
A Constraint-Based Recast of ML{Polymorphism(Extended Abstract)Martin M�uller� mmueller@dfki.uni-sb.deGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, GermanyAbstractWe implement the classical Damas-Milner type inference algorithm in a calculus withhigher-order abstractions and 1st-order constraints. We encode mono(morphic) types as con-straints, and poly(morphic) types as abstractions over monotypes. Our calculus �deep is intend-ed as computation model of a concrete programming language, i.e., to be what the �-calculus isfor ML, or the -calculus [8] for Oz [2]. Unlike usual in programming language research, �deepallows reduction below abstraction. This allows to simplify our encoding of polytypes beforeusage. In the envisaged programming language, the type inferencer can be run just as speci�ed.We claim that deep reduction is one of the essential features for such a high-level implemen-tation of type inference or abstract interpretation algorithms [4]. The algorithm can also beviewed as an extension of Wand's [9] towards let-polymorphism. Like Wand's, our algorithmis easily modi�ed to supply other monomorphic type systems with ML style polymorphism.The Damas-Milner CalculusThe Damas-Milner algorithm (DM, for short) for polymorphic type inference [3, 1] underliesmost of today's statically typed functional programming languages. One of its most importantproperties is that it has principal types, i.e., there is the notion of a unique most general typefor a well-typed expression. Since the DM-algorithm is by far the best-understood type inferencealgorithm we assume some familiarity with it.We assume a denumerable set of variables ranged over by x; y; z; : : : or �; �; ; : : :. Note that thedi�erent fonts are only of mnemonic importance. We consider �-expressions M;N , monomorphictype expressions (monotypes) � , and polymorphic ones (polytypes) � with the abstract syntax:M;N ::= x j �x:M jMN j let x=M inN � ::= � j � ! � j ��:� � ::= ��:�The variable x is bound in �x:M and let x=M inN , and � is bound in ��:� . F(M) denotes thefree variables of an expression. ��:� denotes the (possibly recursive) tree solution of � _= � . Forsimplicity, we consider expressions M such that all bound variables in M are pairwise di�erentand distinct from the free variables in M . �f�0=�g denotes the capture avoiding substitution of�0 for � into � . An environment � is a �nite sequence of variable-type pairs x :�. The algorithmgiven by the rules below assigns types � to expressions M wrt. an environment �. The followingrules give the algorithm as an inference system deriving valid statements of the form � . M : � .Note that this is not quite the DM-algorithm (although equivalent), since we decided to give the(LET) rule in terms of copying instead of generalisation.(VAR) �(x) = ��:�� . x :�f�0=�g (LAM) � ^ x :�1 .M :�2� . �x:M :�1 ! �2(APP) � .M :�1 ! �2 � . N :�1� .MN :�2 (LET) � .M : �1 � . N [M=x] : �2� . let x=M inN : �2�Martin M�uller has been supported by a fellowship from the `Graduiertenkolleg Kognition der Universit�at desSaarlandes' and the Hydra Project. Appeared in: Denis Lugiez, editor. 8th International Workshop on Uni�cation. Vald'Ajol, 23{25 june, 1994. Technical Report. Universit�e de Nancy1

Type Inference in a Deep Constraint LanguageOur proposal for implementing Damas-Milner polymorphic type inference is the relational calculus�deep with higher-order abstractions and 1st-order constraints. The 1st-order constraints are usedto encode monomorphic types, while polymorphic types are expressed by abstraction. The closestrelative of �deep is the �-calculus [7]. Unlike the �-calculus or its other relatives [8, 6], �deep is not aweak calculus, i.e., it allows reduction below abstraction. This allows to simplify the abstractionsencoding polymorpic types before application.As constraints �; we pick term equations closed under composition ^ and declaration 9. Expres-sions E; F are constraints, abstractions x:�=E (which can be read approximately as ��:E withname x), or proof obligations [[M]]� (which represent the constraint � _= � for the principal type� of M), and closed under composition and declaration. A context is an expression with a hole�. The � acts as a placeholder: C[E] means context C with E replaced for �, where capturing offree variables in E is allowed.