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Abstract

This paper introduces an architecture for generic constraint implementations based on vari-
able views and range iterators. Views allow, for example, to scale, translate, and negate vari-
ables. The paper shows how to make constraint implementations generic and how to reuse
a single generic implementation with different views for different constraints. Applications of
views exemplify their usefulness and their potential for simplifying constraint implementations.
We introduce domain operations compatible with views based on range iterators. The paper
evaluates different implementation techniques for the presented architecture.

1 Introduction

A challenging aspect in developing and extending a constraint programming system is implementing
a comprehensive set of constraints. Ideally, a system should provide simple, expressive, and efficient
abstractions that ease development and reuse of constraint implementations.

This paper contributes a new architecture based on variable views and range iterators. The
architecture comprises an additional level of abstraction to decouple variable implementations from
propagators (as constraint implementations). Propagators compute generically with variable views
instead of variables. Views support operations like scaling, translation, and negation of variables.
For example, a simple generic propagator for linear equality

∑k
i=1

xi = c can be used with a

scale-view xi = ai · yi to obtain an implementation of
∑k

i=1
ai · yi = c. Variable views assist in

implementing propagators on a higher level of abstraction.
Range iterators support powerful and efficient domain operations on variables and variable

views. The operations can access and modify multiple values of a variable domain simultane-
ously. Range iterators are efficient as they help avoiding temporary data structures. They simplify
propagators by serving as adaptors between variables and propagator datastructures.

The architecture is carefully separated from its implementation. Two different implementation
approaches are presented and evaluated. An implementation using parametric polymorphism (such
as templates in C++) is shown to not incur any runtime cost. The architecture can be used for
arbitrary constraint programming systems and has been fully implemented in Gecode [2].

Plan of the paper. The next section presents a model for finite domain constraint programming
systems. Sect. 3 introduces variable views and exemplifies their use. Sect. 4 introduces iterator-
based domain operations that are applied to views in the following section. Variable views for set
constraints are discussed in Sect. 6. In Sect. 7 implementation approaches for views and iterators
are presented, followed by their evaluation in Sect. 8. The last section concludes.
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2 Constraint Programming Systems

This section introduces the model for finite domain constraint programming systems considered in
this paper and relates it to existing systems.

Variables and propagators. Finite domain constraint programming systems offer services to support
constraint propagation and search. In this paper we are only concerned with variables used for
constraint propagation. We assume that a constraint is implemented by a propagator. A propagator
maintains a collection of variables and performs constraint propagation by executing operations on
them. In the following we consider finite domain variables and propagators. A finite domain
variable x has an associated domain dom(x) being a subset of some finite subset of the integers.

Propagators do not manipulate variable domains directly but use operations provided by the
variable. These operations return information about the domain or update the domain. In addition,
they handle failure (the domain becomes empty) and control propagation.

Value operations. A value operation on a variable involves a single integer as result or argument.
We assume that a variable x with D = dom(x) provides the following value operations: x.getmin()
returns min D, x.getmax() returns maxD, x.adjmin(n) updates dom(x) to {m ∈ D | m ≥ n},
x.adjmax(n) updates dom(x) to {m ∈ D | m ≤ n}, and x.excval(n) updates dom(x) to {m ∈
D | m 6= n}. These operations are typical for finite domain constraint programming systems like
Choco [6], ILOG Solver [9, 11, 4], Eclipse [1], Mozart [8], and Sicstus [5]. Some systems provide
additional operations such as for assigning values.

Domain operations. A domain operation supports simultaneous access or update of multiple values
of a variable domain. In many systems this is provided by supporting an abstract set-datatype
for variable domains, as for example in Choco [6], Eclipse [1], Mozart [8], and Sicstus [5]. ILOG
Solver [9, 11, 4] only allows access by iterating over the values of a variable domain.

Subscription. When a propagator p is created, it subscribes to its variables. Subscription guarantees
that p is executed whenever the domain of one of its variables changes according to an event. An
event describes when the propagator requires execution: e = fix when dom(x) becomes a singleton,
e = min if min dom(x) changes, e = max if max dom(x) changes, and e = any if dom(x) changes.
For more on events, see for example [13].

