
Feature Trees over Arbitrary StructuresRalf Treinen�Programming Systems LabGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, D66123 Saarbr�ucken, Germanytreinen@dfki.uni-sb.deAbstractThis paper presents a family of �rst order feature tree theories, indexed by thetheory of the feature labels used to build the trees. A given feature label theory, whichis required to carry an appropriate notion of sets, is conservatively extended to a theoryof feature trees with the predicates x[t]y (feature t leads from the root of tree x to thetree y), where we have to require t to be a ground term, and xt# (feature t is de�ned atthe root of tree x). In the latter case, t might be a variable. Together with the notionof sets provided by the feature label theory, this yields a �rst-class status of arities.We present a quanti�er elimination procedure to reduce any sentence of the featuretree theory to an equivalent sentence of the feature label theory. Hence, if the featurelabel theory is decidable, the feature tree theory is too.If the feature label theory is the theory of in�nitely many constants and �nite setsover in�nitely many constants, we obtain an extension of the feature theory CFT,giving �rst-class status to arities. As an another application, we obtain decidability ofthe theory of feature trees, where the feature labels are words, and where the languageincludes the successor function on words, lexical comparison of words and �rst-classstatus of arities.1 IntroductionFeature trees have been introduced as record-like data structures in constraint (logic) pro-gramming [4], [28], and as models of feature descriptions in computational linguistics [7],[6]. The use of record-like structures in logic programming languages, in the form of so-called -terms [1], was pioneered by the languages LOGIN [2] and LIFE [3]. More recently,Oz [17, 26] uses a feature constraint system, the semantics of which is directly based onfeature trees. In computational linguistics, feature structures have a long history in the�eld of uni�cation grammars (as described in [25]).�On leave to: L.R.I., Bât. 490, Universit�e Paris Sud, F91405 Orsay cedex, France, treinen@lri.frTo appear in: Patrick Blackburn and Maarten de Rijke, eds., Logic, Structures and Syntax, Studies in Logic,Language and Information, 1995 1

In both areas, �rst order predicate logic has been recognized as a powerful descriptionlanguage for feature trees. For the �rst area, this is immediate by the role of constraintsin constraint logic programming [19] and in concurrent constrained-based languages [26],while in the second area di�erent approaches have been proposed. [24, 27, 20, 25] haveadvocated the use of predicate logic as feature description languages. [6] argues thatpredicate logic is the right language to express phenomena in both �elds, and that featuretrees constitute the canonical semantical model.Feature trees [4] are possibly in�nite, �nitely branching trees, where the edges carry labelstaken from some given set of feature symbols. Features are functional, i.e., all edges de-parting from the same node have di�erent labels. In contrast to the usual de�nition fromthe literature, we will omitof nodes by so-called sortder languages have beensic class of predicate sym-any �rst order feature lan-relation symbols x[f]y forthe standard model of fea-of this predicate is \y isder edge f". The feature ��� @@@ ��� @@@��� ��� @@@��� @@@a c d c dd c aa bFigure 1: A Feature Tree in this paper the labelingsymbols. Di�erent �rst or-studied. The most ba-bols, which is contained inguage, consists of binaryevery feature symbol f . Inture trees, the denotationthe direct subtree of x un-theory FT [4] is an axiom-atization of feature trees based exactly on this language (besides equality and sort predi-cates). The feature theory CFT [28] uses a much more expressive language which extendsFT by so-called arity constraints xff1; : : : ; fng. The denotation of such a constraint inthe standard model is \x has exactly edges labeled by f1; : : : ; fn departing from its root".Furthermore, regular path expressions (which contain an implicit existential quanti�cationover feature paths, [7]), and subsumption ordering constraints [15, 14] have been considered.Finally, the language F [31] contains a ternary feature predicate x[y]z. Using quanti�cationover features, all other feature theories can be embedded in the theory F [31, 6].With the establishment of �rst order logic as feature description language, concrete prob-lems concerning logical theories of feature trees have been attacked. After �xing an ap-propriate predicate logic language, these problems can be phrased as decision problems ofcertain, syntactically characterized fragments of the theory of feature trees. Satis�abilityof existentially quanti�ed conjunctions of atomic constraints (so-called basic constraints)and entailment between basic constraints is e�ciently decidable for the languages FT [4]and CFT [28], and satis�ability of regular path constraints [7] and weak subsumption con-straints [14] is decidable, while it is undecidable for subsumption constraints [13]. Theseconsiderations lead to the more general question whether the full �rst order theories ofthese languages is decidable. An a�rmative answer was given for the case of FT [9] andCFT [10, 8]. Not surprisingly, the full �rst order theory of feature trees over F is unde-cidable, although the existential fragment of the theory is NP-complete even with arityconstraints as additional primitive notions [31].The reason for the undecidability of F is the fact that it allows one to quantify over thedirect subtrees of a tree. Taking x � y (\x is a direct subtree of y") as abbreviation of2

9f y[f]x, we can de�ne for trees x with only �nitely many di�erent subtrees (rational trees)the predicate \x is a subtree of y" by8z �y � z ^ 8y1; y2 (y1 � y2 � z ! y1 � z)! x � z�Here, the idea is to \abuse" feature trees as sets, taking the direct subtrees of a tree asthe elements of a set. Note that z ful�lls the hypothesis in the above formula exactly ifthe \set" z contains y and is transitive, and that hence the transitive closure of y is thesmallest z which satis�es the hypothesis.Thus, we can easily show (e.g., with the method of [30]) the undecidability of the theoryof feature trees in the language of F. Consequently, in order to get a decidable sub-theoryof F, we have to restrict the use of quanti�cation over features.The �rst contribution of this paper is the formulation of a decidable theory of feature treeswhich lies between CFT and F. The idea is to allow quanti�cation over features onlyin order to state which features are de�ned, but not to quantify over the direct subtreesof a tree. More precisely, we will de�ne the restricted theory of feature trees as the setof formulae where t in x[t]y is always a ground term, but where still atomic constraintsxf# (\f is de�ned on x"), where f may be a variable, are allowed. This situation issimilar to Process Logic, where unrestricted quanti�cation over path and state variableslead immediately to an undecidable validity problem, while a syntactic restriction leads todecidable sub-logic [22].This restricted theory still is an essential extension of the theory of CFT. It extends CFT,since we can encode an arity constraint xff1; : : : ; fng as 8f (xf# $ Wni=1 f �= fi). Beyondthe expressivity of CFT, we can make statements about the arities of trees, for instancewe can say that the arity of x is contained in the arity of y by8f (xf# ! yf#)As another example, the following formula expresses that x has exactly 3 features:9f1; f2; f3 �f1 �6= f2 ^ f2 �6= f3 ^ f1 �6= f3 ^ 8g (xg# $ [g �= f1 _ g �= f2 _ g �= f3])�From these examples, one gets the idea that the theory of sets of feature symbols is hiddenin our restricted theory of feature trees. This leads to the second contribution of ourapproach, which we now explain in three steps.The �rst step is to realize that, in order to decide the validity of �rst order sentences overfeature trees, we can save some work if we employ an existing decision algorithm for thetheory of �nite sets over in�nitely many constants. Since this theory is easily encoded inthe theory WS1S, the weak second order monadic theory of one successor function, theexistence of such an algorithm follows immediately from B�uchis result on the decidabilityof WS1S [11]1.1The reader shouldn't be confused by the fact that we are apparently mixing �rst and second orderstructures. A second order structure can always be considered as a two-sorted �rst order structure, withone sort for the elements, and another sort for the sets. Only in the context of classes of structures makesit really sense to distinguish �rst order from second order structures.3

