A PLATFORM FOR CONSTRUCTING VIRTUAL SPACES

By Per Brand, Nils Franzen, Erik Klintskog, Seif Haridi

SICS, Sweden

perbrand, nilsf, erik, seif @sics.se

Keywords: DCE, distributed programming, distributed graphics

1 ABSTRACT

Virtual spaces (worlds) applications are anong the most
complex of distributed applicaions. They are both distributed
and open. Minimizing network latency, fault-tolerance,
persistence resource mntrol, and seaurity are dso important
aspeds. Designing and implementing virtual spacesis currently
difficult in that the drealy not insignificant complexiti es of
program functionality, distribution, openness and efficiency are
interwound and cannot be tadled separately.

We present a distributed programming language, distributed-
Oz, that gredly reduces the complexity of distributed
programming by clearly separating the different aspeds of
distributed programming. The design and implementation o
distributed-Oz is ongoing work, but considerable progresshas
been made. The airrent prototype demonstrates network
transparency, that computations behave the same way regardless
of how the mmputation is partitioned between different sites.
Thisisthe basis for redizing clean separation of the
functionality asped from other aspeds. Network awareness
all ows the programmer to predict and control network
communicaion patterns. The airrent system givesthe
programmer the means to tadle separately the aspeds of
openness efficiency (minimizing latency), distribution, and
functionality.

We have extended distributed-Oz with atool for graphicsin a
distributed setting. This extends the ideaof network
transparency and retwork awarenessto graphics. From the
programmers point of view graphics programming for a multi-
user gpplicationisvirtually the same a programming for a
single-user application. The differences are necessry extensions
for achieving network and site avareness such as visualizaion
control (dedding which users ould seewhat).

Finaly we consider virtua space gplicaions, and propose a
number of abstradions for use by developers of virtual spaces,
relating them to the properties of distributed-Oz upon which they
are based.

2 INTRODUCTION

Virtual spaces or virtual worlds are (or will be) characerized
by large numbers of people mnneding and disconneding
regularly from all over the Internet. They interad with ead
other, the objeds of the spacethey’rein, aswell as Dftware
agents. The ggents themselves may be long-lived and migratory
— moving from spaceto space A virtual spacehas an existence
apart from any participant, andis continually changing in time,
as the various participants interad with and change the space
they'rein. When a person reenters avirtua spaceit israrely the
same & before, not only becaise new participants have entered

and old participants have left the space but aso becaise the
spaceitself has changed.

We chocse to use the word space rather than world in virtual
space aswe fed that the word world has atoo limited a
connotation. This article focuses on the requirements for tools
for constructing awide range of graphicd distributed
applicaions, not necessary limited to the kinds of applications
that come into mind on keaing the concept virtua world. For
example, coll aborative work environments can aso be thought
of asvirtual space aplicétions.

Virtua spaces as programming appli cations are thus both
distributed and open. Efficiency, in the sense of minimizing
network latency is also important. Fault-toleranceis necessry if
the distributed appli caion isto be more robust than the most
fail ure-prone participating site. Persistence may be neeled for
important virtual spacesthat must survive site aashes. Various
seaurity aspeds may comeinto play. Sites must be aleto
control the resources used by potentially hostile migratory
agents. The limitations of non-privil eged participants must be
maintained. There may be private information between a
participant and the virtual spacethat isnot to be shared with
other participants.

For the most part we will assume that the desired consistency
model of virtual space gplicaionis squential consistency, i.e.
that all participants £ethe same order of changes to the virtual
space It may be passble or even desirable, to relax consistency
for some things. Thiswould be done & an gptimizaion,
lowering the cnsistency requirements lessens the need to
synchronizaion aacossthe network, and hencelatency.
Sequential consistency is however clearly desirable in many
cases and isthe most difficult to achieve, which is why we focus
onthismodel.

2.1 Organization of the paper.

This paper is organized as follows. In therest of this
introductory sedion, we first discussthe problems of distributed
programming and identify the desired charaderistics of agood
distributed programming language. The described desired
charaderistics are important for al kinds of distributed
applicaions, not only virtual space gplications. Theredter we
briefly introduce distributed-Oz, a general -purpose distributed
programming language. Distributed-Oz is dill under
development, but a prototype implementation exists today that
demonstrate some, but not all, of the desired charaderistics. As
virtual space @plicdions are often graphicd, it isimportant to
be aleto easily program complex user-visudizaions. We
therefore, discussthe spedal problems with graphicsin a
distributed programming language. Finally, we look at the
Situation today with respea to the tools and languages for
constructing virtual space gplicaions.

