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1 Introduction

The use of modules for data abstraction is now a well-established principle in software design,
see for instance [Bis86]. From the programmers point of view a module is a piece of encapsulated
software that propagates only a well-defined subset of its data structures and operations to its
environment, we call this the export part of the module. Outside the module these data
structures and operations are accessible only via their names, the implementation remains
hidden from the users of the module. The module may use data structures and operations
defined elsewhere in the program, this leads to the important concept of parameterization:
The parameter part of module specifies the sorts and operations that have to be supplied to
the module. In the following we will always consider modules as parameterized modules, even
if the the parameter part is not stated explicitly in the syntax. This interpretation of modules
reflects in the semantics: The semantics of module now has to be defined as a function that
maps the denotations of the paramter part to the denotations of the export part.

Among the modularization concepts known from programming languages we here only men-
tion the clusters of CLU ([LG86], [LAB*81]), the packages of Adal ([DoD81], [ANSI83]), the
modules of MODULA-2([Wir85]) and the structures of ML ([Mac86]). Generic data types as
in ML or Miranda? ([Tur85], [Tur86]) provide another parameterization concept by abstracting
basic sorts from data type definitions. Furthermore parameterization comes naturally with
specification languages, no matter whether they are operational, axiomatic (algebraic) or al-
gorithmic ([EM90]). A non-exhaustive list of specification languages using parameterization is
Alphard ([WLS76], [Sha81]), CLEAR([BGS80]), ACT ONE ([EM85]) and OBSCURE ([LL87],
[LL90]). All these languages differ substantially in the methods used for implementing, resp.
specifying, data structures and operations. In this paper we take an abstract approach and
present an idealized language for expressing modules. The language follows the Algorithmic
Specification language of [Loe87] and can be seen as a programming language as well as a spec-
ification language. We only consider modules defining data structures and operations, higher
order functions are not included in our language. We have a purely functional point of view,
that is modules construct new “exported” algebras from given “parameter” algebras.

We do not distinguish between the import- and the parameter part of a module as it is done in
[EMB85]: In our sense the import part comprises all the sorts and operations that may be used
by a module but are not defined in it. [EM85] call this the import part while their parameter
part designates some sorts and operations that are common to the import and the export part.
We choose the name “parameter” in order to emphasize that the semantics of a module depends
exactly on the meaning of these sort and operation symbols.

In our idealized language functions are defined by general recursive programs as in functional
programming languages, but without syntactic sugar as for instance the let-construct or patern
matching. Data structures are defined by constructor functions, this kind of data definition
is known from languages like ML, Miranda or Algorithmic Specifications. The Algorithmic

' Ada is a registerd trademark of the United States Departement of Defense.
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Specification method furthermore introduces subset and quotient operations on algebras, but
as shown in [Loe87] these are not relevant for the logic and we are allowed to drop them
here. Although restricted in expressive power we claim that our idealized language provides
a representation of interesting subsets of the languages above (also the imperative ones in the
case of absence of global variables, such that the functional perspective is retained).

This idealized language can be seen as a generalization of program schemes (see for instance
[Gre75]). In fact, when we restrict the module language by excluding the definition of new sorts
we meet exactly the situation of recursive program schemes, where for some module a parameter
algebra corresponds to an interpretation of a program scheme. While in the theory of program
schemes one is interested in deriving properties of schemes that hold for all interpretations from
some fixed class, we are here interested in another question.

Our interest in modules is motivated by their use in the top-down design of software. Given
some properties of the export algebra of a module, we would like to know the exact requirements
to the parameter algebra that ensure that the properties are satisfied. This leads to the central
notion of a weakest parameter condition: For a given module m, a formula v over the parameter
signature of m is called a weakest parameter condition of a formula w over the export signature
of m if for each parameter algebra P: P fulfills v iff the semantics of m, applied to P, fulfills
w.

In order to investigate the existence of weakest parameter conditions we incorporate the se-
mantics of modules into a new logic that extends first order logic. In this new logic the models
are parameter algebras and the formulas are first order formulas over the export signature of
some given module. We always refer to some fixed module, that is the modules themselves
do not occur in the formulas of our new logic. In the terminology of [KT90], our logic is an
endogenous logic about modules, not an exogenous one.

The Logic of Effective Definitions (EDL) of [Tiu81] considers completely unstructered schemes
that are a generalization of recursive program schemes. Model theoretic and proof theoretic
properties of EDL are discussed in [Tiu81]. In contrast to EDL our logic incorporates data
structures defined by constructors. Furthermore we concentrate on the relation between first
order logic and the new logic as described above.

This paper is organized as follows: In the next section we first shortly review the notions we use
in the rest of the paper. In Section 3 we define syntax and semantics of our module language and
show some basic properties of the semantics. Section 4 defines the central notions with regard
to the logic. The fundamental model-theoretic properties of our new logic are investigated in
Section 5. Section 6 addresses decidability questions.

2 Preliminaries

The purpose of this section is fixing the notations used in this paper, not giving complete
definitions.

We summarize some basic notions about signatures and algebras. A complete set of definitions



is given in [EMS85].
A signature is a pair (S, F), where

e S is a set of sort symbols.

e Fis a set of S-sorted function symbols, that is each f € F is equipped with an arity
arity(f) € S* x S. For arity(f) = (s1,...,Sn,s) we will often write f:s1,...,8, — s.

If ¥ = (5, F) is a signature and F’ is a S-sorted set of function symbols we write ¥ U F’ for
(S, F U F'). The intersection of signatures ¥; = (S;, F;), i = 1,2, is defined as ¥y N Yy :=
(510 g, F1 N Fz). A signature ¥y = (51, F1) is a subsignature of a signature ¥y = (S, Fy) if
S1 € Sy and Fy C Fy. A variable family for a signature ¥ = (S, F) is a family X = (X;)ses
of sets of variable symbols that are pairwise disjoint and disjoint to F'. We will often use
set notation instead of the exact family notation. For a variable family X = (X;)ses and
(S, F)-algebra A I'y 4 or shortly I'4 denotes the set of A-assignments.