Range and value sequences. Range notation [n .. m] is used to refer to the set of integers {l ∈
Z | n ≤ l ≤ m}. A range sequence ranges(I) for a finite set of integers I ⊆ Z is the shortest
sequence s = 〈[n1 .. m1] , . . . , [nk .. mk]〉 such that I is covered (set(s) = I, where set(s) is defined
as

⋃k
i=1

[ni .. mi]) and the ranges are ordered by their smallest elements (ni ≤ ni+1 for 1 ≤ i < k).

The above range sequence is also written as 〈[ni .. mi]〉
k
i=1

. Clearly, a range sequence is unique,
none of its ranges is empty, and mi + 1 < ni+1 for 1 ≤ i < k.

A value sequence values(I) for a finite set of integers I ⊆ Z is the shortest sequence s =
〈n1, . . . , nk〉 (also written as 〈ni〉

k
i=1

) such that I is covered (set(s) = I, where set(s) =
⋃k

i=1
ni)

and that the values are ordered (ni ≤ ni+1 for 1 ≤ i < k). Again, this sequence is unique and has
no duplicate values.

3 Variable Views with Value Operations

This section introduces variable views with value operations. The full design with domain opera-
tions and a discussion of their properties follows in Sect. 5.

Example 1 (Smart n-Queens) Consider the well-known finite domain constraint model for n-
Queens using three alldifferent constraints: each queen is represented by a variable xi (0 ≤ i < n)
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with domain {0, . . . , n− 1}. The constraints state that the values of all xi, the values of all xi − i,
and the values of all xi + i must be pairwise different for 0 ≤ i < n.

If the used constraint programming system lacks versions of alldifferent supporting that the
values of xi + ci are different, the user must resort to using additional variables yi and constraints
yi = xi + ci and the single constraint that the yi are different. This approach is clearly not very
efficient: it triples the number of variables and requires additional 2n binary constraints.

Systems with this extension of alldifferent must implement two very similar versions of the same
propagator. This is tedious and increases the amount of code that requires maintenance. In the
following we make propagators generic: the same propagator can be reused for several variants.

To make a propagator generic, all its operations on variables are replaced by operations on
variable views. A variable view (view for short) implements the same operations as a variable. A
view stores a reference to a variable. Invoking an operation on the view executes the appropriate
operation on the view’s variable. Multiple variants of a propagator can be obtained by instantiating
the single generic propagator with multiple different variable views.

Offset-views. For an offset-view v = voffset(x, c) for a variable x and an integer c, performing an
operation on v results in performing an operation on x+ c. The operations on the offset-view are:

v.getmin() := x.getmin() + c v.getmax() := x.getmax() + c
v.adjmin(n) := x.adjmin(n− c) v.adjmax(n) := x.adjmax(n− c)
v.excval(n) := x.excval(n− c)

To obtain both alldifferent propagators required by Example 1, also an identity-view is needed.
An operation on an identity-view vid(x) for a variable x performs the same operation on x. That
is, identity-views turn variables into views to comply with propagators now computing with views.

Obtaining the two variants of alldifferent is straightforward: the propagator is made generic with
respect to which view it uses. Using the propagator with both an identity-view and an offset-view
yields the required propagators.

Sect. 7 discusses how views can be implemented whereas this section focuses on the architecture
only. However, to give some intuition, in C++ for example, propagators can be made generic by
implementing them as templates with the used view as template argument. Instantiating the generic
propagator then amounts to instantiating the corresponding template with a particular view.

Views are orthogonal to the propagator. In the above example, offset-views can be used for any
implementation of alldifferent using value operations. This includes the naive version propagating
when variables become assigned or the bounds-consistent version [10].

Scale-views. In the above example, views allow to reuse the same propagator for variants of a
constraint, avoiding duplication of code and effort. In the following, views can also simplify the
implementation of propagators.

Example 2 (Linear inequalities) A common constraint is linear inequality
∑n

i=1
ai·xi ≤ c (equality

and disequality is similar) with integers ai and c and variables xi. In the following we restrict the
ai to be positive.

