A Constraint-Based Recast of ML-Polymorphism
(Extended Abstract)

Martin Muller* mmueller@dfki.uni-sb.de
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, 66123 Saarbrucken, Germany

Abstract

We 1mplement the classical Damas-Milner type inference algorithm in a calculus with
higher-order abstractions and 1st-order constraints. We encode mono(morphic) types as con-
straints, and poly(morphic) types as abstractions over monotypes. Our calculus pgeep 1s intend-
ed as computation model of a concrete programming language, i.e., to be what the A-calculus is
for ML, or the y-calculus [8] for Oz [2]. Unlike usual in programming language research, pgecp
allows reduction below abstraction. This allows to simplify our encoding of polytypes before
usage. In the envisaged programming language, the type inferencer can be run just as specified.
We claim that deep reduction is one of the essential features for such a high-level implemen-
tation of type inference or abstract interpretation algorithms [4]. The algorithm can also be
viewed as an extension of Wand’s [9] towards let-polymorphism. Like Wand’s, our algorithm
1s easily modified to supply other monomorphic type systems with ML style polymorphism.

The Damas-Milner Calculus

The Damas-Milner algorithm (DM, for short) for polymorphic type inference [3, 1] underlies
most of today’s statically typed functional programming languages. One of its most important
properties is that it has principal types, i.e., there is the notion of a unique most general type
for a well-typed expression. Since the DM-algorithm is by far the best-understood type inference
algorithm we assume some familiarity with it.

We assume a denumerable set of variables ranged over by z,y,z,...0r o, 3,7, Note that the
different fonts are only of mnemonic importance. We consider A-expressions M, N, monomorphic
type expressions (monotypes) 7, and polymorphic ones (polytypes) ¢ with the abstract syntax:

M,N == a|XaM|MN |let 2=MinN T u= o|T =T | peT o u= lla.r

The variable z is bound in Az.M and let z=M in N, and « is bound in pa.7. F (M) denotes the
free variables of an expression. pa.7 denotes the (possibly recursive) tree solution of o =7. For
simplicity, we consider expressions M such that all bound variables in M are pairwise different
and distinct from the free variables in M. 7{7/@} denotes the capture avoiding substitution of
7o for @ into 7. An environment [is a finite sequence of variable-type pairs xz:0. The algorithm
given by the rules below assigns types 7 to expressions M wrt. an environment I'. The following
rules give the algorithm as an inference system deriving valid statements of the form I'> M : 7.
Note that this is not quite the DM-algorithm (although equivalent), since we decided to give the
(LET) rule in terms of copying instead of generalisation.

I'(z) = lla.r F'Az:mip My
(VAR) U'>a:r{m/a} (LAM) I's Az M:m — 7

I'>M:m > 1 I'>N:ny I'>M:n I'> N[M/z]:m
(APP) ' MN:my (LET) I' blet e=MinN : 1y

*Martin Miller has been supported by a fellowship from the ‘Graduiertenkolleg Kognition der Universitat des
Saarlandes’ and the Hydra Project. Appeared in: Denis Lugiez, editor. 8'" International Workshop on Unification. Val
d’Ajol, 23-25 june, 1994. Technical Report. Université de Nancy

Type Inference in a Deep Constraint Language

Our proposal for implementing Damas-Milner polymorphic type inference is the relational calculus
Pdeep With higher-order abstractions and 1st-order constraints. The 1st-order constraints are used
to encode monomorphic types, while polymorphic types are expressed by abstraction. The closest
relative of pgeep is the p-calculus [7]. Unlike the p-calculus or its other relatives [8, 6], pgecp is n0t a
weak calculus, i.e., it allows reduction below abstraction. This allows to simplify the abstractions
encoding polymorpic types before application.

As constraints ¢, 1 we pick term equations closed under composition A and declaration 3. Ezpres-
sions E, I’ are constraints, abstractions z:a/FE (which can be read approximately as Aa.E with
name z), or proof obligations [M]o (which represent the constraint ow= 7 for the principal type
7 of M), and closed under composition and declaration. A context is an expression with a hole
e. The o acts as a placeholder: C[F] means context C' with F replaced for e, where capturing of
free variables in F is allowed.

