : : : ; Sn; k) of the Minimum Cover Problem be given. Wede�ne U := Sni=1 Si and for any u 2 U : �u := fj j i 2 Sjg. Without loss ofgenerality, we assume that 1; : : : ; n 2 FEA. We construct a constraint 	 :=	1 ^ 	2 ^ 	3 that is satis�able if and only if the instance of the minimum coverproblem has a solution. We use variables xu (u 2 U ) for the elements of U andvariables z1; : : : ; zn to denote the sets S1; : : : ; Sn. The �rst formula 	1 requiresthat zj is a direct subtree of xu if and only if u 2 Sj :û2U xu�u ^ û2U ĵ2�i xu[j]zj :The choice of an appropriate set I is now expressed as an assignment of labelsto the variables zi. The idea is to assign the label in to the variable zi if i 2 I,and out otherwise. The formula 	2 expresses the fact that at least n� k of thezi have the label in . It is de�ned as9x xf1; : : : ; ng ^ n̂i=1x[i]zi ^ n�k̂i=1 9v; y(x[v]y ^ out y ^ yfig)! :The arity constraints for y forces for each i a di�erent choice of y. The formula	3 expresses the fact that each xi has an immediate subtree with label in , whichaccording to the de�nition of 	1 must be one of the zi.î2U 9v; z(xi[v]z ^ in z) :The length of the formula 	 is in fact linear in the size of the representation ofthe minimum cover problem. Hence, together with Corollary 3 we obtainTheorem4. Satis�ability of positive EF-constraints is NP-complete.



6 Satis�ability of ConstraintsIn this section, we extend the results of Section 4 to conjunction of positiveand negative atomic constraints. This extension is complicated by the fact thatthe independence of constraints[6] does not hold in our case, in contrast tothe constraint system CFT of [15]. A counter example to the IndependenceProperty3 isxff; gg ^ x[f ]y ^ x[g]z ^Ay ^Bz ^ x[v]x0 j=EF Ax0 _Bx0but the left hand side does not imply any of the two disjuncts alone.We de�ne a rewrite system )N by the rules of Section 4 plus the followingones:(N1) Ax ^ :Ax ^ �? (N2) Ax ^ :Bx ^ �Ax ^ � A 6= B(N3) xF ^ :xF ^ �? (N4) xF ^ :xG^ �xF ^ � F 6= G(N5) :x[t]y ^ �x[t]"^ � (N6) :x[t]y ^ �9z(x[t]z ^:z := y) ^ � z new(N7) :x[t]"^ �9z x[t]z ^ � z newA clause  is a solved clause, if its positive part is a solved positive clause, if does not contain constraints of the form :x[t]" or :x[t]y, and if  contains anegative label (resp. arity) constraint for x, then it does not contain a positivelabel (resp. arity) constraint for x. Note that every )N -normal form of a con-straint is either ? or of the form �^�^ � , where � is an idempotent substitutionwith �(� ^ � ) = � ^ � (hence, � is not relevant for satis�ability), � is a solvedclause and � is a conjunction of negated equations.Lemma5. Every solved clause is satis�able in every model of EF .We still need a criterion whether some solved clause together with some in-equations is satis�able. We say that a set � of equations is complete wrt.  , if� j= x := y and x[t]x0 ^ y[t]y0 �  imply that � j= x0 := y0. Given  and �, it iseasy to compute a set �0 of equations such that  ^ � j=jEF  ^ �0. (�0 can beseen as the equational part of the congruence closure of � ^ , see [15].)Lemma6. Let  be a solved clause, and � be complete wrt.  . If  ^ � issatis�able in EF and if V� � D , then  j=EF �.A clause  is called saturated if xF 2  and f 2 F imply that x[f ]y 2  forsome y. Every solved clause can be transformed into an equivalent saturatedclause, with existentially quanti�ers for the new variables.3 A constraint system is independent [6] if: �^:�1 ^ : : :^:�2 is satis�able i� �^:�iis satis�able for every i This equivalent to: � j= �1 _ : : : �n i� � j= �i for some i.