A typical bounds-propagator executes for 1 ≤ j ≤ n:

xj .adjmax(d(c − lj)/aje) with lj =
∑n

i=1,i6=j ai · xi.getmin()

Quite often, models feature the special case ai = 1 for 1 ≤ i ≤ n. For this case, it is sufficient
to execute for 1 ≤ j ≤ n:

xj.adjmax(c− lj) with lj =
∑n

i=1,i6=j xi.getmin()
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As this case is common, a system should optimize it. An optimized version requires less space
(no ai required) and less time (no multiplication, division, and rounding). But, a more interesting
question is: can one just implement the simple propagator and get the full version by using views?

With scale-views, the simple implementation can be used in both cases. A scale-view v =
vscale(a, x) for a positive integer a > 0 and a variable x defines operations for a · x:

v.getmin() := a · x.getmin() v.getmax() := a · x.getmax()
v.adjmin(n) := x.adjmin(dn/ae) v.adjmax(n) := x.adjmax(bn/ac)
v.excval(n) := if n mod a = 0 then x.excval(n/a)

From the simpler implementation the special case (identity-views) and the general case (scale-
views) can be obtained. Multiplication, division, and rounding is separated from actually propa-
gating the inequality constraint. Views hence support separation of concerns and can simplify the
implementation of propagators. In particular, multiplication, division, and rounding need to be
implemented only once for the scale-view: any generic propagator can use scale-views.

Minus-views. Another common optimization is to implement binary and ternary variants of com-
monly used constraints. This optimization reduces the overhead with respect to both time and
memory as no array is needed.

Example 3 (Binary linear inequality) Consider a propagator for v1 + v2 ≤ c with views v1 and v2

propagating as described in Example 2. With scale-views v1 = vscale(a1, x1) and v2 = vscale(a2, x2)
the propagator also implements a1 · x1 + a2 · x2 ≤ c provided that a1, a2 > 0. However, x1− x2 ≤ c
cannot be obtained with scale-views. Even if scale-views allowed negative constants, it would be
inefficient to multiply, divide, and round to just achieve negation.

A minus-view v = vminus(x) for a variable x provides operations such that v behaves as −x.
Its operations reflect that the smallest possible value for x is the largest possible value for −x and
vice versa:

v.getmin() := −x.getmax() v.getmax() := −x.getmin()
v.adjmin(n) := x.adjmax(−n) v.adjmax(n) := x.adjmin(−n)
v.excval(n) := x.excval(−n)

With minus-views, x1 − x2 ≤ c can be obtained from an implementation of v1 + v2 ≤ c with
v1 = vid(x1) and v2 = vminus(x2). With an offset-view it is actually sufficient to implement
v1 + v2 ≤ 0. Then x1 +x2 ≤ c can be implemented by an identity-view vid(x1) for v1 and an offset-
view voffset(x2,−c) for v2. But again, given just v1 + v2 ≤ 0, an implementation for x1 − x2 ≤ c
with c 6= 0 cannot be obtained.

Derived views. It is unnecessarily restrictive to define views in terms of variables. The actual
requirement for a view is that its variable provides the same operations. It is straightforward to
make views generic themselves: views can be defined in terms of other views. The only exception
are identity-views as they serve the very purpose of casting a variable into a view. Views such as
offset, scale, and minus are called derived views: they are derived from some other view.

With derived views being defined in terms of views, the first step to use a derived view is to
turn a variable into a view by an identity-view. For example, a minus-view v for the variable x is
obtained from a minus-view and an identity-view: v = vminus(vid(x)).

Example 4 (Binary linear inequality reconsidered) With the help of offset-views, minus-views, and
scale-views, all possible variants of binary linear inequalities can now be obtained from a propagator
for v1 +v2 ≤ 0. For example, a ·x1−x2 ≤ c with a > 0 can be obtained with v1 = vscale(a, vid(x1))
and v2 = vminus(voffset(vid(x2), c)) or v2 = voffset(vminus(vid(x2)),−c).
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Scale-views reconsidered. The coefficient of a scale-view is restricted to be positive. Allowing arbi-
trary non-zero constants a in a scale-view s = vscale(a, x) requires to take the signedness of a into
account. This can be seen for the following two operations (the others are similar):

s.getmin() := if a < 0 then a · x.getmax() else a · x.getmin()
s.adjmax(n) := if a < 0 then x.adjmin(bn/ac) else x.adjmax(bn/ac)

This extension might be inefficient. Consider Example 2: inside the loop implementing prop-
agation on all views, the decision whether the coefficient in question is positive or negative must
be made. For modern computers, conditionals — in particular in tight loops — can reduce perfor-
mance considerably. A more efficient way is to restrict scale-views to positive coefficients and use
an additional minus-view for cases where negative coefficients are required.