If X is a variable family for the signature ¥ = (S, F), Tx(X) is the set of terms built with
F and X. The set of ground terms Tx(0) is also written as Ty. For t € Tx(X) the sort of ¢
sort(t) € S and the set of free variables of ¢ free(t) C X are defined as usual, Tk ;(X) denotes
the subset of terms with sort s.

Let ¥ = (S, F) be a signature. A ¥-algebra A consists of

e aset 52 for each s € S, called the carrier set of sort s, and

e a function f4:s{ ..., 54 — s for each function symbol f € F with f:sy,...,5, = s

Let ¥ = (9, F) be a signature. The X-algebra B is a 3-subalgebra of the Y-algebra A (notation:
B C A), if:

e forall se S : P Cst

..x sB

o forall fe F, fisy,...,sp—s: fB=/f4 |s{3 % .
If 334 is a subsignature of 5 and A a Yj-algebra then A |21 denotes the restriction of A to X;.
A Y-algebra A induces an interpretation function for terms:

A:Tz(X) — (FX,A — A)

We assume from the reader basic knowledge on first order logic (see for instance [End72],
[CK90]). We only consider first order logic with equality as the only predicate symbol, therefore
we can consider algebras as models in the sense of first order logic. We write A, o |= w if the
formula w is satisfied by the model A and the assignment o € I'y4, if w is a sentence we write
A E win this case. This generalizes to sets W of sentences by A =W if A = w for all w € W.
For a class C of algebras we write C = w if A = w for each A € C.



We use a somewhat sloppy notation for extensions of algebras adopted from [CK90]. If A is
a (5, F)-algebra, (S U{c}, F) an extension of (S, F) by one constant symbol ¢ of sort s and
a € s, then we denote by (A, a) the (S U {c}, F)-algebra that coincides with A on (5, F') and
assignes a to c.

I is the equivalence junctor. For a sentence w and terms ¢y, ¢y of the same sort where ¢;
does not have a bound variable occurrence in w, w(t;/t;) denotes the sentence obtained by
substituting every occurrence of ¢; in w by ¢3. It is understood that bound variables are
renamed such that no free variable of t5 is captured by a quantifier of w.

A Y-algebra A is an elementary submodel of a Y-algebra B if A C B and for all 3-formulas w
and all A-assignments o € I'y C I'p: A, |= w iff B,a |= w. This is a stronger notion than
beeing a submodel, especially elementary submodels have the same first order theory ([CK90]).

We use some basic notions from the theory of the semantics of programs, see for instance

[LSS7].

3 Modules

3.1 Syntax

The syntax of modules as given in this section closely resembles the syntax of Algorithmic
Specifications as given in [Loe87].

Before we give the exact syntax of a module we define the notion of a standard signature. A
signature will be called standard if some distinguished sort and operation symbols are present
in it.

Definition 1 A signature (S, F') is called a standard signature ([Loe87]) if:

e S contains the sort bool and

e F contains the following function symbols:

true : — bool
false ' — bool
1y, : —s Jor all s € S
ifthenelse; : bool,s,s— s Jorallse S
=s : 8,58 bool Jor all s € S

In [Loe87] L and ifthenelse, have not been included in the standard signatures.

Informally speaking, a module as it will be formally defined in Definition 2 consists of the
following items (see Figure 1 for an example):



e the signature of the parameter algebra

e the body of the module containing

the list of newly defined sorts. For each new sort s we implicitely define functions
1,, =5 and ifthenelse, of appropriate sort.

the list of constructor symbols that will be used to define the carriers of the new
sorts. The domain sorts of these constructors may include sorts from the parameter
algebra, their range must of course be a new sort. The introduction of a constructor,
say ¢, automatically entails the definition of a pertaining test function is.? and
selector functions select’. This bears some similarities with the list data structure
of Common LISP ([Ste90]) where nil and cons are constructors, consp is a test
predicate and car and cons serve as selectors®.

the list of recursive function symbols. Together with all the functions mentioned
above they build the set of accessible function symbols.

a recursive program for the recursive function symbols. This recursive program may
make use of all accessible function symbols.

e the set of exported function symbols that designates some subset of the set of accessible
function symbols as exported. The other function symbols remain hidden inside the
module.

We do not consider hiding of sorts here since this is not relevant from the logical point of view.

Definition 2 A module is a tuple

(PS,., PF,,, NSy, Ky NEy,, EF, PR

where PS,,, PF,,, NS,,, K,, and NF,, are pairwise disjoint sets and

e (PS,,, PF,,) is a standard signature, called ¥p,,. PS,, contains the parameter sorts of

m.

e (PS,, UNS,,, PF,, UK, UNF,,) is a signature and the range of all function symbols
in K, is an element of NS,,. Fztending this signature by the following set of function
symbols:

{ifthenelse,: bool,s,s —+ s | s € NS, }

{=s:5,5s = bool | s € NS,,}

{is.?:s = bool | s € NS, }

{selectg:s—>8j |c€ Kp,ci81,...,8,...,8, = s}
U {Ls:—s]|seNS,}

C C C

we obtain a standard signature ¥ 4,, = (AS.,, AF,).

#This is of course no complete analogy since LISP does not obey a strong typing discipline.



PAR SORTS elem
OPNS 0: — elem
+:elem, elem — elem
BODY SORTS list
CONS nal:— list
cons: elem, list — list
FCTS app:list, list — list
sum:list — elem
PROG app(ly,l3) < if is,;?(l1) then [y
else
cons(select! . (l1),app(select? (l1),(2))
sum(l) <« if is,;?(l) then 0
else selectl, (I) + sum(select?, . (I))

cons cons

Figure 1: An example of a module definition.

e PR, is a recursive program of the form

filzig,. o 2) <= b

fn(xn,lv"wxn,ln) = i,

where NF,, ={f1,..., fo}, for all i the x; ; are pairwise distinct and of appropriate sort
and t; € Ty, ({xi1,...,2i5}) of appropriate sort.

e EF,, is a subset of A, such that ¥g,, := (AS,,, EF',,) is a standard signature.