The following examples give an idea why logical statements involving feature trees can bereduced to logical statements on sets of features. Let x; y; z denote variables ranging overfeature trees, f; g; h range over features and F;G;H range over sets of features. First, theformula 9x; y �8f (xf# ! yf#) ^ :8g (yg# ! xg#)�does not involve any tree construction. This formula is just about the sets of featuresde�ned at the roots of x and y, and hence can be translated to:9F;G �8f (f �2 F ! f �2 G)^ :8g (g �2 G! g �2 F)�Formulae like the above subformula (8f (xf# : : :), where the feature tree x is only used asa set of features, will be called primitive formulae.The formula 9x (x[a]x^ x[b]y ^ :xh#) (1)where a and b are two di�erent constants, is clearly satis�able if we can �nd a set whichcontains a and b, but not h. Hence, (1) can be reduced to9F (a �2 F ^ b �2 F ^ :h �2 F) (2)In the setting we have de�ned so far, this is equivalent to a �6= h ^ b �6= h.The next step is to generalize this idea to the situation where we have some structure offeature symbols and �nite sets of feature symbols given, and to build the feature trees withthe feature labels we �nd in the given feature label structure. Hence, we now obtain afamily of feature tree structures, indexed by the feature label structures. This is a well-known situation, for instance in constraint domains for programming languages [26], wherefeature constraints are not isolated but come in combination with other constraint domainslike numbers and words.Hence, our decision procedure now decides the validity of a sentence of the feature treetheory relative to the theory of the feature labels. As a consequence, our feature treetheory is decidable if the feature label theory is. There is only little to do in order toadopt the reduction procedure to this more general case. The only problem is now thattwo di�erent ground terms, like the constants a and b in example (1) above, not necessarilydenote semantically di�erent elements. Hence we have to consider the two cases a �= b anda �6= b. In the �rst case, a �= b and the functionality of features yield x �= y. Hence, we caneliminate x, and obtain for the �rst casea �= b ^ y[a]y ^ y[b]y ^ :yh#In the second case, we get the same reduction as before:a �6= b^ 9F (a �2 F ^ b �2 F ^ :h �2 F)The feature label structure may be equipped with operations and predicate symbols of theirown, which of course can be used in the feature tree structure as well. We could for instance4

take as feature label structure WS2S, that is the structure of words over the alphabet fa; bg,�nite sets of words, and successor functions for every symbol of the alphabet. Since themembership predicate in any regular language is de�nable in the theory of this structure,we can express in this feature tree theory for any regular language L that the arity of somex is contained in L.So far, feature trees have been �nitely branching trees, that is we took as possible aritiesall �nite sets of features. The third step is to generalize this to an arbitrary notion ofarities. That is, we assume that the feature label structure comes with a notion of sets,where we only require that there are at least two di�erent sets. From this, we constructthe feature trees such that the arities of the trees are always sets of the given featurelabel structure. For instance, we get as before the �nitely branching feature trees if thefeature label structure contains all the �nite sets of feature trees. If we take as featurelabel structure natural numbers and all the initial segments of the natural numbers, thatis sets of the form f1; : : : ; ng, we get a structure of feature trees where at every node theedges are consecutively numbered. In example (1) above, this has the consequence that wecannot reduce (2) to a �6= h^ b �6= h. Instead, the satis�ability of (3) depends on the theoryof the feature label structure.As another example, consider 9x; y (x[f]x^ y[f]y ^ x �6= y) (3)Here, we will make a case distinction: Either both x and y have the arity ffg, that is fis the only feature de�ned, or at least one of them has a greater arity. In the �rst caseboth variables are called tight, in the second case a variable with arity greater than ffg iscalled sloppy. Intuitively, a sloppy variable has features for which there are no constraints.For the case that both variables are tight, the formula can not be satis�ed. This is aconsequence of the fact that the formula x[f]x^arity(x; ffg), a so-called determinant [28],has a unique solution. In the other case, the formula is clearly satis�ed, since we can usethe unconstrained features of x, resp. y, to make both values di�erent. Hence, we cantranslate (3) to the formula which states that this other case is indeed possible:9F; g (f �2 F ^ :g �2 F) (4)Up to now, we have been talking about the feature tree structures de�ned upon somefeature label structure. The quanti�er elimination procedure we are going to present willbe based on an axiomatization FX only, no other properties of the structures will be usedfor the justi�cation of the procedure. The axiomatization is not subject to the syntacticrestriction we imposed on the input formulae to the procedure, that is the axioms maycontain subformulae x[t]y where t is non-ground.The quanti�er elimination procedure proposed in this paper takes another road than thequanti�er eliminations which have been given for the feature theories FT [9] and CFT [8].We believe that, in the case of FT and CFT, our procedure is simpler than the existingones for these theories. The di�erence lies in the way how the procedure deals with the fact5

that these feature theories themselves do not have the property of quanti�er elimination.A theory T is de�ned to have the property of quanti�er elimination [18], if for everyvariable x and atomic formulae �1; : : : ; �n there is a quanti�er-free formula such thatT j= 9x (�1 ^ : : :^ �n)$. An e�ective procedure to compute this yields immediatelya decision procedure for T , provided does not contain new free variables, and providedTrue and False are the only quanti�er-free formulae. A simple counterexample, showingthat for instance FT does not have the property of quanti�er elimination, is9x (y[l]x^ xk#) (5)We can not simply eliminate x, since we need it to express an important property of thefree variable y, which we must not drop.The classical way to solve this problem is to extend the language, such that non-reducibleformulae like (5) become atomic formulae in the extended language. In our example, thismeans that we have to add so-called path-constraints like y(lk)# to the language. Thissolution was chosen in [9] and [8].We will use another idea: We exploit the functionality of features to trade in the abovesituation an existential quanti�er for a universal quanti�er, and transform (5) into:yl# ^ 8x (y[l]x! xk#)We can bene�t from this quanti�er-switching if we consider the elimination of blocks ofquanti�ers of the same kind. This idea has already been used, for instance, in [21, 12]: Weconsider formulae in prenex normal form, for instance9 � � � 98 � � �89 � � � 9�where � is quanti�er-free. If we can transform 9 � � � 9� into a formula of the form 8 � � � 8 for some quanti�er-free , then we have reduced the number of quanti�er alternations from2 to 1, although the total number of quanti�ers might have increased.The rest of the paper is organized as follows: Section 2 �xes the necessary notions frompredicate logic. In Section 3, we de�ne by an axiom the class of feature label structures,which will be called admissible parameter structures in the rest of the paper. In Section 4we construct the standard model of feature trees over some arbitrary admissible parameterstructure, present the axiomatization FX and show that the feature tree structure is amodel of FX. Some basic properties of the axiomatization FX are stated in Section 5.The overall structure of the quanti�er elimination procedure is presented in Section 6, thedetails are given in Section 7.2 PreliminariesWe consider many-sorted predicate logic with equality.6

