
First Order Data Types andFirst Order LogicbyRalf TreinenA 01/91Saarbr�ucken, Januar 1991Abstract: This paper concerns the relation between parameterized �rst order datatypes and �rst order logic. Augmenting �rst order logic by data type de�nitionsyields in general a strictly stronger logic than �rst order logic. We consider someproperties of the new logic for �xed data type de�nitions. While our new logicalways ful�lls the downward Skolem-L�owenheim property, compactness is ful�lledif and only if for the given data type de�nition the new logic has the same expressivepower than �rst order logic. We show that this last property is undecidable.Ralf Treinen, Fachbereich 14 - Informatik, Im Stadtwald, Universit�at des Saarlandes, W6600Saarbr�ucken, Germany, treinen@cs.uni-sb.de
A short version appeared in T. Ito and A. R. Meyer, eds., Theoretical Aspects of ComputerSoftware, Sendai, Japan, September 1991, pages 594{614, Springer LNCS vol. 526.

Contents1 Introduction 22 Preliminaries 33 Modules 53.1 Syntax : 53.2 Semantics : 83.3 Basic Properties of the Semantics : 114 Logic 134.1 Basic De�nitions and Properties : 134.2 Classes of Parameter Algebras : 144.3 Parameter Conditions : 165 Properties of the New Logic 185.1 Downward Skolem-L�owenheim : 185.2 Compactness : 196 Decidability Questions 22
1

1 IntroductionThe use of modules for data abstraction is now a well-established principle in software design,see for instance [Bis86]. From the programmers point of view a module is a piece of encapsulatedsoftware that propagates only a well-de�ned subset of its data structures and operations to itsenvironment, we call this the export part of the module. Outside the module these datastructures and operations are accessible only via their names, the implementation remainshidden from the users of the module. The module may use data structures and operationsde�ned elsewhere in the program, this leads to the important concept of parameterization:The parameter part of module speci�es the sorts and operations that have to be supplied tothe module. In the following we will always consider modules as parameterized modules, evenif the the parameter part is not stated explicitly in the syntax. This interpretation of modulesre
ects in the semantics: The semantics of module now has to be de�ned as a function thatmaps the denotations of the paramter part to the denotations of the export part.Among the modularization concepts known from programming languages we here only men-tion the clusters of CLU ([LG86], [LAB*81]), the packages of Ada1 ([DoD81], [ANSI83]), themodules of MODULA-2([Wir85]) and the structures of ML ([Mac86]). Generic data types asin ML or Miranda2 ([Tur85], [Tur86]) provide another parameterization concept by abstractingbasic sorts from data type de�nitions. Furthermore parameterization comes naturally withspeci�cation languages, no matter whether they are operational, axiomatic (algebraic) or al-gorithmic ([EM90]). A non-exhaustive list of speci�cation languages using parameterization isAlphard ([WLS76], [Sha81]), CLEAR([BG80]), ACT ONE ([EM85]) and OBSCURE ([LL87],[LL90]). All these languages di�er substantially in the methods used for implementing, resp.specifying, data structures and operations. In this paper we take an abstract approach andpresent an idealized language for expressing modules. The language follows the AlgorithmicSpeci�cation language of [Loe87] and can be seen as a programming language as well as a spec-i�cation language. We only consider modules de�ning data structures and operations, higherorder functions are not included in our language. We have a purely functional point of view,that is modules construct new \exported" algebras from given \parameter" algebras.We do not distinguish between the import- and the parameter part of a module as it is done in[EM85]: In our sense the import part comprises all the sorts and operations that may be usedby a module but are not de�ned in it. [EM85] call this the import part while their parameterpart designates some sorts and operations that are common to the import and the export part.We choose the name \parameter" in order to emphasize that the semantics of a module dependsexactly on the meaning of these sort and operation symbols.In our idealized language functions are de�ned by general recursive programs as in functionalprogramming languages, but without syntactic sugar as for instance the let-construct or paternmatching. Data structures are de�ned by constructor functions, this kind of data de�nitionis known from languages like ML, Miranda or Algorithmic Speci�cations. The Algorithmic1Ada is a registerd trademark of the United States Departement of Defense.2Miranda is a registered trademark of Research Software Ltd.2

Speci�cation method furthermore introduces subset and quotient operations on algebras, butas shown in [Loe87] these are not relevant for the logic and we are allowed to drop themhere. Although restricted in expressive power we claim that our idealized language providesa representation of interesting subsets of the languages above (also the imperative ones in thecase of absence of global variables, such that the functional perspective is retained).This idealized language can be seen as a generalization of program schemes (see for instance[Gre75]). In fact, when we restrict the module language by excluding the de�nition of new sortswe meet exactly the situation of recursive program schemes, where for some module a parameteralgebra corresponds to an interpretation of a program scheme. While in the theory of programschemes one is interested in deriving properties of schemes that hold for all interpretations fromsome �xed class, we are here interested in another question.Our interest in modules is motivated by their use in the top-down design of software. Givensome properties of the export algebra of a module, we would like to know the exact requirementsto the parameter algebra that ensure that the properties are satis�ed. This leads to the centralnotion of a weakest parameter condition: For a given module m, a formula v over the parametersignature of m is called a weakest parameter condition of a formula w over the export signatureof m if for each parameter algebra P : P ful�lls v i� the semantics of m, applied to P , ful�llsw.In order to investigate the existence of weakest parameter conditions we incorporate the se-mantics of modules into a new logic that extends �rst order logic. In this new logic the modelsare parameter algebras and the formulas are �rst order formulas over the export signature ofsome given module. We always refer to some �xed module, that is the modules themselvesdo not occur in the formulas of our new logic. In the terminology of [KT90], our logic is anendogenous logic about modules, not an exogenous one.The Logic of E�ective De�nitions (EDL) of [Tiu81] considers completely unstructered schemesthat are a generalization of recursive program schemes. Model theoretic and proof theoreticproperties of EDL are discussed in [Tiu81]. In contrast to EDL our logic incorporates datastructures de�ned by constructors. Furthermore we concentrate on the relation between �rstorder logic and the new logic as described above.This paper is organized as follows: In the next section we �rst shortly review the notions we usein the rest of the paper. In Section 3 we de�ne syntax and semantics of our module language andshow some basic properties of the semantics. Section 4 de�nes the central notions with regardto the logic. The fundamental model-theoretic properties of our new logic are investigated inSection 5. Section 6 addresses decidability questions.2 PreliminariesThe purpose of this section is �xing the notations used in this paper, not giving completede�nitions.We summarize some basic notions about signatures and algebras. A complete set of de�nitions3