Example 5 (Linear inequalities reconsidered) An efficient way to implement a propagator for
linear inequality distinguishes positive and negative variables as in

∑n
i=1

xi +
∑m

i=1
−yi ≤ c.

The propagator is simple: it consists of two parts, one for the xi and one for the yi. Both parts
share the same implementation used with different views. To propagate to the xi, identity-views
are used. To propagate to the yi, minus-views are used. Arbitrary coefficients are obtained from
scale-views as shown above.

The example shows that it can be useful to make parts of a propagator generic and reuse these
parts with different views. Puget presents in [10] an algorithm for the bounds-consistent alldifferent.
The paper presents only an algorithm for adjusting the upper bounds of the variables xi and states
that the lower bounds can be adjusted by using the same algorithm on variables yi where yi = −xi.
With views, this technique for simplifying the presentation of an algorithm readily carries over to
its implementation: the implementation can be reused together with minus-views.

Another aspect in the design of scale-views is numerical precision: for large a the values oc-
curring in computations with a scale-view vscale(a, v) can exceed the range of normal integer
computations. A system can provide several scale-views that differ in which numerical datatype is
used for computation. For example, a system can provide a scale-view that computes with normal
integers or with double-precision floating point numbers.

Constant-views. Derived views exploit that views do not need to be implemented in terms of vari-
ables. This can be taken to the extreme in that a view has no access at all to a variable. A
constant-view v = vcon(c) for an integer c provides operations such that v behaves as a variable x
being equal to c:

v.getmin() := c v.getmax() := c
v.adjmin(n) := if n > c then fail v.adjmax(n) := if n < c then fail

v.excval(n) := if n = c then fail

Example 6 (Ternary linear inequalities) Another optimization for linear constraints are ternary
variants. Given a propagator for v1 + v2 + v3 ≤ c and using a constant-view vcon(0) for one of the
views vi, all binary variants as discussed earlier can be obtained.

In summary, for linear inequalities (this carries over to linear equalities and disequalities), views
support many optimized special cases from just two implementations (the general n-ary case and
the ternary case). These implementations are simple as they do not need to consider coefficients.

Events. The handling of events in subscribing to a variable is straightforward. Clearly, for a
constant-view subscription does nothing. For all but the minus-view the events on the variable
and the events on the derived view coincide. If v′ = vminus(v), then a change of the minimum of
v corresponds to a change of the maximum of v′ and vice versa.
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4 Domain Operations and Range Iterators

Today’s constraint programming systems support domain operations either only for access or by
means of an explicitly represented abstract datatype. In this paper, we propose domain operations
based on range iterators. These operations are shown to be simple, expressive, and efficient.
Additionally, range iterators are essential for views as presented in Sect. 5.

Range iterators. A range iterator r for a range sequence s = 〈[ni .. mi]〉
k
i=1

allows to iterate over s:
each of the [ni .. mi] can be obtained in sequential order but only one at a time. A range iterator
r provides the following operations: r .done() tests whether all ranges have been iterated, r .next()
moves to the next range, and r .min() and r .max() return the minimum and maximum value for
the current range. By set(r) we refer to the set defined by an iterator r (which must coincide with
set(s)).

A possible implementation of a range iterator r for s maintains an index ir which is initially
ir = 1, the operations can then be defined as:

r .done() := ir > k r .next() := (ir ← ir + 1)
r .min() := nir r .max() := mir

A range iterator hides its implementation. Iteration can be by position as above, but it can also
be by traversing a list. The latter is particularly interesting if variable domains are implemented
as lists of ranges themselves.