We use the standard shortcuts from predicate logic: ~8 � is the universal closure of �. Wewrite 9�x �, where �x = (x1; : : : ; xn) is a list of variables, as abbreviation for 9x1 : : :9xn �(8�x � is de�ned accordingly.) We also use sometimes the notation 9X �, where X is a�nite set of variables, for 9�x� where �x is some linear arrangement of X . Instead of writingthe sort with every quanti�ed variable, as in \8x 2 S : : :", we will introduce namingconventions which allow us to directly read o� the sort of a variable. As usual, variablesmay be decorated with sub-and superscripts. Lists of variables will be denoted with anoverstrike as in �x.The junctors ^;_ take precedence over (bind tighter than)$;!. Negation : and quantorsbind tightest. It is understood that conjunction is commutative and associative. Conse-quently, we identify a conjunction of formulae with the multiset of its conjuncts. We usenotions like 2 � or � �, where � is a conjunction, accordingly.We write the negation of x �= y as x �6= y. We consider equality as symmetrical, that is weidentify x �= y with y �= x (and hence, x �6= y with y �6= x). The reader should be aware,that x �= y and x �6= y are formulae of our object logic, while x = y, resp. x 6= y, is amathematical statement, expressing that the two variables x, y are syntactically identical,resp. distinct.fr(�) is the set of free variables of �, �[y=x] denotes the formula that is obtained from �by replacing every occurrence of x by y, after possibly renaming bound variables to avoidcapture.An assignment � is a X-update of an assignment �0, where X is a set of variables, if �(x) =�0(x) for all variables x 62 X . We write �[x1 7! a1; : : : ; xn 7! an] for the fx1; : : : ; xng-updateof � which assigns ai to xi, respectively.3 Admissible Parameter StructuresIn this section, we specify the class of parameter structures which we want to allow as abasis for the construction of feature trees.De�nition 3.1 (Admissible parameter signature) The signature � = hS�; F�; R�iis an admissible parameter signature, if S� contains at least the two sorts Feat and Set,and R� contains at least the relational symbol Feat �2 Set, that is the binary in�x relationsymbol �2 of pro�le Feat; Set.The sort Feat is intended to denote the features, and the sort Set is intended to denote thesets of features. In this sense, �2 can be thought of as the usual elementship relation.Small letters from the middle of the alphabet f; g; h; : : : are variables of sort Feat, andcapital letters from the middle of the alphabet F;G;H; : : : are variables of sort Set.The only requirement on the class of admissible parameter structures is, that they containat least two (observationally) di�erent sets: 7

(S2) 9F;G; f (f �2 F ^ :f �2 G)De�nition 3.2 (Admissible Parameter Structure) Let � be an admissible parametersignature. We call a �-structure B an admissible parameter structure, if B j= (S2).This is in two respects weaker than what is usually stated by axioms systems of secondorder logic [5]. First, we don't require extensionality, that is two di�erent sets may havethe same elements. Second, axiom (S2) is much weaker than the usual comprehensionaxiom of second order logic which states that every formula denotes a set. Note that, asa consequence of (S2), every admissible parameter structure contains at least one elementof sort Feat.Examples of admissible parameter signatures and algebras are1. The signature �C consists of an in�nite set C of Feat-constants and the �2 predicatesymbol. The algebra BC assigns C to Feat, every constant of C to itself, the powersetover C to Set, and the elementship relation to �2.2. �F and BF are de�ned as above with the only di�erence that Set is interpreted asthe class of �nite sets over C.3. The signature �N contains the constant 0 of sort Feat, the unary function symbol succof pro�le Feat ! Feat, and �2. The algebra BN assigns the set of natural numbers toFeat, the number 0 to the constant 0 and the successor function to succ. Set denotesthe class of initial segments of natural numbers (that is, sets of the form f1; : : : ; ng),and �2 denotes elementship.4. The signature �S contains the constant � of sort Feat, �nitely many function symbolssucci, 1 � i � n, of pro�le Feat! Feat, two predicate symbols �pre and �lex, and �2.The algebra BS assigns the set f1; : : : ; ng� to Feat, the empty word to �, the function�x:xn to succn, the pre�x (resp. lexical) ordering to �pre, resp. �lex, the powersetof f1; : : : ; ng� to Set, and elementship to �2.4 Feature Tree StructuresIn this section we give the de�nition of a standard model of features trees over some givenadmissible parameter structure. We also present a set of axioms for feature trees. We willprove, along the presentation of the axioms, that the standard model of feature trees isindeed a model of this axiomatization. No other properties of the feature tree model thanthe axiomatization will be used for the justi�cation of the quanti�er elimination procedureto be presented in the next sections. 8

De�nition 4.1 (Tree signature) For a given admissible parameter signature �, we de-�ne the tree signature �y = hS�y ; F�y ; R�yi byS�y = S� +[fTreegF�y = F�R�y = R� +[fTree[Feat]Tree;TreeFeat#gIn the standard model to be de�ned below, the sort symbol Tree denotes a set of trees.Small letters at the end of the alphabet (x; y; z : : :) denote Tree-variables. Note that theonly Tree-terms are the Tree-variables, and that any �y-formula without Tree-variables isin fact a �-formula. We write the negation of xt# as xt".De�nition 4.2 (Tree) For a set M , a set � �M� of �nite M -words is called a tree overM if it is pre�x-closed, that is if vw 2 � implies v 2 � for all v; w 2 M�. T (M) denotesthe set of trees over M .Note that every tree contains the empty word � and hence is non-empty, and that a treemay be in�nite. This is of course the usual de�nition of trees|the tree in Figure 1, forinstance, is f�; a; b; ad; bc; ba; ada; adc; add; bac; badg.De�nition 4.3 (Admissible Tree) For an admissible parameter structure B, an admis-sible tree over FeatB is a tree � 2 T (FeatB), such thatfor all v 2 � exists M 2 SetB with: � �2 BM , v� 2 �AT (FeatB) denotes the set of admissible trees over FeatB.Intuitively, this means that the set of features de�ned at some node of an admissible treemust be licensed by the denotation of Set in the admissible parameter structure B. If wetake, e.g., an admissible structure B where SetB is the class of �nite subsets of FeatB, thenAT (FeatB) contains exactly the �nitely branching trees over FeatB.De�nition 4.4 (Feature tree structure) For any admissible �-structure B, we de�nethe �y-structure By by1. By j� = B,2. TreeBy = AT (FeatB),3. � [�]By� i� � = fv j �v 2 �g,4. �� #By i� � 2 � . 9