is given in [EM85].A signature is a pair (S; F), where� S is a set of sort symbols.� F is a set of S-sorted function symbols, that is each f 2 F is equipped with an arityarity(f) 2 S� � S. For arity(f) = (s1; : : : ; sn; s) we will often write f : s1; : : : ; sn ! s.If � = (S; F) is a signature and F 0 is a S-sorted set of function symbols we write � [F 0 for(S; F [F 0). The intersection of signatures �i = (Si; Fi), i = 1; 2, is de�ned as �1 \ �2 :=(S1 \ S2; F1 \ F2). A signature �1 = (S1; F1) is a subsignature of a signature �2 = (S2; F2) ifS1 � S2 and F1 � F2. A variable family for a signature � = (S; F) is a family X = (Xs)s2Sof sets of variable symbols that are pairwise disjoint and disjoint to F . We will often useset notation instead of the exact family notation. For a variable family X = (Xs)s2S and(S; F)-algebra A �X;A or shortly �A denotes the set of A-assignments.If X is a variable family for the signature � = (S; F), T�(X) is the set of terms built withF and X . The set of ground terms T�(;) is also written as T�. For t 2 T�(X) the sort of tsort(t) 2 S and the set of free variables of t free(t) � X are de�ned as usual, T�;s(X) denotesthe subset of terms with sort s.Let � = (S; F) be a signature. A �-algebra A consists of� a set sA for each s 2 S, called the carrier set of sort s, and� a function fA : sA1 ; : : : ; sAn ! sA for each function symbol f 2 F with f : s1; : : : ; sn ! sLet � = (S; F) be a signature. The �-algebra B is a �-subalgebra of the �-algebra A (notation:B � A), if:� for all s 2 S : sB � sA� for all f 2 F , f : s1; : : : ; sn ! s : fB = fA jsB1 � : : :� sBnIf �1 is a subsignature of �2 and A a �2-algebra then A j�1 denotes the restriction of A to �1.A �-algebra A induces an interpretation function for terms:A:T�(X)! (�X;A ! A)We assume from the reader basic knowledge on �rst order logic (see for instance [End72],[CK90]). We only consider �rst order logic with equality as the only predicate symbol, thereforewe can consider algebras as models in the sense of �rst order logic. We write A; � j= w if theformula w is satis�ed by the model A and the assignment � 2 �A, if w is a sentence we writeA j= w in this case. This generalizes to sets W of sentences by A j= W if A j= w for all w 2 W .For a class C of algebras we write C j= w if A j= w for each A 2 C.4

We use a somewhat sloppy notation for extensions of algebras adopted from [CK90]. If A isa (S; F)-algebra, (S [fcg; F) an extension of (S; F) by one constant symbol c of sort s anda 2 sA, then we denote by (A; a) the (S [fcg; F)-algebra that coincides with A on (S; F) andassignes a to c.�� is the equivalence junctor. For a sentence w and terms t1, t2 of the same sort where t1does not have a bound variable occurrence in w, w(t1=t2) denotes the sentence obtained bysubstituting every occurrence of t1 in w by t2. It is understood that bound variables arerenamed such that no free variable of t2 is captured by a quanti�er of w.A �-algebra A is an elementary submodel of a �-algebra B if A � B and for all �-formulas wand all A-assignments � 2 �A � �B : A; � j= w i� B; � j= w. This is a stronger notion thanbeeing a submodel, especially elementary submodels have the same �rst order theory ([CK90]).We use some basic notions from the theory of the semantics of programs, see for instance[LS87].3 Modules3.1 SyntaxThe syntax of modules as given in this section closely resembles the syntax of AlgorithmicSpeci�cations as given in [Loe87].Before we give the exact syntax of a module we de�ne the notion of a standard signature. Asignature will be called standard if some distinguished sort and operation symbols are presentin it.De�nition 1 A signature (S; F) is called a standard signature ([Loe87]) if:� S contains the sort bool and� F contains the following function symbols:true : ! boolfalse : ! bool?s : ! s for all s 2 Sifthenelses : bool; s; s! s for all s 2 S=s : s; s! bool for all s 2 SIn [Loe87] ?s and ifthenelses have not been included in the standard signatures.Informally speaking, a module as it will be formally de�ned in De�nition 2 consists of thefollowing items (see Figure 1 for an example): 5

� the signature of the parameter algebra� the body of the module containing{ the list of newly de�ned sorts. For each new sort s we implicitely de�ne functions?s, =s and ifthenelses of appropriate sort.{ the list of constructor symbols that will be used to de�ne the carriers of the newsorts. The domain sorts of these constructors may include sorts from the parameteralgebra, their range must of course be a new sort. The introduction of a constructor,say c, automatically entails the de�nition of a pertaining test function isc? andselector functions selectjc . This bears some similarities with the list data structureof Common LISP ([Ste90]) where nil and cons are constructors, consp is a testpredicate and car and cons serve as selectors3.{ the list of recursive function symbols. Together with all the functions mentionedabove they build the set of accessible function symbols.{ a recursive program for the recursive function symbols. This recursive program maymake use of all accessible function symbols.� the set of exported function symbols that designates some subset of the set of accessiblefunction symbols as exported. The other function symbols remain hidden inside themodule.We do not consider hiding of sorts here since this is not relevant from the logical point of view.De�nition 2 A module is a tuple(PSm;PFm;NSm;Km;NFm;EFm;PRm)where PSm, PFm, NSm, Km and NFm are pairwise disjoint sets and� (PSm;PFm) is a standard signature, called �Pm. PSm contains the parameter sorts ofm.� (PSm [NSm;PFm [Km [NFm) is a signature and the range of all function symbolsin Km is an element of NSm. Extending this signature by the following set of functionsymbols: fifthenelses: bool; s; s! s j s 2 NSmg[f=s: s; s! bool j s 2 NSmg[fisc?: s! bool j s 2 NSmg[fselectjc: s! sj j c 2 Km ; c: s1; : : : ; sj ; : : : ; sn ! sg[f?s:! s j s 2 NSmgwe obtain a standard signature �Am = (ASm;AFm).3This is of course no complete analogy since LISP does not obey a strong typing discipline.6

PAR SORTS elemOPNS 0:! elem+: elem; elem! elemBODY SORTS listCONS nil:! listcons: elem; list! listFCTS app: list; list! listsum: list! elemPROG app(l1; l2) (if isnil?(l1) then l2elsecons(select1cons(l1); app(select2cons(l1); l2))sum(l) (if isnil?(l) then 0else select1cons(l) + sum(select2cons(l))Figure 1: An example of a module de�nition.� PRm is a recursive program of the form0B@ f1(x1;1; : : : ; x1;l1) (t1... ...fn(xn;1; : : : ; xn;ln) (tn 1CAwhere NFm = ff1; : : : ; fng, for all i the xi;j are pairwise distinct and of appropriate sortand ti 2 T�Am(fxi;1; : : : ; xi;lig) of appropriate sort.� EFm is a subset of AFm such that �Em := (ASm;EFm) is a standard signature.The pair (�Pm;�Em) constitutes the signature of the module m.Figure 1 contains an example of a module written in a more user friendly syntax. We will besomewhat sloppy in syntax and will not mention the standard parts of the signatures, drop thesort indices if known from the context and allow mix�x syntax if convenient. Furthermore wewill not mention EFm if identical to AFm.In order to formulate Theorem 2 we will need the notion of an extension of a module by a setof constants.De�nition 3 Let m be a module and C a set of constant symbols disjoint from all componentsof m. Then the extension of m by C is the module(PSm;PFm [C;NSm;Km;NFm;EFm;PRm)7