�; ::= > j ? j � ^ j 9� � j � = � j � = � ! E; F ::= � j E ^ F j 9u E j x:�=E j [[M]]�C;D ::= � j C ^ E j 9u C j x:�=CComposition ^ is associative, commutative, with the neutral element >. Expressions containingdeclarations are identi�ed wrt. the usual scope rules for 9 and �-renaming. The constraints comewith a theory � which may in the case at hand be either the one of �nite or in�nite trees. Thisparametricity is captured by the congruence rule (EQUIV) which identi�es constraints up to �-equivalence. The congruence rule (PROP) says that (i) constraints can be propagated downwardinto the bodies of abstractions, and (ii) bodies of abstractions can be simpli�ed wrt. the context.(EQUIV) � � if � j=j� (PROP) � ^ x:�=E � � ^ x:�=(� ^E) if � 62 F(�)The (PROP) rule, rendering the body of an abstraction a local computation space, is an importantfeature of the calculus [?] underlying the deep guard language Oz [2]. Congruence � is the smallestcongruence class over expressions satisfying the mentioned axioms. Reduction ! is a relation onexpressions modulo congruence �. Its axioms are the rules (lam), (app), (let), and (var) below,and reduction is closed under the rule (cong).(lam) [[�x:M]]� ! 9�9(x:�=� _=� ^ [[M]] ^ � _= � !)(app) [[MN]]� ! 9�9([[M]]� ^ [[N]] ^ � _= ! �)(let) [[let x=M inN]]� ! [[N]]�^ 9�([[x]]�) ^ x:=[[M]](var) x: �=E ^ C[[[x]]�] ! x: �=E ^ C[Ef�=�g](cong) E 0 � C[E] E ! F C[F] � F 0E 0 ! F 0Rules (lam), (app), (let), and (var) essentially turn the DM-rules top-down. They encode whatWand [9] called the \action table" of its schematic algorithm. Note that we need to unfoldevery polytype at least once (hence 9�([[x]]�)) in order to deal with the case that for somelet x=M inN , x does not appear in N . (var) is the application axiom of the �-calculus [7].Polymorphic types are encoded as follows in our constraint language:� = � ! � � 9�9(� = � ^ = � ^ � _= � !) � k f�; g� = ��:� � 9�(� _= � ^ � = �)x : ��:� � x: �=9�(� = �) � k f�g

The �rst equations are fairly clear. The encoding of polytype is a bit trickier: A polytype isencoded into an abstraction. The universally bound variables become existentially quanti�edvariables local to its body. That is, the universal nature of a polytype is captured by the fact thatan abstraction copies its body on every application with fresh instances of its local variables. Forexample, the polytype x : ���:�! � ! �is encoded as x:=9�9�9�(_=�! � ^ � _= � ! �)Two applications of the same polytype abstraction (corresponding to two di�erent occurrencesof the same variable) hence will constrain its arguments di�erently, each time with a di�erentinstance of the polytype. As an example, assume two occurrences of x with respective types� _= int ! �0 and � _= bool ! �0 ! �0:� � � _= int ! �0 ^ � _= bool ! �0 ! �0 ^ [[x]]� ^ [[x]]� andE = x:=9��(_=�! � ! �)We obtain the following derivation:� ^E!2 � ^ 9��(� _=�! � ! �) ^ 9��(� _=�! � ! �) ^E� 9� (� _= int ! �0 ^ �0 _= � ! int ^ � _= bool ! �0 ! bool) ^EThe algorithm is correct in the sense that whenever � is a principal DM-type of a closed expressionM , then [[M]]� !� C[�] such that � j=j 9�� _= � where F(�) = f�g and f�g k �. Here, C is acontext which hides intermediate type assumptions (which could also be purged by some form ofgarbage collection axiom).Our correctness proof, though, is not yet complete: We can prove the correctness of the monomor-phic fragment of the algorithm as well as termination. In order to cope with let-polymorphismwe need the calculus to be locally conuent. It seems that there is a suitable conuent relative ofthe �- and �deep-calculi [5]. Then, it is possible to pick a particular derivation which reduces thepolymorphic to the monomorphic case (cf. rule (LET)).A Complete ExampleIn this