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Abstract

Indeterminism is typical for concurrent computation. If several concurrent actors compete
for the same resource then at most one of them may succeed, whereby the choice of
the successful actor is indeterministic. As a consequence, the execution of a concurrent
program may be nonconfluent. Even worse, most observables (termination, computational
result, and time complexity) typically depend on the scheduling of actors created during
program execution. This property contrast concurrent programs from purely functional
programs. A functional program is uniformly confluent in the sense that all its possible
executions coincide modulo reordering of execution steps. In this paper, we investigate
concurrent programs that are uniformly confluent and their relation to eager and lazy
functional programs.

We study uniform confluence in concurrent computation within the applicative core of
the π-calculus which is widely used in different models of concurrent programming (with
interleaving semantics). In particular, the applicative core of the π-calculus serves as a
kernel in foundations of concurrent constraint programming with first-class procedures
(as provided by the programming language Oz). We model eager functional programming
in the λ-calculus with weak call-by-value reduction and lazy functional programming in
the call-by-need λ-calculus with standard reduction. As a measure of time complexity, we
count application steps. We encode the λ-calculus with both above reduction strategies
into the applicative core of the π-calculus and show that time complexity is preserved. Our
correctness proofs employs a new technique based on uniform confluence and simulations.
The strength of our technique is illustrated by proving a folk theorem, namely that the call-
by-need complexity of a functional program is smaller than its call-by-value complexity.

Contents

1 Introduction 2

1.1 Uniform Confluence in Concurrent Computation 3

1.2 The Applicative Core of the π-Calculus 5

1.3 Call-by-Value and Call-by-Need Translation 6

2 Complexity and Uniform Confluence 10

2.1 Complexity 10

2.2 Uniform Confluence 11



2 Joachim Niehren

3 Complexity in Unions of Calculi 12

3.1 Uniform Confluence for Unions 12

3.2 Additivity and Orthogonality 13

4 Embeddings and Simulations 14

4.1 Complexity Simulations 15

4.2 Administrative Simulations 17

5 Concurrent Computation 19

5.1 The Applicative Core π0 of the π-Calculus 19

5.2 The δ-Calculus: Forwarding and Triggering 22

5.3 Linear Types for Proving Admissibility 25

6 Eager Functional Computation 28

6.1 Call-by-Value Translation 29

6.2 A Simulation for Call-by-Value 31

7 Lazy Functional Computation 34

7.1 Call-by-Need Translation 37

7.2 A Simulation for Call-by-Need 39

8 Call-by-Need versus Call-by-Value Complexity 43

References 44

1 Introduction

During the last fifteen years, concurrency has been investigated for high-level pro-

gramming. This kind of research lead to the development of a variety of new pro-

gramming languages. Two major lines of research can be distinguished, concurrent

constraint programming (Maher, 1987; Saraswat et al., 1991; Smolka, 1995) which

originates from logic programming and concurrent functional programming (Reppy,

1992; Thomsen et al., 1993; Armstrong et al., 1996; Pierce & Turner, 1997; Fournet

& Maranget, 1997). The work presented here was motivated by concurrent con-

straint programming but contributes mainly to the area functional programming.

Computation Models of Concurrent Programming. It is standard that

high-level programming languages are designed on the basis of a computation model.

The level of abstraction on which these models are formulated often permits to

relate quite distinct programming paradigms.

The most popular model of concurrent constraint programming is Saraswat’s

(1991) cc-model. It describes concurrent constraints that communicate over com-

mon logic variables residing in a global constraint store. In contrast to a memory

store in the classical machine-oriented sense, a constraint store contains information

on logic variables and increases monotonically as computation proceeds. Monotonic-

ity is a central property needed for reliable synchronization. The ρ-calculus (Niehren

& Smolka, 1994; Niehren & Müller, 1995) extends the cc-model with first-class pro-

cedures. It is a variation of Smolka’s (1994) γ-calculus which models important

aspects of the concurrent constraints language Oz (Smolka et al, 1995).

In the research line starting from functional computation, Milner (1992) proposed

the π-calculus as a model of concurrent computation. The π-calculus describes



Uniform Confluence in Concurrent Computation 3

concurrent actors that communicate over shared channels. For several years, the

π-calculus served mainly for semantical reasoning. Later on, it was also used as the

basis of a concurrent programming language named Pict (Pierce & Turner, 1997).

Another concurrent computation model of interest is the join calculus (Fournet &

Gonthier, 1996), which was introduced as a variation of the π-calculus. The join

calculus underlies the join calculus language (Fournet & Maranget, 1997) which

features distributed programming.

All computation models mentioned above are closely related. The relationship be-

tween the ρ-calculus and the π-calculus was first noticed by Smolka (1994) and was

formally elaborated in (Niehren & Müller, 1995; Victor & Parrow, 1996; Niehren,

1996). Most of the material of this article stems from (Niehren, 1996) but has

undergone a major revision. The relationship between the join calculus and the

π-calculus is investigated in (Fournet & Gonthier, 1996).

Confluence. Indeterminism is typical for concurrent computation. If several con-

current actors compete for the same resource then at most one of them may succeed

eventually, whereby the choice of the successful actor is indeterministic. As a conse-

quence, the execution of a concurrent program may be non-confluent. Even worse,

most observables (termination, computational result, and time complexity) depend

on the scheduling of the actors created during program execution. This property

contrasts concurrent programs to purely functional programs whose execution is

expected to be confluent.

A functional program might be expected to be uniformly confluent in the sense

that all its possible executions coincide modulo reordering of executable function

calls. Of course, this property depends on the notion of an executable function call.

In this article, function calls nested inside of function definitions are not considered

executable. This view is consistent with all implementations of functional languages

used in practice; it is also naturally reflected in the λ-calculus by means of some

weak reduction strategy to which we will restrict ourselves.

1.1 Uniform Confluence in Concurrent Computation

In this article, we investigate the class of concurrent programs that are uniformly

confluent in the sense that all execution of a program coincide modulo reordering of

execution steps. We then consider eager and lazy functional programs as uniformly

confluent concurrent programs.

Our study of uniformly confluence in concurrent computation is based on the

applicative core of the π-calculus which is widely used in different models of concur-

rent programming. Eager functional programming is modeled in the call-by-value

λ-calculus with weak reduction and lazy functional programming in the call-by-

need λ-calculus with standard reduction (Ariola et al., 1995). We measure the time

complexity of the execution of a concurrent or functional program by counting

application steps.

Uniform Confluence. We consider a computation model as a calculus which is

an abstract rewrite system (Dershowitz & Jouannaud, 1990; Klop, 1987) consisting

of a set of (program) expressions denoted with E, a binary relation → between
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expressions that we call (one-step) reduction, and an equivalence relation ≡ on ex-

pressions called congruence. In this paper, we mainly consider 3 different calculi:

the λ-calculus with the weak call-by-value strategy, the call-by-need λ-calculus with

standard reduction, and the applicative core of the π-calculus. Note that our ab-

stract notion of a calculus applies to the π-calculus but deviates from Plotkin’s

usage (1975) who considers the λ-calculus as an equational theory (not including a

reduction strategy).

Following (Niehren & Smolka, 1994), we call an expression E uniformly conflu-

ent if E1 ← E → E2 implies that either E1 ≡ E2 or there exists E′ such that

E1 → E′ ← E2. All executions of a uniformly confluent expression E coincide up

to a reordering of reduction steps. Uniform confluence is an important notion for

reasoning about (time) complexity where the complexity of the execution of a pro-

gram expression is measured in the number of its reduction steps. The complexity

of a uniformly confluent expression is independent of the scheduling of the concur-

rent actors created during its execution. We call a calculus uniformly confluent if

all its program expressions are uniform confluent. Note that a uniformly confluent

calculus is confluent in the usual sense of (abstract) rewrite systems (Dershowitz

& Jouannaud, 1990; Klop, 1987). Note also that the notions of confluence investi-

gated in (Nestmann, 1996; Philippou & Walker, 1997) are quite unrelated to those

for rewriting systems.

Contribution. We study uniformly confluent concurrent computation in the ap-

plicative core of the π-calculus. We present embeddings of both, the λ-calculus with

weak call-by-value reduction and the call-by-need λ-calculus with standard reduc-

tion, into the applicative core of the π-calculus. We prove our encodings correct in

the sense that they preserve complexity up to a constant factor. Our correctness

proofs exploit a new technique we develop based on the notions of uniform con-

fluence and simulations. The strength of this technique is illustrated by proving a

folk theorem, namely that the call-by-need complexity of a functional program is

smaller than its call-by-value complexity (measured in terms of β-reduction steps).

Complexity Measures. One might hesitate to accept the number of β-

reduction steps as a good measure for the complexity of functional programs. A

first counter argument is that one might wish to choose some reduction strategy

not considered in this article. However, the alternatives are few. The restriction to

weak reduction is not problematic in this respect, as long as compile time opti-

mizations (program transformations or partial evaluation) are ignored. The choice

of a particular weak reduction strategy does not matter for call-by-value since all

of them coincide in the number of β-reduction steps. For call-by-need, we do also

not know about any alternative which significantly differs from the call-by-need

λ-calculus with standard reduction, at least with respect to counting β-reduction

steps.

A more severe doubt might be that the substitution operation of the λ-calculus

is not appropriate for modeling time complexity in implementations. Of course,

substitutions [M/x] of arbitrary λ-terms M for some variable x are not realistic; In

call-by-name reduction, these substitutions raise duplications of β-reduction steps;

in weak call-by-name reduction, they even lead to non-confluence. In this article,
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we restrict ourselves to substitutions [V/x] of some value V for a variable x. Still,

one might object that substitutions [V/x] are non realistic for implementations

since many occurrences of x are replaced by V in one single step (whereas in an

implementation one might access V in a closure several times). Therefore, one

might opt for a calculus with explicit substitution (see for instance (Abadi et al.,

1991)) or for the call-by-let λ-calculus with some form of weak reduction (Maraist

et al., 1995). A more recent discussion on models of call-by-need complexity that

is appropriate for actual implementations is given in (Moran & Sands, 1999).

For the formal approach of this article however, both of these alternatives seem to

be problematic since they require administrative steps for the treatment of substi-

tutions or let-environments, which do not easily combine with uniform confluence.

For instance, it seems difficult to define a weak reduction strategy for the call-by-

let λ-calculus (Maraist et al., 1995) which is at the same time maximally liberal

in its reduction strategy and uniformly confluent (compare Example 7.2 below).

Nevertheless, additional administrative steps have to be implemented and thus,

their execution costs time. We conjecture that the costs of administrative steps can

be safely ignored for a complexity analysis of weak reduction, in contrast to deep

reduction (Asperti, 1997).

Structure of the Article. In the remainder of this introduction, we survey

our formal contributions, which concerns calculi and embeddings, complexity re-

sults and a proof technique based on uniform confluence. In Sections 2, 3, and 4,

we develop a theory of complexity based on uniform confluence and simulations.

In Section 5 we introduce concurrent computation in the applicative core of the π-

calculus and investigate uniform confluence on basis of a linear type system. In Sec-

tions 6 and 7 we translate eager and lazy functional computation respectively into

concurrent computation and prove that complexity is preserved. Finally, Section 8

contains a formal comparison between call-by-value and call-by-need complexity.

For lack of space, most of the simpler proofs are only scetched or completely

omitted. They can however be found in an unabridged technical report preceeding

this article (Niehren, 1999). This report also supplies an additional result of its own

interest: an encoding of the δ-calculus (see Section 1.3) into the applicative core of

the π-calculus.

1.2 The Applicative Core of the π-Calculus

Our study is based on the applicative core of the polyadic asynchronous π-calculus

(Milner, 1991; Honda & Tokoro, 1991; Boudol, 1992) that we call π0 here but δ0

in (Niehren, 1996). Also, π0 is a subcalculus of the ρ-calculus (Niehren & Smolka,

1994; Niehren & Müller, 1995). Therefore, all results presented here also apply to

concurrent constraint programming.

The Fragment π0 of the π-Calculus. As with any other calculus, we define π0

in terms of a set of expressions, a structural congruence, and a reduction relation.

Expressions of π0 are built from variables ranged over by x, y, z. An expression E

of π0 is either a (named) abstraction, an application, a concurrent composition, or
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a declaration, as given by the following abstract syntax:

E ::= x:x1 . . . xn/E || xx1 . . . xn || E|E′ || (νx)E (n ≥ 0)

The syntax of π0 is borrowed from the ρ-calculus rather than from the π-calculus.

A (named) abstraction x:x1 . . . xn/E requires the (syntactic) value of variable x to

be the (anonymous) abstraction x1 . . . xn/E. An application xx1 . . . xn applies the

abstraction referred to by x with arguments referred to by x1, . . . , xn.

The calculus π0 is identical to the ρ-calculus without cells and constraints. It also

coincides with the polyadic asynchronous π-calculus without once-only input agents

x?(x1 . . . xn).E. In the terminology of the π-calculus, variables are usually called

channels. Following the syntax of (Kobayashi et al., 1996), a (named) abstraction

x:x1 . . . xn/E would be called a replicated input agent x?∗(x1 . . . xn).E and an

application xx1 . . . xn an output agent x!(x1 . . . xn).

Reduction in π0 is defined by the following application relation →A where y and

z stand for sequences of variables y1 . . . yn and z1 . . . zn:

x:y/E | xz →A x:y/E | E[z/y]

We do allow for reduction in every context except below abstraction. It was proved

in (Niehren & Smolka, 1994; Niehren, 1994) that π0 is uniformly confluent when

restricted to expressions that remain consistent under reduction, i.e. that cannot be

reduced to an expression containing two abstractions with the same name x:y/E

and x:z/E′ that are not congruent. For the expressions stemming from functional

programming, we can ensure this invariant by an appropriate linear type system.

1.3 Call-by-Value and Call-by-Need Translation

The applicative core π0 of the π-calculus is surprisingly expressive. An encoding

of the λ-calculus with call-by-value reduction was already given in (Niehren &

Müller, 1995). A analogous result for the full π-calculus was proved earlier by Milner

(1992). As we show in this article, it is also possible to express lazy functional

computation in π0. We present an encoding of the call-by-need λ-calculus with

standard reduction (Ariola et al., 1995). An encoding of the call-by-need λ-calculus

with standard reduction into the full π-calculus was proved before by Brock and

Ostheimer (1995). Independently, Smolka (1994) formulated an analogous encoding

but without correctness proof.