In sedion 2 an informal presentation o distributed-Oz is
given. A detailed presentation o distributed-Oz is beyondthe
scope of this paper. The basic language cnstructs, which are
independent of distribution, are briefly described, For the reader
unfamili ar with Oz, the individual conceptswill be famili ar from
other centralized programming languages, though not the
combination. The anstructs of Oz include first-classprocedures,
clases and oljeds, are give the programmer powerful
mechanism for creaing abstradions. Distributed-Oz was
developed with the expresspurpose of minimizing the difference
between dstributed and centralized programming. Our chief
purpose here isto describe the @ncepts and constructs that are
needed for redizing distributed applications.

In sedion 3, graphicsin distributed appli caionsis considered.
The focus here is on achieving one-to-many visuali zaion; an
event occurs on one site, and this should result in visuali zation
changes on many other sites. There ae anumber of difficulties
in achieving, in a controll ed way, distributed visualization.
These difficulties will be described in detail . Theredter we
present our solution, a multi -user graphicad tool, DTk, we have
developed in distributed-Oz.

In sedion 4 we cnsider the properties of virtual-space
applicaions. We ague that the constructor of virtual spaces
neals adistributed programming language and system that 1)
makes distribution easy and 2) has a powerful mechanism for
abstradion, and 3) provides for controlled distributed graphics
and visudlization. We daim that distributed-Oz with the
developed graphicd tool DTk mees these requirements. We
exemplify with a number of abstradionsthat are eaily built in
distributed-Oz and relate the astradions to the underlying
properties and constructs of distributed-Oz that the @stradions
build on

2.2 Aspects of distributed programming

We can identify the foll owing aspeds important for the
designer and implementers of virtual spaces, functionality,
distribution, efficiency (latency), openness, fault-tolerance and
persistence, resource control and security, scalability. Having to
take into acount all these aspedsin one gplicéion gredly
increases the cmplexity of program development, testing, and
maintenance Thisincrease of complexity is partly inherent, as
there ae more aspeds to consider than for centrali zed
applicaions. But the biggest increase of complexity with today’s
systemsis due to the fad that the various aspeds are interwoven
with eat ather, and cannot for the most part be tadled
separately. The resultant complexity, the tangling of the various
aspeds, tends to produce a ombinatorial explosionin
complexity.

It iswell known that software development isa stly,
complex, and time-consuming processeven onsingle-user
applicaions for centrali zed systems. But in the distributed
perspedive this adivity is smplein that only the one asped,
functionality, is handled. Now consider the processof making
the same gplicaion dstributed. The distribution aspeds neel to
be dedt with; data and subcomputations need to be partitioned
between sites. To some extent we may fredy distribute
subcomputations and data, and to some extent thisis forced
becaise we have to all ow usersto participate acossthe net.
Having dedded this we must modify the program (redlizing the
desired functionality) to transfer data and code between sites and
to synchronize between distributed but ordered subcomputations.

We now consider network latency. Latency may be
unaccetable if computations need to repeaedly fetch data from
other sites. Data may neel to be moved to or cated at spedfic
sites. Distribution and functionality are both aff ected.
Synchronization and consistency must be onsidered.

Centralized applicaionsfail or crash in the entirety, but
distributed applicaions may partialy fail or crash when afault
occurs on ane of many sites. As the number of involved sites
increases the probability of such faults grows, and error recovery
medhanisms beaome aucial. Faults will need to be deteded,
analyzed, and computations and datawill need to be
redistributed. Persistence may be necessary for vital functions.

There ae many seaurity aspedsto consider in dstributed,
open applications. We do not consider the question of seaure
network communicaion, asthisis amost standard. More
difficult isthe need to restrict accessto some data between sites
while dlowing aacessto ather data. But even thisis not always
enouwgh; it may be necessary to transfer objeds (data and code)
between sites where different sites are given different
cgpabiliti es. For example, consider a bulletin board in a virtual
space We may want to give dl usersthe aility to pcst
messages, i.e. change the state of the bull etin board, without
giving them the abilit y to remove messages which isaright
restricted to the owner (an advantage that the virtual bull etin
board has over ared one).