¢ u= T|L|oAY|Tagla=Fla=5—7y
EF GlEANF|FuE|v:a/E|[M]a
C,D == o|CAE|FuC|z:a/C

Composition A is associative, commutative, with the neutral element T. Expressions containing
declarations are identified wrt. the usual scope rules for 4 and a-renaming. The constraints come
with a theory A which may in the case at hand be either the one of finite or infinite trees. This
parametricity is captured by the congruence rule (EQUIV) which identifies constraints up to A-
equivalence. The congruence rule (PROP) says that (i) constraints can be propagated downward
into the bodies of abstractions, and (i¢) bodies of abstractions can be simplified wrt. the context.

(EQUIV) ¢ 0 if ¢ HA ¥
(PROP) opAax:f/E pAxBl(ONE) if & F(o)

The (PROP) rule, rendering the body of an abstraction a local computation space, is an important
feature of the calculus [?] underlying the deep guard language Oz [2]. Congruence = is the smallest

congruence class over expressions satisfying the mentioned axioms. Reduction — is a relation on
expressions modulo congruence =. Its axioms are the rules (lam), (app), (let), and (var) below,
and reduction is closed under the rule (cong).

(lam) [Az.M]e — dpIy(vafa=FA[MyANa=8—7v)
(app) [M N]a = I ([MIFAINI A B=7 = a)
(let) —
(

[let z=M in N]« [INJa A 3B([2]8) | A x:v/[M]y

var) a:f/EANC[[2]e] — a:8/EANC[E{a/F}]

EF'=C[F] F—=F C[F]=F
(Cong) El—>F/

Rules (lam), (app), (let), and (var) essentially turn the DM-rules top-down. They encode what
Wand [9] called the “action table” of its schematic algorithm. Note that we need to unfold

every polytype at least once (hence |3F([#]F)|) in order to deal with the case that for some

let z=Min N, 2 does not appear in N. (var) is the application axiom of the p-calculus [7].

Polymorphic types are encoded as follows in our constraint language:

a=0—=1 = PIPB=cry=1Aa=F—=7) ol {8,7}
a=ppr = Fpla=pAB=T)
z : et = x:f/Ja(f=r1) Bl {a}

The first equations are fairly clear. The encoding of polytype is a bit trickier: A polytype is
encoded into an abstraction. The wuniversally bound variables become ezistentially quantified
variables local to its body. That is, the universal nature of a polytype is captured by the fact that
an abstraction copies its body on every application with fresh instances of its local variables. For
example, the polytype

z:laf.a— =«

is encoded as

ry/FadpA(y=a = IN=0F = a)

Two applications of the same polytype abstraction (corresponding to two different occurrences
of the same variable) hence will constrain its arguments differently, each time with a different
instance of the polytype. As an example, assume two occurrences of x with respective types
d=int — ¢ and ¢ =bool — ¢’ — ¢:

¢ = d=int = ¥ Ae=bool = & — ¢ A[z]d Az]e and
E = wvy/Faf(v=a—F—a)

We obtain the following derivation:

ONE
=2 pATaf(dza—=B—=a)rATaf(e=a—= B —=a)AE
= 3 (0=int—>AN=F—intAec=bool — ¢ — bool) AN E

The algorithm is correct in the sense that whenever 7 is a principal DM-type of a closed expression
M, then [M]a —* C[#] such that ¢ H 3Ba =71 where F(r) = {3} and {3} || @. Here, C is a
context which hides intermediate type assumptions (which could also be purged by some form of
garbage collection axiom).

Our correctness proof, though, is not yet complete: We can prove the correctness of the monomor-
phic fragment of the algorithm as well as termination. In order to cope with let-polymorphism
we need the calculus to be locally confluent. It seems that there is a suitable confluent relative of
the p- and pgeep-calculi [5]. Then, it is possible to pick a particular derivation which reduces the
polymorphic to the monomorphic case (cf. rule (LET)).

A Complete Example

In this Section we give a complete derivation in order to illuminate the behaviour of our algorithm.
To keep things simple, we drop type assumptions when they are no longer used. We also leave
the “dummy application” of a polytype out (see rule (let)) since our example is well-behaved. We
reduce the expression:

M = Ay dzAflet a=(Au.fy) (fz)inz

according to a depth first reduction stratgy: l.e., bodies of abstractions are simplified as much as
possible before application. Relying on the confluence of the calculus this is correct, and it avoids
to duplicate work by early application.