The δ-Calculus. A major difficulty in finding an encoding of some λ-calculus

into π0 is to devise a mechanism for transporting values along reference chains. The

only values considered in this article are anonymous abstractions. In π0, abstractions

can be transported when using continuation passing style. In a model of concurrent

constraint programming, equational constraints x=y can be used for this purpose.

In order to abstract from “how to transport abstractions”, we introduce an ex-

tension of π0 that we call the δ-calculus. The δ-calculus extends π0 extended with

three new forms of expressions, which come with two additional reduction relations,

forwarding →F and triggering →T . The first new expressions are forwarders of the

form x=y which are directed from the right to the left (and not symmetric). Their
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operational semantics is to forward an abstraction from y to x (as soon as the ab-

straction referred to by y is available). The forwarding relation →F is described by

the following rule where z stands for a sequence of variables z1 . . . zn:

x=y | y:z/E →F x:z/E | y:z/E

Note that an analogous operation for “copying abstractions” exists implicitly in

the call-by-value λ-calculus and explicitly in the call-by-need λ-calculus. Note also,

that forwarders provide for single assignment as known from a directed usage of

logic variables (Pingali, 1987) in the data-flow language Id (Arvind et al., 1989).

The remaining additional constructions of the δ-calculus can be used to encode

call-by-need control. There are delay expressions of the form x.E and trigger ex-

pressions tr(x). The execution of an expression E nested into a delay expression

x.E is delayed until a trigger expression tr(x) becomes active. The trigger relation

→T is defined by the following rule:

x.E | tr(x)→T E | tr(x)

The δ-calculus can be encoded into π0 such that complexity is preserved up to

a constant factor. Proving this is of its own interest but not in the scope of the

presented article. It can be found in (Niehren, 1999). Note also, that the encoding

of the δ-calculus into π0 given in (Niehren, 1996) is not complexity preserving.

Call-by-Value Translation. Encoding the λ-calculus with weak call-by-value

reduction into the δ-calculus is quite simple. The idea is to name all entities of

interest by variables, in particular functional abstractions and return values. Func-

tional nesting can then be replaced by concurrent composition and declaration.

For example, let I be the λ-identity λy.y. and z be a variables for naming it. The

call-by-value translation [[I ]]
val
z of I with name z is a named abstraction:

[[I ]]
val
z ≡ z:yy′/y′=y

An additional output argument y′ is introduced whose value is related to the input

argument y by means of a forwarder. Whenever z is applied, this forwarder passes

the input value to the output argument.

Naming leads to a call-by-value translation such that every weak call-by-value β-

reduction step corresponds to exactly one application plus at most two forwarding

steps in the δ-calculus. Translation is adequate in that it preserves complexity up-to

a constant factor. There exists a simulation which relates every weak call-by-value

execution to a unique execution in the δ-calculus.

However, a bisimulation does not exist. Consider for instance the λ-term I(II)

which has a unique weak call-by-value execution where the inner redex is reduced

first. Modulo an irrelevant simplification (which introduces sharing for all occur-

rences of the definition of I), the call-by-value translation [[I(II)]]valz is:

[[I(II)]]
val
z ≈ (νx)(νy)([[I ]]

val
x | xxy | xyz)

It contains a named abstraction [[I ]]valx and two applications corresponding to the

inner and out redex respectively. Thus, [[I(II)]]
val
z can be reduced in two ways

depending on the scheduling of its applications. Those two executions corresponds
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to either first reducing the inner or outer redex of I(II). In contrast, the outer

redex can not be reduced by call-by-value reduction. Hence, call-by-value translation

introduces new flexibility to the scheduling of applications. This property contrasts

the presented call-by-value translation with those of Milner (1992) who considers

deterministic reduction strategies only such that bisimulations exist.

According to a proposal of Philip Wadler during a personal communication the

observation of the previous paragraph can be rephrased as the following conjecture:

The mapping of M to [[M ]]
val
z rather encodes call-by-let λ-calculus (Maraist et al.,

1995) with some form of weak reduction than the λ-calculus with weak call-by-

value reduction. In order to establish this statement formally, an appropriate weak

reduction strategy for the call-by-let λ-calculus has to be defined such that in our

example I(II) above, both the inner and the outer redex in I(II) could be reduced.

As mentioned before, it is unclear how to define such a weak reduction strategy.

Call-by-Need Translation. We now consider the call-by-need λ-calculus with

standard reduction. This calculus can also be encoded into the δ-calculus based on

the idea of naming. In addition, we have to express call-by-need control which can

be encoded by the delay and trigger mechanism of the δ-calculus. For instance, the

call-by-need translation [[I ]]
need
z of I with name z is the a named abstraction:

[[I ]]need
z ≡ z:yy′/(y′=y | tr(y))

The only difference to [[I ]]valz is that the computation of the value of the input argu-

ment y has to be triggered before and not only forwarded to the output argument

y′. The call-by-need translation [[I(II)]]need
z looks as follows (modulo sharing of I):

[[I(II)]]
need
z ≈ (νx)(νy)([[I ]]

need
x | y.[[xxy]]

need
y | xyz)

Also, the definition of [[I(II)]]need
z is similar to that of [[I(II)]]valz except that the

application corresponding to the inner redex is delayed.

Our call-by-need translation is correct in that every execution in the call-by-

need λ-calculus with standard reduction can be simulated by a unique execution

in the δ-calculus and vice versa, i.e. there exists a bisimulation and not only a

simulation as for call-by-value. Every application step in call-by-need λ-calculus

with weak reduction corresponds to exactly one application plus some triggering and

forwarding steps. Thus, our call-by-need translation preserves complexity measured

by counting application steps.

A Proof Technique based on Uniform Confluence. An adequacy proof for

the call-by-value translation has to deal with the fact that this embedding intro-

duces new flexibility to the executions scheduling. This problem can be solved due

to a proof technique that combines uniform confluence and simulations (Niehren,

1994). It is sufficient to prove that every execution of M can be simulated by an

execution of [[M ]]valz of the same length up to a constant factor. The uniform conflu-

ence of the λ-calculus with weak call-by-value reduction implies that all executions

of M have the same length and the uniform confluence of the consistent fragment

of the δ-calculus implies that all executions of [[M ]]valz have the same length. Hence

all executions of M and [[M ]]
val
z have the same complexity up to a constant factor.

The proof technique based on simulations is less restrictive than Milner’s (1992)
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bisimulation based proof technique but only applicable once uniform confluence is

available. The bisimulations technique is more general in that it allows to deal with

observable indeterminism. Also note that the definitions of the concrete simulations

given in the technical part of this article are strongly inspired by the concrete

bisimulations presented in (Milner, 1992).

Call-by-Need versus Call-by-Value Complexity. It is a folk theorem that –

up to overhead – the time complexity of call-by-need computation is smaller than

the time complexity of call-by-value computation. We formalize the folk theorem for

a first time for the call-by-need and call-by-value λ-calculus and prove its correctness

in this setting. Every closed λ-expression M satisfies:

Cneed(M) ≤ Cval(M)

where Cneed(M) denotes the complexity of M in the call-by-need λ-calculus with

standard reduction and Cval(M) the complexity M in the call-by-value λ-calculus

with weak reduction (both measured in terms on β-reduction steps).

Our proof exploits the similarity of call-by-value and call-by-need translations

into the δ-calculus, i.e. that [[M ]]
val
z and [[M ]]

need
z coincide for all M and z up to

triggering and delay expressions expressing the call-by-need control. Therefore, ev-

ery application step in an execution of [[M ]]
need
z corresponds to an application step

for [[M ]]
val
z . Hence every β-reduction step of M under standard call-by-need reduc-

tion corresponds to a β-reduction step of M under weak call-by-value reduction.

This might seem surprising, because in the call-by-need λ-calculus an abstraction

may be applied before its argument is evaluated, whereas in the λ-calculus with

call-by-value reduction, an argument has to be evaluated first. This problem is

solved due to the additional flexibility introduced by our call-by-value translation.

In other words, we rather compare call-by-need with call-by-let than call-by-value.

This does not matter because call-by-let and call-by-value reduction are indistin-

guishable with respect to complexity of weak reductions. They only differ in the

flexibility of possible schedulings for applications.

Alternative Approaches. Alternative formalizations of the folk theorem and

respective correctness proofs can be derived from previous results on weak optimal

reduction. Yoshida (1993) proves for her λf calculus that weak call-by-need reduc-

tion is optimal in that the complexity of weak call-by-need reduction is smaller

than the complexity of any other weak reduction strategy. An explicit relationship

between the λf -calculus and the call-by-value λ-calculus or call-by-need λ-calculus

is not given. An earlier approach to weak optimal reduction based on calculi with

explicit substitutions was explored by Maranget (1990). He also proved optimality

of weak call-by-need reduction with respect to weak reduction.

We compare the complexity of call-by-value and call-by-need by means of an

indirection through the δ-calculus. One might ask whether such an indirection is

necessary. The problem that one has to deal with is that the scheduling of function

calls in call-by-need and call-by-value are very different. We therefore need a com-

mon calculus in which to express both schedulings in a uniform way. We propose

the δ-calculus for this purpose. Alternatively, it should also be possible to choose

the call-by-let λ-calculus with some weak reduction strategy to be defined. Also



10 Joachim Niehren

it might be possible to deal with Yoshida’s λf -calculus (1993) or a calculus with

explicit substitutions as used by Maranget (1990).

Call-by-Need Computation Models. A call-by-need model describes the

complexity behavior of lazy functional programming. In other words, a call-by-

need model is a call-by-name model with sharing of evaluations. Designing good

call-by-need models turned out to be a difficult task which was solved only recently.

Early approaches are based on calculi with explicit substitutions (Purushothaman

& Seaman, 1992; Maranget, 1992) or graph reduction (Jeffrey, 1994). Launchbury

call-by-need model (1993) uses environments. It is base on a big-step semantics

where complexity is reflected in the size of proof trees. Launchbury relates his call-

by-need calculus to the λ-calculus with call-by-name reduction and proves correct-

ness with respect to denotational semantics (but not with respect to complexity).

A first small-step semantics for call-by-need computation based on λ-term nota-

tion was introduced in (Ariola et al., 1995; Ariola & Felleisen, 1997; Maraist et al.,

1998) under the name call-by-need λ-calculus. In the same papers, the relationship

between the call-by-need λ-calculus and the λ-calculus with standard call-by-name

reduction is established and proved correct.

2 Complexity and Uniform Confluence

We introduce a framework in which to reason about complexity in computation

models. It provides several criteria for proving that an encoding preserves com-

plexity. The basic notion of our framework is the notion of a calculus which can

be considered as an abstract computation model. The notion of a calculus slightly

generalizes Klop’s (1987) abstract rewrite systems; it was first introduced by the

author (1994).

We need the following notation throughout the paper. The symbol ◦ stands for

relational composition; if→1 and→2 are two binary relations on some set E and E,

E′′ ∈ E , then E →1 ◦ →2 E′′ if and only if there exists E ′ ∈ E such that E →1 E′

and E′ →2 E′′.

Definition 2.1

A calculus is a triple (E , ≡, →), where E is a set, ≡ an equivalence relation and →

a binary relation on E . Elements of E are called expressions of the calculus, ≡ its

congruence, and → its reduction. We require for every calculus that its reduction is

modulo its congruence, i.e. that (≡ ◦ → ◦ ≡) ⊆ → holds.

Typical examples for a calculus are the π-calculus, the ρ-calculus, the λ-calculus

with some reduction strategy, abstract rewrite systems, Turing machines, etc.

2.1 Complexity

Intuitively, the complexity of an expression in some calculus is the maximal length

of one of its (complete) executions. We now define formally what this means.

Let a calculus (E , ≡, →) be given. We call an expression E ∈ E irreducible if

there exists no E′ ∈ E such that E → E′. A partial execution in the given calculus
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is a finite or infinite sequence (Ei)
n
i=1 or (Ei)

∞
i=0 of expressions such that Ei → Ei+1

holds for all consecutive elements. A partial execution of an expression E is a partial

execution whose first element is congruent to E. An execution of E is a maximal

partial execution of E, i.e. an infinite partial execution, or a finite one whose last

element is irreducible. The least transitive relation containing → and ≡ is denoted

with →∗. We also define for all n ≥ 0 the relation →n via →n+1 def
= → ◦ →n and

→0 def
= ≡. Furthermore, we set →≤n def

= ∪n
i=0 →

i. The length of a finite partial

execution (Ei)
n
i=0 is n and the length of an infinite execution (Ei)

∞
i=0 is ∞.

Definition 2.2 (Complexity)

The complexity C(E) of an expression E is the least upper bound of the lengths

of the executions of E.

C(E) = sup{m | m is the length of an execution of E}

Note that 0 ≤ C(E) ≤ ∞. Instead of considering complete executions, we may

also consider finite partial executions; for all E:

C(E) = sup{m | m is the length of a finite partial execution of E}

In general, distinct executions of the same expression E may have distinct lengths.

For instance, consider the calculus with two expressions a and b, the trivial con-

gruence (equal to the set of pairs {(a, a), (b, b)}), and the reduction given by a→ a

and a → b. In this calculus, the expression a has executions of arbitrary length

greater than 1. For example, the sequence a → a → a → b defines an execution of

a of length 3. Note that the considered calculus is confluent because every partial

execution of a can be extended such that it terminates with b.

2.2 Uniform Confluence

We introduce the notion of uniform confluence and show that every execution of

an expression in a uniformly confluent calculus has the same complexity.

Definition 2.3 (Uniform Confluence)

A calculus is uniformly confluent if its reduction → and congruence ≡ satisfy the

inclusion (← ◦ →) ⊆ ((→ ◦ ←) ∪ ≡) visualized below.

E E

E1 E2 or E1 ≡ E2

∃ E′

Proposition 2.4

A uniformly confluent calculus is confluent. For every expression E of a uniformly

confluent calculus every execution of E has the same length.
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Proof

By a standard inductive argument as for the notion of strong confluence (Huet,

1980) which is implied by uniform confluence. More precisely, we can prove the

following property for every expression E, E1, E2 and natural numbers m1 and m2

by simultaneous induction over m1 and m2: If E1
m1← E →m2 E2 then there exists

an expression E′ and a natural number m ≤ min{m1, m2} such that E1 →
m1−m

E′ →m2−m E2.