Iterators are consumed by iteration. Hence, if the same sequence needs to be iterated twice,
a fresh iterator is needed. If iteration is cheap, a reset-operation for an iterator can be provided
so that multiple iterations are supported by the same iterator. For more expensive iterators, a
solution is discussed later.

Domain operations. Variables are extended with operations to access and modify their domains
with range iterators. For a variable x, the operation x. getdom() returns a range iterator for
ranges(dom(x)). For a range iterator r the operation x. setdom(r) updates dom(x) to set(r) pro-
vided that set(r) ⊆ dom(x). The responsibility for ensuring that set(r) ⊆ dom(x) is left to the
programmer and hence requires careful consideration. Later richer (and safe) domain operations
are introduced. The operation x. setdom(r) is generic with respect to r: any range iterator can be
used.

Domain operations can offer a substantial improvement over value operations, if many values
need to be removed from a variable domain simultaneously. Assume a typical implementation of a
variable domain D which organizes ranges(D) = 〈[ni .. mi]〉

k
i=1

as a linked-list. Removing a single
element from D takes O(k) time and might increase the length of the linked-list by one (introducing
an additional hole). Hence, in the worst case, removing l elements takes O(l(k + l)) time. With
domain operations based on iterators, removal takes O(k + l) time.

Range iterators serve as simplistic abstract datatype to describe finite sets of integers. However,
they provide some essential advantages over an explicit set representation. First, any range iterator
regardless of its implementation can be used to update the domain of a variable. This turns out to
allow for simple, efficient, and expressive updates of variable domains. Second, no costly memory
management is required to maintain a range iterator as it provides access to only one range at a
time. Third, iterators are essential in providing domain operations on variable views as will be
discussed in Sect. 5.

Intersection iterators. Let us consider intersection as an example for computing with range iterators.
Intersection is computed by an intersection iterator r (returned by iinter(a, b)) taking two range
iterators a and b as input where set(r) = set(a)∩set(b). The intersection iterator maintains integers
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n and m for storing the smallest and largest value of its current range. When initialized, the next
operation is executed once. The operations for access are obvious: r .min() returns n and r .max()
returns m. The other operations are:

r .done() := a.done() ∨ b.done()
r .next() := if a.done() ∨ b.done() then return

repeat

while ¬a.done() ∧ (a.max() < b.min()) do a.next()
if a.done() then return

while ¬b.done() ∧ (b.max() < a.min()) do b.next()
if b.done() then return

until a.max() ≥ b.min()
n← max(a.min(), b.min()); m← min(a.max(), b.max())
if a.max() < b.max() then a.next() else b.next()

The repeat-loop iterates a and b until their ranges overlap. The tests whether a or b are done
ensure that no operation is performed on a done iterator. The remainder computes the resulting
range and prepares for computing a next range.

The iterators a and b can be arbitrary iterators (again, the intersection iterator is generic),
so it is easy to obtain an iterator that computes the intersection of three iterators by using two
intersection iterators. Intersection is but one example for a generic iterator, other useful iterators
are for example: r = iunion(a, b) for iterating the union of a and b (set(r) = set(a) ∪ set(b)) and
r = iminus(a, b) for iterating the set difference of a and b (set(r) = set(a) \ set(b)).

Example 7 (Propagating equality) Consider a propagator that implements domain-consistent
equality: x = y (assuming that x and y are variables, views are discussed later). The propa-
gator can be implemented as follows: get range iterators for x and y by rx = x. getdom() and
ry = y. getdom(), create an intersection iterator ri = iinter(rx, ry), update one of the variable
domains by x. setdom(ri), and copy the domain from x to y by y. setdom(x. getdom()).

Cache-iterators. The above example suggests that for some propagators it is better to actually create
an intermediate representation of the range sequence computed by an iterator. The intermediate
representation can be reused as often as needed. This is achieved by a cache-iterator : it takes an
arbitrary range iterator as input, iterates it completely, and stores the obtained ranges in an array.
Its actual operations then use the array. The cache-iterator also implements a reset operation as
discussed above. By this, the possibly costly input iterator is used only once, while the cache-
iterator can be used as often as needed.