The problems of resource @ntrol and seaurity in applicaions
that make use of migratory agents or let users diredly or
indiredly injed subcomputations onto cther sites are goparent.
The memory and rocesor resources that agents can use must
be limited. With foreign agents now running concurrently onthe
same site it isnolonger enough with a site-based seaurity
medanism. The state of agents may need to be proteded from
arbitrary manipulation by thread involved with ather adivities
onthe new site.

The importance of scdability can beill ustrated by the example
of avirtual spacemanager runnng on ore site @mmunicaing
with asmall number of participants. It is then found that the
number of participants of the virtual spacehas grown too large
for good performance The key to scding upisto dstribute the
virtual spacemanaging functionality between sites, typicdly
multi -procesors or multi ple computersonaLAN (locd area
network). This affeds distribution, functionality and efficiency.
Synchronization problems between the partitioned virtual space
manager may arise. Efficiency would be gredly reduced if the
same mutable data is repeaedly needed by one of the managers
was held by another, and al accessand ypdate would require
communicaion acdossthe LAN.

Finally, opennessrequires not only that users can easily
conred and disconned to running appli cations but also that
latecomers are not penalized, and can be given the same
environment or state & users that have been conneaed for some
time or even from the start. Thisisnot trivial as programming
languages and tools that have been designed for single users do
not, as arule, provide ameans of extrading the airrent state of
the running applicaion. New users may need sufficient
information to be aleto crege an environment identicd to that
which he would have had if he had been participating from the
beginning.

2.3 Distributed Oz

Distributed-Oz is a general-purpose programming language for
distributed appli cations that has been and is pedficdly
designed to separate the diff erent aspeds of distributed
programming [2,3].

Distributed-Oz is based onOz-2, a programming system
developed in coll aboration ketween SICS and DFKI [1,4]. Ozis
amultiple-threaded data-flow objed-oriented programming
language with excdlent support for constraint solving and
encapsulated seach. It isalanguage with lexicd-scoping, and

al concepts are first-classincluding procedures, objeds,
methods, threads, and spaces.

Distributed-Oz does not yet provide support for all of the
aspeds mentioned above. The arrent design and
implementation, does however, addressthe apeds of
functionality, distribution, as well as efficiency in the sense of
latency control. To alimited degreescdability and seaurity are
handled. Thiswork in ongoing, and the isaues of fault-tolerance,
scdability, and resource @ntrol are arrently being tacled.

The central ideaof distributed-Oz is that of network
transparency; computations behave in the same way
independent of the distribution structure. The language
semantics are obeyed independent of how (and even if) the
computationis partitioned between sites. This cleanly separates
the asped of functionality from other aspeds. Network-
transparency requires a distributed shared computation space
providing theillusion d asingle network-wide aldress pacefor
al Oz-entities (including threads, objeds and procedures).

The system also provides flexible network awareness, giving
predictability and programmability over network communicaion
patterns. Network awarenessis the basis of the way in which the
programmer can partition computations between sites, i.e.
deding with the distribution asped. With network-awarenessthe
programmer can ded with efficiency isauies. One of the most
important fegures isthe ability to control the mobility of
objeds.

To achieve scalability it isimportant to be aleto partition
large cmputations between sites which is only passhble given
network transparency. With network-transparency openness
beoomes easy, reducing to a question of establishing the initial
conredion between sites.

2.4 Graphics

Many virtual space gplicaions, if not already now, will i n the
future make use of sophisticaed graphics. The virtual spacewill
be visualized in two or threedimensions, and the participants
can interad with the space ad other participants through a GUI
(graphicd-user interfacg. The interweaving of functionality,
distribution, efficiency, and opennessaspedsis very noticedle
in graphics.

The virtual spaceis graphicdly visualized and for the most
part the users ould seethe same image (moduo network
delay). Irrespedive of the number of participants a state change
in the virtual spaceneedsto be mmunicated to al participants.
Thefinal step in the process(the bad-end) for ead participant
is ©me mmmunicaionwith histerminal (or other 1/0 device).
Various graphicd todls are avail able that provide for
abstradions that hide to various extents the low-level detail s of
1/O diredives from the programmer.