3 Complexity in Unions of Calculi

Throughout the paper, we will consider several calculi which are defined as unions

of others. This additional structure renders our theory surprisingly rich.

Definition 3.1 (Union of Calculi)

We define the union of two calculi (E , ≡, →1) and (E , ≡, →2) to be the calculus

(E , ≡, →1 ∪ →2).

3.1 Uniform Confluence for Unions

Under the assumption of commutativity, one can conclude the uniform confluence

of a union from the uniform confluence of its components. We say that the relations

→1 and →2 commute iff (1← ◦ →2) ⊆ (→2 ◦ 1←), i.e. if the following diagram

can be completed for all E, E1, E2.

E

E1 E2

∃E′

1 2

2 1

Lemma 3.2 (Reformulation of the Hindley-Rosen Lemma)

The union of uniformly confluent calculi with commuting reductions is uniformly

confluent.

Lemma 3.2 implies the classical Hindley-Rosen Lemma (see for instance (Baren-

dregt, 1981)) which states that the reflexive transitive closure of a confluent relation

is confluent. This follows from that a relation is confluent if and only if its reflexive

transitive closure is uniformly confluent.

We will use sequence notation where we freely omit index bounds if they are not

relevant. This means that we may write (xj)j for some sequence (xj)
l
j=k where k

is a natural number and l ≥ k is a natural number or l =∞.

Definition 3.3 (i-Steps and i-Complexity)

Let (E , ≡, →1 ∪ . . .∪ →n) be a union of calculi, 1 ≤ i ≤ n, and (Ej)j a partial

execution. An i-step in (Ej)j is an index k of the sequence (Ej)j such that Ek →i

Ek+1 (and k + 1 is also an index of (Ej)j). We define the i-complexity Ci(E) of an
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expression E ∈ E to be the least upper bound of the number of i-steps in a partial

execution of E:

Ci(E) = sup{m | m is number of i-steps in a finite partial execution of E}

Lemma 3.4

Let (E , ≡, →1 ∪ . . .∪ →n) be a union of calculi. For all E ∈ E and all 1 ≤ i ≤ n:

Ci(E) ≤ C(E).

3.2 Additivity and Orthogonality

Given the union of two calculi, say (E , ≡, →1 ∪ →2), one might wish complexity

to be additive in that C(E) = C1(E) + C2(E) holds for every expression E ∈ E . In

fact, most concrete unions considered in this paper have this property. However,

additivity does not hold in general since a 1-steps may at the same time be a 2-steps.

But it suffices to assume orthogonality for proving additivity.

Definition 3.5 (Orthogonality)

We call a union of calculi (E , ≡, →1 ∪ . . .∪ →n) orthogonal if for any two expres-

sions E, E′ ∈ E there exists at most one integer i ∈ {1, . . . n} such that E →i E′.

In an orthogonal union, the length of a partial execution can be obtained by

summing up the numbers of its i-steps for all 1 ≤ i ≤ n. This additivity property

for i-steps in partial executions can be lifted to an additivity property for the i-

complexity Ci(E) of an expression E.

Lemma 3.6 (Reduction Decreases i-Complexity)

Let (E , ≡, →1 ∪ . . .∪ →n) be an orthogonal union of uniformly confluent calculi

with commuting reductions, i, j ∈ {1, . . . , n}, E, E ′ ∈ E , E →i E′, and i 6= j. Then:

Ci(E) = 1 + Ci(E
′) and Cj(E) = Cj(E

′)

Proof

If E →i E′ then every execution of E ′ can be extended to an execution of E by

adding an →i step in front. Hence, Ci(E) ≥ 1 + Ci(E
′) and Cj(E) ≥ Cj(E

′) follows

from orthogonality and i 6= j. The converse follows from the following claim which

can be proved by induction: For all F, F ′ ∈ E with F →i F ′ and every finite partial

executions (Fk)k of F there exists a finite partial execution (F ′
k)k of F ′ such that

(F ′
k)k with fewer or equally many i-steps and the same number of j-steps.

Lemma 3.7 (Finite Executions)

Let (E , ≡, →1 ∪ . . .∪ →n) be an orthogonal union of uniformly confluent calculi

with commuting reductions. If E ∈ E satisfies C(E) < ∞ and 1 ≤ i ≤ n then the

number of i-steps coincides for all executions of E.

Proof

First note that Lemma 3.4 implies
∑n

i=1 Ci(E) ≤
∑n

i=1 C(E) = n ∗ C(E) < ∞.

Lemma 3.7 follows from Lemma 3.6 which permits to show the following claim by

induction on the value of
∑n

i=1 Ci(E) (which is distinct from ∞): For all E ∈ E
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and 1 ≤ j ≤ n, if
∑n

i=1 Ci(E) < ∞ then every executions of E contains the same

number of j-steps.

The reader should notice carefully that Lemma 3.7 fails for expressions E with

infinite executions. For illustration, we consider the following calculus: Its expres-

sions are pairs of natural numbers (n, m); its congruence is the equality of expres-

sions, and its reduction is the union →1 ∪ →2 where (n, m) →1 (n + 1, m) and

(n, m) →2 (n, m + 1) for all n, m. This calculus is orthogonal but for each of its

expressions there exists an execution with arbitrary numbers of 1-steps and 2-steps.

For instance, the following executions are possible:

(0, 0)→1 (1, 0)→1 (2, 0)→1 . . .

(0, 0)→2 (0, 1)→2 (0, 2)→2 . . .

The first execution contains infinitely many 1-steps and no 2-steps, whereas the

second execution contains no 1-step and infinitely many 2-steps. Both of these

executions are unfair: For instance, every initial segment of the first execution could

be continued with an 2-step but this never happens.

Proposition 3.8 (Additivity)

Let (E , ≡, →1 ∪ . . .∪ →n) be an orthogonal union of uniformly confluent calculi

with commuting reductions. For every expression E of E , complexity is additive:

C(E) = C1(E) + . . . + Cn(E)

Proof

If C(E) = ∞ then there exists 1 ≤ i ≤ n and an execution of E which contains

an infinite number of i-steps. Hence, Ci(E) = ∞ such that
∑n

i=1 Ci(E) = ∞.

Otherwise, C(E) < ∞. In this case, Lemma 3.7 implies for every 1 ≤ i ≤ n that

every execution of E contains the same number of i-steps. Additivity for executions

in orthogonal unions implies for every execution (Ej)j of E that the length of (Ej)j

equals to the sum of the numbers of i-steps in (Ej)j where 1 ≤ i ≤ n. Since all

executions of E contain the same numbers of i-steps (Lemma 3.7), additivity lifts

from executions of E to the expression E itself.

4 Embeddings and Simulations

We define the notion of an embedding between two calculi and present a method

for proving that an embedding preserves complexity. This method is based on sim-

ulations rather than bisimulation, but its applicability requires uniform confluence.

Otherwise, simulations do not necessarily preserve preserve complexity, in contrast

to bisimulations (Milner, 1992; Sangiorgi, 1996; Turner, 1996; Nestmann & Pierce,

1996).

Definition 4.1 (Embedding)

Let (E , ≡E , →E) and (F , ≡F , →F) be two calculi, Φ : E → F a function, and

S ⊆ E × F be a binary relation. We call Φ an embedding of E into F if E1 ≡E E2

implies Φ(E1) ≡F Φ(E2) for all E1, E2 ∈ E . The function Φ is an embedding for S

if it is an embedding that satisfies (S1) below:



Uniform Confluence in Concurrent Computation 15

(S1) For all E ∈ E : (E, Φ(E)) ∈ S.

We formulate our theory for simulations between unions of calculi. Our results

for simulations carry easily over to encodings provided that (S1) is assumed.

4.1 Complexity Simulations

We introduce lengthening simulations which relate expressions with smaller com-

plexity to expressions with higher complexity, and complexity simulations which

preserve complexity. Lengthening simulations are of there own interest. For in-

stance, the identity relation on λ-expressions can be seen as a simulation which

lengthens call-by-need to call-by-value.

Definition 4.2 (Lengthening and Complexity Simulation)

Let S ⊆ E × F be a binary relation between the expressions of two calculi

(E , ≡E , →1 ∪ . . .∪ →n) and (F , ≡F , ↪→). We define ≈ ⊆ F ×F such that

F ≈ F ′ iff C(F ) = C(F ′)

for all F, F ′ ∈ F : Given natural numbers m1, . . . , mn ≥ 0, we call S a lengthening

simulation with indices m1, . . . , mn if S satisfies (S2) and (S3) below.

(S2) For all E, E′ ∈ E , F ∈ F , and 1 ≤ i ≤ n: If E →i E′ and (E, F ) ∈ S then there

exists an expression F ′ ∈ F such that (E′, F ′) ∈ S and F ≈ ◦ (↪→ ◦ ≈)miF ′.

E →i E′

S S

F ≈ ◦ (↪→ ◦ ≈)mi ∃F ′

(S3) For every E ∈ E with C(E) =∞ there exists 1 ≤ i ≤ n such that Ci(E) =∞

and mi ≥ 1.

We call S a complexity simulation with indices m1, . . . , mn if S is a lengthening

simulation with indices m1, . . . , mn, which additionally satisfies the condition (S4).

(S4) For all E ∈ E and F ∈ F : If E is irreducible with respect to →1 ∪ . . .∪ →n

and (E, F ) ∈ S then F is irreducible with respect to ↪→.

Property (S2) is most important. It requires that every→i step can be simulated

by mi steps with ↪→ up to an equivalence ≈ which preserves complexity. If we would

require mi ≥ 1 for all i then Property (S2) would clearly imply that a lengthening

simulation relates expressions with smaller complexity to expressions with higher

complexity. However, this property would be too restrictive. The slightly weaker

Property (S3) turns out to be precisely what we need. Note that (S3) expresses

a property of S even though S does not occur in it. But S depends on the indices

mi which occur in both (S2) and (S3) . Property (S4) requires that S preserves

termination. If (S4) holds then S cannot strictly increase complexity.

Proposition 4.3 (Lengthening or Preserving Complexity)
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Let (E , ≡E , →1 ∪ . . .→n) be an orthogonal union with commuting reductions and

(F , ≡F , ↪→) another calculus. If S ⊆ E×F is a lengthening simulation with indices

m1, . . . , mn then the following inequation holds for all (E, F ) ∈ S:

C(F ) ≥

n
∑

i=1

mi ∗ Ci(E)

If S is also a complexity simulation with indices m1, . . . , mn then equality holds.

Lemma 4.4 (Quotients)

Let (F , ≡F , ↪→1 ∪ ↪→2) be an orthogonal union of uniformly confluent calculi with

commuting reductions, ≡2 the relation ↪→∗
2 ◦

∗
2←↩, and G the triple:

G = (F ,≡2,≡2 ◦ ↪→1 ◦ ≡2)

Then G is a uniformly confluent calculus whose complexity measure (denoted by

CG in order to distinguish it from the complexity measure C of F) satisfies CG(F ) =

C1(F ) for all F ∈ F .

Proof

The relation ≡2 is an equivalence relation since ↪→∗
2 is confluent (Lemma 3.2). In

fact, G is a calculus since its reduction is modulo its congruence. It is also not

difficult to verify that G is uniformly confluent.

Proposition 4.5 (Simple Lengthening Simulations)

Let (E , ≡E , →1 ∪ . . .∪ →n) be an orthogonal union of uniformly confluent calculi

with pairwise commuting reductions and S ⊆ E×E a relation such that the following

diagram can be completed for all 2 ≤ i ≤ n and E, E ′, F ∈ E :

E →1 E′

S S

F →1 ∃F ′

E →i E′

S S

F →∗
i ∃F ′

Furthermore, we assume for all E ∈ E that C(E) = ∞ implies C1(E) = ∞. In this

case, the equation C1(E) ≤ C1(F ) holds for all (E, F ) ∈ S.

Proof

If n = 1 then S is a lengthening simulation between the calculus E and itself

with index 1. According to Lemma 4.3, C1(E) = C1(F ) holds all (E, F ) ∈ S.

We next suppose n ≥ 2 and define ↪→1=→1 and ↪→2= ∪
n
j=2 →j . Since n ≥ 2,

the triple (F , ≡F , ↪→1 ∪ ↪→2) is an orthogonal union of uniformly confluent calculi

with commuting reductions. Let ≡2 be the relation ↪→∗
2 ∪

∗
2←↩ and G the auxiliary

calculus:

G = (E ,≡2,≡2 ◦ ↪→1 ◦ ≡2)

It is not difficult to show that S is a lengthening simulation between the calculi E

and G with indexes 1, 0 . . . , 0: Condition (S2) follows from the required diagrams

and Lemma 3.6 which shows ↪→2 ⊆ ≈, and (S3) follows from the assumption that

C(E) = ∞ implies C1(E) = ∞. Since E and G are uniformly confluent (Lemma
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4.4), Lemma 4.3 yields for all (E, F ) ∈ S that CG(F ) = C1(E). Lemma 4.4 implies

CG(F ) = C1(F ) such that Proposition 4.5 follows.

The following Proposition 4.6 is similar to Proposition 4.5 except that it does

not require an assumption on infinite computations.

Proposition 4.6 (Simple Complexity Simulations)

Let (E , ≡E , →1 ∪ . . .∪ →n) be an orthogonal union of uniformly confluent calculi

with pairwise commuting reductions and S ⊆ E ×E a relation. Then Ci(E) = Ci(F )

holds for all 1 ≤ i ≤ n and (E, F ) ∈ S if the following diagram can be completed

for all 1 ≤ i ≤ n and E, E ′, F ∈ E :

E →i E′

S S

F →i ∃F ′

4.2 Administrative Simulations

We finally consider a refined form of complexity simulation, which allow us to take

administrative steps into account.

Definition 4.7 (Administrative Simulation)

Let φ be an embedding between two calculi (E , ≡E , →) and (F , ≡F , ↪→1 ∪ ↪→2).