Hence, By is a conservative extension of B.The �rst axiom gives an explicit de�nition for the � � # predicate:(#) 8x; f (xf# $ 9y x[f]y)The next axiom scheme expresses that every feature is functional:(F) 8x; y; z (x[t]y ^ x[t]z ! y �= z) where t is ground.Syntactic Convention arity(x; F) := 8f (xf# $ f �2 F)If �x = (x1; : : : ; xn) and �F = (F1; : : : ; Fn), we write arity(�x; �F) for Vni=1 arity(xi; Fi).The next axiom states that every tree has an arity, and hence reects the fact that weconsider admissible trees only.(A) 8x 9F arity(x; F)By construction, we get immediately:Proposition 4.5 For any admissible �-structure B, we have By j= (#); (F); (A).Next next axiom scheme expresses that certain formulae indeed have a solution in thedomain of feature trees.De�nition 4.6 (Graph, Constrained variable) A conjunction of formulae of theform x[t]y is a called a graph. For a graph , let co() := fx j x[t]y 2 for some t and ygbe the set of variables constrained by .Syntactic Convention For a graph and variable x, we de�neFx := ft j x[t]y 2 for some variable yg� := ft �6= s j t 6= s and t; s 2 F x for some xgFor instance, := x[a(f)]y ^ x[b(g; a(f))]z ^ y[a(a(f))]x^ y[a(a(f))]yis a graph with co() = fx; yg, F x = fa(f); b(g; a(f))g, F y = fa(a(f))g, F z = ;, and� = a(f) �6= b(g; a(f)).(E) ~8 2640B@� ^ n̂i=1 ^a2Fxi a �2 Fi1CA! 9x1; : : : ; xn ^ n̂i=1 arity(xi; Fi)!375where is a graph with co() = fx1; : : : ; xng.10

An example of axiom scheme (E) is8z; f1; f2; g; F;G (f1 �6= f2 ^ f1 �2 F ^ f2 �2 F ^ g �2 G! 9x1; x2 (x1[f1]x2 ^ x1[f2]z ^ x2[g]x1^arity(x1; F) ^ arity(x2; G))) (6)Proposition 4.7 T (M) with the subset relation is a cpo.(see, e.g., [16] for de�nition and basic properties of cpos). Note, that in general AT (M)does not constitute a sub-cpo of T (M). Obviously, the set of compact elements of T (M)are exactly the �nite sets in T (M), and T (M) is an algebraic cpo.Lemma 4.8 For any admissible �-structure B, we have By j= (E).Proof: (Sketch) Let be a graph, co() = fx1; : : : ; xng, and By; � j= �^Vni=1Va2Fxi a �2Fi. We construct �1; : : : ; �n 2 AT (FeatB), such thatBy; �[x1 7! �1; : : : ; xn 7! �n] j= ^ n̂i=1^arity(xi; Fi) (7)We de�ne the operator �: (T (FeatB))n ! (T (FeatB))n by its n components pri � �. Forgiven i, let fxi[t1]z1; : : : ; xi[tm]zmg be the set of atoms in which constrain xi.pri � �(�1; : : : ; �n) = f�g [�1�1 [: : :[�m�m [f� 2 FeatB j � �2 B�(Fi)gwhere �j is the evaluation of tj in B; �, and where we de�ne �j := �k if zj = xk for some1 � k � n, and otherwise �j := �(zj). As usual �j�j is an abbreviation for f�jv j v 2 �jg.� is obviously continuous, hence we can de�ne (�1; : : : ; �n) as the least �xed point of �. Byconstruction, �i 2 AT (FeatB) for all i. Since By; � j= � , all �j for given i are di�erent.Hence, (7) holds. 2As an example of this construction, consider the formula (6). Let �(z) = f�; e; eeg, �(f1) =a, �(f2) = b, �(g) = c, �(F) = fa; bg and �(G) = fc; dg. In this case, we de�ne � bypr1 � �(�1; �2) = f�g [a�2 [bf�; e; eeg [fa; bg= f�; b; be; beeg[a�2pr2 � �(�1; �2) = f�g [c�1 [fc; dg= f�; dg [c�1The least �xed point of � is (L1; L2), where L1 is the pre�x-closure of (ac)�(bee[ad), andL2 is the pre�x-closure of (ca)�(d [cbee). 11

Syntactic Convention Let M be a �nite set of Feat-terms.arity(x;M) := 8f (xf# $ _a2M f �= a)As above, this notion generalizes to arity(�x; �M).De�nition 4.9 A determinant � is a formula ^ ^x2co() arity(x; F x)where is a graph and has only free variables of sort Tree.In other words, for every constraint x[t]y in a determinant, the term t must be ground.For instance, from the following three formulaex[a(c)]y ^ x[b(d)]z ^ y[a(a(c))]x^ arity(x; fa(c); b(d)g)^ arity(y; fa(a(c))g)x[a(f)]y ^ arity(x; fa(f)g)x[a(c)]y ^ x[b(d; a(c))]z^ arity(x; fa(c)g)only the �rst one is a determinant (since f denotes a variable).The last axiom scheme expresses that determinants have at most one solution in the con-strained variables.Syntactic Convention 9�1�x � is an abbreviation for8�x; �y (�(�x) ^ �(�y)! �x �= �y)where �y is some list of distinct variables as long as �x, and disjoint to fr(�).9�1�x � reads \there is at most one tuple �x, such that �".(U) ~8 (� ! 9�1co(�) �) where � is a determinant.An example of (U) is8z (a1 �6= a2 ! 9�1x; y (x[a1]y ^ x[a2]z ^ y[b]x^ arity(x; fa1; a2g)^ arity(y; fbg)))Note, that (U) does not state that a determinant always has a solution. In the aboveexample, it might be the case that, e.g., the \set" fbg does not exist, that is that 9F 8x(x �2F $ x �= b) does not hold in the parameter structure. In this case, the determinant doesnot have a solution due to axiom (A).Lemma 4.10 For any admissible �-structure B, we have By j= (U).12

Proof: (Sketch) We split the determinant � into ^ �, where is a graph and �is a conjunction of arities. As in the proof of Lemma 4.8, let By; � j= ��, and let �be the operator de�ned by . By the construction given in the proof of Lemma 4.8,By; �[x1 7! �1; : : : ; xn 7! �n] j= � i� (�1; : : : ; �n) is a �xed point of �.We show, that � has only one �xed point. Let (�1; : : : ; �n); (�1; : : : ; �n) be two �xed pointsof �. De�ne � ji := fv 2 �i j length(v) = jg for any j � 0, and analogously for �ji . Oneshows easily by induction on j that � ji = �ji for all i; j. Taking the limits of the two chains,the claim follows immediately. 2De�nition 4.11 The axiom system FX consists of the axioms (S2), (#), (F), (A), (E)and (U)Corollary 4.12 For every admissible parameter structure B, we have that By j= FX.5 Some Properties of FX5.1 DeterminantsAs an immediate consequence of (U) and the de�nition of 9�1 , we getProposition 5.1 For every formula and determinant �, we haveFX j= ~8 (�� ^ 9co(�) (� ^)! 8co(�) (� !))This prominent role of determinants is the heart of the entailment check for the featuretheory CFT [28].5.2 Primitive FormulaeDe�nition 5.2 The set of primitive formulae is de�ned by the grammarp ::= � j xt# j p ^ p j p _ p j :p j 8� p j 9� pwhere � denotes an arbitrary �-formula, and where � denotes a variable not of sort Tree.In other words, a primitive formula is a �y-formula that does not contain a Tree-quanti�er,and does not contain an atom of the form x �= y or x[t]y. A primitive formula without freeTree-variables is in fact a �-formula. Intuitively, in a primitive formula, the sort Tree isonly used to express statements that could be as well expressed using sets. The followingde�nition makes this intuition formal: 13