The pair (Xp,,, Xg,,) constitutes the signature of the module m.

Figure 1 contains an example of a module written in a more user friendly syntax. We will be
somewhat sloppy in syntax and will not mention the standard parts of the signatures, drop the
sort indices if known from the context and allow mixfix syntax if convenient. Furthermore we
will not mention EF,, if identical to AF,,.

In order to formulate Theorem 2 we will need the notion of an extension of a module by a set
of constants.

Definition 3 Let m be a module and C' a set of constant symbols disjoint from all components
of m. Then the extension of m by C' is the module

(PSy., PF,, UC, NSy, Kpny NF,, EF,, PR)



3.2 Semantics

The semantics of modules as defined in this section again resembles [Loe87]. In contrast to
[Loe87] where the semantics is defined denotationally we here take an approach that is adopted
from the algebraic semantics method ([Gue79]).

An algebra over a standard signature will be called standard if it assignes the intended meanings
to the standard parts of the signature.

Definition 4 Let ¥ = (S, F) be a standard signature. A Y-algebra A is called a standard
algebra ([Loe87]) if

e bool* = {true, false, Lo} and true? = true, false* = false, J_glool = Lpool

o foralls € S and xy,zy € s:

ifthenelsel (true, x1,29) = a3
ifthenelse’ (false, 71, 29) = a9
ifthenelse’ (Lpoor, 21, 22) = L2

e For each function symbol f € F the denotation f* is continuous with respect to the
following ordering Cy:

21 Cg 29 iff XL =9 Or T1= J_f
Algy denotes the class of all standard algebras with signature X.

Note that, since a standard signature contains a constant symbol L, of each sort s, a standard
algebra always contains a distinguished carrier L4 of each sort s.

In the following we will always consider standard algebras. We will now in several steps define
the semantics of a module m. The semantics will be formalized as a function M that maps a
module m with signature (Xp, ¥g) and a X p-standard algebra A to a ¥g-standard algebra B.

First we define the carrier sets of the algebra constructed by the semantics of a module.

Definition 5 Let m be a module with signature (Xp,Xg) and A € Algy,,. We define a family
of sets (DT4)

) seAs,, as follows:

e for each s € PS,, let D74 .= s4 1| {14}

e for all s € NS,, define sets D™ by simultaneous induction:

ifke Ky, kisy,...,s, > s anddZ'EDZ;’A Jori=1,....,n
then k(dy,...,d,) € D™4

o now define for all s € AS,,: D74 .= D74 U {L,)}



Now we define an intermediate algebra that extends the parameter algebra by the newly defined
sorts and operations except the recursive functions. This intermediate algebra will then be used
in order to define the semantics of the recursive functions and to obtain the complete semantics
of the module.

Definition 6 Let m be a module with signature (Y¥p,¥Xg) and A € Algy, . We define an
algebra A* with signature (AS,,, AF,, \ NF',) as follows:

o A* |2P = A
o 54" == D™ for all s € NS,
° J_‘SA = 1, for all s € NS,,

e For all s € NS, ifthenelse; and =; obtain their meaning according to the definition of
standard algebra

o Forallk:sy,...,s, >s€ Ky;:

. . A .
kA*(wl,...,xn) ::{ E(zy,...,xn) ifx; # L5 foralli

14 otherwise

e Forallc:sy,...,s, -8 € K,,:
true if x = c(z1,...,2,) for some z;
: A* — : _ 4
is.?% (2) == ¢ Lpowr ifx =L
false otherwise
e Forallc:sy,...,s, -8 € K,,:
e r;  ifr=clzy,... x5, 0)
select!” (z):= Jor some x; £ L4 i=1...n

14 otherwise
Lemma 1 A* is a standard algebra.

Proof: This follows from the continuity of the sequential ¢ f L then L else function ([LS87])
and the strictness of the remaining functions. a

In order to define the semantics of the recursive function symbols we need the notion of iteration.
Intuitively, the n-times iteration of a term ¢ is obtained by n-times simultaneously unfolding
all occurrences of recursive function symbols in ¢£. The remaining recursive function symbols
are replaced by L, this yields a term that is assigned a meaning by the algebra A*.



Definition 7 Let m be a module with signature (Xp,Xg) and t € T, (X). Then for each
n € N, t(n) is the term obtained by n-fold application of the full substitution computation rule
on t and then replacing each occurrence of recursive function symbols by L.

In the terminology of [Gue79], Definition 3.22, this is the n-th elementt™ of the Kleene sequence
of t.
The reader is referred to [Gue79] for a formal definition.

We are now ready to give the complete definition of the semantics of a module. Our definition
of the semantics of recursive function symbols is in the spirit of algebraic semantics (see for
instance [Gue79], in contrast to [Loe87] where a denotational approach was token). The advan-
tage of the algebraic semantics is that it makes the distinction between the recursion structure
given by the program and the interpretation of the base functions explicit. Furthermore we
will make use of the iterations of a term later in the logic.

Definition 8 Let m be a module with signature (Yp,Xg). Then M(m) is a function
M(m): Algs,, — Algy,
where for all A € Algzp:
o M(m)(A) (A8, EF,, \ NF,,) = A" (AS,,, EF,, \ NF,,)
o forall f:s1,...,5,—=s€NF, NEF,,, a; € s":
f/\/l(m)(A)(a17 ey ) = |_| A (f(z1y .y zn) () (e + @)

i>0

for an arbitrary assignment o € 1T 4.

The choice of the assignment « is arbitrary since z1,...z, are the only free variables in the
terms under consideration. The existence of the least upper bound of this set of values is a
simple consequence of the fact that all cpo’s are flat.