Richer domain operations. With the help of iterators, richer domain operations are effortless. For
a variable x and a range iterator r, the operation x. adjdom(r) replaces dom(x) by dom(x)∩ set(r),
whereas x. excdom(r) replaces dom(x) by dom(x) \ set(r):

x. adjdom(r) := x. setdom(iinter(x. getdom(), r))
x. excdom(r) := x. setdom(iminus(x. getdom(), r))

Value versus range iterators. Another design choice is to base domain operations on value iterators:
iterate values rather than ranges of a set. This is not efficient: a value sequence is considerably
longer than a range sequence (in particular for the common case of a singleton range sequence).

For implementing propagators, however, it can be simpler to iterate values. This can be achieved
by a range-to-value iterator. A value iterator v has the operations v .done(), v .next(), and v .val()
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to access the current value. A range-to-value iterator takes a range iterator as input and returns a
value iterator iterating the values of the range sequence. The inverse is a value-to-range iterator: it
takes as input a value iterator and returns the corresponding range iterator. For a value-to-range
iterator it is helpful to allow duplicates in the increasing value sequence. This iterator has many
applications, as is explained below.

Iterators as adaptors. Global constraints are typically implemented by a propagator computing over
some involved data structure, such as for example a variable-value graph for domain-consistent all-
distinct [12]. After propagation, the new variable domains must be transferred from the data
structure to the variables. This can be achieved by using a range or value iterator as adaptor. The
adaptor operates on the data structure and iterates the value or range sequence for a particular
variable. The iterator (together with a value-to-range iterator for a value iterator) then can be
passed to the appropriate domain operation.

5 Variable Views with Domain Operations

This section discusses domain operations for variable views using iterators.

Identity and constant views. Domain operations for identity-views and constant-views are straight-
forward. The domain operations for an identity-view v = vid(x) use the domain operations on x:
v. getdom() := x. getdom() and v. setdom(r) := x. setdom(r). For a constant-view v = vcon(c), the
operation v. getdom() returns an iterator for the singleton range sequence 〈[c .. c]〉. The operation
v. setdom(r) just checks whether the range sequence of r is empty.

Derived views. Domain operations for an offset-view voffset(v, c) are provided by an offset-iterator.
The operations of an offset-iterator o for a range iterator r and an integer c (created by ioffset(r, c))
are as follows:

o.min() := r .min() + c o.max() := r .max() + c
o.done() := r .done() o.next() := r .next()

The domain operations for an offset view v = voffset(x, c) are as follows:

v. getdom() := ioffset(x. getdom(), c) v. setdom(r) := x. setdom(ioffset(r,−c))

For minus-views we just give the range sequence as its iteration is obvious. For a given range
sequence 〈[ni .. mi]〉

k
i=1

, the required negative sequence is obtained by reversal and sign change as

〈[−mk−i+1 .. − nk−i+1]〉
k
i=1

. The same iterator for this sequence can be used both for setdom and
getdom operations. Note that the iterator is quite complicated as it changes direction of the range
sequence, possible implementations are discussed in Sect. 7.

Assume a scale-view s = vscale(a, v) with a > 0 and 〈[ni .. mi]〉
k
i=1

being a range sequence for
v. If a = 1, the range sequence remains unchanged. Otherwise, the corresponding range sequence
for s is 〈{a · n1}, {a · (n1 + 1)}, . . . , {a ·m1}, . . . , {a · nk}, {a · (nk + 1)}, . . . , {a ·mk}〉.

Assume that 〈[ni .. mi]〉
k
i=1

is a range sequence for s. Then the ranges [dni/ae .. bmi/ac] for
1 ≤ i ≤ k correspond to the required variable domain for v, however they do not necessarily form
a range sequence as the ranges might be empty, overlapping, or adjacent. Iterating the range
sequence is simple by skipping empty ranges and conjoining overlapping or adjacent ranges.