De�nition 5.3 We de�ne inductively �[F==x], the replacement of a Tree-variable x by aSet-variable F in a primitive formula �.xt#[F==x] = t �2 Fa[F==x] = a if a is an atomic formula di�erent from xt# for all t(:�)[F==x] = :(�[F==x])(�1 ^ �2)[F==x] = �1[F==x] ^ �2[F==x](9� �)[F==x] = 9� (�[F==x]) if F 6= �(9F �)[F==x] = 9G ((�[G=F])[F==x]) if G 62 fr(�)Intuitively, �[F==x] abstracts the feature tree x in � to a set F . This operation is anabstraction since it \drops"all the subtrees of a feature tree and just keeps the informationabout the features de�ned at the root. Again, this notation generalizes to simultaneousreplacement [�F==�x]. For instance, � := xa(f)# ^ 8g (xa(g)# ! xb(g)#) is a primitiveformula, and �[F==x] = a(f) �2 F ^ 8g(a(g) �2 F ! b(g) �2 F)The following lemma expresses that the de�nition of �[F==x] meets the intuition of replacinga Tree-variable x by a Set-variable F .Proposition 5.4 Let � be a primitive formula. Then j= ~8�arity(�x; �F)! (�$ �[�F==�x])�.It would be possible to extend the de�nition of a primitive formula and of �[F==x] to allowalso for Tree-quanti�ers. The de�nition given here is su�cient for the quanti�er eliminationas described below.6 The Main TheoremWe �rst de�ne the class of restricted formulae, which is the class of input formulae for ourquanti�er elimination procedure.De�nition 6.1 (Restricted formula) A �y-formula is called a restricted formula, if inevery subformula x[t]y the term t is ground.In the following, we will also speak of restricted sentences, the restricted theory of a �y-structure, and so on.Theorem 6.2 (Main Theorem) There is an algorithm which computes for every re-stricted �y-sentence � a �-sentence with FX j= � $.Before we can discuss the top-level structure of the proof, we need some additional conceptswhich describe the intermediate results we get during the quanti�er elimination.14

De�nition 6.3 (Molecule) The set of molecules is de�ned by the following grammar:m ::= x �= y j x �6= y j x[t]y j :x[t]y j pwhere p is a primitive formula, and where t is a ground term.Hence, any molecule without free Tree-variables is in fact a primitive formula without freeTree-variables, and hence a �-formula.De�nition 6.4 (Basic Formula) A basic formula is a �y-formula of the form9�x (m1 ^ : : :^mn)where m1; : : : ; mn are molecules. A variable is local to a basic formula 9�x � if it occurs in�x, and global otherwise.Let 9�x � be a basic formula, and let be the greatest graph contained in �, that is isthe set of all molecules of the form x[t]y contained in �. Then we de�ne F x� = F x .Theorem 6.2 follows from the following lemma:Lemma 6.5 (Main Lemma) There is an algorithm which computes for every basic for-mula � an universally quanti�ed Boolean combination of molecules, such that1. FX j= ~8 (�$)2. fr() � fr(�)3. if fr(�) = ;, then is a boolean combination of molecules.We borrow the technique of proving Theorem 6.2 from Lemma 6.5 from [21], [12].Proof of Theorem 6.2: It is su�cient to consider only sentences � in a weak prenexnormal form, where the matrix is just required to be boolean combination of molecules(instead of a boolean combination of atoms). We proceed by induction on the number nof quanti�er blocks in the quanti�er pre�x.If n = 0, then since � is a sentence, it does not contain any Tree-variables and hence is a�-sentence.Let n � 1 and � = Q9�x �, where Q is a (possibly empty) string of quanti�ers, not endingwith 9, and � is a Boolean combination of molecules. We transform � into disjunctivenormal form and obtain an equivalent formulaQ9�x (�1 _ : : :_ �n)where every � is a conjunction of molecules. This is equivalent toQ(9�x �1 _ : : :_ 9�x �n)15

where every 9�x �i is a basic formula. Using (1) of Lemma 6.5, we can transform thisequivalently into Q(8�y1 1 _ : : :_ 8�yn n)where every i is a Boolean combination of molecules, and where all �yi are empty if Q is theempty string (because of (3) in Lemma 6.5). After possibly renaming bound variables, thiscan be transformed into the sentence Q8�z , where is Boolean combination of molecules.By condition (2) of Lemma 6.5, Q8�z is again a sentence. Since the number of quanti�eralternations in Q8�x is n� 1, we can now apply the induction hypothesis.If the innermost block of quanti�ers consists of universal quanti�ers, we consider the nega-tion :� of the sentence (which now has an existential innermost block of quanti�ers) andtransform it into a restricted sentence . Consequently, FX j= � $:. 2Corollary 6.6 If B is an admissible �-structure, then the restricted theory of By is de-cidable relative to the theory of B.Note that all four admissible parameter structures introduced at the end of Section 3 havea decidable �rst-order theory.1. We can interpret the theory of BC in S1S, the monadic second order theory of naturalnumbers with successor. The decidability of the theory of BC follows from B�uchisresult [11] on the decidability of S1S.2. Analogously, the decidability of the theory of BF follows from the decidability ofWS1S, the weak monadic second order theory of the natural numbers with successor.The decidability ofWS1S is an easy corollary of [11], since the �nite sets are de�nablein S1S.3. Decidability of the theory of BN follows again from [11], since the initial fragmentsof natural numbers are de�nable in S1S.4. De�nability of the theory of BS follows from Rabins celebrated result [23] on thedecidability of S2S, the monadic second order theory of two successor functions.Note that the pre�x relation and the lexical ordering can be de�ned in S2S [29].Corollary 6.7 The restricted theory of By, where B is one of BC, BF , BN , BS, is decid-able.7 The ReductionWe now prove Lemma 6.5. Our goal is to eliminate, by equivalence transformations w.r.t.FX , all the quanti�ers of sort Tree, taking care of the fact that we don't introduce newvariables. This will be achieved by transformation rules which transform basic formulaeinto combinations of basic formulae. To make this formal, we introduce the class of complexformulae (see Figure 7 for an overview of the di�erent syntactic classes of formulae):16

�-f. -^;_;:8; 9; xt#x �= y, x �6= y,x[t]y, :x[t]y XXXXXXXzprimitive���� molecule -9;^ basic -8;^;_ complexFigure 2: Classes of formulaeDe�nition 7.1 (Complex formula) The set of complex formulae is de�ned by the fol-lowing grammar: F ::= 8x F j F ^ F j F _ F j hbasic formulaiNote that this fragment, by closure of the set of molecules under negation, also containsconstructions like molecule1 ^ : : :^moleculen ! basic formulaThe transformation rules always have a basic formula in the hypothesis. Such a rule canbe applied to any maximal basic formula occurring in a complex formula. The maximalitycondition means here, that we have to use the complete existential quanti�er pre�x. Ifa complex formula does not contain any basic formula, it can be easily transformed intoa universal quanti�ed boolean combination of molecules by moving universal quanti�ersoutside.De�nition 7.2 (Quasi-solved from) A basic formula 9�x is a quasi-solved form, if1. does not contain a molecule x �= y or :x[t]y,2. if x �6= y 2 , then x 6= y, and x 2 �x or y 2 �x.3. if x[t]y 2 , then x 2 �x,4. if x[t]y ^ x[t]z � , then y = z.5. if the ground Feat-terms t, s occur in and t 6= s, then t �6= s 2 .6. if x 2 �x, then arity(x; F x�) 2 or :arity(x; F x�) 2 .7.1 Transformation into Quasi-solved FormThe goal of the rules in Figure 3 is to have only basic formulae which are quasi-solvedforms.Proposition 7.3 The rules described by (SC), (E1), (E2), (IE1), (FI) are equivalencetransformations in every structure. 17