3.2 SemanticsThe semantics of modules as de�ned in this section again resembles [Loe87]. In contrast to[Loe87] where the semantics is de�ned denotationally we here take an approach that is adoptedfrom the algebraic semantics method ([Gue79]).An algebra over a standard signature will be called standard if it assignes the intended meaningsto the standard parts of the signature.De�nition 4 Let � = (S; F) be a standard signature. A �-algebra A is called a standardalgebra ([Loe87]) if� boolA = ftrue; false;?boolg and trueA = true, falseA = false, ?Abool = ?bool� for all s 2 S and x1; x2 2 sA:ifthenelseAs (true; x1; x2) = x1ifthenelseAs (false; x1; x2) = x2ifthenelseAs (?bool; x1; x2) = ?As� For each function symbol f 2 F the denotation fA is continuous with respect to thefollowing ordering vs: x1 vs x2 i� x1 = x2 or x1 = ?AsAlg� denotes the class of all standard algebras with signature �.Note that, since a standard signature contains a constant symbol ?s of each sort s, a standardalgebra always contains a distinguished carrier ?As of each sort s.In the following we will always consider standard algebras. We will now in several steps de�nethe semantics of a module m. The semantics will be formalized as a function M that maps amodule m with signature (�P ;�E) and a �P -standard algebra A to a �E-standard algebra B.First we de�ne the carrier sets of the algebra constructed by the semantics of a module.De�nition 5 Let m be a module with signature (�P ;�E) and A 2 Alg�P . We de�ne a familyof sets (Dm;As)s2ASm as follows:� for each s 2 PSm let �Dm;As := sA � f?As g� for all s 2 NSm de�ne sets �Dm;As by simultaneous induction:if k 2 Km, k: s1; : : : ; sn ! s and di 2 �Dm;Asi for i = 1; : : : ; nthen k(d1; : : : ; dn) 2 �Dm;As� now de�ne for all s 2 ASm: Dm;As := �Dm;As [f?sg8

Now we de�ne an intermediate algebra that extends the parameter algebra by the newly de�nedsorts and operations except the recursive functions. This intermediate algebra will then be usedin order to de�ne the semantics of the recursive functions and to obtain the complete semanticsof the module.De�nition 6 Let m be a module with signature (�P ;�E) and A 2 Alg�P . We de�ne analgebra A� with signature (ASm;AFm nNFm) as follows:� A� j�P := A� sA� := Dm;As for all s 2 NSm� ?As := ?s for all s 2 NSm� For all s 2 NSm ifthenelses and =s obtain their meaning according to the de�nition ofstandard algebra� For all k: s1; : : : ; sn ! s 2 Km:kA�(x1; : : : ; xn) := (k(x1; : : : ; xn) if xi 6= ?Asi for all i?As otherwise� For all c: s1; : : : ; sn ! s 2 Km:isc?A�(x) := 8><>: true if x = c(x1; : : : ; xn) for some xi?bool if x = ?Asfalse otherwise� For all c: s1; : : : ; sn ! s 2 Km:selectjcA�(x) := 8><>: xj if x = c(x1; : : : ; xj; : : : ; xn)for some xi 6= ?Asi ; i = 1 : : :n?Asj otherwiseLemma 1 A� is a standard algebra.Proof: This follows from the continuity of the sequential if � then � else function ([LS87])and the strictness of the remaining functions. 2In order to de�ne the semantics of the recursive function symbols we need the notion of iteration.Intuitively, the n-times iteration of a term t is obtained by n-times simultaneously unfoldingall occurrences of recursive function symbols in t. The remaining recursive function symbolsare replaced by ?, this yields a term that is assigned a meaning by the algebra A�.9

De�nition 7 Let m be a module with signature (�P ;�E) and t 2 T�Em(X). Then for eachn 2 N, thni is the term obtained by n-fold application of the full substitution computation ruleon t and then replacing each occurrence of recursive function symbols by ?.In the terminology of [Gue79], De�nition 3.22, this is the n-th element tn of the Kleene sequenceof t.The reader is referred to [Gue79] for a formal de�nition.We are now ready to give the complete de�nition of the semantics of a module. Our de�nitionof the semantics of recursive function symbols is in the spirit of algebraic semantics (see forinstance [Gue79], in contrast to [Loe87] where a denotational approach was token). The advan-tage of the algebraic semantics is that it makes the distinction between the recursion structuregiven by the program and the interpretation of the base functions explicit. Furthermore wewill make use of the iterations of a term later in the logic.De�nition 8 Let m be a module with signature (�P ;�E). ThenM(m) is a functionM(m):Alg�P ! Alg�Ewhere for all A 2 Alg�P :� M(m)(A) j(ASm;EFm nNFm) := A� j(ASm;EFm nNFm)� for all f : s1; : : : ; sn ! s 2 NFm \ EFm, ai 2 sA�i :fM(m)(A)(a1; : : : ; an) := Gi�0A�(f(x1; : : : ; xn)hii)(�[xi ai])for an arbitrary assignment � 2 �A� .The choice of the assignment � is arbitrary since x1; : : :xn are the only free variables in theterms under consideration. The existence of the least upper bound of this set of values is asimple consequence of the fact that all cpo's are
at.Lemma 2 M(m)(A) is a standard algebra.Proof: follows from Lemma 1 and the fact that the denotations of recursive function symbolsare again continuous, see for instance [LS87]. 2Lemma 3 Letm be a module with signature (�P ;�E), A 2 Alg�P , B =M(m)(A), f : s1; : : : ; sn! s 2 EF \NFm and ai 2 sB. Let � 2 �B with �(xi) = ai for all i = 1; : : : ; n. Then� either fB(a1; : : : ; an) = ?Bs and B(f(x1; : : : ; xn)hji)(�) = ?Bs for all j 2 N� or fB(a1; : : : ; an) = c 6= ?Bs and there is a j0 such that for all j � j0:B(f(x1; : : : ; xn)hji)(�) = cProof: This is a simple consequence of the continuity of the functions and of the fact thatthe cpo is
at, see [LS87]. 210