Lemma7. Let  be a solved and saturated clause and let �1; : : : ; �n be conjunc-tions of equations such that for every i: V�i 6� D . Then.j=EF ~9� ^ :�1 ^ : : :^ :�n� :Theorem8. EF is complete for �1, that is for every quanti�er-free formula w,either j=EF ~9w or j=EF :~9w.It is decidable whether for an quanti�er-free w: j=EF ~9w.Proof. We transform a given quanti�er-free formula w into disjunctive normalform and test every disjunction (i.e., constraint) � for satis�ability as follows:We compute all )N -normal forms of �. (Note that )N is terminating.) � issatis�able i� one of its normal forms � is. If � = ?, then � is of course not satis-�able in any model of EF. Otherwise we extend � to an (modulo new variables)equivalent saturated clause � 0. If there is an inequation :x := y in � 0 such thatall variables of the completion of x := y wrt. � 0 are determined in � 0, then � 0is by Lemma 5 and Lemma 6 not satis�able in any model of EF . Otherwise, byLemma 7, � 0 is satis�able in every model of EF.7 Undecidability of the First Order TheoryIn this section we will just give the key argument why the �rst order theories ofthe I, F and R are undecidable. For complete proofs we refer to [18]. Venkatara-man [19] has shown that the �rst order theory of constructor trees with thesubterm relation is undecidable (see also [17]). Since feature constraints are infact even more expressive than constructor tree constraints, it su�ces to showthat we can express the subterm relation between feature trees as a �rst orderlogic formula. To be more speci�c, we don't have to code the subterm relationin its full generality. It is su�cient that for each structure under considerationthere is a set Rep of feature trees that contains at least the rational feature treessuch that s(x; y) holds i� x 2 Rep und y is a subtree of x:s(x; y) := 9z �x � z ^ 8x1; x2 (x2 � x1 ^ x1 � z ! x2 � z)� ^8z � �x � z ^ 8x1; x2 (x2 � x1 ^ x1 � z ! x2 � z)�! y � z�With a direct coding of the Post Correspondence Problem into the threetheories along the technique given in [17] we can show (see [18]):Theorem9. The 9�8�9� fragment of the �rst order theories of the structuresR, I and F are undecidable.I am grateful to Gert Smolka for discussions on an earlier version of thispaper and to an anonymous referee for useful comments.



References1. H. A��t-Kaci. An algebraic semantics approach to the e�ective resolution of typeequations. Theoretical Comput. Sci., 45:293{351, 1986.2. H. A��t-Kaci and R. Nasr. LOGIN: A logic programming language with built-ininheritance. Journal of Logic Programming, 3:185{215, 1986.3. H. A��t-Kaci, A. Podelski, and G. Smolka. A feature-based constraint system forlogic programming with entailment. In Int. Conf. on 5th Generation ComputerSystems, pages 1012{1021, 1992.4. R. Backofen. On the decidability of functional uncertainty. In Rewriting Tech-niques and Applications, LNCS, 1993. Springer-Verlag.5. R. Backofen and G. Smolka. A complete and recursive feature theory. In Proc.of the 31 th ACL, Columbus, Ohio, 1993. Complete version as DFKI ResearchReport RR-92-30.6. A. Colmerauer. Equations and inequations on �nite and in�nite trees. In 2nd Int.Conf. on 5th Generation Computer Systems, pages 85{99, 1984.7. H. Comon. Uni�cation et disuni�cation. Th�eorie et applications, 1988. DoctoralThesis, Institut National Polytechnique de Grenoble.8. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to theTheory of NP-Completeness. W. H. Freeman and Company, New York, 1979.9. J. Ja�ar and J.-L. Lassez. Constraint logic programming. In 14th POPL, pages111{119, Munich, Germany, Jan. 1987. ACM.10. M. Johnson. Attribute-Value Logic and the Theory of Grammar. CSLI LectureNotes 16. Center for the Study of Language and Information, Stanford University,CA, 1988.11. E. Kounalies, D. Lugiez, and L. Potier. A solution of the complement problem inassociative-commutative theories. In MFCS 1991, LNAI, vol. 520, pages 287{297,Springer-Verlag.12. M. J. Maher. Complete axiomatizations of the algebras of �nite, rational andin�nite trees. In Third LICS, pages 348{357. 1988.13. G. Smolka. Feature constraint logics for uni�cation grammars. Journal of LogicProgramming, 12:51{87, 1992.14. G. Smolka, M. Henz, and J. W�urtz. Object-oriented concurrent constraint pro-gramming in Oz. Research Report RR-93-16, Deutsches Forschungszentrum f�urK�unstliche Intelligenz, Stuhlsatzenhausweg 3, D-W-6600 Saarbr�ucken, Germany,Apr. 1993.15. G. Smolka and R. Treinen. Records for logic programming. In K. Apt, editor,Proceedings of the Joint International Conference and Symposium on Logic Pro-gramming, pages 240{254, 1992.16. G. Smolka and R. Treinen. Records for logic programming. Research ReportRR-92-23, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz, Stuhlsatzen-hausweg 3, D-W-6600 Saarbr�ucken, Germany, Aug. 1992.17. R. Treinen. A new method for undecidability proofs of �rst order theories. Journalof Symbolic Computation, 14(5):437{457, Nov. 1992.18. R. Treinen. On feature constraints with variable feature access. Research ReportRR-93-21, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz, Stuhlsatzen-hausweg 3, D-W-6600 Saarbr�ucken, Germany, 1993.19. K. N. Venkataraman. Decidability of the purely existential fragment of the theoryof term algebra. J. ACM, 34(2):492{510, Apr. 1987.



This article was processed using the LaTEX macro package with LLNCS style


