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Type Inference in a Deep Constraint LanguageOur proposal for implementing Damas-Milner polymorphic type inference is the relational calculus�deep with higher-order abstractions and 1st-order constraints. The 1st-order constraints are usedto encode monomorphic types, while polymorphic types are expressed by abstraction. The closestrelative of �deep is the �-calculus [7]. Unlike the �-calculus or its other relatives [8, 6], �deep is not aweak calculus, i.e., it allows reduction below abstraction. This allows to simplify the abstractionsencoding polymorpic types before application.As constraints �;  we pick term equations closed under composition ^ and declaration 9. Expres-sions E; F are constraints, abstractions x:�=E (which can be read approximately as ��:E withname x), or proof obligations [[M ]]� (which represent the constraint � _= � for the principal type� of M), and closed under composition and declaration. A context is an expression with a hole�. The � acts as a placeholder: C[E] means context C with E replaced for �, where capturing offree variables in E is allowed.�;  ::= > j ? j � ^  j 9� � j � = � j � = � ! E; F ::= � j E ^ F j 9u E j x:�=E j [[M ]]�C;D ::= � j C ^ E j 9u C j x:�=CComposition ^ is associative, commutative, with the neutral element >. Expressions containingdeclarations are identi�ed wrt. the usual scope rules for 9 and �-renaming. The constraints comewith a theory � which may in the case at hand be either the one of �nite or in�nite trees. Thisparametricity is captured by the congruence rule (EQUIV) which identi�es constraints up to �-equivalence. The congruence rule (PROP) says that (i) constraints can be propagated downwardinto the bodies of abstractions, and (ii) bodies of abstractions can be simpli�ed wrt. the context.(EQUIV) � �  if � j=j�  (PROP) � ^ x:�=E � � ^ x:�=(� ^E) if � 62 F(�)The (PROP) rule, rendering the body of an abstraction a local computation space, is an importantfeature of the calculus [?] underlying the deep guard language Oz [2]. Congruence � is the smallestcongruence class over expressions satisfying the mentioned axioms. Reduction ! is a relation onexpressions modulo congruence �. Its axioms are the rules (lam), (app), (let), and (var) below,and reduction is closed under the rule (cong).(lam) [[�x:M ]]� ! 9�9( x:�=� _=� ^ [[M ]] ^ � _= � !  )(app) [[MN ]]� ! 9�9( [[M ]]� ^ [[N ]] ^ � _=  ! � )(let) [[let x=M inN ]]� ! [[N ]]�^ 9�([[x]]�) ^ x:=[[M ]](var) x: �=E ^ C[[[x]]�] ! x: �=E ^ C[Ef�=�g](cong) E 0 � C[E] E ! F C[F ] � F 0E 0 ! F 0Rules (lam), (app), (let), and (var) essentially turn the DM-rules top-down. They encode whatWand [9] called the \action table" of its schematic algorithm. Note that we need to unfoldevery polytype at least once (hence 9�([[x]]�) ) in order to deal with the case that for somelet x=M inN , x does not appear in N . (var) is the application axiom of the �-calculus [7].Polymorphic types are encoded as follows in our constraint language:� = � ! � � 9�9(� = � ^  = � ^ � _= � ! ) � k f�; g� = ��:� � 9�(� _= � ^ � = �)x : ��:� � x: �=9�(� = �) � k f�g



The �rst equations are fairly clear. The encoding of polytype is a bit trickier: A polytype isencoded into an abstraction. The universally bound variables become existentially quanti�edvariables local to its body. That is, the universal nature of a polytype is captured by the fact thatan abstraction copies its body on every application with fresh instances of its local variables. Forexample, the polytype x : ���:�! � ! �is encoded as x:=9�9�9�(  _=�! � ^ � _= � ! � )Two applications of the same polytype abstraction (corresponding to two di�erent occurrencesof the same variable) hence will constrain its arguments di�erently, each time with a di�erentinstance of the polytype. As an example, assume two occurrences of x with respective types� _= int ! �0 and � _= bool ! �0 ! �0:� � � _= int ! �0 ^ � _= bool ! �0 ! �0 ^ [[x]]� ^ [[x]]� andE = x:=9��(  _=�! � ! � )We obtain the following derivation:� ^E!2 � ^ 9��( � _=�! � ! � ) ^ 9��( � _=�! � ! � ) ^E� 9� (� _= int ! �0 ^ �0 _= � ! int ^ � _= bool ! �0 ! bool) ^EThe algorithm is correct in the sense that whenever � is a principal DM-type of a closed expressionM , then [[M ]]� !� C[�] such that � j=j 9�� _= � where F(�) = f�g and f�g k �. Here, C is acontext which hides intermediate type assumptions (which could also be purged by some form ofgarbage collection axiom).Our correctness proof, though, is not yet complete: We can prove the correctness of the monomor-phic fragment of the algorithm as well as termination. In order to cope with let-polymorphismwe need the calculus to be locally conuent. It seems that there is a suitable conuent relative ofthe �- and �deep-calculi [5]. Then, it is possible to pick a particular derivation which reduces thepolymorphic to the monomorphic case (cf. rule (LET)).A Complete ExampleIn this Section we give a complete derivation in order to illuminate the behaviour of our algorithm.To keep things simple, we drop type assumptions when they are no longer used. We also leavethe \dummy application" of a polytype out (see rule (let)) since our example is well-behaved. Wereduce the expression: M = �y:�z:�f:let x=(�u:fy) (fz) inxaccording to a depth �rst reduction stratgy: I.e., bodies of abstractions are simpli�ed as much aspossible before application. Relying on the conuence of the calculus this is correct, and it avoidsto duplicate work by early application.The �rst derivation few steps descend into the �-expression accumulating type assumptions andconstraints until they reach the let-expression (for brevity, we write 9� instead of 9�1 : : :9�n):[[M ]]�! 9� (� _=�! ^ y :�^[[�z:�f:let x=(�u:fy) (fz) in x]])! 9��0 0 (� _=�!^ _=�0! 0 ^ y :�^z :�0^[[�f:let x=(�u:fy) (fz) in x]] 0)! 9��0 0�00 00 (� _=�!^ _=�0! 0^ 0 _=�00! 00 ^ y :�^z :�0^f :�00^[[let x=(�u:fy) (fz) inx]] 0)! 9��0 0�00 00| {z }=:9::: (� _=�!^ _=�0! 0^ 0 _=�00! 00| {z }=:� ^ y :�^z :�0^f :�00| {z }=:� ^[[x]] 0^x:�=[[(�u:fy) (fz)]]�)
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