Given natural numbers n1, n2 ≥ 0, we call a relation S on E ×F an administrative

simulation for Φ with administrative reduction ↪→2 and administrative indices n1, n2,

if S satisfies the following properties (A1) to (A5):

(A1) For all E ∈ E : (E, Φ(E)) ∈ S.

(A2) For all E, E′ ∈ E and F ∈ F : If E → E′ and (E, F ) ∈ S then there exists

F ′ ∈ F such that (E′, F ′) ∈ S and F ↪→≤n2

2 ◦ ↪→n1

1 F ′.

E → E′

S S

F ↪→≤n2

2 ◦ ↪→n1

1 ∃F ′

(A3) For the first administrative index n1 it holds that n1 ≥ 1.

(A4) For all E ∈ E and F ∈ F : If E is irreducible with respect to→ and (E, F ) ∈ S

then C1(F ) = 0 and C2(F ) ≤ n2.

(A5) For all E ∈ E : Φ(E) is irreducible with respect to ↪→2.

Lemma 4.8

Let Φ be an embedding between an uniformly confluent calculus (E , ≡E , →) and an

orthogonal union of uniformly confluent calculi (F , ≡F , ↪→1 ∪ ↪→2) with commuting

reductions. If there exists an administrative simulation for Φ with administrative

reduction ↪→2 and indices n1 and n2 then the two following properties hold:

1. For all E ∈ E : C1(Φ(E)) = n1 ∗ C(E).

2. For all E ∈ E with C(E) <∞: C2(Φ(E)) ≤ n2 ∗ C(E).
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Proof

In order to establish the first statement of the lemma, we let ≡2 be ↪→∗
2 ◦

∗
2←↩ and

define an auxiliary calculus G by (F ,≡2,≡2 ◦ ↪→1 ◦ ≡2). According to Lemma

4.4, G is a uniformly confluent calculus. We consider Φ as an embedding from the

calculus E into the auxiliary calculus G rather than the initial calculus F . It is

easy to show that S is a complexity simulation for this embedding with index n1

since for all 1 ≤ i ≤ 4, condition (Ai) easily implies (Si). Therefore, we can apply

Proposition 4.3 which proves for all E ∈ E :

CG(Φ(E)) = n1 ∗ C(E)

Here again, we write CG instead of C in order to distinguish the complexity in the

calculus G from that in F . Lemma 4.4 implies CG(Φ(E)) = C1(Φ(E)) such that

property 1. of Lemma 4.8 follows.

We next prove C2(F ) ≤ n2 ∗ C(E) + n2 for all (E, F ) ∈ S with C(E) < ∞ by

induction on C(E). If C(E) = 0 then E is irreducible. According to (A4), C2(F ) ≤ n2

holds. We next consider the case C(E) ≥ 1 in which there exists E ′ with E → E′.

Lemma 3.6 implies C(E) = 1 + C(E ′). Condition (A2) yields the existence of an

expression F ′ ∈ F and n ≤ n2 which satisfies (E′, F ′) ∈ S and F ↪→n
2 ◦ ↪→n1

1 F ′.

Since C(E′) < C(E) we can apply the induction hypothesis to the pair (E ′, F ′).

This yields:

C2(F ) = n + C2(F
′) (Lemma 3.6)

≤ n2 + n2 ∗ C(E
′) + n2 (Induction Hypothesis)

= n2 ∗ C(E) + n2 (Lemma 3.6)

We now prove C2(Φ(E)) ≤ n2 ∗ C(E) for all E ∈ E . If C(E) = 0 then C2(Φ(E)) = 0

follows from (A5) and (A4). If C(E) ≥ 1 then there exists E ′ such that E → E′.

According to (A1), (E, Φ(E)) ∈ S. Since Φ(E) is irreducible with respect to ↪→2

due to (A5), (A2) yields the existence of F ′ with Φ(E) ↪→n1

1 F ′ and (E′, F ′) ∈ S.

Hence:

C2(F ) = C2(F
′) (Lemma 3.6)

≤ n2 ∗ C(E
′) + n2 (as shown above)

= n2 ∗ C(E) (Lemma 3.6)

Proposition 4.9 (Counting Administrative Steps)

Let Φ be an embedding between a uniformly confluent calculus (E , ≡E , →) and

an orthogonal union of uniformly confluent calculi (F , ≡F , ↪→1 ∪ ↪→2) with com-

muting reductions. If there exists an administrative simulation for Φ with admin-

istrative reduction ↪→2 and indices n1 and n2 then Φ preserves complexity up to

a constant factor. For all E ∈ E :

n1 ∗ C(E) = C1(Φ(E)) ≤ C(Φ(E)) ≤ (n1 + n2) ∗ C(E)

Proof

The equation n1 ∗ C(E) = C1(Φ(E)) follows from Lemma 4.8 part 1. It remains to

be shown for all E ∈ E that:

n1 ∗ C(E) ≤ C(Φ(E)) ≤ (n1 + n2) ∗ C(E)
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Expressions E, F ::= x:y/E || xy || E | F || (νx)E

Reduction x:y/E | xz →A x:y/E | E[z/y]

Contexts
E →A E′

E | F →A E′ | F
E →A E′

(νx)E →A (νx)E′

Congruence
E1 ≡ E2 E2 →A F2 F2 ≡ F1

E1 →A F1

Fig. 1. The Applicative Core π0 of the π-Calculus.

If C(E) = ∞ then C1(E) = ∞ and thus C1(Φ(E)) = ∞ as shown above. In this

case, all three terms in the considered estimation evaluate to ∞ since n1 ≥ 1. For

all E ∈ E with C(E) <∞ we have:

C(Φ(E)) = C1(Φ(E)) + C2(Φ(E)) Additivity (Proposition 3.8)

≤ n1 ∗ C(E) + n2 ∗ C(E) Lemma 4.8 parts 1. and 2.

= (n1 + n2) ∗ C(E)

C(Φ(E)) ≥ C1(Φ(E)) Lemma 3.4

= n1 ∗ C(E) Lemma 4.8 part 1.

5 Concurrent Computation

For studying uniform confluence in concurrent computation, we investigate the ap-

plicative core of the π-calculus that we call π0. We first define π0 and its admissible

expressions and show that the restriction of π0 to admissible expressions is uni-

formly confluent. We then extend π0 to the δ-calculus by adding two mechanisms

for forwarding and triggering. We present a criterion for proving admissibility based

on a linear type system.

5.1 The Applicative Core π0 of the π-Calculus

We recall the applicative core of the polyadic asynchronous π-calculus (Milner,

1991; Honda & Tokoro, 1991; Boudol, 1992).

As any other calculus, we define π0 in terms of a set of expressions, a structural

congruence, and a reduction relation. The definition is given in Figure 1. Expressions

of π0 are built from variables ranged over by x, y, z. Possibly empty sequences of

variables are denoted with x, y, z. An expression E of π0 is either an abstraction,

an application, a concurrent composition, or a declaration.

An (named) abstraction x:y/E is named by x, has formal arguments y and body E.

An application xy of x has actual arguments y. A composition E | F composes two

concurrent processes E and F in interleaving manner. A declaration (νx)E declares

a new variable x with scope E. Bound variables are introduced as formal arguments

of abstractions and by declaration. The set of free variables of an expression E is

denoted by V(E).

The precedence of the syntactic constructors in expressions E is as follows: Dec-
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laration binds stronger than abstraction which binds stronger than composition.

For instance, the expression x:y/(νz)yz | z:y/yy reads as (x:y/((νz)yz)) | z:y/yy .

We identify expressions up to consistent renaming of bound variables. When being

very precise, we have to distinguish expressions and their representatives. We do so

when needed only but are sloppy in most cases. However, we do apply Barendregt’s

hygiene condition (Barendregt, 1981) which requires that all considered represen-

tatives are α-standardized, i.e. that bound and free variables are always distinct.

As presented, the syntax of π0 is borrowed from the ρ-calculus (Niehren &

Müller, 1995) rather than from the π-calculus. In the terminology of the π-calculus

as in (Kobayashi et al., 1996), an abstraction x:y/E is called a replicated input

agent x?∗(y).E and an application xy an output agent x!(y). In comparison to the

polyadic asynchronous π-calculus only once-only input agents x?(y).E are omitted.

The congruence of π0 is well-known from the π-calculus. It is the least congruence

on expressions of π0 which renders composition associative and commutative and

provides for the usual scoping rules for declaration:

E | F ≡ F | E E1 | (E2 | E3) ≡ (E1 | E2) | E3

(νx)(νy)E ≡ (νy)(νx)E (νx)E | F ≡ (νx)(E | F ) if x /∈ V(F )

The reduction →A of π0 is essentially given by a single reduction rule for execut-

ing applications in Figure 1. This rule is formulated in terms of the simultaneous

substitution operator [z/y] which replaces variables in y elementwise by variables

in z. When applying the operator [z/y] we implicitly assume that the sequence y

is linear and of the same length as z. Reduction →A can be performed in weak

contexts, i.e. inside of declarations and compositions but not inside of abstractions.

Furthermore, reduction is modulo congruence, i.e. a reduction step of E can be

performed on any expression congruent to E.

Example 5.1 (Explicit Recursion)

The execution of the following expression is infinite since the application of x is

recursive. The fact that we are able to express recursion in π0 gives a first hint for

that π0 might be quite expressive.

xy | x:y/xy →A xy | x:y/xy →A . . .

Definition 5.2 (Consistency and Admissibility)

We call an expression E of π0 consistent if it does not contain two non-congruent

abstractions with the same name; more formally, for all subexpressions E ′ of some

α-standardized representative of E and for all x ∈ V(E ′) if two abstractions are

contained in E′, say x:y/E1 and x:z/E2, then they are congruent:

x:y/E1 ≡ x:z/E2

We call E admissible if every expression E ′ such that E →∗ E′ is consistent.

Example 5.3

We assume z1 6= z2. The expression E1 equal to x:y/z1y | x:y/z2y is not consistent

since x:y/z1y 6≡ x:y/z2y due to z1 6= z2. Similarly, x:y/(z1y | x:y/z2y) is not
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consistent for x 6= y. In contrast, x:y/z1y | (νx)(x:y/z2y) is consistent since we

identify expressions modulo consistent renaming of bound variables. For every α-

standardized representative of this expression (for instance x:y/z1y | (νz)(z:y/z2y))

contains a unique abstraction with name x. The expression E2 equal to z′:z/x:y/zy |

z′z1 | z
′z1 is consistent by not admissible; The problem is that E2 may reduce to

E1 which is not consistent. Note that all expressions of the form x:y/E | x:y/E are

consistent.

Example 5.4 (Non-Confluence)

Typically, non-consistency may raise non-confluence. For illustration, we consider

the expression xz | E1 where E1 is given in the previous example.

z1z | E1 A← xz | E1 →A z2z | E1

The resulting expressions z1z | E1 and z2z | E1 are irreducible but not congruent

if we assume z1 6= z2.

The advantage of the notion of admissibility is that it is preserved by reduction

and nevertheless very simple to define. It also allows for a simple reasoning about

confluence. Unfortunately, the notion of admissibility is not always easy to deal

with. For instance, it is undecidable whether a given expression E is admissible

(since admissibility depends on termination in a Turing complete system). This

failure is harmless for our purpose. The reason is that there exists a simple type

system that allows to test for admissibility for all expressions we are interested in.

This system will be presented in Section 5.3.

Theorem 5.5 (Uniform Confluence)

The restriction of π0 to admissible expressions is uniformly confluent.

Proof

We first reformulate reduction of π0 based on the notion of reduction contexts. A

reduction context D of the π0 is given by the following abstract syntax:

D ::= [ ] || D | E || E | D || ν(x)D

We write D[E] for the expression obtained by replacing the hole [ ] in the context

D with E, and D[D′] for the context obtained by substitution [ ] in D with D′. We

can show for all α-standardized representatives E of expressions of π0 and all E′:

E →A E′ iff

{

exists D, y and x:z/F ∈ D such that

E = D[xy ] and E′ ≡ D[F [z/y]]

Let E be an admissible and α-standardized expression of π0 and E1, E2 such that

E1 A← E →A E2. There exist D1, y1, x1:z1/F1 ∈ D1 and D2, y2, x2:z2/F2 ∈ D2

satisfying:

E1 ≡ D1[F1[y1/z1]] A← D1[x1y1 ] = E = D2[x2y2 ]→A D2[F2[y2/z2]] ≡ E2

We consider two cases depending on whether D1 = D2 holds or not.

1. For D1 = D2 the equation D1[x1y1 ] = D2[x2y2 ] implies x1 = x2 and y1 = y2.
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Since E is admissible and contains abstractions x1:z1/F1 and x2:z2/F2 we

know that these abstractions are congruent: x1:z1/F1 ≡ x2:z2/F2. Hence

F1[y1/z1] ≡ F2[y2/z2] which proves E1 ≡ E2 as required.

2. If D1 6= D2 then the condition D1[x1y1 ] = D2[x2y2 ] implies that there exist

D0, D′
1 and D′

2 such that:

D1 = D0[D
′
1 | D

′
2[x2y2 ]] and D2 = D0[D

′
1[x1y1 ] | D′

2]

or D1 = D0[D
′
2[x2y2 ] | D′

1] and D2 = D0[D
′
2 | D

′
1[x1y1 ]]

The second possibility above is symmetric up to commutativity of com-

position. We therefore only consider the first one. If F is the expression

D0[D
′
1[F1[y1/z1]] | D

′
2[F2[y2/z2]]] then E1 →A F A← E2 follows from:

E1 ≡ D0[D
′
1[F1[y1/z1]] | D

′
2[x2y2 ]]→A F

E2 ≡ D0[D
′
1[x1y1 ] | D′

2[F2[y2/z2]]]→A F

An alternative method for proving the uniform confluence of π0 has been applied

in (Niehren, 1994). There reduction in π0 is considered as rewriting modulo associa-

tivity and commutativity; the idea is simply to identify an expression of π0 modulo

congruence with a pair of a declaration prefix and a multisets of applications and

abstractions, and then to redefine reduction for such pairs.

5.2 The δ-Calculus: Forwarding and Triggering

We define the δ-calculus as an extension of π0 with forwarding and triggering.