B�A� restrict to �P -applyM(m) M(m)(A)�B0� restrict to �P @@@@@M(m)(B) = B00�-applyM(m)Figure 2: The algebras used in Lemma 63.3 Basic Properties of the SemanticsOur semantics obeys the persistency condition. Intuitively this means that the sorts andoperations of the parameter algebra are not modi�ed by the semantics of a module.Lemma 4 Let m be a module with signature (�P ;�E) and A 2 Alg�P . ThenM(m)(A) j�P \ �E = A j�P \ �EWe now show two lemmas that we will need for the proof of Theorem 1.Lemma 5 Let m be a module with signature (�P ;�E), A;B 2 Alg�P and A � B.ThenM(m)(A) �M(m)(B)Proof: The inclusion of the carrier sets is obvious. The coincidence of the semantics of thenew function symbols is easily shown from the de�nitions. 2Lemma 6 Let m be a module with signature (�P ;�E), �P � �E, A 2 Alg�P and B0 2 Alg�Ewith B0 �M(m)(A).Then B0 =M(m)(B0 j�P).Proof: (See also Figure 2.) De�ne B := B0 j�P and B00 :=M(m)(B). By the de�nition ofsubalgebra we get immediately B � A. We now show that B0 and B00 have the same carriersets. For the carrier sets of parameter sort this is immediate by Lemma 4.sB00 � sB0 for s 2 NS:This follows by structural induction from B � A since B0 is closed under the denotation of theconstructors. 11

sB0 � sB00 for s 2 NS:Assume there is some carrier of B0 that is not a carrier of B00. Let x be a minimal carrier(w.r.t. to the subterm ordering) of B0 that is not a carrier of B00. By construction x must beof the form c(x1; : : : ; xn) for some constructor c. Since B0 is closed under the denotation of theselectors, x1; :::; xn are carriers of B0 and by minimality of x are also carriers of B00. Thereforex = c(x1; : : : ; xn) is also a carrier of B00, this contradicts the assumption.Since B0 and B00 have the same carriers and are both subalgebras of the same superalgebra,the denotations of the function symbols also coincide, so B0 = B00. 2

12

4 LogicIn this section we show how to apply �rst order logic to modules.4.1 Basic De�nitions and PropertiesDe�nition 9 For a standard signature � = (S; F) let WFF� be the set of �rst order sentencesover the language hS; F; f=sj s 2 Sgi where each =s is a binary predicate symbol.If m is a module with signature (�P ;�E) we denote WFF�P by PWFFm and WFF�E byWFFm.The symbol =s is overloaded here: we use it as a function symbol with arity s; s ! bool andas a binary predicate symbol of the logic. Again we will drop the sort index if convenient.Let us emphasize that we only consider sentences, that is �rst order formulas without freevariables. By de�nition the set of �rst order sentences, considered as a subset of the set of�rst order formulas, is generated from the atoms (here: equalities) by negation, conjunctionand existential quanti�cation, but we also use the other usual logical junctors as syntacticabbreviations (see [End72] for a complete set of de�nitions). Furthermore we use the following:(t1 v t2) stands for (t1 = ? _ t1 = t2)8x 2 s : w stands for 8x : s : x = ?s _ w9x 2 s : w stands for 9x : s : x 6= ?s ^ wWe now come to the central de�nition of this paper. For a sentence w 2 WFF� and (notnecessarily standard) algebra A we write as usual A j= w if A is a model of w, see again[End72] for complete de�nitions. The point is that we can now use the sematics of a module withsignature (�P ;�E) in order to express properties of standard �P -algebras by �E-sentences.De�nition 10 Let m be a module with signature (�P ;�E), A 2 Alg�P and w 2WFFm. Wede�ne A]j=mw , M(m)(A) j= wFor W � WFFm we write A]j=mW if A]j=mw for all w 2 W .]j=mw means A]j=mw for allA 2 Alg�P . Furthermore Thm(A) := fw 2WFFm j A]j=mwgFor example let m be the module of Figure 1 and Nat the extension of the algebra of naturalnumbers to a standard algebra. ThenNat]j=m8l1; l2 : list : sum(app(l1; l2)) = sum(l1) + sum(l2)As an immediate consequence of the persistency of the semantics (Lemma 4) we get13

Lemma 7 Let m be a module with signature (�P ;�E), A 2 Alg�P and w 2 WFF�P\�E .Then A j= w i� A]j=mwThis means that our new logic is at least as expressive as �rst order logic. Later we willsee that, depending on the module under consideration, there is in general indeed a gain inexpressiveness.4.2 Classes of Parameter AlgebrasWe are not always interested in parameter algebras from the whole class Alg�P . Instead it isoften natural to restrict the parameter algebras to some subclass of Alg�P . The choice of thissubclass should depend only on the input signature. We put some reasonable constraints onthe possible classes of parameter algebras that we will need in the following.We call a class of algebras compact if the compactness theorem of �rst order logic holds in thisclass of models.De�nition 11 A class C of �-algebras is called compact if for each setW �WFF� of formulasthe following holds:If each �nite subset of W has a model in Cthen W has a model in CThe choice of a particular class of parameter algebras is formally expressed by the concept ofa domain operator :De�nition 12 A domain operator = maps each standard signature � to a subclass =� of Alg�such that the following holds:1. =� is compact.2. =� is closed under elementary submodels.3. For any sort symbol s in � and constant symbol c not in �:=�[fc:sg = f(A; a) j A 2 =� and a 2 sAgThe following mappings are no domain operators:1. F mapping each signature to the class of all standard algebras where all functions termi-nate for all but a �nite set of input values. Using the compactness theorem of �rst orderlogic it is easy to show that for non-trivial � F� does not ful�ll compactness.14

(1) 8x: bool : (x = ?bool _ x = true _ x = false)(2) ?bool 6= true(3) ?bool 6= false(4) true 6= false(5) 8x; y: s : [(x =s y) = true �� (x = y ^ x 6= ?s)](6) 8x; y: s : [(x =s y) = false �� (x 6= y ^ x 6= ?s ^ y 6= ?s)](7) 8x; y: s : [(x =s y) = ?bool �� (x = ?s _ y = ?s)](8) 8x; y: s : if true then x else y fi = x(9) 8x; y: s : if false then x else y fi = y(10) 8x; y: s : if ?bool then x else y fi = ?s(11) 8~xi; ~yi: s : [Vi=1:::n(xi v yi) � f(x1; : : : ; xn) v f(y1; : : : ; yn)]Figure 3: Axiom schemes for standard algebras.2. The operator mapping each signature to the class of standard algebras with cardinal-ity greater than @0 violates the closure under elementary submodels. This is an easyconsequence of the sharpened Skolem-L�owenheim Theorem of �rst order logic.3. There is an imported case not covered by the de�nition of a domain operator: Themapping TG that carries each signature � to the class of term-generated models is nodomain operator since the last condition of De�nition 12 is violated.On the other hand the next lemma shows that a wide class of mappings satis�es the constraintsof De�nition 12:Lemma 8 Let � be a mapping that maps each standard signature � = (S; F) to some set offormulas �(�) � WFF� where only constants from ftrue; falseg [f?s j s 2 Sg are allowed.Then the operator mapping each signature � to the class of standard algebras that are modelsof �(�) is a domain operator.Proof: First observe that the class of standard algebras is exactely the class of models ofthe set of axioms given by the axiom schemes of Figure 3 where s varies over all sorts and fvaries over all function symbols of the signature. Therefore the compactness property and theclosure under elementary submodels are easy consequences of the pertaining theorems of �rstorder logic: The compactness theorem (Theorem 1.3.22 in [CK90]), respectively the sharpenedSkolem-L�owenheim Theorem (Theorem 3.1.6 in [CK90]). The proof of the third constraint istrivial. 2As a consequence the following operators are indeed domain operators:1. The operator =f mapping each signature to the full class of standard algebras.2. The operator =strict mapping each signature to the class of standard algebras where allfunctions except if � then � else are strict.15