Lemma 2 M(m)(A) is a standard algebra.

Proof: follows from Lemma 1 and the fact that the denotations of recursive function symbols
are again continuous, see for instance [LS87]. 0

Lemma 3 Let m be a module with signature (¥p,¥g), A € Algy,, B=M(m)(A), fis1,...,5,
— s € EFNNF,, and a; € sB. Let o € T with a(z;) = a; for alli=1,...,n. Then

e cither fB(ay,...,a,) = LB and B(f(zy1,...,2,)(i))(a) = LB for all j € N
o or fB(ay,...,a,) = c# LB and there is a jo such that for all j > jo:
B(f(z1,...;20) () () = ¢

Proof: This is a simple consequence of the continuity of the functions and of the fact that
the cpo is flat, see [LS87]. 0

10



apply M(m)

A
restrict to Xp
-
restrict to Xp
B

apply M(m)

Figure 2: The algebras used in Lemma 6

3.3 Basic Properties of the Semantics

Our semantics obeys the persistency condition. Intuitively this means that the sorts and
operations of the parameter algebra are not modified by the semantics of a module.

Lemma 4 Let m be a module with signature (Xp,¥g) and A € Algy,,,. Then

Mm)(A) vy =4lvp Ny,

We now show two lemmas that we will need for the proof of Theorem 1.

Lemma 5 Let m be a module with signature (Xp,¥g), A, B € Algy, and A C B.
Then M(m)(A) C M(m)(B)

Proof: The inclusion of the carrier sets is obvious. The coincidence of the semantics of the
new function symbols is easily shown from the definitions. a

Lemma 6 Let m be a module with signature (Xp,¥p), ¥p C ¥p, A € Algy,, and B’ € Algy,
with B C M(m)(A).
Then B" = M(m)(B' [y,)-

Proof: (See also Figure 2.) Define B := B’ |y;, and B" := M(m)(B). By the definition of

subalgebra we get immediately B C A. We now show that B’ and B” have the same carrier
sets. For the carrier sets of parameter sort this is immediate by Lemma 4.

sB” C sB' for s € NS:

This follows by structural induction from B C A since B’ is closed under the denotation of the
constructors.

11



sB' C sB" for s € NS:

Assume there is some carrier of B’ that is not a carrier of B”. Let 2 be a minimal carrier
(w.r.t. to the subterm ordering) of B’ that is not a carrier of B”. By construction & must be

of the form ¢(zy, ..., z,) for some constructor ¢. Since B’ is closed under the denotation of the
selectors, x4, ..., z,, are carriers of B’ and by minimality of z are also carriers of B”. Therefore
= c(21,...,2,) is also a carrier of B”, this contradicts the assumption.

Since B’ and B” have the same carriers and are both subalgebras of the same superalgebra,
the denotations of the function symbols also coincide, so B’ = B”. O

12



4 Logic

In this section we show how to apply first order logic to modules.

4.1 Basic Definitions and Properties

Definition 9 For a standard signature ¥ = (S, F') let WFF's, be the set of first order sentences
over the language (S, I, {=;| s € S}) where each = is a binary predicate symbol.

If m is a module with signature (Xp,Xg) we denote WFFy,, by PWFF,, and WFFx_ by
WFFE,,.

The symbol =; is overloaded here: we use it as a function symbol with arity s, s — bool and
as a binary predicate symbol of the logic. Again we will drop the sort index if convenient.

Let us emphasize that we only consider sentences, that is first order formulas without free
variables. By definition the set of first order sentences, considered as a subset of the set of
first order formulas, is generated from the atoms (here: equalities) by negation, conjunction
and existential quantification, but we also use the other usual logical junctors as syntactic
abbreviations (see [End72] for a complete set of definitions). Furthermore we use the following:

(t1 Ctz) stands for (t; = L Vi =ty)

Ve €s.w standsfor Ve:s.o=1,Vw

Jr €s.w standsfor Jr:s.z# L;Aw

We now come to the central definition of this paper. For a sentence w € WFI'y and (not
necessarily standard) algebra A we write as usual A = w if A is a model of w, see again
[End72] for complete definitions. The point is that we can now use the sematics of a module with
signature (X p,Xg) in order to express properties of standard X p-algebras by Y g-sentences.

Definition 10 Let m be a module with signature (Y¥p,¥Xg), A € Algy,, and w € WFF,,. We
define
A & Mm)A)

For W C WFF,, we write Al=, W if Al w for all w e W. ]=_w means A=, w for all
A€ Algy,. Furthermore Th,,(A) := {w € WFF,, | Al w}

For example let m be the module of Figure 1 and Nat the extension of the algebra of natural
numbers to a standard algebra. Then

NatlE, Vi, 1y 2 list . sum(app(ly, l3)) = sum(ly) + sum(ly)

As an immediate consequence of the persistency of the semantics (Lemma 4) we get

13



Lemma 7 Let m be a module with signature (Xp,YXg), A € Algy,, and w € WFFy nzp.
Then

AEw iff AlE,w

This means that our new logic is at least as expressive as first order logic. Later we will
see that, depending on the module under consideration, there is in general indeed a gain in
expressiveness.

4.2 Classes of Parameter Algebras

We are not always interested in parameter algebras from the whole class Algy, . Instead it is
often natural to restrict the parameter algebras to some subclass of Algy, ,. The choice of this
subclass should depend only on the input signature. We put some reasonable constraints on
the possible classes of parameter algebras that we will need in the following.

We call a class of algebras compact if the compactness theorem of first order logic holds in this
class of models.