Consistency. An important issue is how views affect the consistency of a propagator. Let us first
consider all views except scale-views. These views compute bijections on the values as well as on the
ranges of a domain D. A bounds (domain) consistent propagator for a constraint C with variables
x1, . . . , xn establishes bounds (domain) consistency for the constraint C with all the variables
replaced by vk(xk) (if vk computes the view of xk).
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Scale-views only compute bijections on values: a range does not remain a range after multiplica-
tion. This implies that bounds consistent propagators do not establish bounds consistency on scale-
views. Consider for example a bounds consistent propagator for alldifferent. With x, y, z ∈ {1, 2},
alldifferent(4x, 4y, 4z) cannot detect failure, while alldifferent(x, y, z) can. Note that this is not a
limitation of our approach but a property of multiplication.

6 Views for Set Constraints

Views and iterators readily carry over to other constraint domains. This section shows how to
apply them to finite sets.

Finite sets. Most systems approximate domains of finite set variables by a greatest lower and
least upper bound [3]: dom(x) = (glb, lub). The fundamental operations are similar to domain
operations on finite domain variables: x.glb() returns glb(x), x.lub() returns lub(x), x.adjglb(D)
updates dom(x) to (glb(x) ∪D, lub(x)), and x.adjlub(D) updates dom(x) to (glb(x), lub(x) ∩D).

All these operations take sets as arguments, so iterators play an important role here. In fact,
range iterators provide exactly the operations that set propagators need: union, intersection, and
complement. Most propagators thus do not require temporary datastructures.

As before, propagators now operate on views. In addition to the identity view, the following
derived views make propagators more generic. As for finite domains, constant-views – like the
empty set, the universe, or some arbitrary set – help derive binary propagators from ternary ones.
For example, s1 ∩ s2 = s3 implements set disjointness if s3 is the constant empty set. With a
complement-view, s1 = s2 \ s3 can be implemented as s1 = s2 ∩ s3

Cross-domain views. With finite domain and set constraints in a single system, cross-domain views
come into play. The most obvious cross-domain view is a finite domain variable viewed as singleton
set. Using generic propagators, this immediately leads to domain-connecting constraints like x ∈ s
(using {x} ⊆ s), or s = {x1, . . . , xk} (using s = {x1} ] · · · ] {xk}).

For cross-domain views, variable subscription handles the different sets of events. For instance,
if a finite domain variable x has an any event, all propagators subscribed to upper-bound-change
events of a singleton-view of x must be executed.

Cross-domain views can support more than one implementation for the same variable type. Set
variables, for example, can be implemented with lower and upper bounds or with their full domain
using ROBDDs [7]. A cross-domain view allows lower/upper bound propagators to operate on
ROBDD-based sets, reusing propagators for which no efficient BDD representation exists.

7 Implementation

The presented architecture can be implemented as an orthogonal layer of abstraction for any con-
straint programming system. This section presents the fundamental mechanisms necessary for
iterators and views.

Polymorphism. The implementation of generic propagators, views, and iterators requires polymor-
phism: propagators operate on different views, domain operations and iterators on different itera-
tors. Both subtype polymorphism (through inheritance in Java, inheritance and virtual methods
in C++) and parametric polymorphism (through templates in C++, generics in Java, polymorphic
functions in ML or Haskell) can be used.

In C++, parametric polymorphism through templates is resolved at compile-time, and the gen-
erated code is monomorphic. This enables the compiler to perform aggressive optimizations, in
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particular inlining. The hope is that the additional layer of abstraction can be optimized away en-
tirely. Some ML compilers also apply monomorphization, so similar results could be achieved. Java
generics are compiled into casts and virtual method calls, probably not gaining much efficiency.

Achieving high efficiency in C++ with templates sacrifices expressiveness. Instantiation can only
happen at compile-time. Hence, either C++ must be used for modeling, or all potentially required
propagator variants must be provided by explicit instantiation. For n-ary constraints like linear
inequality, this can be a real limitation, as all arrays must be monomorphic (only a single kind
of view per array is allowed). The same holds true for n-ary set constraints, where especially
constant-views for the empty set or the universe would come in handy.

A compromise is to use template-based polymorphism whenever possible and only resort to
subtype polymorphism when necessary. This can be achieved by instantiating all propagators with
special views that can be subclassed, and having an operation to construct such a view from an
identity view. In Gecode, we currently only use template-based polymorphism. This makes the
system very efficient, as will be analyzed in the next section.