Such an extension is not strictly needed from the viewpoint of expressiveness. The

δ-calculus can be embedded into π0 such that complexity is preserved (Niehren,

1999). Note that the embedding presented in (Niehren, 1996) does not have this

property. The main purpose of the δ-calculus is to simplify reasoning on functional

computation in π0. Another purpose of the δ-calculus is to emphasize a concurrent

constraint view on functional computation.

The δ-calculus extends π0 with two mechanisms each of which is defined by a

single reduction rule. The first mechanism provides a direct method for forwarding

abstractions and the second one for triggering the execution of delayed expressions.

The δ-calculus is presented in Figure 2. Its expressions extend those of π0 with

three new forms. A forwarder x=y is used for forwarding an abstraction from y on

the right to x on the left. A delay expression x.E delays the execution of E until

x is triggered. A trigger expression tr(x) triggers the execution of all expressions

delayed by x.

The congruence of the δ-calculus is defined by the same equations as the con-

gruence of π0. The reduction → of the δ-calculus is the union of three relations,

application →A, forwarding →F , and triggering →T . Each of these reductions is

defined by a corresponding reduction rule. Similarly to reduction in π0, reduction

in the δ-calculus is closed under weak context and modulo congruence.

Example 5.6 (Forwarding)

The identity with name x can be written as x:yz/z=y. An execution of xxz ′ in the
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Expressions E,F ::= x:y/E || xy || E | F || (νx)E ||

x=y || tr(x) || x.E

Reduction → = →A ∪ →F ∪ →T

x:y/E | xz →A x:y/E | E[z/y]

x=y | y:z/E →F x:z/E | y:z/E

tr(x) | x.E →T tr(x) | E

Contexts
E → E′

E | F → E′ | F
E → E′

(νx)E → (νx)E′

Congruence
E1 ≡ E2 E2 → F2 F2 ≡ F1

E1 → F1

Fig. 2. The δ-Calculus

context of this expression turns z′ into a name of the identity, too.

x:yz/z=y | xxz′ →A x:yz/z=y | z′=x

→F x:yz/z=y | z′:yz/z=y

Example 5.7 (Triggering)

The execution of the following expression illustrates how application →A and trig-

gering →A may interact.

x:y/tr(y) | xy | y.E →A x:y/tr(y) | tr(y) | y.E

→T x:y/tr(y) | tr(y) | E

At the beginning the expression E is delayed. The application step creates a trigger

expression tr(y) whose execution wakes up the delayed expression E.

Example 5.8 (Multiple Triggering)

Multiple triggering has the same effect as once-only triggering. For instance, tr(x) |

tr(x) | x.E and tr(x) | x.E reduce in the same manner. Multiple triggering occurs

naturally when expressing call-by-need control in a concurrent calculus. There, the

execution of a functional argument is triggered once it is needed. Multiple requests

of the same functional argument lead to multiple triggering.

The notions of consistency and admissibility (Definition 5.2) carry over literally

from expressions of π0 to expressions of the δ-calculus. For example tr(x) | tr(x) and

x.x:y/tr(y) | tr(x) are admissible whereas x:y/z=y | xx | z:y/zy is not admissible.

Proposition 5.9

The δ-calculus restricted to admissible expressions is an orthogonal union of uni-

formly confluent calculi with commuting reductions →A, →F , and →T .

Proof
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Orthogonality follows from the following two observations: A forwarding step prop-

erly decreases the number of forwarders not nested into some body of an abstraction

whereas all other steps do not. Hence, no forwarding step can be at the same time

a triggering step or an application step. Every triggering step properly decreases

the number of delay expressions whereas no other step does. Hence, no trigger-

ing step can be at the same time an application step. This show that the union

→A ∪ →A ∪ →F is orthogonal.

The uniform confluence of →A has been proved in Theorem 5.5. With the same

context-based technique as used there, the uniform confluence of →F and →T for

admissible expressions can be checked easily. Also the claims on commutativity

follow in the same lines.

For illustration, we consider forwarding in more detail. Suppose E1 F← E →F E2

for an α-standardized representative E of some admissible expression and arbitrary

E1, E2. There exist occurrences of forwarders x1=y1 and x2=y2 in E which have

been reduced in one of the considered reduction steps respectively. If the two re-

duced occurrences of forwarders are distinct (which means that the contexts where

the forwarding rule has been applied are distinct) then the existence of an expres-

sion F with E1 →F F F← E2 follows trivially by reducing the respective other

occurrence. Otherwise, x1 is equal to x2 and y1 is equal to y2. Furthermore, there

are abstractions y1:z1/F1 and y2:z2/F2 in E such that the considered forwarding

steps have replaced x1=y1 (which is equal to x2=y2) with x1:z1/F1 and x2:z2/F2

respectively. Admissibility implies y1:z1/F1 ≡ y2:z2/F2. Thus x1:z1/F2 ≡ x2:z2/F2

follows and hence E1 ≡ E2.

Theorem 5.10 (Uniform Confluence)

The restriction of the δ-calculus to admissible expressions is uniformly confluent. If

E is admissible then every execution of E contains the same number of application

steps.

Proof

Uniform confluence follows from the uniform confluence of →A, →T , and →F as

stated in Proposition 5.9, in combination with Lemma 3.2. If C(E) < ∞ then

all executions of E contain the same number of application steps according to

Propositions 5.9 and Lemma 3.7. Otherwise, C(E) = ∞. The uniform confluence

and Proposition 2.4 imply that every execution of E is infinite. Since →F ∪ →T

terminates, every execution of E must contain an infinite number of application

steps.

If E is admissible and C(E) < ∞ then Lemma 3.7 also implies that every exe-

cution of E contains the same number of forwarding steps and the same number

of triggering steps. It might be surprising that this property fails without the as-

sumption C(E) < ∞. There exists an admissible expression of the δ-calculus with

executions containing distinct numbers of forwarding steps. This phenomenon is of

a quite general nature. It depends on fairness of infinite executions (and not on par-

ticularities of the δ-calculus) and has already been discussed in Section 2 following

Lemma 3.7.
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Example 5.11 (Unfair infinite executions)

We consider the expression x′=x | E4 where E4 is the infinite loop of Example 5.1,

i.e. E4 = xy | x:y/xy .

x′=x | E4 →A x′=x | E4 →A x′=x | E4 →A . . .

x′=x | E4 →F x′:y/xy | E4 →A x′:y/xy | E4 →A . . .

The first execution above does not contain any forwarding step whereas the second

one does. The first execution is not fair with respect to the forwarder x′=x which

could have been reduced at every time point but remains untouched forever.

In the light of the above fairness concern, we recall the definition of complexity

measures for the δ-calculus which can be obtained as instances of Definition 3.3:

CA(E) = sup{m | a finite partial execution of E has m application steps}

CF (E) = sup{m | a finite partial execution of E has m forwarding steps}

CT (E) = sup{m | a finite partial execution of E has m triggering steps}

Only in the case of application steps, it would be sufficient to consider a single execu-

tion rather than a least upper bound over all executions. Nevertheless, Proposition

3.8 ensures additivity.

Proposition 5.12 (Additivity)

For all admissible expressions E of the δ-calculus: C(E) = CA(E)+CF (E)+CT (E).

5.3 Linear Types for Proving Admissibility

We present a linear type system for π0 which allows to prove admissibility by

checking well-typedness. This type system was also presented in (Niehren, 1994;

Niehren, 1996). Type checking infers data flow information. The type system is

linear in that it cares about how often a variable is used for naming an abstraction.

In other words, a variable is a resource which is consumed when it is used for naming

an abstraction. In the extended version of this paper (Niehren, 1999), a richer linear

type systems is presented for which well-typed expressions of the δ-calculus can be

encoded into well-typed expressions of π0.

Sangiorgi (1997) has independently introduced a similar linear type system for

the π-calculus in order to prove uniform receptiveness of channel names. The idea

of uniform receptiveness is in fact the same as for admissibility, modulo a distinct

concept of output. In the present article, functional output is done by side effect

on logic variables, whereas Sangiorgi treats functional output by passing values.

Another similar linear type system was proposed by Kobayashi, Pierce, and Turner

(1996) for the π-calculus. Their system is motivated by and applied to optimized

code generation with the PICT compiler, in case that some channel in a PICT

program is provably used exactly once for input and once for output.

Most typically, the inconsistent expression x:y/E | x:uv/E ′ is not well-typed

since it uses the variable x twice for naming an abstraction. For excluding multiple

naming, our type system administrates a set of possible abstraction names, each

variable of which can be used at most once.
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We assume an infinite set of type variables denoted by α and use the following

recursive types σ internally annotated with modes η (where n ≥ 0).

σ ::= α || ((σ1
η1 . . . σηn

n )) || µα.σ

η ::= in || out

A type σ is either a variable α, a procedural type ((ση1

1 . . . σηn

n )), or a recursive type

µα.σ. Note that we are interested in typability but not in principal types. In general,

principal types do not exist since our mode language does not provide for a most

general mode.

A type assumption x: σ is a pair of a variable x and a type σ and reads as x has

type σ. A mode assumption x: η is a pair of a variable x and a mode η and reads as

x has mode σ. For convenience, we will make use of the following sequence notation:

Instead of ((ση1

1 . . . σηn

n )), we will write ((ση)) where y is the sequence σ1, . . . , σn and η

the sequence η1, . . . , ηn. We also write y: σ for a sequence of type assumptions yi: σi

and y: η for a sequence of mode assumptions yi: ηi.

A variable x has the procedural types ((ση)) in an abstraction x:y/E if the formal

arguments y are typed by σ and moded by η in E. We call a formal argument

with mode in an input argument and a formal argument with mode out an output

argument. In the abstraction x:yz/yz for example, the variable x can be given the

procedural type ((αin αout)) which states that y is an input argument and z an output

argument.

We call a sequence of mode assumptions y: η = y1: η1, . . . , yn: ηn output-linear

if there does not exist 1 ≤ i < j ≤ n such that yi = yj and ηi = ηj = out;

for an output-linear sequence of mode assumptions, we define the set of its output

arguments.

Out(y: η) =

{

undefined if y: η is not output-linear

{yi | 1 ≤ i ≤ n, ηi = out} otherwise

Finally, recursive types µα.σ are provided. These will be needed in order to deal

with expressions stemming from recursively defined embeddings between calculi.

As usual, we identify recursive types modulo the following identity:

µα.((ση)) = ((ση))[µα.((ση))/α]

A type environment Γ is a sequence of type assumptions x: σ with scoping to the

right. We say that a variable x has type σ in Γ, written Γ(x) = σ, if there exists

Γ1 and Γ2 such that Γ = Γ1, x: σ, Γ2 and x does not occur in Γ2. A type judgment

for E is a triple Γ; W ` E, where Γ is an environment and W are finite sets of

variables. Such a type judgment means that E can be typed in the environment Γ

whereby the variables in W may be consumed for naming an abstraction, but at

most once.

An expression E is well-typed if there exists a judgment for E derivable with

the rules in Figure 3. There are rules for abstraction (Abs), application (App),

composition (Com), and declaration (Dec); obvious additional rules for triggering

(Trig), forwarding (Forw), and delay (Del) are also provided. The resources (the

set of variables in a type judgment) are split by rule (Com) where ] is the operator
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(Com)
Γ; W1 ` E1 Γ; W2 ` E2

Γ; W ` E1 | E2

W ⊆ W1 ] W2

(Dec)
Γ, x: σ; W ′ ` E
Γ; W ` (νx)E

W ′ ⊆ W ∪ {x}

(Abs)
Γ, y: σ; W ` E
Γ; {x} ` x:y/E

Γ(x) = ((ση))
W ′ ⊆ Out(y: η)

(App)
Γ; W ` xy

Γ(x) = ((Γ(y)η))
Out(y: η) ⊆ W

(Forw)
Γ; {x} ` x=y

Γ(x) = Γ(y)

(Trig)
Γ; ∅ ` tr(x)

(Del)
Γ; W ` E

Γ; W ` x.E

Fig. 3. Linear Type Checking for Proving Admissibility

of disjoint union of sets. Recursive types are checked by the same rules as non-

recursive ones. This works, since we identify recursive types with respect to their

standard equality. For instance, the judgment x: µα.((αin)); {x} ` x:y/xy can be

derived with the rules (Abs) and (App).

Proposition 5.13

Every well-typed expression of the δ-calculus is admissible.

Rather than presenting the proof, we illustrate linear type checking at an exam-

ple. We show how to derive Γ3; {x} ` E3 where:

Γ3 ≡ x: ((αin αout)), u: α, E3 ≡ x:yz/(νv)(xuv | xvz)

The abstraction of name x in E3 can be applied with an input and an output

argument in first and second position respectively. The types of both arguments

have to coincide with the type of the global variable u. This global variable plays the

rôle of an additional input argument. The fact that the set of possible abstraction

names in E3 is {x} shows that x is the only free variable in E3 that may eventually

be used for naming an abstraction during the reduction of E3. Let Γ′
3 be the type

environment Γ3, y: α, z: α, v: α. The rules in Figure 3 yield:

Γ′
3; {v} ` xuv

(App)
Γ′

3; {z} ` xuz
(App)

Γ′
3; {z, v} ` xuv | xvz

Γ3, y: α, z: α; {z} ` (νv)(xuv | xvz)
Γ3; {x} ` x:yz/(νv)(xuv | xvz)

(Abs)
(Dec)

(Com)

We explain the above derivation bottom-up. First, (Abs) can be applied to the

abstraction named x, since the set of possible abstraction names in the final judg-

ment is {x}. The procedural type assumed for x in Γ3 requires that the second

argument z is the only output argument. We therefore continue with the set {z}
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Expressions M, N, P ::= x || V || MN

Values V ::= λx.M

Reduction (λx.M)V →val M [V/x]

Contexts
M →val M ′

MN →val M ′N
N →val N ′

MN →val MN ′

Fig. 4. The λ-Calculus with Weak Call-by-Value Reduction

for possible abstraction names. An application of (Dec) adds the local variable v to

this set. When applying (Com), the actual set of possible abstraction names {z, v}

is partitioned into two disjoint parts, the set {v} for the possible abstraction names

in xuv and the set {z} for possible abstraction names in xvz. Finally, the rule (App)

checks successfully that both second arguments in the considered applications of x

(v and z respectively) are a possible abstraction name.

6 Eager Functional Computation

We model eager functional computation in the λ-calculus with the weak call-by-

value reduction strategy that we call λval and encode λval into the δ-calculus.