Definition 11 A classC of ¥-algebras is called compact if for each set W C WFFs, of formulas
the following holds:

If each finite subset of W has a model in C
then W has a model in C

The choice of a particular class of parameter algebras is formally expressed by the concept of
a domain operator:

Definition 12 A domain operator S maps each standard signature 3 to a subclass Sy, of Algs,
such that the following holds:

1. Sy is compact.
2. Sy is closed under elementary submodels.

3. For any sort symbol s in 3 and constant symbol ¢ not in X:

%EU{CZS} = {(A7 a) | A €Sy and a € SA}

The following mappings are no domain operators:
1. F mapping each signature to the class of all standard algebras where all functions termi-

nate for all but a finite set of input values. Using the compactness theorem of first order
logic it is easy to show that for non-trivial ¥ Fy, does not fulfill compactness.

14



[

Va:bool. (2 = Lpoet V @ = true V a = false)
Lpoor # true

Liool 7£ false
true # false

W N

AAAAAA,_\,_\,_\,_\,_\
[@p) e~
= O N N N D

5) Va,yis.[(z=sy)=true ;L (z =y Az # L,)]
Vae,yis. [(z=sy) = false IL (x FyAa# L ANy # L))
7 Vae,yis.[(2=sy) = Lpoot L (=L, Vy=L1,)]
8 VYaz,y:s.if true then x else y fi=ux
9 Vz,y:s.if false then z else y fi=y
10) Va,y:s.if Ly, then z else y fi= L,

[

~—

Vfivgi:s' [Az:ln(xl E yl) D f($17 B '7$n) E f(y17 .. 7yn)]

Figure 3: Axiom schemes for standard algebras.

2. The operator mapping each signature to the class of standard algebras with cardinal-
ity greater than Ny violates the closure under elementary submodels. This is an easy
consequence of the sharpened Skolem-Lowenheim Theorem of first order logic.

3. There is an imported case not covered by the definition of a domain operator: The
mapping TG that carries each signature X to the class of term-generated models is no
domain operator since the last condition of Definition 12 is violated.

On the other hand the next lemma shows that a wide class of mappings satisfies the constraints
of Definition 12:

Lemma 8 Let ¢ be a mapping that maps each standard signature ¥ = (S, F) to some set of
formulas +(X) C WFFy, where only constants from {true, false} U{L, | s € S} are allowed.
Then the operator mapping each signature X to the class of standard algebras that are models
of L(X) is a domain operator.

Proof: First observe that the class of standard algebras is exactely the class of models of
the set of axioms given by the axiom schemes of Figure 3 where s varies over all sorts and f
varies over all function symbols of the signature. Therefore the compactness property and the
closure under elementary submodels are easy consequences of the pertaining theorems of first
order logic: The compactness theorem (Theorem 1.3.22 in [CK90]), respectively the sharpened
Skolem-Léwenheim Theorem (Theorem 3.1.6 in [CK90]). The proof of the third constraint is
trivial. a

As a consequence the following operators are indeed domain operators:

1. The operator 3/ mapping each signature to the full class of standard algebras.

2. The operator I mapping each signature to the class of standard algebras where all
functions except ¢f L then L else are strict.
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3. The operator mapping each signature to the class of standard algebras where all functions
are sequential ([Vui74]).

On the other hand the operator TG mentioned above is not of great interest in this framework,
since we do not want to require that all functions of an algebra are explicitelly listed in the
parameter part of a module. For instance we could define a module “list of elements” that we
want to apply to several algebras without worrying about all the other functions that might be
present in the parameter algebra.

We therefore claim that the constraints in Definition 12 are reasonable. Note that we did not
require closure of the domain operator under the semantics of modules, although this would be
an acceptable constraint in view of vertical composition of modules. To be precise, we do not
require that M(m)(A) € Sy, for A € Jy,.

4.3 Parameter Conditions
The notion of a parameter condition links first order logic to our new logic.

Definition 13 Let m be a module with signature (Xp,Xg), S a class operator and w € WFF,,.
A sentence v € PWFF,, is a 3, m-parameter condition of w if for all A € Sx,.:

AlEwv = Al w
A sentence v € PWFF,, is a 3, m-weakest parameter condition of w if for all A € Sy,

AlEwv = AlE, w

The following lemma is immediate by the definition:

Lemma 9 Weakest parameter conditions are unique up to equivalence, that is: let m be a
module with signature (Yp,Xg), S a domain operator and w € WEF,,. Then for all weakest
parameter conditions vy, vy € PWFF,,: Sy, |E v1 3L vy

We illustrate the important notion of a weakest parameter condition with some examples.

1. Let m be the module of Figure 1. The formula

(Ve €elem . 0+z=aAz+0=2a)A
(Y, 1y € list . sum(app(ly, 1)) = sum(ly) + sum(l3))

has the $*"“! m-weakest parameter condition:

(Vo € elem . 0+ =aAax+0=2a)A
Va1, 29,23 € elem .z + (x2 + 23) = (x1 + 22) + 23)
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PAR SORTS elem
OPNS 0: — elem
pred: elem — elem
BODY FCTS isstandard: elem — bool
PROG isstandard(z) < if 2 =0 then true
else isstandard(pred(z))

Figure 4: A module used for distinguishing standard from nonstandard models.

PAR SORTS elem
BODY SORTS list
CONS nal:— list
cons: elem, list — list
FCTS isin:elem, list — bool
PROG isin(e,l) < if is,;?(l) then false
else if select!l . (/) =e then true

cons

else isin(e,select? (1))

Figure 5: A module used for distinguishing finite algebras from infinite ones.

2. Consider the module m of Figure 4. The formula

w = Va € elem.isstandard(z) = true

does not have a 3% m-weakest parameter condition since the standard and the non-
b

standard model of arithmetic have the same first order theory while the former fulfills w
and the latter does not.

3. The last example shows that the same problem might also occur with primitive recursive
functions. Take the module m of Figure 5. The class of standard algebras that fulfill the
formula

w:= 3l € list Vo € elem .isin(z,l) = true

is exactely the class of finite ¥p,,-algebras. Since the class of finite algebras cannot
be described by means of first order logic ([CK90]) w does not have a 3/, m-weakest
parameter condition.