3. The operator mapping each signature to the class of standard algebras where all functionsare sequential ([Vui74]).On the other hand the operator TG mentioned above is not of great interest in this framework,since we do not want to require that all functions of an algebra are explicitelly listed in theparameter part of a module. For instance we could de�ne a module \list of elements" that wewant to apply to several algebras without worrying about all the other functions that might bepresent in the parameter algebra.We therefore claim that the constraints in De�nition 12 are reasonable. Note that we did notrequire closure of the domain operator under the semantics of modules, although this would bean acceptable constraint in view of vertical composition of modules. To be precise, we do notrequire thatM(m)(A) 2 =�E for A 2 =�P .4.3 Parameter ConditionsThe notion of a parameter condition links �rst order logic to our new logic.De�nition 13 Letm be a module with signature (�P ;�E), = a class operator and w 2WFFm.A sentence v 2 PWFFm is a =; m-parameter condition of w if for all A 2 =�P :A j= v) A]j=mwA sentence v 2 PWFFm is a =; m-weakest parameter condition of w if for all A 2 =�P :A j= v , A]j=mwThe following lemma is immediate by the de�nition:Lemma 9 Weakest parameter conditions are unique up to equivalence, that is: let m be amodule with signature (�P ;�E), = a domain operator and w 2 WFFm. Then for all weakestparameter conditions v1; v2 2 PWFFm: =�P j= v1 �� v2We illustrate the important notion of a weakest parameter condition with some examples.1. Let m be the module of Figure 1. The formula(8x 2 elem : 0 + x = x ^ x+ 0 = x) ^(8l1; l2 2 list : sum(app(l1; l2)) = sum(l1) + sum(l2))has the =strict; m-weakest parameter condition:(8x 2 elem : 0+ x = x ^ x+ 0 = x)^(8x1; x2; x3 2 elem : x1 + (x2 + x3) = (x1 + x2) + x3)16

PAR SORTS elemOPNS 0:! elempred: elem! elemBODY FCTS isstandard: elem! boolPROG isstandard(x) (if x = 0 then trueelse isstandard(pred(x))Figure 4: A module used for distinguishing standard from nonstandard models.PAR SORTS elemBODY SORTS listCONS nil:! listcons: elem; list! listFCTS isin: elem; list! boolPROG isin(e; l) (if isnil?(l) then falseelse if select1cons(l) = e then trueelse isin(e; select2cons(l))Figure 5: A module used for distinguishing �nite algebras from in�nite ones.2. Consider the module m of Figure 4. The formulaw := 8x 2 elem:isstandard(x) = truedoes not have a =strict; m-weakest parameter condition since the standard and the non-standard model of arithmetic have the same �rst order theory while the former ful�lls wand the latter does not.3. The last example shows that the same problem might also occur with primitive recursivefunctions. Take the module m of Figure 5. The class of standard algebras that ful�ll theformula w := 9l 2 list : 8x 2 elem : isin(x; l) = trueis exactely the class of �nite �P m-algebras. Since the class of �nite algebras cannotbe described by means of �rst order logic ([CK90]) w does not have a =f ; m-weakestparameter condition.These last examples show that our new logic is more expressive than �rst order logic. In thenext section we will discuss the model theoretic properties of the new logic that re
ect thisgain in expressiveness.The following lemma gives a special case in which a =; m-weakest parameter condition alwaysexists: 17

Lemma 10 Let m be a module with NFm = ; and = a domain operator. Then for eachw 2WFFm there exists a =; m-weakest parameter condition. Furthermore for each formula wthe weakest parameter condition is computable.Proof: The proof follows from procedures for solving equational problems in term algebras([CL89], [Mah88]). See [Tre91] and [Buh91] for details how to apply these results to thesemantics of modules. 25 Properties of the New LogicWe now consider two basic model-theoretic properties of our new logic. Lindstr�om ([Lin69])has shown that �rst order logic is the only logic ful�lling countable compactness and theSkolem-L�owenheim property (see also [Mon76], [CK90]). Besides the fact that he considerslogical systems with the whole class of algebras as domain (instead of standard algebras inour case) his theorem applies in our case only to an endogenous variant of our logic whereall possible modules are considered. Here we are interested in obtaining theorems about thelogical properties of distinguished modules.5.1 Downward Skolem-L�owenheimIn this subsection we show that our new logic has the downward Skolem-L�owenhein property.An analogous result has been proven in [Tiu81] for the Logic of E�ective De�nitions by trans-lation to the logic L!1! ([Kei71]). The proof of the theorem below directly depends on theclosure of the domain operators under elementary submodels. For domain operators describedby �rst order axioms this closure property follows from the strong version of the �rst orderSkolem-L�owenheim property, in�nitary logic is not needed here.Theorem 1 Let m be a module with signature (�P ;�E), = a domain operator and A 2 =�P .Then for each family Z = (Zs)s2PS of sets with cardinality at most @0 and Zs � sA there is aB 2 =�P of cardinality @0 that contains Z such that M(m)(B) is an elementary submodel ofM(m)(A).Proof: Without loss of generality let Z contain @0 many elements. Furthermore we mayassume �P � �E since elementary submodels are invariant under restriction of the signature.By the sharpened downward Skolem L�owenheim Theorem of �rst order logic (Theorem 3.1.6of [CK90]) there is an elementary submodel B0 ofM(m)(A) with cardinality @0 containing Z.Let B := B0 j�P . B contains Z and therefore has cardinality @0. By Theorem 6: B0 =M(m)(B). Since B0 is an elementary submodel ofM(m)(A), B is also an elementary submodelof A. By the closure of =�P under elmentary submodels B 2 =�P . 218