The definition of λval is recalled in Figure 4. An expression M of λval is a usual

λ-expression which is either a variable, an abstraction (ranged over by V ), or an

application. Bound variables are introduced by λ-binders in abstractions. We iden-

tify λ-expressions up to consistent renaming of bound variables. The congruence of

λval is the equality of λ-terms. Reduction →val in λval is given by a single reduction

rule that is applicable in weak contexts (but not inside of abstractions).

We should note by an example that weak call-by-value reduction is not deter-

ministic. Consider the expression (II)(II) which allows for two executions:

( II ) (II) →val I ( II ) →val II →val I

(II) ( II ) →val ( II ) I →val II →val I

Proposition 6.1 (Uniform Confluence)

The λ-calculus with weak call-by-value reduction λval is uniformly confluent.

The proof can be done by induction on the structure of λ-expressions.

Definition 6.2

We define the call-by-value complexity Cval(M) of an expression M as the number

of →val reduction steps in executions of M .

Note that this number coincides for all executions of M because of uniform

confluence (Propositions 6.1 and 2.4).
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[[MN ]]valz

def

≡ (νx)(νy)([[M ]]valx | [[N ]]valy | xyz)

[[λx.M ]]valz

def

≡ z:xy/[[M ]]valy

[[x]]valz

def

≡ z=x

Fig. 5. Embedding λval into the δ-Calculus

6.1 Call-by-Value Translation

An embedding of λval into the δ-calculus is given in Figure 5. A λ-expression M

together with a variable z is mapped to an expression [[M ]]
val
z of the δ-calculus. The

definition of [[M ]]
val
z is given in Figure 5. It is modulo congruence and assumes that

all variables introduced are fresh.

The translation of an application [[MN ]]valz with name z introduces new names

x and y for naming the functor and the argument (in [[M ]]valx and [[N ]]valy ) and

concurrently applies the functors name x to y and z (in xyz). The translation of an

abstraction [[λx.M ]]
val
z with name z is a binary abstraction of the δ-calculus named

by z; its first argument x names the actual input whereas its second one y names

the actual output (in [[M ]]
val
y ). The translation of a variable x with name z is simply

a forwarder z=x.

Example 6.3

The call-by-value translation [[I ]]valz of I with name z is z:xy/y=x and the transla-

tion of [[I (II)]]
val
z is congruent to the following expression of the δ-calculus:

[[I (II)]]valz ≡ (νy1)(νz1)(νy2)(νz2)([[I ]]valy1
| [[I ]]valy2

| [[I ]]valz2
| y2z2z1 | y1z1z)

The application y2z2z1 corresponds to the inner and y1z1z to the outer redex of

I (II). Although the call-by-value execution of I (II) is deterministic,

I ( II ) →val II →val I

there exist several executions of its call-by-value translation. Let D be the context

of y2z2z1 | y1z1z in the expression [[I (II)]]
val
z , i.e.:

D = (νy1)(νz1)(νy2)(νz2)([[I ]]
val
y1
| [[I ]]

val
y2
| [[I ]]

val
z2
| [ ])

Recall that we write D[E] for the expression obtained by replacing the hole [ ] in

D with E. With this notation we have:

[[I (II)]]
val
z ≡ D[y2z2z1 | y1z1z]

The following execution of [[I (II)]]
val
z corresponds to the unique execution of I (II):

D[ y2z2z1 | y1z1z] →A D[z1=z2 | y1z1z ] →A D[ z1=z2 | z=z1]

→F D[[[I ]]valz1
| z=z1 ] →F D[[[I ]]valz1

] | [[I ]]valz

Up to the closed expression D[[[I ]]valz1
] the outcome of the above execution is [[I ]]valz .

Every →val step in the unique execution of I (II) corresponds to one →A step

plus at most two →F steps in the above execution of [[I (II)]]
val
z . There also exist
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executions of [[I (II)]]valz corresponding to reducing the outer redex of I (II) first.

D[y2z2z1 | y1z1z ] →A D[ y2z2z1 | z=z1] →A D[ z1=z2 | z=z1]

→F D[[[I ]]valz1
| z=z1 ] →F D[[[I ]]valz1

] | [[I ]]valz

This shows that our embedding introduces new flexibility with respect to possible

schedulings of application steps.

Proposition 6.4

For all z and closed M the expression [[M ]]
val
z is well-typed and hence admissible.

Proof

Given a set a variables X = {x1, . . . , xn} we define ΓX to be the type environment:

ΓX = x1: µα.((αin αout)), . . . , xn: µα.((αin αout))

For a fresh variable z, the judgment ΓV(M); {z} ` [[M ]]
val
z

can be derived.

Proposition 6.5

Let z be an arbitrary variable and consider [[ . ]]
val
z as a mapping from closed λ-terms

to admissible expressions of the δ-calculus. Then there exists an administrative

simulation S for [[ . ]]valz with administrative reduction →T ∪ →F and indices 1, 2.

Proof

The proof of Proposition 6.5 is delegated to Section 6.2. There, an administrative

simulation S is defined such that for every M , M ′ and E the following diagram can

be completed with some E ′:

M →val M ′

S S

E →≤2
F ◦ →A ∃E′

Theorem 6.6 (Call-by-value translation preserves complexity)

For every variable z and all closed λ-expressions M the following properties hold:

Cval(M) = CA([[M ]]
val
z ) ≤ C([[M ]]

val
z ) ≤ 3 ∗ Cval(M)

Proof

This follows directly from the existence of an administrative simulation with indexes

1 and 2 as claimed in Proposition 6.5 and Proposition 4.9.

Theorem 6.6 shows that the the call-by-value translation of λ-calculus into the

δ-calculus preserves complexity up to a factor of 3, whereby every β-reduction step

in λval corresponds to exactly one application step in the δ-calculus.
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6.2 A Simulation for Call-by-Value

We now define an administrative simulation for the presented embedding of λval

into the δ-calculus. As proposed by Milner (1992; 1991), we also make use of a

notation for explicit substitution. Its syntax is given by:

subst M1/y1 . . . Mn/yn in N
def
≡ N [Mn/yn] . . . [M1/y1]

Example 6.7

We first illustrate the idea underlying our definition of an administrative simulation.

We reduce the call-by-value translation [[I ( II )]]
val
z where we omit declaration pre-

fixes for simplicity. The translation of the inner redex is applied first; the translation

of the outer redex could also be reduced but without correspondence in λval.

[[I ( II )]]
val
z →A [[I ]]

val
y0
| [[I ]]

val
z0
| [[ I z0 ]]

val
z

→F [[I ]]
val
y0
| [[I ]]

val
z0
| [[ I I ]]

val
z

→A [[I ]]
val
y0
| [[I ]]

val
z0
| [[I ]]

val
y1
| [[I ]]

val
z1
| [[ z1 ]]

val
z

→F [[I ]]valy0
| [[I ]]valz0

| [[I ]]valy1
| [[I ]]valz1

| [[I ]]valz

The call-by-value translation [[I (II)]]
val
z introduces the variables y0 and z0 for nam-

ing the functor and argument of the inner redex respectively. In the first step, the

translated functor [[I ]]
val
y0

is applied with the arguments name z0 which then is re-

turned. In the second step, the variable z0 is replaced by the abstraction it names.

The similarity to an execution of I (II) in λval shows up when using our new

substitution notion:

I ( II ) →val subst I/y0 I/z0 in I z0

≡ subst I/y0 I/z0 in I I

→val subst I/y0 I/z0 I/y1 I/z1 in z1

≡ subst I/y0 I/z0 I/y1 I/z1 in I

In our formal treatment, we will freely make use of the following sequence nota-

tion. If y = (yi)
n
i=1 and M = (Mi)

n
i=1 then we write:

subst M/y in N ≡ subst M1/y1 . . . Mn/yn in N

[[M ]]
val
y ≡ [[M1]]

val
y1
| . . . | [[Mn]]

val
yn

If 1 ≤ i ≤ n then we write M<i for the sequence (Mj)
i−1
j=1, M>i for (Mj)

n
j=i+1, and

similarly y<i for (yj)
i−1
j=1, and y>i for (yj)

n
j=i+1. The concatenation of two sequences

is denoted by juxtaposition, for instance MN or yz. We also write MN , NM , or

zy, yz for the concatenation of a single element to the left or right of a sequence.

We define prefix equivalence ≈3 to be the smallest equivalence relation on ex-

pression of the δ-calculus that is modulo congruence, and satisfies the following

property for all x, y, E and reduction contexts D:

D[(νx)E] ≈3 D[E[y/x]] y fresh

Lemma 6.8

For all admissible E, F with E ≈3 F : C(E) = C(F ) and CA(E) = CA(F ).
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Proof

The lemma essentially follows from the fact that for all E, F, E ′ the following dia-

grams can be closed with some F ′:

E →A E′

≈
3

≈
3

F →A ∃F ′

E →F E′

≈
3

≈
3

F →F ∃F ′

E →T E′

≈
3

≈
3

F →T ∃F ′

Hence, Propositions 4.6 and Theorem 5.10 imply for all admissible E, F with E ≈ F

that CA(E) = CA(F ), CT (E) = CT (F ), and CF (E) = CF (F ). If follows from the

additivity Proposition 5.12 that C(E) = C(F ).

Definition 6.9 (Representation)

A representation for (M, E) is a triple (n, y, M), where y = (yi)
n
i=1, M = (Mi)

n
i=1,

and such that the following properties hold for all i ∈ {1, . . . , n}:

(R1) V(Mi) ⊆ {y1 . . . yi−1} and y is linear.

(R2) M ≡ subst M/y in yn.

(R3) E ≈3 [[M1]]
val
y1
| . . . | [[Mn]]

val
yn

.

(R4) If i < n then Mi is an abstraction.

Lemma 6.10 (Closedness)

If n, M , y, and M satisfy (R1) and (R2) then M is closed.

Definition 6.11

The relation Sval is the set of all pairs (M, E) for which a representation exists.

Proposition 6.12 (Sval is an Administrative Simulation)

For every z, the relation Sval is an administrative simulation for mapping of a closed

λ-expression E to its call-by-value translation [[M ]]
val
z . The administrative relation

of this simulation is →T ∪ →F and its administrative indices are 1, 2.

Proof

We check each of the conditions of Definition 4.7. Note that the proof of property

(A2) requires Lemma 6.13 given below.

(A1) If M is closed then (M, [[M ]]
val
z ) ∈ Sval since (n, (z), (M)) is a representation

of (M, [[M ]]
val
z ). Property (R1) follows from the closedness of M and (R2),

(R3), (R4) are trivial in this case.

(A2) Let (n, y, M) be a representation of (M, E) and M →val M ′. Applying the

following Lemma 6.13, there exists sequences x and V of length m and an

expression E′ such that (n + m, y<nxyn, M<nV M ′
n) is a representation for

(M ′, E′) and E →≤2
F ◦ →A E′.

(A3) The first administrative index is 1 thus greater than or equal to 1 as required.

(A4) Let M be closed and irreducible with respect to →val and assume (M, E) ∈

Sval. Since M is irreducible and closed it is an abstraction. There exists a

representation (n, y, M) for (M, E). Since M is an abstraction, either yn is a

variable or an abstraction. Hence E reduces in one →F step to a composition

of abstractions which is irreducible, i.e. CA(E) = 0 and CF (E) + CT (E) ≤ 1.
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(A5) Let M be closed. The expression [[M ]]valz is irreducible with respect to→T since

no trigger expressions are used by the translation. The expression [[M ]]
val
z is

irreducible with respect forwarding since all forwarders introduced by trans-

lation belong to the bodies of some abstraction.

Lemma 6.13
Let (n, y, M) be a representation of (M, E) and M →val M ′. Then there exists

fresh variables x, abstractions V , and a λ-expression M ′
n such that E →≤2

F ◦ →A E′,

V(V ) ⊆ V(y<n), V(M ′
m) ⊆ V(y<nx), and:

M ′ ≡ subst M<n/y<n V /x M ′
n/yn in yn

E′ ≈3 [[M<n]]
val
y<n | [[V ]]

val
x | [[M ′

n]]
val
yn

Proof
Since (n, y, M) is an representation, we know M ≡ subst M/y in yn and E ≈3

[[M ]]
val
y . Since M can not be an abstraction, property (R4) implies that Mn is an

application N1N2 for some N1 and N2. Hence M ≡ P1P2 and:

P1 ≡ subst M<n/y<n
in N1 , P2 ≡ subst M<n/y<n

in N2

1. Case: M →val M ′ is an instance of the β-axiom, i.e. P1 ≡ λx.P̃1 and:

M ≡ (λx.P̃1)P2 →val P̃1[P2/x] ≡ M ′

Since P1 and P2 are abstractions, N1 and N2 have to be either variables or

abstractions. This leads to four very similar subcases. We only consider the

case where N1 and N2 are both variables. In this case there exists yl1 and yl2

such that N1 = yl1 and N2 = yl2 . Furthermore:

P1 ≡ subst M<n/y<n
in Ml1 , P2 ≡ subst M<n/y<n

in Ml2

If Ml1 ≡ λx.M̃l1 then P̃1 ≡ subst M<n/y<n in M̃l1 . Let x1 and x2 be fresh.

M ′ ≡ (subst M<n/y<n in M̃l1)[P2/x]

≡ subst M<n/y<n in M̃l1 [P2/x]

≡ subst M<n/y<n in M̃l1 [yl2/x]

≡ subst M<n/y<n Ml1/x1 Ml2/x2 M̃l1 [x2/x]/yn in yn

Reduction of E may proceed with two forwarding steps followed by an appli-

cation step.