These last examples show that our new logic is more expressive than first order logic. In the
next section we will discuss the model theoretic properties of the new logic that reflect this
gain in expressiveness.

The following lemma gives a special case in which a &, m-weakest parameter condition always
exists:
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Lemma 10 Let m be a module with NF,, = 0 and S a domain operator. Then for each
w € WFF,, there exists a &, m-weakest parameter condition. Furthermore for each formula w
the weakest parameter condition is computable.

Proof: The proof follows from procedures for solving equational problems in term algebras
([CL89], [Mah88]). See [Tre91] and [Buh91] for details how to apply these results to the
semantics of modules. a

5 Properties of the New Logic

We now consider two basic model-theoretic properties of our new logic. Lindstrém ([Lin69])
has shown that first order logic is the only logic fulfilling countable compactness and the
Skolem-Léwenheim property (see also [Mon76], [CK90]). Besides the fact that he considers
logical systems with the whole class of algebras as domain (instead of standard algebras in
our case) his theorem applies in our case only to an endogenous variant of our logic where
all possible modules are considered. Here we are interested in obtaining theorems about the
logical properties of distinguished modules.

5.1 Downward Skolem-Lowenheim

In this subsection we show that our new logic has the downward Skolem-Loéwenhein property.
An analogous result has been proven in [Tiu81] for the Logic of Effective Definitions by trans-
lation to the logic Lwiw ([Kei71]). The proof of the theorem below directly depends on the
closure of the domain operators under elementary submodels. For domain operators described
by first order axioms this closure property follows from the strong version of the first order
Skolem-Lowenheim property, infinitary logic is not needed here.

Theorem 1 Let m be a module with signature (¥p,Xg), S a domain operator and A € Sy,.

Then for each family 7 = (Z;)seps of sets with cardinality at most Rg and Zs C s4 there is a
B € Sy, of cardinality Xg that contains Z such that M(m)(B) is an elementary submodel of
M(m)(A).

Proof: Without loss of generality let Z contain YNy many elements. Furthermore we may
assume Y p C X since elementary submodels are invariant under restriction of the signature.

By the sharpened downward Skolem Loéwenheim Theorem of first order logic (Theorem 3.1.6
of [CK90]) there is an elementary submodel B’ of M (m)(A) with cardinality Ry containing Z.

Let B := B’ |2P' B contains Z and therefore has cardinality Xg. By Theorem 6: B’ =

M(m)(B). Since B’ is an elementary submodel of M(m)(A), B is also an elementary submodel
of A. By the closure of Sy, under elmentary submodels B € Sy .. a
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Corollary 1 Let m be a module with signature (¥p,Xg) and A € Sy, of infinite cardinality.
Then there is a B € Sy, of cardinality Xy with Thy, (A) = Th,, (B).

Proof: Let B be the model according to Theorem 1. By the properties of elementary sub-
models M (m)(A) and M(m)(B) have the same first order theory and so Th,, (A) = Th,,(B).
O

5.2 Compactness

From first order logic it is known that the most applications of the compactness theorem require
the introduction of new constant symbols in some intermediate step. These new constants
in some sense allow to express an existential quantification over an inifinite conjunction of
formulas. Therefore the compactness theorem can be used in order to show that a theory
has a model containing an element satisfying some infinite set of formulas (see for instance
Proposition 2.2.7 in [CK90]). In order to argue about compactness properties of our logic we
therefore have to consider extensions of given modules, since including them into the parameter
part is the only way to incorporate new constant symbols.

Definition 14 Let m be a module with signature (Xp,Xg) and S a domain operator. We say
that 1=, is S-compact if for each W C WEF,, the following holds:

If for each finite ' C W there is a« A € Sy, with Al F, then there exists
B € Sy, with Bl=, W

Theorem 2 Let m be a module and $ a domain operator. Then the following statements are
equivalent:

1. For each extension m' of m ;15 S-compact.
’ m

2. For each extension m' of m and w € WFF,,, w has a &, m’-weakest parameter condition

Proof:
(1) <= (2)

This is an easy consequence of the definition of a weakest parameter condition and of the
compactness property of the domain operator <.
H=02)
Assume that for each extension m’ of m =, is compact. We define the set W as the set
of all formulas that belong to some arbitrary extension of m. Strictly speaking this is a set
only if we fix some set of possible constant symbols, but we do not bother about set theoretic
peculiarities here.

W .= U WFFm/

m' extends m

For each w € W define
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e ¢1(w) is the number of occurrences of existential quantifiers in w ranging over some new
sort

e ¢y(w) is the number of occurrences of existential quantifiers in w ranging over some
parameter sort plus the number of occurrences of =, A in w.

With the help of these notions we define a relation C on W by

wy C wy <= (1(w1), P2(w1)) <iex (¢1(w32), P2(w2))

where <., is the lexicographic extension of the ordering < on natural numbers. From the
properties of lexicographic orderings it is obvious that C is a well founded quasi ordering

([Der87]).

Now let w € W be a minimal formula with respect to C such that there exists an extension
m’ of m with w € WFF,,, and w does not have a weakest &, m’-parameter condition. '
denotes the parameter signature of m’. First we show that w must be an atomic formula. Note
that for a given formula v € W we can restrict our attention to the minimal extension m*
of m such that v € WFF,,«. The addition of further constants does not affect the existence
of a weakest parameter condition. We say that v € W has a weakest parameter condition
(without mentioning the module) if it has a &, m*-weakest parameter condition where m* is
the extension of m by the constants occurring in v.

1. Suppose w = Jx : s.v where s is a parameter sort. Let ¢ be a new constant symbol
not occurring in m’ or w. By the minimality condition v(xz/c) has a weakest parameter
condition r. We obtain a contradiction by showing that Jy : s.r(c/y) is a weakest
parameter condition of w where y does not occur freely in r.