Corollary 1 Let m be a module with signature (�P ;�E) and A 2 =�P of in�nite cardinality.Then there is a B 2 =�P of cardinality @0 with Thm(A) = Thm(B).Proof: Let B be the model according to Theorem 1. By the properties of elementary sub-modelsM(m)(A) andM(m)(B) have the same �rst order theory and so Thm(A) = Thm(B).25.2 CompactnessFrom �rst order logic it is known that the most applications of the compactness theorem requirethe introduction of new constant symbols in some intermediate step. These new constantsin some sense allow to express an existential quanti�cation over an ini�nite conjunction offormulas. Therefore the compactness theorem can be used in order to show that a theoryhas a model containing an element satisfying some in�nite set of formulas (see for instanceProposition 2.2.7 in [CK90]). In order to argue about compactness properties of our logic wetherefore have to consider extensions of given modules, since including them into the parameterpart is the only way to incorporate new constant symbols.De�nition 14 Let m be a module with signature (�P ;�E) and = a domain operator. We saythat]j=m is =-compact if for each W �WFFm the following holds:If for each �nite F � W there is a A 2 =�P with A]j=mF , then there existsB 2 =�P with B]j=mWTheorem 2 Let m be a module and = a domain operator. Then the following statements areequivalent:1. For each extension m0 of m,]j=m0 is =-compact.2. For each extension m0 of m and w 2WFFm0 w has a =; m0-weakest parameter conditionProof:(1)(= (2)This is an easy consequence of the de�nition of a weakest parameter condition and of thecompactness property of the domain operator =.(1) =) (2)Assume that for each extension m0 of m]j=m0 is compact. We de�ne the set W as the setof all formulas that belong to some arbitrary extension of m. Strictly speaking this is a setonly if we �x some set of possible constant symbols, but we do not bother about set theoreticpeculiarities here. W := [m0 extends mWFFm0For each w 2 W de�ne 19

� �1(w) is the number of occurrences of existential quanti�ers in w ranging over some newsort� �2(w) is the number of occurrences of existential quanti�ers in w ranging over someparameter sort plus the number of occurrences of :, ^ in w.With the help of these notions we de�ne a relation v on W byw1 v w2 :() (�1(w1); �2(w1)) �lex (�1(w2); �2(w2))where �lex is the lexicographic extension of the ordering � on natural numbers. From theproperties of lexicographic orderings it is obvious that v is a well founded quasi ordering([Der87]).Now let w 2 W be a minimal formula with respect to v such that there exists an extensionm0 of m with w 2 WFFm0 and w does not have a weakest =; m0-parameter condition. �0denotes the parameter signature ofm0. First we show that w must be an atomic formula. Notethat for a given formula v 2 W we can restrict our attention to the minimal extension m�of m such that v 2 WFFm� . The addition of further constants does not a�ect the existenceof a weakest parameter condition. We say that v 2 W has a weakest parameter condition(without mentioning the module) if it has a =; m�-weakest parameter condition where m� isthe extension of m by the constants occurring in v.1. Suppose w = 9x : s : v where s is a parameter sort. Let c be a new constant symbolnot occurring in m0 or w. By the minimality condition v(x=c) has a weakest parametercondition r. We obtain a contradiction by showing that 9y : s : r(c=y) is a weakestparameter condition of w where y does not occur freely in r.Let m00 denote the extension of m0 by fc: sg and A 2 =�0 .A j= 9y : s : r(c=y), (A; a) j= r for some extension (A; a) of A, (A; a)]j=m00v(x=c) since r is a =; m00 weakest parametercondition of v(x=c), (A; a)]j=m009x : s : v since c does not occur in m00 or w, A]j=m09x : s : v since c does not occur in m0 or w2. Suppose w = 9x : s : v(x) where s is a new sort. De�neCs := TK;s(Xpar) [f?sgwhere Xpar is the familiy of variables of parameter sort. From the de�nition of thesemantics it is immediate that for each A 2 =�0 and a 2 sM(m0)(A) there is a t 2 Cs andan assignment � 2 �A with M(m0)(A)(t)(�) = a (1)20

For each �nite set F � Cs, the formula_t2F 9free(t) : v(x=t)has by minimality of w a =; m0-weakest parameter condition rF which is itself a =; m0-parameter condition of w. Since w by assumption does not have a weakest parametercondition, for each �nite F � Cs there is a A 2 =�0 withA]j=m0f9x : s : vg [f8free(t) ::v(x=t) j t 2 FgSince]j=m0 is compact there is an A 2 =�0 withA]j=m0f9x : s : vg [f8free(t) ::v(x=t) j t 2 CsgThis contradicts (1).3. Suppose w = :v. By minimality of w v has a weakest parameter condition r. Then :rmust be a weakest parameter condition of w.4. Suppose w = v1 _ v2. By minimality of w v1 and v2 have weakest parameter conditionsr1 and r2, respectively. Then r1 _ r2 must be a weakest parameter condition of w.We now know that w must be of the form t1 = t2. This formula is equivalent to(t1 = t2 ^ t1 6= ?)| {z }v1 _:(t1 6= ?| {z }v2 _ t2 6= ?| {z }v3)As in the cases (3),(4) above it follows that at least one of v1, v2, v3 does not have a weakestparameter condition. Without loss of generality we assume that v1 does not have a weakestparameter condition.By Lemma 10 we know that for each natural number n there is a =; m0-weakest parametercondition rn of t1hni = t2hni ^ t1hni 6= ?. Observe that]j=m0:rn � :rm for n > m. Since rnis a parameter condition for v1 and since v1 by assumption does not have a weakest parametercondition, for each �nite set F of natural numbers there is a A 2 =�0 withA]j=m0fv1g [f:rn j n 2 FgBy the compactness property of]j=m0 there is a A 2 =�0 withA]j=m0ft1 = t2 ^ t1 6= ?g [ft1hni 6= t2hni _ t1hni = ? j n > 0gAccording to the properties of monotonic functions there are two possibilities:� For all n: M(m0)(A)(t1hni = ?. This contradictsM(m0)(A)(t1) 6= ? by Lemma 3.� There is a n0 such thatM(m0)(A)(t1hn0i) 6= ?. Then for all n > n0 M(m0)(A)(t1hni) 6=? and therefore M(m0)(t1hni) 6= M(m0)(t2hni). This contradicts M(m0)(A)(t1) =M(m0)(A)(t2) by Lemma 3. 221

6 Decidability QuestionsWe now show that the existence of weakest parameter conditions is in general undecidable,even if the module does not introduce new sorts.In order to show undecidability of the existence of weakest parameter conditions we have totake care that the domain operator under consideration is rich enough. If the domain operatoris too trivial a weakest parameter condition always exists. We illustrate this remark with oneexample:Take the domain operator =n that carries each signature to the class of �nite standard algebraswith cardinality less or equal to the �xed number n. In any =n� there exist up to isomorphismonly �nitely many algebras and each isomorphism class can be characterized by an appropriateformula. As in Lemma 8 we obtain that =n is indeed a domain operator. Note that theaxiomatization of the isomorphism classes does involve the constant symbols, nevertheless theconstraint on the constants is obviously ful�lled. On the other hand there is a weakest =n,m-parameter condition for each formula w, namely the disjunction of those axioms associated tothe isomorphism classes that satisfy w.Therefore we require the domain operator to be non-trivial. In order to de�ne non-trivialitywe use some notions from [WPP*83]:De�nition 15 A domain operator = is called non-trivial if for each hierarchical type T =(�; E; P) where� P is the speci�cation BOOL� E is a �nite set of �-equations� T is hierarchy-persistentthe extension of the initial model of T to a standard algebra is contained in =�.The extension of A to a standard algebra is obtained by extending the signature to a standardsignature, assigning ?, ifthenelse and = their standard meaning and extending all functionsof A strictly.The hierarchy-persistence here means that the equations of E do not \destroy" the datatypeBOOL and do not introduce new elements of sort bool.We use a result about two-head automata that turned out to be useful for undecidability resultsin the �eld of program schemes. The reason for the adequacy for program schemes is that noparticular data types are required except bit sequences (these can be simulated by predicates)and the states of the �nite control (these are coded directly in the program).We shortly repeat the de�nition of a two-head automaton and the pertaining undecidabilityresult. Details can be found in [LPP70] and [Gre75], see also [Ros63]. Here we consider onlyautomata over a �xed binary alphabet f0; 1g.22