E ≈3 [[M<n]]
val
y<n | [[yl1 yl2 ]]

val
yn

≈3 [[M<n]]
val
y<n | x1=yl1 | x2=yl2 | x1x2yn

→2
F [[M<n]]valy<n | [[Ml1 ]]

val
x1
| [[Ml2 ]]

val
x2
| x1x2yn

→A [[M<n]]
val
y<n | [[Ml1 ]]

val
x1
| [[Ml2 ]]

val
x2
| [[M̃l1 ]]

val
yn

[x2/x]

This proves the inductive assertion with M ′
n ≡ M̃l1 [x2/x] and V equals the

sequence (Ml1 , Ml2).
2. Case: The last rule in the derivation of M →val M ′ allows for reduction in

functional position:

P1 →val P ′
1

M ≡ P1P2 →val P ′
1P2 ≡ M ′
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Let z1 and z2 be fresh variables and define:

E1
def
≡ [[M<n]]

val
y<n | [[N1]]

val
z1

By induction hypothesis there exists fresh variables x, abstractions V , N ′
1,

and E′
1 such that E1 →

≤2
F ◦ →A E′

1 and:

P ′
1 ≡ subst M<n/y<n V /x N ′

1/yn in yn

E′
1 ≈3 [[M<n]]valy<n | [[V ]]valx | [[N ′

1]]
val
yn

Additionally, we obtain some conditions on variables occurrences which imply:

M ′ ≡ P ′
1P2 ≡ (subst M<n/y<n V /x in N ′

1) (subst M<n/y<n in N2)

≡ subst M<n/y<n V /x N ′
1N2/yn in yn

Furthermore:

E ≈3 [[M<n]]valy<n | [[N1N2 ]]valyn

≈3 [[M<n]]
val
y<n | [[N1]]

val
z1
| [[N2]]

val
z2
| z1z2yn

→≤2
F ◦ →A [[M<n]]

val
y<n | [[V ]]

val
x | [[N ′

1]]
val
z1
| [[N2]]

val
z2
| z1z2yn

≈3 [[M<n]]valy<n | [[V ]]valx | [[N ′
1N2 ]]valyn

This proves the inductive assertion with M ′
n ≡ N ′

1N2 .

3. Case: The last rule in the derivation of M →val M ′ allows for reduction in

argument position. This case is symmetric to the previous one.

7 Lazy Functional Computation

The call-by-need λ-calculus (Ariola et al., 1995; Ariola & Felleisen, 1997; Maraist

et al., 1998) with standard reduction can be used to model complexity in lazy func-

tional computation. We embed the call-by-need λ-calculus with standard reduction

into the δ-calculus such that complexity is preserved.

The definition of the call-by-need λ-calculus with standard reduction λneed is

revisited in Figure 6. Its expressions L are variables, abstractions (denoted with

V ), applications, and let-expressions. The reduction →need of the call-by-need λ-

calculus is a union of four relations, →I , →V , →
Ans

, and →C . The relation →I

corresponds to β-reduction and the relation →V to forwarding. The latter two

relations are of administrative character.

Example 7.1

For illustrating we consider the λ-term (II) I . This examples shows that →I steps

correspond to β-reduction whereas →V provides for forwarding abstractions.

( II ) I →I (let y=I in y ) I →V (let y=I in I) I →C let y=I in II

→I let y=I in (let z=I in z ) →V let y=I in (let z=I in I)

The rôle of→C is to rearrange parenthesis introduced by let-expressions in function

position, for instance after the evaluation of II in (II) I as shown above. The rôle

of →
Ans

is to rearrange parenthesis after evaluation in argument position. This is
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Expressions L ::= x || V || LL′ || let x=L2 in L1 where x /∈ V(L2)

V ::= λx.L

A ::= V || let x=L in A

B ::= [ ] || BL || let x=L in B || let x=B2 in B1[x]

Reduction →need = →I ∪ →V ∪ →Ans ∪ →C

(λx.L1)L2 →I let x=L2 in L1

let x=V in B[x] →V let x=V in B[V ]

let y=(let x=L in A) in B[y] →Ans let x=L in (let y=A in B[y])

(let x=L1 in A)L2 →C let x=L1 in AL2

Contexts
L →need L′

B[L] →need B[L′]

Fig. 6. The call-by-need λ-calculus λneed with standard reduction.

illustrated by the call-by-need reduction of (λx.xx) (II).

(λx.xx) (II) →I let x= II in xx

→I let x=(let y=I in y ) in xx →V let x=(let y=I in I) in xx

→
Ans

let y=I in (let x=I in x x) →V let y=I in (let x=I in Ix )

→I let y=I in (let x=I in (let y= x in y ))

→2
V let y=I in (let x=I in (let y=I in I))

This example also illustrates sharing of computation. The evaluation of the func-

tional argument II is shared between both uses of the value of this argument.

With respect to the call-by-need λ-calculus, we consider standard reduction

rather than some form of weak reduction. The reason for this choice is purely

technically motivated: The problem with weak reduction is that its administrative

reduction steps spoil uniform confluence.

Example 7.2 (Weak call-by-need reduction is not uniformly confluent)

Weak reduction for the call-by-need λ-calculus allows to reduce in every weak con-

text (i.e. everywhere but not in bodies of abstractions). Weak reduction for the

call-by-need λ-calculus is not uniformly confluent. The problem depends on the

number of steps needed for rearranging parenthesis. This number depends on the

ordering in which parenthesis are rearranged. This can be illustrated with the fol-
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lowing expression L:

L = let x= (let y=(let z=L0 in A2) in A1) in x

L

L1 L2

L′

This expression contains two nested weak redexes where the →
Ans

axiom applies.

When reducing the outer redex first we obtain L1, whereas we obtain L2 when

reducing the inner redex first.

L1 = let x=A1 in (let y=(let z=L0 in A2) in x)

L2 = let x=(let z=L0 in (let y=A2 in A1)) in x

It is not possible to join L1 and L2 in exactly one step. It is possible however to

join L1 and L2 into L′ given below.

L′ = let x=A1 in (let y=A2 in (let z=L0 in x))

The expression L1 reduces in one weak answering step to L′ whereas L2 needs two

weak answering steps.

In standard reduction, this non-uniformity problem does not occur. The inner

weak redex of L can simply not be reduced since its context is not a reduction

context with respect to standard reduction.

Proposition 7.3 (Uniform Confluence)

The call-by-need λ-calculus with standard reduction λneed is deterministic.

Proof

The context rule determines a unique position where reduction may happen. More

precisely, whenever B1[L1] = B2[L2] then either L1 is a variable bound in B1, or

L2 is a variable bound in B2, or B1 = B2 and L1 = L2. This can be shown by

induction on the size of the pair B1, B2.

Proposition 7.3 implies in particular that λneed is an orthogonal union of uni-

formly confluent calculi with commuting reductions→I ,→V ,→
Ans

and→C . Hence,

the theory developed in Section 2 is applicable to λneed.

We wish to define the call-by-need complexity of a λ-expression L. We have

several choices in doing so. We might consider the number of all reduction steps

of an execution of L in λneed. This choice would be problematic (at least) for our

purpose. The reason is that →C and →
Ans

do not have any correspondents in a

concurrent calculus which we wish to compare with. This failure is illustrated by

Example 7.2. It is also unclear in how far the→C steps and→
Ans

steps are realistic

with respect to implementations of functional languages. We therefore ignore →C

steps and →
Ans

completely and leave it to future research to lift this restriction.

Another question is whether we should count →V steps. Doing so would not be

too difficult since→V steps nicely correspond to forwarding steps in the δ-calculus.

It would also be possible to argue that the number of→V steps is linearly bounded
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[[LL′]]need

z

def

≡ (νx)(νy)([[L]]need

x | y.[[L′]]need

y | xyz)

[[λx.L]]need

z

def

≡ z:xy/[[L]]need

y

[[y]]need

z

def

≡ z=y | tr(y)

[[let y=L2 in L1]]
need

z

def

≡ (νy)(y.[[L2]]
need

y | [[L1]]
need

z )

Fig. 7. Embedding λneed into the δ-Calculus

by the number of→I steps. In favor of simplicity, we decide to count→I steps only.

These play the rôle of β-reduction in λneed.

One might also argue against →I steps claiming that a slightly reformulated

version of the call-by-need λ-calculus in (Ariola & Felleisen, 1997; Ariola et al.,

1995) does not use →I steps at all. The idea of this calculus is to identify a let

expressions let x=L2 in L1 with an application (λx.L2)L1. In this approach →I

steps are no longer explicitly needed and can be replaced by a sequence of →V

steps. Since the number of →V and →I steps coincide up to a linear factor, the

absence of →I steps does not really affect our results.

Definition 7.4 (Call-by-need Complexity)

We define the call-by-need complexity Cneed(L) of a λ-term L as the number of

→I steps in the execution of L in λneed.

7.1 Call-by-Need Translation

The call-by-need λ-calculus λneed can be embedded into the δ-calculus such that

complexity is preserved. In Figure 7, for every expression L and variable z we define

the call-by-need translation [[L]]
need
z into the δ-calculus. The call-by-need transla-

tion is fully analogous to the call-by-value translation, except that an additional

control is added. In the translation of an application [[LL′]]
need
z the translation of

the functional argument [[L′]]
need
y is delayed; whenever the value of a variable y is

needed, its computation is trigger. This is encoded by the additional trigger expres-

sion in the translations of variables [[y]]
need
z . Finally notice that let-bound variables

are translated to variables of the δ-calculus.

Example 7.5

We consider the translation and execution of the λ-term I (II).

[[I (II)]]
need
z ≡ (νy1)(νz1)([[I ]]

need
y1
| z1 .[[II ]]

need
z1
| y1z1z )

→A (νy1)(νz1)([[I ]]
need
y1
| z1 .[[II ]]

need
z1

| z=z1 | tr(z1))

→T (νy1)(νz1)([[I ]]need
y1
| [[II ]]need

z1
| z=z1 | tr(z1))

The translation of outer redex of I (II) is reduced first (up to translation). The

inner redex is delayed at beginning but triggered during the evaluation of the outer

redex, such that further execution can be applied to the inner redex. Note that the

execution of [[I (II)]]
need
z is deterministic.
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Example 7.6 (Non-needed Arguments)

We consider the λ-abstraction C ≡ λx.y where x 6= y. An application of C returns

the constant y independently of (and without needing) the actual argument.

[[C (II)]]
need
z ≡ (νy1)(νz1)([[C]]

need
y1
| z1 .[[II ]]

need
z1
| y1z1z )

→A (νy1)(νz1)([[I ]]
need
y1
| z1 .[[II ]]

need
z1
| z=y | tr(y))

Here, reduction terminates without having evaluated the translated functional ar-

gument z1 .[[II ]]
need
z1

which is not needed and therefore delayed forever.

Example 7.7 (Sharing of Evaluation)

Consider the λ expression let x=II in xx where x = II is needed twice but should

be evaluated only once.

[[let x=II in xx]]
need
z

≡ (νx)(x.[[II ]]
need
x | [[xx]]

need
z )

≡ (νx)(νy1)(νz1)( x.[[II ]]
need
x | y1=x | tr(x) | z1 .(z1=x | tr(x)) | y1z1z)

→T (νx)(νy1)(νz1)([[II ]]
need
x | y1=x | tr(x) | z1 .(z1=x | tr(x)) | y1z1z)

Further execution on [[II ]]
need
x results in [[x]]

need
I up to some garbage. Forwarding

with y1=x yields [[y1]]
need
I such that y1z1z reduces to z=z1 | tr(z1). This makes it

possible to trigger z1 .(z1=x | tr(x)). This is the point where multiple triggers

. . . | tr(x) | tr(x) | . . .

have become active (one per need of x). Two final forwarding step yield [[I ]]need
z1

and

hence [[I ]]
need
z .

Proposition 7.8

For all z and closed M the expression [[M ]]
need
z is well-typed and hence admissible.

Proof

Given a set a variables X = {x1, . . . , xn} we define ΓX to be the type environment:

ΓX = x1: µα.((αin αout)), . . . , xn: µα.((αin αout))

For every λ-expression M and z 6∈ V(M) the following judgment is derivable:

ΓV(L); {z} ` [[L]]
need
z

This can be checked by induction on the structure of L. Hence every expression

[[L]]
need
z is well-typed and hence admissible as shown by Corollary 5.13.

Theorem 7.9 (Call-by-need translation preserves complexity)

For every z and closed λ-expression L the equation Cneed(L) = CA([[L]]
need
z ) holds.

Proof

This follows from the existence of a complexity simulation as specified in Proposition

7.11 below, admissibility as stated (Proposition 7.8), uniform confluence (Proposi-

tions 7.3 and 5.9), and Proposition 4.3.
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7.2 A Simulation for Call-by-Need

In this Section, we present a complexity simulation for our call-by-need translation

as required in the proof of Theorem 7.9. The idea for defining a complexity simu-

lation S is to consider the relation S = {(L, [[[L]]]
need
z )} (depending on a choice of

z). However, we have to extend this relation S such that we can deal with tech-

nical details related to multiple triggering. Even worse, we cannot know statically,

whether an expression has been needed at some time point. We therefore have to

deal with similarities like between expressions E and x.E | tr(x) | tr(x). In order

to do so, we will consider sets E of expressions E and use the following notation.

E | E′ = {E | E′ | E ∈ E} E | E ′ = {E | E′ | E′ ∈ E ′}

x:y/E = {x:y/E | E ∈ E} (νx)E = {(νx)E | E ∈ E}

x.E = {x.E | E ∈ E} E∗ = { |ni=1 E | n ≥ 0}

Note that the auxiliary expression 0 ≡ |0i=1 E is contained in E∗ which satisfies

E | 0 ≡ 0 | E ≡ E for all E. We next define sets of expressions [[[L]]]
need
x for all x

and L such that [[L]]
need
x ∈ [[[L]]]

need
x .

[[[LL′]]]
need
z = (νx)(νy)([[[L]]]

need
x | y.[[[L′]]]

need
y | xyz)

[[[λx.L]]]
need
z = z:xy/[[[L]]]

need
y

[[[x]]]
need
z = {z=x | tr(x)}

[[[let y=L2 in L1]]]
need
z =











if L2 ≡ V

then (νy)(y.[[[V ]]]
need
y | tr(y)∗ | [[[L1]]]

need
z )

else (νy)(y.[[[L2]]]
need
y | [[[L1]]]

need
z )

Definition 7.10
We define the relation Sneed

z by Sneed
z = {(L, E) | E ∈ [[[L]]]need

z , L closed}.

Proposition 7.11 (Sneed
z is a complexity simulation)

The relation Sneed
z is a complexity simulation for the embedding [[ . ]]need

z (restricted

to closed terms) with indices 1, 0, 0.

Proof
We have to verify the properties (S1) , . . ., (S4) of a complexity simulation for an

embedding according to Definitions 4.1 and 4.2.