Let m” denote the extension of m’ by {¢:s} and A € Sy

AE3Ty:s.r(c/y)

(Aya) Er for some extension (4, a) of A

(A,a) =, nv(x/c)  since ris a S, m” weakest parameter
condition of v(z/c)

& (Aya)]E,,»3x 1 s.v  since ¢ does not occur in m” or w

=
=

& Al Fr:s.v since ¢ does not occur in m’ or w

2. Suppose w = Jz : s.v(z) where s is a new sort. Define
Cy = Tt (Xpar) U{LL)

where X4, is the familiy of variables of parameter sort. From the definition of the
semantics it is immediate that for each A € Sys and a € sM™)A) there is a t € C, and
an assignment o € ['4 with

M(m)(A) () (a) = a (1)
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For each finite set F' C (Y, the formula

\/ dfree(t) . v(z/t)

tel

has by minimality of w a &, m'-weakest parameter condition rp which is itself a &, m/-
parameter condition of w. Since w by assumption does not have a weakest parameter
condition, for each finite ' C (s there is a A € Sy with

AlE, {3z s v} U {Viree(t) . ~w(x/t) |t € F'}
Since |E=,., is compact there is an A € Iy with

Al ATz s v} U{Viree(t) . —v(z/t) | t € Cs}
This contradicts (1).

3. Suppose w = —w. By minimality of w v has a weakest parameter condition . Then —r
must be a weakest parameter condition of w.

4. Suppose w = v1 V vy. By minimality of w vy and vy have weakest parameter conditions
r1 and rg, respectively. Then ry V ro must be a weakest parameter condition of w.

We now know that w must be of the form #; = ¢t5. This formula is equivalent to

(t1=taANt1 # L)Vt # LV # 1)

U1 v2 v3

As in the cases (3),(4) above it follows that at least one of vy, vy, vs does not have a weakest
parameter condition. Without loss of generality we assume that v; does not have a weakest
parameter condition.

By Lemma 10 we know that for each natural number n there is a &, m/’-weakest parameter
condition 7, of t1(n) = ta(n) At1(n) # L. Observe that |, ,—r, D —ry, for n > m. Since r,
is a parameter condition for vy and since vy by assumption does not have a weakest parameter
condition, for each finite set F of natural numbers there is a A € Sy with

Al Avni} U{-r, | n e F}
By the compactness property of ||=, , thereis a A € Sy with
Al Ati =ta "t # LU {ti(n) # ta(n) Vir({n) = L | n >0}
According to the properties of monotonic functions there are two possibilities:
e For all n: M(m/)(A)(t1(n) = L. This contradicts M (m')(A)(t1) # L by Lemma 3.

e There is a ng such that M(m’)(A4)(t1(ng)) # L. Then for all n > ng M(m')(A)(t:(n)) #
L and therefore M(m/)(t1(n)) # M(m')(tz(n)). This contradicts M(m')(A)(t1) =
M(m')(A)(tz) by Lemma 3.

a
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6 Decidability Questions

We now show that the existence of weakest parameter conditions is in general undecidable,
even if the module does not introduce new sorts.

In order to show undecidability of the existence of weakest parameter conditions we have to
take care that the domain operator under consideration is rich enough. If the domain operator
is too trivial a weakest parameter condition always exists. We illustrate this remark with one
example:

Take the domain operator &), that carries each signature to the class of finite standard algebras
with cardinality less or equal to the fixed number n. In any S, 5, there exist up to isomorphism
only finitely many algebras and each isomorphism class can be characterized by an appropriate
formula. As in Lemma 8 we obtain that S, is indeed a domain operator. Note that the
axiomatization of the isomorphism classes does involve the constant symbols, nevertheless the
constraint on the constants is obviously fulfilled. On the other hand there is a weakest &,,,m-
parameter condition for each formula w, namely the disjunction of those axioms associated to
the isomorphism classes that satisfy w.

Therefore we require the domain operator to be non-trivial. In order to define non-triviality
we use some notions from [WPP*83]:

Definition 15 A domain operator & is called non-trivial if for each hierarchical type T =
(3, E, P) where

o P is the specification BOOL
e F is a finite set of X-equations

o T is hierarchy-persistent

the extension of the initial model of T to a standard algebra is contained in Sy.

The extension of A to a standard algebra is obtained by extending the signature to a standard
stgnature, assigning 1, ifthenelse and = their standard meaning and extending all functions
of A strictly.

The hierarchy-persistence here means that the equations of £ do not “destroy” the datatype
BOOL and do not introduce new elements of sort bool.

We use a result about two-head automata that turned out to be useful for undecidability results
in the field of program schemes. The reason for the adequacy for program schemes is that no
particular data types are required except bit sequences (these can be simulated by predicates)
and the states of the finite control (these are coded directly in the program).

We shortly repeat the definition of a two-head automaton and the pertaining undecidability
result. Details can be found in [LPP70] and [Gre75], see also [Ros63]. Here we consider only
automata over a fixed binary alphabet {0, 1}.
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A two-head automaton (THA for short) is a tuple

(Qh Q27 4905 9as qr, 5)

where ()1 and () are finite sets, @1, @2, {qo}, {¢.} and {¢.} are pairwise disjoint sets of states
and ¢4 is a transition function

d: (Ql U QQ U {(]0}) X {07 1} — Ql U Q? U {Qav QT}

Such an automaton is given as input an infinite sequence over {0, 1}. The automaton operates
similar to a finite state automaton but now has two read-only heads moving independently
forward over the tape. In order to determine the next state the input is taken from the first
head (resp. second head) iff the actual state is a member of Q1 U {qo} (resp. @2). Then the
head from which the input has been taken moves forward to the next position. Note that for
a given input tape there are three possibilities:

e The automaton accepts its input iff it eventually reaches ¢,.
e The automaton rejects its input iff it eventually reaches g,.

e The automaton diverges on its input if it never reaches ¢, or ¢,.