A two-head automaton (THA for short) is a tuple(Q1; Q2; q0; qa; qr; �)where Q1 and Q2 are �nite sets, Q1, Q2, fq0g, fqag and fqrg are pairwise disjoint sets of statesand � is a transition function�: (Q1 [Q2 [fq0g)� f0; 1g ! Q1 [Q2 [fqa; qrgSuch an automaton is given as input an in�nite sequence over f0; 1g. The automaton operatessimilar to a �nite state automaton but now has two read-only heads moving independentlyforward over the tape. In order to determine the next state the input is taken from the �rsthead (resp. second head) i� the actual state is a member of Q1 [fq0g (resp. Q2). Then thehead from which the input has been taken moves forward to the next position. Note that fora given input tape there are three possibilities:� The automaton accepts its input i� it eventually reaches qa.� The automaton rejects its input i� it eventually reaches qr .� The automaton diverges on its input if it never reaches qa or qr .LA denotes the set of inputs accepted by A, DA the set of inputs on which A diverges. We usethe following resultLemma 11 ([LPP70]) It is not semidecidable whether for a THA A� the set LA is empty.� the set DA is not empty.Sketch of the proof (see [LPP70], [Gre75] for details): For a given Turing machine T we cane�ectively construct a THA AT such that the only inputs accepted by AT are the tapes startingwith a �nite computation sequence of T with empty input, followed by some arbitrary sequence.Using this construction we can reduce the halting problem for Turing machines to the emptinessproblem for THA's. 2The module of Figure 6 simulates a THA in the following sense. To a given �P algebra B weassociate the input tape tapeB that is de�ned bytapeB(i) := (0 if B(contents0(nexti(start))) = true1 if B(contents0(nexti(start))) = falseObviously each possible input tape is a tapeB for some �P algebra B.23

PAR SORTS tapepositionvalueOPNS start:! tapepositionnext: tapeposition! tapepositioncontents0: tapeposition ! boola:! valuef : value! valuetest: value! boolBODY FCTS H :! boolFq: tapeposition; tapeposition; value! boolfor all states q of the automatonPROG H (Fq0(start; start; a)Fq(p1; p2; x) (if contents0(p1)then F�(q;0)(next(p1); p2; x)else F�(q;1)(next(p1); p2; x)for all states q 2 Q1Fq(p1; p2; x) (if contents0(p2)then F�(q;0)(p1; next(p2); x)else F�(q;1)(p1; next(p2); x)for all states q 2 Q2Fr(p1; p2; x) (Fr(p1; p2; x)Fa(p1; p2; x) (if test(x)then trueelse Fq0(start; start; f(x))EXPORT H :! boolFigure 6: A module simulating a two-head automaton used for Theorem 3Lemma 12 Let A be a two-head automaton and m be the pertaining module according toFigure 6. For each B 2 Alg�P and � 2 �B:tapeB 2 LA) M(m)(B)(Fq0(start; start; x))(�) =M(m)(B)(if test(x) then true elseFq0(start; start; f(x)))(�)tapeB 62 LA) M(m)(B)(Fq0(start; start; x))(�) = ?Proof: This follows easily from the de�nitions. 224

Lemma 13 Let m be the module associated to the THA A according to Figure 6 and = a nontrivial domain operator.1. If LA = ; then]j=mH = ?2. If LA 6= ; then the formula (H 6= ?) does not have a =; m-weakest parameter condition.Proof: (1) follows immediately from Lemma 12. For part (2), let t 2 LA and n be the lastposition of t visited by any of the heads of A when feeded with input t. Suppose v is a =; mweakest import condition of (H 6= ?).We can decscribe the relevant part of t (that is the initial part of t up to position n) by a �niteset of equations: et := ^i=0:::n(contents0(nexti(start)) = true if t(i) = 0contents0(nexti(start)) = false if t(i) = 1From Lemma 12 we conclude that for each B 2 Alg�P with B j= et:B]j=mH 6= ? , B j= test(f i(a)) = true for some i (2)On the other hand each set of the formfv; etg [ftest(f i(a)) = false j i � n0ghas by non-triviality of = a model in =�P , namely the extension of the initial model of(BOOL;�P ; E) to a standard algebra whereE = fetg[ftest(f i(a)) = false j i � n0g[ftest(fn0+1(x)) = truegBy compactness of = there is an algebra in =�P satisfyingfv; etg [ftest(f i(a)) = false j i 2 NgThis contradicts (2). 2As a consequence we can in each formula, if LA = ;, replace H bei ?bool thus obtaininga =; m-weakest parameter condition. Therefore we get the �rst undecidability result of thissection:Theorem 3 For a non-trivial domain operator = the following sets are not semidecidable:� the set of modules m such that all formulas w 2WFFm have a =; m-weakest parametercondition 25

PAR SORTS tapepositionvalueOPNS start:! tapepositionnext: tapeposition! tapepositioncontents0: tapeposition ! boola:! valuef : value! valuetest: value! boolBODY FCTS H :! boolFq: tapeposition; tapeposition; value! boolfor all states q of the automatonPROG H (Fq0(start; start; a)Fq(p1; p2; x) (if test(x) then trueelse if contents0(p1)then F�(q;0)(next(p1); p2; f(x))else F�(q;1)(next(p1); p2; f(x))for all states q 2 Q1Fq(p1; p2; x) (if test(x) then trueelse if contents0(p2)then F�(q;0)(p1; next(p2); f(x))else F�(q;1)(p1; next(p2); f(x))for all states q 2 Q2Fr(p1; p2; x) (trueFa(p1; p2; x) (trueEXPORT H :! boolFigure 7: A module simulating a two-head automaton used for Theorem 4� the set of pairs (w;m) where m is a module, w 2 WFFm and w has a =; m-weakestparameter conditionIn order to show that the sets of Theorem 3 are also not co-semidecidable we use again areduction of a not semidecidable property of THA. The module of Figure 7 is in some sense atwisted version of the module presented in Figure 6. Now we let the function H terminate i�the input tape is rejected or accepted by the automaton, while a possible in�nite sequence oftests is performed i� the automaton diverges on the input tape. The proof is analogous to the�rst proof, we therefore only state the key lemma and the concluding theorem:26