(Sc) 9�x (m ^ �)m ^ 9�x � fr(m) \ �x = ;; m is not a primitive formula(E1) 9�x; x (x �= y ^ �)9�x �[y=x] y 6= x(E2) 9�x (x �= x ^ �)9�x �(IE1) 9�x (x �6= x ^ �)?(UD) 9�x (:x[t]y ^ �)9�x (xt" ^ �)_ 9�x; z (x[t]z ^ z �6= y ^ �) z new(FD) 9�x (x[t]y ^ x[t]z ^ �)9�x (x[t]y ^ y �= z ^ �)(FI) 9�x �s �= t ^ 9�x �[t=s]_ 9�x (s �6= t ^ �) the ground terms s, t occur in �, s 6= t(FQ) 9�x; x (y[t]x^ �)yt# ^ 8z (y[t]z ! 9�x �[z=x]) y 62 �x; z newFigure 3: The rule set (QSF) for quasi-solved forms.
18

Lemma 7.4 (UD) describes an equivalence transformation in every model of the axiomsschemes ("), (F).Proof: Axiom scheme (F) is equivalent to8x; y (x[t]y $ 9z x[t]z ^ 8z (x[t]z ! z �= y))which can be transformed equivalently, using axiom (#), into8x; y (:x[t]y $ xt" _ 9z (x[t]z ^ z �6= y))As a consequence, we have for every formula � with z 62 fr(�):("); (F) j= ~8 (:x[t]y ^ �$ (xt" ^ �) _ 9z (x[t]z ^ z �6= y ^ �))and hence("); (F) j= ~8 (9�x (:x[t]y ^ �)$ 9�x (xt" ^ �) _ 9�x; z (x[t]z ^ z �6= y ^ �)) 2Lemma 7.5 (FD) describes an equivalence transformation in every model of the axiomscheme (F).Lemma 7.6 (FQ) describes an equivalence transformation in every model of the axiomscheme (F).Proof: We have for any formula with z 62 fr()(F) j= ~8 �9x (y[t]x^)$ yt# ^ 8z (y[t]z ! [z=x])�Now we choose to be the formula 9�x�. Since y 62 �x the antecedent of the rule is equivalentto 9x (y[t]x^ 9�x �), and the claim follows immediately. 2For this rule it is essential that t is ground.Lemma 7.7 The rule system (QSF) is terminating.Proof: We de�ne a measure on basic formulae and show, that for every rule applicationthe measure of every single basic formula generated is smaller than the measure of thebasic formula being replaced. Termination then follows by a standard multiset argument.We assign a basic formula the tuple (�1; �2; �3; �4), where1. �1 is the number of :x[t]y molecules in ,19

2. �2 is the number of x[t]y molecules in ,3. �3 is the number of pairs (t; s) of Feat-ground terms, where both t and s occur in ,but t �6= s does not occur in ,4. �4 is the total length of .It is now easily checked that the lexicographic ordering on these measures is strictly de-creased by every application of a rule. The side condition of rule (Sc) guarantees that noformula of the form t �6= s, arity(x; F x�) or :arity(x; F x�) is moved out of a basic formula.2Corollary 7.8 There is an algorithm, which transforms any basic formula into an FX-equivalent complex formula, in which all basic formulae are quasi-solved forms.Proof: We compute a normal-from wrt. the ruleset (QSF), and from this compute anormal form wrt. the following rule:(ST) 9�x; x �9�x; x (� ^ arity(x; F x�))_ 9�x; x (� ^ :arity(x; F x�)) arity(x; F x�);:arity(x; F x�) 62 � 27.2 Eliminating quasi-solved forms with sloppy inequationsIn this section, we show how to eliminate quasi-solved forms with only benign inequations,in a sense to be explained soon. In the next subsection, we will explain how to get rid ofnasty inequations.De�nition 7.9 (Sloppy and Tight variables) Let 9�x be a basic formula. We call alocal variable x 2 �x tight (in 9�x) if arity(x; F x) 2 , and otherwise sloppy.By the de�nition of a quasi-solved form, :arity(x; F x�) 2 for every sloppy variable x.De�nition 7.10 (Closure) For a graph , we de�ne for every feature path � of Feat-terms the relation ;� as the smallest relation on fr() withx;� x if x 2 fr()if x;� y and y[t]z 2 ; then x;�t zWe write x; y if x;� y for some �.For a graph and variables x; y, we de�ne the closure of (x; y)hx; yi := f(u; v) 2 fr()2 j x;� u and y ;� v for some �g20

In [8], the variable y with x ;� y has been called the value jx� j of the rooted path x�in . Obviously, hx; yi can be computed in �nitely many steps.Proposition 7.11 For every graph ,variables x; y and (u; v) 2 hx; yi we have(F) j= (^ u �6= v ! x �6= y)De�nition 7.12 (Sloppy and Tight inequations) Let 9�x be a basic formula. Wecall an inequation x �6= y sloppy (in 9�x), if there is a (u; v) 2 hx; yi with x 6= y, where atleast one of u and v is sloppy. Otherwise, the inequation is called tight.The benign inequations handled in this section are the sloppy ones. The idea is that forsloppy variables, we have enough freedom to make them all di�erent.In the following, we assume a partition of a quasi-solved form as 9�x (^ � ^ �), where denotes a graph, � denotes a conjunction of inequations between Tree-variables, and �denotes a primitive formula. Note that in this case, by the de�nition of quasi-solved forms,co() � �x, � � �, and � contains only non-trivial inequations which use at least one localvariable. For a graph , we denote by ~ the formula obtained by replacing every atomx[t]y by xt#.Lemma 7.13 Let 9�x (^ �) be a quasi solved form without inequations. ThenFX j= ~8 �9�x (^ �)! 9 �F ((~ ^ �)[�F==�x])�where �F is disjoint with fr(�).Proof: Let A j= FX and � be a valuation with A; � j= 9�x (^ �). Since j= ! ~, weget A; � j= 9�x (~ ^ �). Together with axiom (A), this means since �F is disjoint with fr(�),that A; � j= 9�x; �F (arity(�x; �F) ^ ~ ^ �). With Proposition 5.4, we getA; � j= 9 �F ((~ ^ �)[�F==�x])since �x is disjoint with fr((~ ^ �)[�F==�x]). 2Lemma 7.14 Let 9�x (^ �^�) be a quasi solved form, where �F is disjoint with fr(�) and� consists of sloppy inequations only. ThenFX j= ~8 �9 �F ((~ ^ �)[�F==�x])! 9�x (^ � ^ �)�Proof: Let A j= FX and � be a valuation with A; � j= 9 �F (~^ �)[�F==�x]. Let � be an �F -update of �, such that A; � j= (~ ^ �)[�F==�x]. Let Sl be the set of sloppy variables of ^ �.Let f; F be new variables, and for every x 2 Sl, let nx � 0, and fx; x0; : : : ; xnx be variables21