(S1) For all closed L: (L, [[L]]
need
z ) ∈ Sneed

z . This follows immediately from the

definition of Sneed
z .

(S2) We define the relation ≈A on expression of the δ-calculus (in analogy to π0

before) such that E ≈A E′ if and only if CA(E) = CA(E′). By Lemma 3.6, we

know that →T ∪ →F ⊆ ≈A. For all L, L′ and E there exists E′ such that the

following diagrams can be completed:

L →I L′

Sneed
z Sneed

z

E ≈A ◦ →A ◦ ≈A ∃E′

L →V L′

Sneed
z Sneed

z

E ≈A ∃E′

L →Ans ∪ →C L′

Sneed
z Sneed

z

E ≡ ∃E′

These diagrams will be proved by Lemmas 7.15, 7.16, and 7.17.
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(S3) If C(E) =∞ then CA(E) =∞ and the index for →A is 1.

(S4) If a closed λ-term L is irreducible and (L, E) ∈ Sneed
z then CA(E) = 0.

Lemma 7.12 (Termination)

If a closed λ-term L is irreducible and E ∈ [[[L]]]
need
z then there exist E′ such that

E →∗
T E′ and C(E) = 0.

Proof

If a closed λ-term L is irreducible then L ≡ A for some answer A (It can be

shown by induction on structure of L that either L is reducible or an answer). By

induction on A we can show for all E ∈ [[[A]]]
need
z that E consists of a declaration

scoping over composition of abstractions, delayed abstractions, triggers for delayed

abstractions, and other delayed expressions without appropriate triggers. We obtain

E′ by triggering all delayed abstractions in E than can be triggered.

A context B of the call-by-need λ-calculus can be considered as a function from

λ-terms to λ-terms ΛL.B[L]. Given a variable z, we can translate a context B in

call-by-need manner to a function [[[B]]]
need
z from λ-terms to sets of expression of the

δ-calculus.

[[[[ ]]]]
need
z = ΛL.[[[L]]]

need
z

[[[BL′]]]
need
z = ΛL.(νx)(νy)([[[B]]]

need
x (L) | [[[L′]]]

need
y | xyz)

[[[let y=L′ in B]]]
need
z = ΛL.(νy)(y.[[[L′]]]

need
y | [[[B1]]]

need
z (L))

[[[let y=B2 in B1[y]]]]need
z = ΛL.











if B2[L] ≡ V

then (νy)(y.[[[V ]]]need
y | tr(y)∗ | [[[B1[y]]]]need

z )

else (νy)(y.[[[B2]]]
need
y (L) | [[[B1[y]]]]

need
z )

Lemma 7.13 (Translation and Context Application Commute)

For all B, L, and z the congruence [[[B[L]]]]
need
z = [[[B]]]

need
z (L) holds.

Proof

By induction on the structure of contexts B.

1. In the base case, B ≡ [ ], we have [[[B[L]]]]
need
z = [[[L]]]

need
z = [[[B]]]

need
z (L).

2. If B ≡ B′L′ then the induction hypothesis yields [[[B′[L]]]]need
x = [[[B′]]]need

x (L).

Hence:

[[[B[L]]]]
need
z = (νx)(νy)([[[B′[L]]]]

need
x | y.[[[L′]]]

need
y | xyz)

= (νx)(νy)([[[B′]]]
need
x (L) | y.[[[L′]]]

need
y | xyz)

= [[[B′L′]]]
need
z (L)

3. The case B ≡ let y=L′ in B′ is similar to the previous one.

4. In the case B ≡ let y=B2 in B1[y], the induction hypothesis implies

[[[B2[L]]]]
need
y = [[[B2]]]

need
y (L). If B2[L] ≡ V then:

[[[let y=B2[L] in B1[y]]]]
need
z = (νy)(y.[[[V ]]]

need
y | tr(y)∗ | [[[B1[y]]]]

need
z )

= [[[let y=[ ] in B1[y]]]]need
z (V )

= [[[let y=B2 in B1[y]]]]
need
z (L)
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Otherwise B2[L] 6≡ V for any V :

[[[let y=B2[L] in B1[y]]]]need
z = (νy)(y.[[[B2[L]]]]need

y | [[[B1[y]]]]need
z )

= (νy)(y.[[[B2]]]
need
y (L) | [[[B1[y]]]]

need
z )

= [[[let y=B2 in B1[y]]]]
need
z (L)

Given a binary relation →R on expressions of the δ-calculus, we define a binary

relation →R on sets of expressions. If E1 and E2 are sets of expressions of the δ-

calculus then E1 →R E2 holds if and only if for all E1 ∈ E1 there exists E2 ∈ E2 such

that E1 →R E2.

E1 →R E2 iff ∀E1 ∈ E1∃E2 ∈ E2. E1 →R E2

For reasoning about call-by-need contexts B it is useful to introduce a notion of

contexts for the δ-calculus. A corresponding notation for contexts D was already

used in the proof of Theorem 5.5, i.e. D ::= [ ] | D | E | E | D | ν(x)D.

Note that D[E] | E′ ≡ D[E | E′] for all E, E′, D since we assume α-standardized

expression.

Lemma 7.14 (Translated Needed Arguments can be Triggered)

For all B, z there exists D, x such that [[[B[L]]]]
need
z →∗

T D[[[[L]]]
need
x ] for all L.

Proof

By Lemma 7.13 it is sufficient to prove the existence of D and x such that for all

L, [[[B]]]need
z (L) →∗

T D[[[[L]]]need
x ]. This can be done by induction on the structure of

B.

Lemma 7.15 (Application)

If L→I L′ then [[[L]]]need
z →∗

T ◦ →A ◦ ≈1 ◦
∗
T← [[[L′]]]need

z .

In particular, if L →I L′ and (L, E) ∈ Sneed
z then there exists E′ such that

E ≈A ◦ →A ◦ ≈A E′ and (L′, E′) ∈ Sneed
z .

Proof

We can assume that L ≡ B[(λy.L2)L1] and L′ ≡ B[let y=L2 in L1] for some B,

y, L1 and L2. Lemma 7.14 implies the existence of D and x such that for all L,

[[[B[L]]]]
need
z →∗

T D[[[[L]]]
need
x ]. Hence:

[[[L]]]
need
z →∗

T D[[[[(λy.L2)L1]]]
need
x ]

= D[(νy1)(νz1)([[[λy.L2]]]
need
y1
| z1 .[[[L2]]]

need
z1
| y1z1z)

→A D[(νy1)(νz1)([[[λy.L2]]]
need
y1
| z1 .[[[L2]]]

need
z1
| [[[L2[z1/y]]]]

need
z )]

≈1 D[[[[let z1=L2 in L2[z1/y]]]]
need
z ]

∗
T← [[[B[let y=L2 in L2]]]]

need
z

Lemma 7.16 (Forwarding)

If L→V L′ then [[[L]]]
need
z →∗

T ◦ →F ◦
∗
T← [[[L′]]]

need
z .

In particular, if L →V L′ and (L, E) ∈ Sneed
z then there exists E′ such that

E ≈A E′ and (L′, E′) ∈ Sneed
z .

Proof
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We can assume that L ≡ B[let y=V in B′[y]] and L′ ≡ B[let y=V in B′[V ]] for

some B, B′, y, and V . Lemma 7.14 implies the existence of D, x, D′, and x′ such

that for all L, [[[B[L]]]]
need
z →∗

T D[[[[L]]]
need
x ] and [[[B′[L]]]]

need
x →∗

T D′[[[[L]]]
need
x′ ]. Hence:

[[[L]]]
need
z →∗

T D[(νy)(y.[[[V ]]]
need
y | tr(y)∗ | [[[B′[y]]]]

need
x )]

→∗
T D[(νy)(y.[[[V ]]]need

y | tr(y)∗ | D′[x′=y | tr(y)])]

→T D[(νy)([[[V ]]]
need
y | tr(y)∗ | D′[x′=y | tr(y)])]

→F D[(νy)([[[V ]]]
need
y | tr(y)∗ | D′[[[[V ]]]

need
x′ | tr(y)])]

T← D[(νy)(y.[[[V ]]]need
y | tr(y)∗ | D′[[[[V ]]]need

x′ | tr(y)])]
∗
T← D[(νy)(y.[[[V ]]]

need
y | [[[B′[V ]]]]

need
x | tr(y)∗)]

∗
T← [[[B[let y=V in B′[V ]]]]]

need
z

In the last line above, we have made use of the additional triggers introduced in

[[[L]]]
need
z compared to [[L]]

need
z .

The trigger equivalence ≈4 is the smallest equivalence on δ-expressions that is

modulo congruence, closed under weak contexts, and that satisfies the following

property for all x, y, E, and E ′:

y.(νx)(x.E | E′) ≈4 (νx)(x.E | y.E′)

It is again not difficult to see that E ≈4 E′ implies E ≈A E′. The E′ on the left

hand side can only become active once y and x have been triggered. The same holds

for E′ on the right hand side since a trigger for y can only be computed in E which

requires that x has to be triggered.

Lemma 7.17 (Administration)

If L→Ans ∪ →C L′ then [[[L]]]need
z →∗

T ◦ ≈4 ◦
∗
T← [[[L′]]]need

z

In particular, if L →Ans ∪ →C L′ and (L, E) ∈ Sneed
z then there exists E′ such

that E ≈A E′ and (L′, E′) ∈ Sneed
z .

Proof

We first consider L→Ans L′. We can assume that there exist y, y′, L′′, A such that

L ≡ B[let y=(let y′=L′′ in A) in B′[y]] and L′ ≡ B[let y′=L′′ in (let y=A in B′[y])].

Lemma 7.14 implies the existence of D and x such that [[[B[L]]]]
need
z →∗

T D[[[[L]]]
need
x ]

for all L. In the case that L′′ is not an abstraction, we have:

[[[L]]]
need
z = [[[B[let y=(let y′=L′′ in A) in B′[y]]]]]

need
z

→∗
T D[(νy)(y.(νy′)(y′ .[[[L′′]]]

need
y′ | [[[A]]]

need
y ) | [[[B′[y]]]]

need
x )]

≈4 D[(νy)(νy′)(y′ .[[[L′′]]]
need
y′ | y.[[[A]]]

need
y ) | [[[B′[y]]]]

need
x ]

= D[(νy′)(y′ .[[[L′′]]]need
y′ | [[[let y=A in B′[y]]]]need

x )]
∗
T← [[[B[let y′=L′′

in (let y=A in B′[y])]]]]
need
z

The consideration for L′′ ≡ V for some V is similar. We second consider L→C L′.

We can assume that there exist y, y′, L′′, A such that L ≡ B[(let y=L1 in A)L2 ]

and L′ ≡ B[let y=L1 in AL2 ]. Lemma 7.14 implies the existence of D and x such

that [[[B[L]]]]
need
z →∗

T D[[[[L]]]
need
x ] for all L. In the case that L1 is not an abstraction,
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we have:

[[[L]]]
need
z = [[[B[(let y=L1 in A)L2 ]]]]

need
z

→∗
T D[(νx′)(νy′)((νy)(y.[[[L1]]]

need
y | [[[A]]]

need
x′ ) | y′ .[[[L2]]]

need
y′ | x′y′x)]

= D[(νy)(y.[[[L1]]]
need
y | (νx′)(νy′)([[[A]]]

need
x′ | y′ .[[[L2]]]

need
y′ | x′y′x))]

∗
T← [[[B[let y=L1 in AL2 ]]]]need

z

The case that L1 is not an abstraction is similar again.

8 Call-by-Need versus Call-by-Value Complexity

We are now in the position to compare call-by-need complexity and call-by-value

complexity. It is not difficult to find a variation of a simulation for the embedding

[[M ]]need
z 7→ [[M ]]valz since [[M ]]need

z coincides with [[M ]]valz up to some delay and trigger

expressions. Let 0 be the garbage expression (νx)x. Note that E | 0 ≈1 E holds

for all E where ≈1 is the garbage collection equivalence (lifted from π0 to the δ-

calculus). We define a projection function π on δ-expressions which replaces all

trigger expressions by 0 and removes all delays.

π(x:y/E) ≡ x:y/π(E) π(xy) ≡ xy π(E | F ) ≡ π(E) | π(F )

π((νx)E) ≡ (νx)π(E) π(tr(x)) ≡ 0 π(x.E) ≡ π(E)

Let ≡1 be the smallest congruence on expressions of the δ-calculus, which contains

the garbage collection equivalence ≈1. Again, it is not difficult to show that E ≡1 E′

implies CA(E) = CA(E′).

Definition 8.1

Let Sneed
val be the relation {(E, E ′) | π(E) ≡1 E′} on expressions of the δ-calculus.

Lemma 8.2

The following diagrams can be completed for all E and E ′.

E →A E′

Sneed
val Sneed

val

π(E) →A π(E′)

E →F E′

Sneed
val Sneed

val

π(E) →F π(E′)

E →T E′

Sneed
val Sneed

val

π(E) ≡ π(E′)

Proposition 8.3

For every z and a closed λ-term M : CA([[M ]]
need
z ) ≤ CA([[M ]]

val
z ).

Proof

Lemma 8.2 and Proposition 4.5 yields CA(E) ≤ CA(F ) for all pairs (E, F ) ∈

Sneed
val of admissible expressions of the δ-calculus. Let z be a variable and M a

closed λ-expression. It is not difficult to verify π([[M ]]
need
z ) ≡1 [[M ]]

val
z . Hence,

([[M ]]
need
z , [[M ]]

val
z ) ∈ Sneed

val such that CA([[M ]]
need
z ) ≤ CA([[M ]]

val
z ) follows.

Corollary 8.4 (Folk Theorem)

For every closed λ-term M the call-by-need complexity of M is smaller than its

call-by-value complexity.

Cneed(M) ≤ Cval(M)
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Proof

From Theorems 6.6 and 7.9 and Proposition 8.3.

Conclusion

We have investigated uniform confluence in concurrent computation. We have em-

bedded the λ-calculus with call-by-value and call-by-need reduction into the π-

calculus such that complexity is preserved. We have worked out a powerful proof

technique based on uniform confluence and simulations. We have proved that call-

by-need complexity is smaller than call-by-value complexity.
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