Section we give a complete derivation in order to illuminate the behaviour of our algorithm.To keep things simple, we drop type assumptions when they are no longer used. We also leavethe \dummy application" of a polytype out (see rule (let)) since our example is well-behaved. Wereduce the expression: M = �y:�z:�f:let x=(�u:fy) (fz) inxaccording to a depth �rst reduction stratgy: I.e., bodies of abstractions are simpli�ed as much aspossible before application. Relying on the conuence of the calculus this is correct, and it avoidsto duplicate work by early application.The �rst derivation few steps descend into the �-expression accumulating type assumptions andconstraints until they reach the let-expression (for brevity, we write 9� instead of 9�1 : : :9�n):[[M]]�! 9� (� _=�! ^ y :�^[[�z:�f:let x=(�u:fy) (fz) in x]])! 9��0 0 (� _=�!^ _=�0! 0 ^ y :�^z :�0^[[�f:let x=(�u:fy) (fz) in x]] 0)! 9��0 0�00 00 (� _=�!^ _=�0! 0^ 0 _=�00! 00 ^ y :�^z :�0^f :�00^[[let x=(�u:fy) (fz) inx]] 0)! 9��0 0�00 00| {z }=:9::: (� _=�!^ _=�0! 0^ 0 _=�00! 00| {z }=:� ^ y :�^z :�0^f :�00| {z }=:� ^[[x]] 0^x:�=[[(�u:fy) (fz)]]�)

Next, the abstraction encoding the polytype for x is simpli�ed. Observe in particular, that themultistep transitions !2 and !� introduce global variables (the types of f , y, and z into theabstraction body), along with their constraints according to congruence rule (PROP).9 : : :� ^ �^[[x]] 0^ x:�=([[(�u:fy) (fz)]]�)! 9 : : :� ^ �^[[x]] 0^ x:�=(9�� � _=�! �̂ [[(�u:fy)]]� ^ [[(fz)]]�)! 9 : : :� ^ �^[[x]] 0^ x:�=(9��0�� 0 � _=�!�^�0 _=� 0!� [[(�u:fy)]]�^[[f]]�0 ^ [[z]]� 0)!2 9 : : :� ^ �^[[x]] 0^ x:�=(9�� � _=�!�^�00 _=�0!� [[(�u:fy)]]�)! 9 : : :� ^ �^[[x]] 0^ x:�=(9��� 0� � _=�!�^�00 _=�0!�^� _=�!� 0 u :�^[[fy]]� 0)!� 9 : : :� ^ �^[[x]] 0^ x:�=(9��� 0� � _=�!�^�00 _=�0!�^� _=�!� 0^�00 _=�!� 0 u :�)� 9 : : :� ^ �^[[x]] 0^ x:�=(9� �00 _=�0 ! �^�0 _=� u :�)� 9 : : :� ^ �^[[x]] 0^ x:�=(�00 _=�0 ! �^�0 _=�)Finally, we descend into the second branch of the let-expression, which means to apply the x-abstraction to get an instance of the polytype of x, and simplify the resulting constraint. Theoutcome is the principal type of M : � ! �0 ! �00 ! 00.9��0 0�0000 (� ^ y :�^z :�0^f :�00^[[x]] 0^x:�=(�00 _=�0 ! �^�0 _=�))! 9��0 0�0000 (�^�00 _=�0 ! 0^�0 _=� ^ y :�^z :�0^f :�00^x:�=(�00 _=�0 ! �^�0 _=�))� 9��0 0�0000 (�^�00 _=�0 ! 0^�0 _=� ^ y :�^z :�0^f :�00^x:�=�00 _=�0 ! �)� 9��0 0�0000 (�^�00 _=�0 ! 0^�0 _=� ^ y :�^z :�0^f :�00)� 9��0�00 00 (� _=�!�0!�00! 00)AcknowledgmentsThanks go to Gert Smolka for initiating my research on type checking and to Joachim Niehrenfor many fruitful discussions and joint research on this topic.References[1] L. Damas and R. Milner. Principal Type-Schemes for Functional Programs. In 9th ACM Symposiumon Principles of Programming Languages, pages 207{212, January 1982.[2] M. Henz, M. Mehl, M. M�uller, T. M�uller, J. Niehren, R. Scheidhauer, C. Schulte, G. Smolka, R. Treinen,and J. W�urtz. The Oz Handbook. DFKI, Saarbr�ucken, Germany, 1994. Available through anonymousftp from ps-ftp.dfki.uni-sb.de or through www from http://ps-www.dfki.uni-sb.de.[3] Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and SystemScience, 17:348{375, 1978.[4] Martin M�uller and Joachim Niehren. Higher-Order Meta Programming in Oz. Unpublished, 1994.[5] Joachim Niehren. Personal Communication. 1994.[6] Joachim Niehren. Funktionale Berechnung in einem uniformen nebenl�au�gen Kalk�ul mit logischenVariablen. PhD thesis, Universit�at des Saarlandes, 1994. forthcoming, in German.[7] Joachim Niehren and Gert Smolka. A Conuent Calculus for Higher-Order Relational Programming.In Constraints in Computational Logics, volume 845 of Lecture Notes in Computer Science, Munich,Germany, September 1994.[8] Gert Smolka. A Foundation for Concurrent Constraint Programming. In Constraints in ComputationalLogics, volume 845 of Lecture Notes in Computer Science, Munich, Germany, September 1994.[9] Mitchell Wand. A Simple Algorithm and Proof for Type Inference. Fundamenta Informaticae, 10:115{122, 1987.