It is generaly not acceptable that visuali zation change be
made on the initiative of the participants, e.g. through repeaed
inquiries, as thisincreases network latency and traffic, but rather
that changes are multi cast to al participants by the virtual space
manager. It isalso desirable that the messages are as sucanct as
possbleto minimizethe size of network messages.

New users may enter the virtual space(openness, and reed to
be given enowghinformationto be @le to creaethe crred
visualizaion on the user’sterminal. Single-user graphicd tools
tend nd to provide enough information to generate the cwrred
visudizaion. In asingle-user application thereis generally no
ned for this functionality and the graphicd state of the
applicaion is partly implicit. One cmmplete charaderizaion o
the graphicd state of an applicetion is the mmplete sequence of
graphic events sncethe start-up of the gplicaion, the
uncompressed history. In many appli cations, including virtual

spaces, the goplicaionwill run for indefinite periods of time and
the uncompressed history can easily beame prohibitedly long.
The history can, of course, be mmpressed with standard
compresson techniques but much more can be done making use
of domain knowledge. Consider the cae where an oljed enters
aroom, moves arourd from placeto place and then leaves the
room. Thereafter all graphic events having to do with that objed
can be removed from the history, which would na be posshle
with standard compresson techniques.

We have extended distributed-Oz with a graphicd interfacefor
programming distributed graphicd applications, which we cal
distributed-Tk, or DTk. DTk extends the ideas of network-
transparency to graphics. Sites not only share a @mmon
network-wide computation space but can also share
visuali zaions. DTk is, as the name suggests, based on Tk, and
uses Tk (single-user graphicd tool) as abadk-end. The
methodology used is, we beli eve, applicable to bulding
distributed graphics using other single-user graphicd tools as
bad-ends.

2.5 The situation today

Traditional text-based MUDs (multi-user dungeons) can be
sean as preaursors to virtual spaces. They exemplify the simplest
kind o server-based dstributed applicaion. The only data
exchanged between sites are byte strings, and all computation is
dore d the server site. The gplicéion at the server is not
concurrent, but anormal sequential computation that takes
messages from a mail box, processes them, and then proceels
with the next message. During the processng of a message the
server may send messages to ather sites. Distribution is limited
to asimple message- or mail-handling system.

It was unlikely that the designers and developers of MUDs did
not want sophisticated GUIs, migratory agents, and the like, but
they were, andto alarge extent are, limited by the techndogy of
their day. It was necessary to keep the distribution aspeds as
simple & possble, in order to concentrate on the functionality of
their appli caion. This approac taken was to avoid the tangling
of the various aspeds of distributed programming by making
very littl e use of the posshiliti es of distributed systems.

All systems for distributed programming that we know of
except Emerald and Oblig, do distributed exeaution by adding a
distribution layer ontop o a centrali zed language. This has the
disadvantage that distribution is not a seanlessextension to the
language, and therefore distributed extensions to language
operations have to be hand ed by explicit programmer effort.
Thisis nat only an extra burden onthe programmer, but diredly
entangles the functionality, distribution, and efficiency aspeds
of distributed programming.

Emerald [6] and Obliq [7] are mncurrent languages that most
closdly resemble distributed-Oz. Objeds can be shared aaoss
the network, and can be moved between sites. Distributed-Oz is
a onsiderable richer programming language than Emerald, and
somewhat richer than Oblig. A more detail ed comparisonis
madein [3].

Consider graphics there ae languages and tools that provide
for distributed graphics. Simple broadcast visualizaion can be
achieved with XTV [8]. Todlslike Tcl-dp[9] can be used to
provide distributed graphicsin a more flexible manner, but are
not integrated into a distributed-programming language and
reguire the programmer to ded with dstribution and broadcast
visualization explicitly.

Visual-Obliq[10] isan open graphica extension to the
distributed programming language Oblig, much asDTk isa
graphicd extension d distributed-Oz. However, Visual-Obliq
provides for distributed forms, tables, buttons, etc., but isnot a

genera-purpose graphicd tool. It does naot, for example, provide
the necessary functionality in order to program a distributed
drawing board. Much o the difficulty in combining openness
with graphics, extrading the omplete graphicd state when new
users conred, is thus avoided. For example, consider the
example of two redangles on a cawas (drawing areg where the
visudizaionis dependent on the order of creaion.