L 4 denotes the set of inputs accepted by A, D4 the set of inputs on which A diverges. We use
the following result

Lemma 11 ([LPP70]) It is not semidecidable whether for a THA A

o the set L4 is emply.

o the set Dy is not empty.

Sketch of the proof (see [LPPT70], [Gre75] for details): For a given Turing machine 7" we can
effectively construct a THA A7 such that the only inputs accepted by Ay are the tapes starting
with a finite computation sequence of T' with empty input, followed by some arbitrary sequence.

Using this construction we can reduce the halting problem for Turing machines to the emptiness
problem for THA’s. a

The module of Figure 6 simulates a THA in the following sense. To a given Xp algebra B we
associate the input tape tapeg that is defined by

tapes (i) == 0 if B(contentsO(next (start))) = true
PEBV=0 1 e B(contentsO(next! (start))) = false

Obviously each possible input tape is a tapep for some Xp algebra B.
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PAR SORTS tapeposition
value
OPNS start: — tapeposition
next: tapeposition — tapeposition
contentsQ: tapeposition — bool
a:— value
[rvalue — value
test: value — bool
BODY FCTS H:— bool
F,:tapeposition, tapeposition, value — bool
for all states ¢ of the automaton
PROG H & by (start, start, a)
F,(p1,p2,2) < if contentsO(p;)
then Fj(,0)(next(p1), p2, )
else Fy(y1)(next(p1), p2, @)
for all states ¢ € Q4
F,(p1,p2,2) < if contentsO(p;)
then Fiyo)(p1, next(ps), @)
else Fy,1)(p1, next(p2), )
for all states ¢ € @
F.(p1,p2, ) < F.(p1,p2, )
Fo(pi,p2, ) < if test(x)
then true
else Fy (start,start, f(z))
EXPORT H:— bool

Figure 6: A module simulating a two-head automaton used for Theorem 3

Lemma 12 Let A be a two-head automaton and m be the pertaining module according to
Figure 6. For each B € Algy,, and o € I'g:

tapep € L4 = M(m)(B)(Fy, (start, start,z))(a) =
M(m)(B)(if test(x) thentrue else Fy, (start, start, f(z)))(«)
tapep € L4 = M(m)(B)(Fy, (start, start,z))(a) = L

Proof: This follows easily from the definitions. a
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Lemma 13 Let m be the module associated to the THA A according to Figure 6 and S a non
trivial domain operator.

1. If L4 =0 then JE, H=1

2. If L4 # 0 then the formula (H # L) does not have a I, m-weakest parameter condition.

Proof: (1) follows immediately from Lemma 12. For part (2), let ¢ € £4 and n be the last
position of ¢t visited by any of the heads of A when feeded with input ¢. Suppose v is a S, m
weakest import condition of (H # 1).

We can decscribe the relevant part of ¢ (that is the initial part of ¢ up to position n) by a finite
set of equations:

o contents0(next' (start)) = true  if t(i) =0
T o contentsO(next' (start)) = false if t(i) =1

From Lemma 12 we conclude that for each B € Algy,, with B |= e
BlE, H# L < Btest(f'(a)) = true for some i (2)
On the other hand each set of the form
{v, e} U {test(f'(a)) = false | i < no}

has by non-triviality of 3 a model in 3y, namely the extension of the initial model of
(BOOL,%p, I) to a standard algebra where

E = {e} |
U {test(f'(a)) = false | i < ng}
U {test(ft(z)) = true}

By compactness of  there is an algebra in Sy, satisfying
{v,e;} U{test(f'(a)) = false| i€ N}

This contradicts (2). ]
As a consequence we can in each formula, if £, = @, replace H bei 1., thus obtaining
a §, m-weakest parameter condition. Therefore we get the first undecidability result of this
section:

Theorem 3 For a non-trivial domain operator § the following sets are not semidecidable:

o the set of modules m such that all formulas w € WFF,, have a &, m-weakest parameter
condition
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PAR SORTS tapeposition
value
OPNS start: — tapeposition
next: tapeposition — tapeposition
contentsQ: tapeposition — bool
a:— value
[rvalue — value
test: value — bool
BODY FCTS H:— bool
F,:tapeposition, tapeposition, value — bool
for all states ¢ of the automaton
PROG H & by (start, start, a)
F,(p1,p2,2) < if test(z) then true
else if contents0(p;)
then Fy,0)(next(pr), p2, f(2))
else Fyy(neat(py), pa: f(2))
for all states ¢ € Q4
F,(p1,p2,2) < if test(z) then true
else if contents0(p;)
then Fy(y0)(p1, neat(pz),
else Fy(yu)(p1, neat(ps),
for all states ¢ € @
F.(p1,p2,z) < true
Fo(p1,p2,x) < true
EXPORT H:— bool

Figure 7: A module simulating a two-head automaton used for Theorem 4

o the set of pairs (w, m) where m is a module, w € WFF,, and w has a 3, m-weakest
parameter condition

In order to show that the sets of Theorem 3 are also not co-semidecidable we use again a
reduction of a not semidecidable property of THA. The module of Figure 7 is in some sense a
twisted version of the module presented in Figure 6. Now we let the function H terminate iff
the input tape is rejected or accepted by the automaton, while a possible infinite sequence of
tests is performed iff the automaton diverges on the input tape. The proof is analogous to the
first proof, we therefore only state the key lemma and the concluding theorem:
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Lemma 14 Let m be the module associated to the THA A according to Figure 7 and S a non
trivial domain operator.

1. If Dy =0 then =, H = true

2. If Da # 0 then the formula (H # L) does not have a S, m weakest parameter condition.

Theorem 4 For a non-trivial domain operator § the following sets are not semidecidable:

o the set of modules m such that some formula w € WFF,, does not have a 3, m weakest
parameter condition

e the set of pairs (w, m) where m is a module and w € WEF,,, and w does not have a S, m
weakest parameter condition

I wish to thank Thomas Lehmann, Joachim Philippi, and Jacques Loeckx and for comments
and discussions.
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