The first derivation few steps descend into the A-expression accumulating type assumptions and
constraints until they reach the let-expression (for brevity, we write 3@ instead of Ja; ... Jev,):

[M]o

— dpy (a=p—~y Ay:BA[Az. A flet z=(Au.fy) (fz)inz]y)

— Ay 3y (a=B—=yAy=0—~ ANy:BAz: B A[ASf et a=(Au.fy) (f2)inz]y)

= 3BYB'Y B (a=BayAy=0 =y NY=RT =y Ny Bz BN F B Alet =(Au. fy) (fz)inz]y)
«

— 3B BV (a=B =y Ay=R =y A== Ny Bz A f B A]y A [(Au. fy) (f2)]6)
=:3... =:¢ =:I'

Next, the abstraction encoding the polytype for x is simplified. Observe in particular, that the
multistep transitions —2 and —* introduce global variables (the types of f, y, and z into the

abs

gLl l ol

Fin

traction body), along with their constraints according to congruence rule (PROP).

. o ATA[2]Y A 2:6/([(Au.fy) (f2)]0)

. o ADAz]yYA 2:6/(FeC e=(— N T Au. fy)le AT(f2)]C)

. o ATA[2]YA 2:6/(Fe€'((" e=C—=0NE=("—=([T u.fy)JeAlf1€ AT2]¢")
2 J o ATA[z]y'A 2:8/(FeC e=(—oNp"=0"—([(Au.fy)]e)

.o ATA[2]Y A 2:6/(FeC’r e=C—=ONF"=p" = (Ne=k— (' w:kA[fy]¢")
“ J o ATAfe]YA 2:8/(FeCr e=C—=0NF"=F - ANe=r—CAB'=3—(wik)

. o ATAJz]Y'A 2:6/(3k B'=p" — dNG'=p UK)

. o ATA[2]Y' A 2:6/(B'=3" — NG =0)

ally, we descend into the second branch of the let-expression, which means to apply the z-

abstraction to get an instance of the polytype of z, and simplify the resulting constraint. The
outcome is the principal type of M : § — 3" — 3" — +".

By By'BY" (@ Ay BNz BN F BN ey ANz o [(B"=5" — OAB'=P))
— AP BT (BABTER = Y NFE=B Ny BAzBIAS BN/ (B7=6 = SAB'=P))
= 3B P (OAB"=E = ' AF'EB Ny Az NS B N b BT=5 = 6)
= 3AByBYBYT (BABTER S ANF=E Ay BAz AL BY)
= 3FF (a=ioF 5 —y)
Acknowledgments

Thanks go to Gert Smolka for initiating my research on type checking and to Joachim Niehren

for

many fruitful discussions and joint research on this topic.

References

(1]
[2]

L. Damas and R. Milner. Principal Type-Schemes for Functional Programs. In 9" ACM Symposium
on Principles of Programming Languages, pages 207-212, January 1982.

M. Henz, M. Mehl, M. Muller, T. Muller, J. Niehren, R. Scheidhauer, C. Schulte, G. Smolka, R. Treinen,
and J. Wurtz. The Oz Handbook. DFKI, Saarbricken, Germany, 1994. Available through anonymous
ftp from ps-ftp.dfki.uni-sb.de or through www from http://ps-www.dfki.uni-sb.de.

Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and System
Science, 17:348-375, 1978.

Martin Muller and Joachim Niehren. Higher-Order Meta Programming in Oz. Unpublished, 1994.
Joachim Niehren. Personal Communication. 1994.

Joachim Niehren. Funktionale Berechnung wn einem uniformen nebenlaufigen Kalkul mit logischen
Variablen. PhD thesis, Universitat des Saarlandes, 1994. forthcoming, in German.

Joachim Niehren and Gert Smolka. A Confluent Calculus for Higher-Order Relational Programming.
In Constraints in Computational Logics, volume 845 of Lecture Notes in Computer Science, Munich,
Germany, September 1994.

Gert Smolka. A Foundation for Concurrent Constraint Programming. In Constraints in Computational
Logics, volume 845 of Lecture Notes in Computer Science, Munich, Germany, September 1994.
Mitchell Wand. A Simple Algorithm and Proof for Type Inference. Fundamenta Informaticae; 10:115-
122, 1987.