Lemma 14 Let m be the module associated to the THA A according to Figure 7 and = a nontrivial domain operator.1. If DA = ; then]j=mH = true2. If DA 6= ; then the formula (H 6= ?) does not have a =; m weakest parameter condition.Theorem 4 For a non-trivial domain operator = the following sets are not semidecidable:� the set of modules m such that some formula w 2 WFFm does not have a =; m weakestparameter condition� the set of pairs (w;m) where m is a module and w 2WFFm and w does not have a =; mweakest parameter conditionI wish to thank Thomas Lehmann, Joachim Philippi, and Jacques Loeckx and for commentsand discussions.References[ANSI83] American National Standards Institute. The Programming Language Ada ReferenceManual. LNCS vol. 155, Springer, 1983.[BG80] R. M. Burstall and J. A. Goguen. Semantics of CLEAR, a speci�cation language. InD. Bj�orner, editor, Abstract Softare Speci�cations, pages 292{332, Springer LNCS,vol. 86, 1980.[Bis86] Judy Bishop. Data Abstraction in Programming Languages. Addison{Wesley, 1986.[Buh91] Peter Buhmann. Disuni�kation in modularen Termalgebren. Master's thesis, Uni-versit�at des Saarlandes, 1991. In preparation.[CK90] C. C. Chang and H. J. Keisler. Model Theory. Studies in Logic and the Foundationsof Mathematics, vol. 73, North-Holland Publishing Company, third edition, 1990.[CL89] Hubert Comon and Pierre Lescanne. Equational problems and disuni�cation. Jour-nal of Symbolic Computation, 7(3,4):371{425, 1989.[Der87] Nachum Dershowitz. Termination of rewriting. Journal of Symbolic Computation,3:69{116, 1987.[DoD81] United States Departement of Defense. The Programming Language Ada. LNCSvol. 106, Springer, 1981. 27

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation, vol. 1. EATCS-Monographs on Theoretical Computer Science, Springer-Verlag, 1985.[EM90] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation, vol. 2. EATCS-Monographs on Theoretical Computer Science, Springer-Verlag, 1990.[End72] Herbert B. Enderton. Mathematical Introduction to Logic. Academic Press, 1972.[Gre75] Sheila A. Greibach. Theory of Program Structures: Schemes, Semantics, Veri�ca-tion. Lecture Notes in Computer Science, Vol. 35, Springer Verlag, 1975.[Gue79] Ir�ene Guessarian. Algebraic Semantics. Lecture Notes in Computer Science, Vol.99, Springer Verlag, 1979.[HMM86] Robert Harper, David MacQueen, and Robin Milner. Standard ML. TechnicalReport ECS-LFCS-86-2, Edinburgh University, 1986.[Kei71] H. Jerome Keisler. Model Theory for In�nitary Logic. Studies in Logic and theFoundations of Mathematics, vol. 62, North-Holland Publishing Company, 1971.[KT90] D. Kozen and J. Tiuryn. Logics of programs. In Jan van Leeuwen, editor, Handbookof Theoretical Computer Science, volume B, chapter 14, pages 789{840, ElsevierScience Publishers, 1990.[LAB*81] Barbara Liskov, Rusell Atkinson, Toby Bloom, Eliot Moss, J. Craig Scha�ert,Robert Schei
er, and Alan Snyder. CLU reference manual. LNCS vol. 114, Springer,1981.[LG86] Barbara Liskov and John Guttag. Abstraction and Speci�cation in Program Devel-opment. MIT press, 1986.[Lin69] P. Lindstr�om. On extension of elementary logic. Theoria, 35:1{11, 1969.[LL87] Thomas Lehmann and Jacques Loeckx. The speci�cation language of OBSCURE.In D. Sannella and A. Tarlecki, editors, 5th Workshop on Speci�cation of AbstractData Types, pages 131{153, Springer LNCS, vol. 332, 1987.[LL90] Thomas Lehmann and Jacques Loeckx. OBSCURE, A Speci�cation Language forAbstract Data Types. Technical Report A 19-90, Universit�at des Saarlandes, 1990.Submitted for publication.[Loe87] Jacques Loeckx. Algorithmic speci�cations: a constructive speci�cation method forabstract data types. ACM Transactions on Programming Languages and Systems,9(4), 1987.[LPP70] D. C. Luckham, D. M. R. Park, and M. S. Paterson. On formalized computerprograms. Journal of Computer and System Sciences, 4:220{249, 1970.28

[LS87] Jacques Loeckx and Kurt Sieber. The Foundations of Program Veri�cation. Wi-ley/Teubner, 2nd edition, 1987.[Mac86] David MacQueeen. Modules for standard ML. In [HMM86], 1986.[Mah88] Michael J. Maher. Complete axiomatisations of the algebra of �nite, rational andin�nite trees. In Third Anual Symposium on Logic in Computer Science, pages 348{357, IEEE, Edinburgh, Scotland, july 1988.[Mon76] J. Donald Monk. Mathematical Logic. Graduate Texts in Mathematics, vol. 37,Springer, 1976.[Ros63] A. Rosenberg. On multi-head �nite automata. In Proceedings of the Fifth AnnualSymposium on Switching Circuit Theory and Logical Design, pages 221{228, 1963.[Sha81] Mary Shaw, editor. Alphard: Form and Content. Springer, 1981.[Ste90] Guy Steele. Common LISP: The Language. Digital Press, second edition, 1990.[Tiu81] J. Tiuryn. A survey of the logic of e�ective de�nitions. In E. Engeler, editor,Proceedings of the Workshop on Logics of Programs, pages 198{245, Springer LNCS,vol. 125, 1981.[Tre91] Ralf Treinen. First order logic applied to �rst order data types. PhD thesis, Univer-sit�at des Saarlandes, 1991. In preparation.[Tur85] David A. Turner. Miranda: a non-strict functional language with polymorphictypes. In Jean-Pierre Jouannaud, editor, IFIP International Conference on Func-tional Programming Languages and Computer Architecture, pages 1{16, SpringerLNCS, vol. 201, 1985.[Tur86] David A. Turner. An overview of Miranda. SIGPLAN notices, 21(12):158{166,1986.[Vui74] Jean Vuillemin. Correct and optimal implementations of recursion in a simpleprogramming language. Journal of Computer and System Sciences, 9:332{354, 1974.[Wir85] Niklaus Wirth. Programming in MODULA-2. Springer, third edition, 1985.[WLS76] W. A. Wulf, R. L. London, and M. Shaw. An introduction to the constructionand veri�cation of Alphard programs. IEEE Transactions on Software Engineering,2(4):253{263, 1976.[WPP*83] Martin Wirsing, Peter Pepper, Helmut Partsch, Walter Dosch, and Manfred Broy.On hierarchies of abstract data types. Acta Informatica, 20:1{33, 1983.29