not occurring in ^ �. Let Slf = ffx j x 2 Slg, and Slx = fxi j x 2 Sl; 0 � i � nxg. Wede�ne an extension � of by� := ^ x̂2Sl(x[fx]x0 ^ x0[f]x1 ^ : : : xnx�1[f]xnx ^ arity(xnx ; F))Hence, j= � ! . By axiom (S2), there are a 2 FeatA and A;B 2 SetA with a �2A A anda 6 �2A B. We denote by ��x the extension of �x by Slx, and by ��F an according extension of �F .Hence, by de�nition of sloppyness, there is a Slf [Slx[ff; Fg-update �0 of � such thatA; �0 j= �� ^ (~� ^ �)[��F==��x]Especially, �0(f) = a, �0(F i) = A if F corresponds to some xi with i � nx, and �0(F i) = Bif F corresponds to some xnx . Note, that �� extends � � � just by stating that fxis assigned a value di�erent from all (ground) terms in F x . By construction, A; �0 j=Vni=1Va2Fxi� a 2 Fi. Hence, by axiom (E), there is an ��x-update �00 of �0, such thatA; �00 j= � ^ arity(��x; ��F)Let �0(x) = �00(x) if x 2 �x, and �0(x) = �(x) otherwise. Hence, A; �0 j= . By Proposi-tion 5.4 and since �F is disjoint with fr(�), A; �0 j= �.Since there are in�nitely many choices of nx for every x 2 Sl, we can easily �nd valuesnx such that �00(x) 6= �00(y) for every variable y 2 fr(^ � ^ �) with y 6= x. Hence, byProposition 7.11, A; �0 j= �. 2We are now ready to give the elimination rule for quasi-solved forms with benign inequa-tions:(IE2) 9�x (^ � ^ �)9 �F ((~ ^ �)[�F==�x]) if � contains only sloppy inequations, �F \ fr(�) = ;As an example of rule (IE2), consider9x; y; u (x[s]y ^ u[s]v ^ y[t]y ^ x �6= u ^ arity(x; fsg)^ arity(u; fsg)^ :arity(y; ftg))9F;G;H (s �2 F ^ s �2 G ^ t �2 H^8� (� �2 F $ � �= s) ^ 8� (� �2 G$ � �= s) ^ :8� (� �2 F $ � �= s))Here, x �6= u is a sloppy inequation since y is a sloppy variable.From Lemma 7.14 and Lemma 7.13, we get immediatelyLemma 7.15 (IE2) describes an equivalence transformation in every model of FX.Corollary 7.16 There is an algorithm, which transforms any complex formula, in whichall basic formulae are quasi-solved forms containing only sloppy inequations, into an FX-equivalent universally quanti�ed boolean combination of molecules.22

7.3 Eliminating tight inequationsIn the closure of tight inequations, there are only inequations of type tight 6= tight ortight 6= global. We �rst show how to transform the quasi-solved form such that theonly tight inequations are of type tight 6= global. Then, we show how to get rid of thetight 6= global inequations.(IE3) 9�x (^ � ^ x �6= y ^ �)9�x (^ � ^ �) there are tight variables u; v with (u; v) 2 hx; yiand F u 6= F vFrom Proposition 7.11, we getProposition 7.17 (IE3) describes an equivalence transformation on quasi-solved forms inevery model of FX.Proof: This is a consequence of condition (5) in the de�nition of a quasi-solved form. 2We say that the set � of equations is closed under a graph , if whenever x �= y 2 and(u; v) 2 hx; yi, then u �= v 2 .Proposition 7.18 Let � be a determinant and � a set of equations which is closed under �.If fr(�) � co(�) and F x� = F y� for every equation x �= y 2 �, thenFX j= ~8 (�� ! (� ! �))Proof: Let A; � j= ��. By Proposition 5.1, we have to show thatA; � j= 9co(�)(� ^ �)) (8)Let � be an idempotent substitution equivalent to �. Then(8) , A; � j= 9co(�)(� ^ �), A; � j= 9co(�)(�� ^ �), A; � j= 9co(�)(��) since fr(�) � co(�) (9)By construction, �� is again a determinant, with co(�) � co(�), and ��� = ��. Hence, (9)follows from axiom (E). 2A similar lemma, in the context of CFT, was presented in [28].Proposition 7.19 Let � be a determinant and �; �0 be sets of equations such that �^ �0 isclosed under �. If fr(�) � co(�) and F x� = F y� for every equation x �= y 2 �, thenFX j= �� ! ~8 (� ! (�0 $ � ^ �0))23

Proof: We have to show that FX j= ~8 (�� ^ � ^ �0 ! �) (10)Let �0 be an idempotent substitution equivalent to �0. Then (10) is equivalent toFX j= ~8 (�� ^ �0� ! �0�) (11)since �0�� = ��. Observe, that �� = ��0�, fr(�0�) � co(�0�), �0� is closed under �0�, andthat F x�0� = F y�0� for every equation x �= y 2 . Hence, (11) follows from Proposition 7.18.2We can now give the rule which reduces the tight 6= tight inequations to tight 6= globalinequations:(IE4) 9�x (^ � ^ x �6= y ^ �)_(u;v)2I 9�x (^ � ^ u �6= v ^ �) x �6= y tight, rule (IE3) does not apply,I = f(u; v) 2 hx; yi j fu; vg 6� �xgAs an example of rule (IE4), consider9x; y; v (x[s]v ^ x[t]v0 ^ y[s]w ^ y[t]w0 ^ s �6= t^arity(x; fs; tg)^ arity(y; fs; tg)^ arity(v; fg)^ x �6= y)9x; y; v (x[s]v ^ x[t]v0 ^ y[s]w ^ y[t]w0 ^ s �6= t^arity(x; fs; tg)^ arity(y; fs; tg)^ arity(v; fg)^ v �6= w)_ 9x; y; v (x[s]v ^ x[t]v0 ^ y[s]w ^ y[t]w0 ^ s �6= t^arity(x; fs; tg)^ arity(y; fs; tg)^ arity(v; fg)^ v0 �6= w0)Lemma 7.20 (IE4) describes an equivalence transformation in every model of FX.Proof: This follows immediately from Proposition 7.19. 2Finally, we give the rule to eliminate tight 6= global inequations.De�nition 7.21 (Generated subformula) For a conjunction � of molecules and vari-able x, the subformula �x of � generated by x is de�ned as�x := fu[t]v; arity(u;M) 2 � j x;� ugNote that, if x �6= y is tight in the quasi-solved form 9�x �, then �x is a determinant.24