For the instantiation of templates as well as for inlining, the code that should be instantiated
or inlined must be available at compile time of the code that uses it. This is why most of the
actual code in Gecode resides in C++ header files, slowing down compilation of the system. On
the interface level however, no templates are used, such that the header files needed for using the
library are reasonably small.

System requirements. Variable views and range iterators can be added as an orthogonal extension
to existing systems. While value operations are not critical as discussed in Sect. 2, depending
on which domain operations a system provides, efficiency can differ. In the worst case, domain
operations need to be translated into value operations. This would decrease efficiency considerably,
however intermediate computations on range iterators would still be carried out efficiently.

A particularly challenging aspect is reversal of range sequences required for the minus-iterator.
One approach to implement reversal is to extend all iterators such that they can iterate both
backwards and forwards. Another approach is similar to a cache-iterator: store the ranges generated
from the input iterator in an array and iterate in reverse order from the array. In Gecode, we have
chosen so far the latter approach due to its simplicity. We are going to explore also the former
approach: as variable domains in Gecode are provided as doubly-linked lists, iteration in both
directions can be provided efficiently.

8 Analysis and Evaluation

This section analyzes the impact different implementations of iterators and views have on effi-
ciency. Two aspects are evaluated: compile-time polymorphism versus run-time polymorphism,
and iterators versus temporary data structures.

The experiments use the Gecode C++ constraint programming library [2]. All tests were carried
out on a Intel Pentium IV with 2.8GHz and 1GB of RAM, running Linux. Runtimes are the average
of 25 runs, with a coefficient of deviation less than 2.5% for all benchmarks. The optimized column
gives the time in milliseconds of the optimized system, the other columns are relative to optimized.
The examples used are standard benchmarks, the first group using only integer constraints, the
second group using mainly set constraints.

Code inspection. A thorough inspection of the code generated by several C++ compilers shows
that they actually perform the optimizations we consider essential. Operations on both views and
iterators are inlined entirely and thus implemented in the most efficient way. The abstractions do
not impose a runtime penalty (compared to a system without views and iterators).
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Table 1: Runtime comparison
Benchmark optimized virtual temporary

time in ms relative %

Alpha 90.50 147.20 103.00
Donald 0.79 124.10 100.00
Golomb 10 (bound) 314.00 173.20 101.70
Golomb 10 (domain) 512.80 138.40 100.50
Magic Sequence 500 270.60 173.50 102.80
Magic Square 6 0.96 149.00 102.30
Partition 32 4 881.20 179.70 102.40
Photo 116.84 141.50 103.50
Queens 100 1.75 146.90 100.00

Crew 5.20 — 159.40
Golf 8-4-9 356.00 — 196.90
Hamming 20-3-32 1 539.60 — 163.00
Steiner 9 110.80 — 226.10

Templates versus virtual methods. As the previous section suggested, in C++, compile-time poly-
morphism using templates is far more efficient than virtual method calls. To evaluate this, we
changed the basic operations of finite domain views into virtual methods. The required changes
are rather involved, so we did not try the same for iterators and set views. The numbers give an
idea of how much more efficient a template-based implementation is. Table 1 shows the results in
column virtual. Virtual method calls cause a runtime overhead between 25% and 80%.

Temporary datastructures. One important claim is that iterators are advantageous because they
avoid temporary datastructures. Table 1 shows in column temporary that computing temporary
datastructures has limited impact on finite domain variables (about 3%), but considerable impact
for set constraints (59% to 126% overhead). Temporary datastructures have been emulated by
wrapping all iterators in a cache-iterator as described in Sect. 4.

9 Conclusion

The paper has introduced an architecture decoupling propagators from variables based on views
and range iterators. We have argued how to make propagators generic, simpler, and reusable with
views for different constraints. We have introduced range iterators as abstractions for efficient
domain operations compatible with views. The architecture has been shown to be applicable to
finite domain and finite set constraints. Using parametric polymorphism for views and iterators
leads to an efficient implementation that incurs no runtime cost.
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