(IE5) 9�x; x (� ^ x �6= y)9�x; x � ^ 8co(�x) (�x ! x �6= y) y 62 �x; y �6= x; x tightAs an example of rule (IE5), consider9x; x0 (x[s]x^ x[t]y ^ x0[t]x0 ^ s �6= t ^ arity(x; ffg)^ x �6= y)9x; x0 (x[s]x^ x[t]y ^ x0[t]x0 ^ s �6= t ^ arity(x; ffg))^8x (x[s]x^ x[t]y ^ arity(x; ffg)! x �6= y)Lemma 7.22 (IE5) describes an equivalence transformation in every model of FX.Proof: First note that co(�x) � �x [fxg. Since j= � ! �x, the conclusion implies thehypothesis.The hypothesis obviously implies the �rst part of the conclusion. By Proposition 5.1, italso implies the second part (note that ��x � �, since � is a quasi-solved form). 2Corollary 7.23 There is an algorithm, which transform any complex formula in which allbasic formulae are quasi-solved forms, into an FX-equivalent complex formula, in whichall basic formulae are quasi-solved forms containing only sloppy inequations.Hence, we obtain the proof of Lemma 6.5 by composing the Corollaries 7.8, 7.16 and 7.23.Acknowledgments. David Israel pointed out the analogy to the situation in processlogic. Rolf Backofen, Andreas Podelski and Gert Smolka provided helpful criticism andremarks.This work has been supported by the Bundesminister f�ur Bildung, Wissenschaft, Forschungund Technologie (Hydra, ITW 9105), the Esprit Basic Research Project ACCLAIM (EP7195) and the Esprit Working Group CCL (EP 6028).References[1] Hassan A��t-Kaci. An algebraic semantics approach to the e�ective resolution of type equations.Theoretical Computer Science, 45:293{351, 1986.[2] Hassan A��t-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in inher-itance. Journal of Logic Programming, 3:185{215, 1986.[3] Hassan A��t-Kaci and Andreas Podelski. Towards a meaning of LIFE. In Jan Maluszy�nski andMartin Wirsing, editors, 3rd International Symposium on Programming Language Implemen-tation and Logic Programming, Lecture Notes in Computer Science, vol. 528, pages 255{274.Springer-Verlag, August 1991. 25

[4] Hassan A��t-Kaci, Andreas Podelski, and Gert Smolka. A feature-based constraint system forlogic programming with entailment. Theoretical Computer Science, 122(1{2):263{283, January1994.[5] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth throughProof. Computer Science and Applied Mathematics. Academic Press, 1986.[6] Rolf Backofen. Expressivity and Decidability of First-Order Theories over Feature Trees. PhDthesis, Technische Fakult�at der Universit�at des Saarlandes, Saarbr�ucken, Germany, 1994.[7] Rolf Backofen. Regular path expressions in feature logic. Journal of Symbolic Computation,17:421{455, 1994.[8] Rolf Backofen. A complete axiomatization of a theory with feature and arity constraints.Journal of Logic Programming, 1995. To appear.[9] Rolf Backofen and Gert Smolka. A complete and recursive feature theory. Theoretical ComputerScience. To appear.[10] Rolf Backofen and Ralf Treinen. How to win a game with features. In Jean-Pierre Jouannaud,editor, 1st International Conference on Constraints in Computational Logics, Lecture Notesin Computer Science, vol. 845, M�unchen, Germany, September 1994. Springer-Verlag.[11] J. R. B�uchi. On a decision method in restricted second order arithmetic. In E. Nagel et. al.,editor, International Congr. on Logic, Methodology and Philosophy of Science, pages 1{11.Stanford University Press, 1960.[12] Hubert Comon and Pierre Lescanne. Equational problems and disuni�cation. Journal ofSymbolic Computation, 7(3,4):371{425, 1989.[13] Jochen D�orre. Feature-Logik und Semiun�kation. PhD thesis, Philosophische Fakult�at derUniversit�at Stuttgart, July 1993. In German.[14] Jochen D�orre. Feature-logic with weak subsumption constraints. In M. A. Rosner C. J. Ruppand R. L. Johnson, editors, Constraints, Language and Computation, chapter 7, pages 187{203.Academic Press, 1994.[15] Jochen D�orre and WilliamC. Rounds. On subsumption and semiuni�cation in feature algebras.Journal of Symbolic Computation, 13(4):441{461, April 1992.[16] C. A. Gunter and D. S. Scott. Semantic domains. In van Leeuwen [32], chapter 12, pages633{674.[17] Martin Henz, Gert Smolka, and J�org W�urtz. Object-oriented concurrent constraint program-ming in Oz. In V. Saraswat and P. Van Hentenryck, editors, Principles and Practice of Con-straint Programming, chapter 2, pages 27{48. MIT Press, Cambridge, MA, 1995. To appear.[18] Wilfrid Hodges. Model Theory. Encyclopedia of Mathematics and its Applications 42. Cam-bridge University Press, 1993.[19] Joxan Ja�ar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of the 14thACM Conference on Principles of Programming Languages, pages 111{119, Munich, Germany,January 1987. ACM.[20] Mark Johnson. Attribute-Value Logic and the Theory of Grammar. CSLI Lecture Notes 16.Center for the Study of Language and Information, Stanford University, CA, 1988.26

[21] Anatoli�� Ivanovi�c Malc'ev. Axiomatizable classes of locally free algebras of various type. InIII Benjamin Franklin Wells, editor, The Metamathematics of Algebraic Systems: CollectedPapers 1936{1967, chapter 23, pages 262{281. North Holland, 1971.[22] Rohit Parikh. A decidability result for a second order process logic. In 19th Annual Symposionon Foundations of Computer Science, pages 177{183, Ann Arbor, Michigan, October 1978.IEEE.[23] Michael O. Rabin. Decidability of second-order theories and automata on in�nite trees. Trans-actions of the American Mathematical Society, 141:1{35, 1969.[24] William C. Rounds and Robert Kasper. A complete logical calculus for record structures rep-resenting linguistic information. In Proceedings of the First Symposium on Logic in ComputerScience, pages 38{43, Cambridge, MA, June 1986. IEEE Computer Society.[25] Gert Smolka. Feature constraint logics for uni�cation grammars. Journal of Logic Program-ming, 12:51{87, 1992.[26] Gert Smolka. The de�nition of Kernel Oz. In Andreas Podelski, editor, Constraints: Basicsand Trends, Lecture Notes in Computer Science, vol. 910, pages 251{292. Springer-Verlag,March 1995.[27] Gert Smolka and Hassan A��t-Kaci. Inheritance hierarchies: Semantics and uni�cation. Journalof Symbolic Computation, 7:343{370, 1989.[28] Gert Smolka and Ralf Treinen. Records for logic programming. Journal of Logic Programming,18(3):229{258, April 1994.[29] Wolfgang Thomas. Automata on in�nite objects. In van Leeuwen [32], chapter 4, pages133{191.[30] Ralf Treinen. A new method for undecidability proofs of �rst order theories. Journal ofSymbolic Computation, 14(5):437{457, November 1992.[31] Ralf Treinen. Feature constraints with �rst-class features. In Andrzej M. Borzyszkowskiand Stefan Soko lowski, editors, Mathematical Foundations of Computer Science 1993, LectureNotes in Computer Science, vol. 711, pages 734{743. Springer-Verlag, 30 August{3 September1993.[32] Jan van Leeuwen, editor. Handbook of Theoretical Computer Science, volume B - FormalModels and Semantics. Elsevier Science Publishers and The MIT Press, 1990.
27