A number of commercid distributed graphicd coll aborative
tools are avail able today, e.g. Lotus notes. The graphics can be
quite sophisticated. Of course, they are not general-purpose
graphicd programming tools. We would exped that
considerable time and effort was put into these gplicaions, and
that much of the dfort went into explicit control of distribution,
communicéaion, etc.

Distributed virtual -redity applicaions, e.g. DIVE [12], are
graphicdly the most interesting. Not only becaise they offer 3-D
visuali zaion, but also because of their flexibility — all kinds of
graphicd entities can be displayed. Once ajain, they are nat, asa
ruleintegrated into a general -purpose distributed programming
language. Visualizaion is distributed, but the computations
behind them are ordinary centrali zed appli cations. Also, the
underlying communicaion mechanism is unsynchronized
multi cast, so they do ot offer sequential consistency.

3 DISTRIBUTED OZ

3.1 The programming language Oz

The programming language Oz is a high-level concurrent
programming language. It is based on a mmputation model
combining concepts from functional programming, logic
programming, objed-oriented programming and concurrency
theory. The most important concepts related to concurrent and
distributed programming are:

1. Concurrent objeds: Objeds are the primary structuring
concept for concurrent programming. Objeds combine
data astradion and state. Objeds may be locked to
adhieve mutual-exclusion. Locking isreentrant (like
Java). Objed invocationis g/nchronous.

2. Lexicd scoping: Theinitial references of aprogram are
determined by its gatic structure. Other references are
obtained during exeaution.

3. Full procedural abstradion: Procedures are first-class
citizens.

4. Full compasitionality: Full procedural abstradion is
generdized. All language features are first-class
including dojeds and classes. Through full
compositionality it is possble to transfer arbitrary
computational tasks between threals.

5. Statelessdata: Oz provides reaords, tuples etc. as
statel essdata structures. The distinction between
stateful and statel essdata structuresis clea.

6. Abstrad store: Oz computes over an abstrad store
containing abstrad entities. Thisisimportant for
automatic memory management including garbage
colledion.

7. Threas: For concurrency, Oz provides for fine-grained
thread serving as virtual processors. Threads are dso
first-class.

8. Logic variables: Logic variables are the basis of data-
flow synchronization and communication. For example,
athread can query by sending afresh logicd variable
aong with the variable. The answering thread will in
due murse answer the query and instantiate the
variable. Theinquiring thread need only suspend if and

when it neals the value of the variable and findsthe
variable still unbound.

9. Ports: asynchronous communicéion channels that
support many-to-many communicaion. A port consists
of asend pocedure and astream. A streamisalist
whosetail isalogic variable. The sends appea at the
end d the stream. The order of sendswithin athread is
maintained, whil e no guaranteeis given on the order
between threals. A reader can wait until the strean’s
tail becomes bound. Multiple readers waiting on the
sametail areinformed of the binding simultaneously.

With first-classprocedures, objeds, and pats, it is
straightforward to program asynchronous objeds (ead
invocaion is exeauted in its own threal), adive objeds (eat
objed has one thread serving it), synchronous nd, etc [3].

The entities of Oz can be divided into three céegories, 1)
stateless 2) stateful and 3 single-assgnment. Examples of the
first are records, tuples, atoms, numbers and strings, procedures,
classes and methods. Examples of the seaondare objeds, or
more predsely, the objed state. The third category consists
exclusively of logicd variables. Logicd variables can also be
considered stateful, but as opposed to dbjed-state the state is
changed only once upon hinding the variable.

3.2 From Oz to Distributed-Oz

Distributed-Oz is a mnservative extensionto Oz for
distributed-programming. We started from four basic
requirements that are generally agreed to beimportantin a
distributed setting.

3.2.1 Network-transparency

Network-transparency means that computations behave the
same way independent of the distribution structure. Language
semantics are obeyed, irrespedive of how the mmputationis
partitioned orto multiple sites. This reguires adistributed shared
computation space which providestheillusion of asingle
network-wide aldress pacefor all entities of Oz. The
distinction between locd and remote references (an entity ona
different site) isinvisible to the programmer. Another
requirement is concurrency, the language semantics must
provide for multi ple mmputational adivities.

Network-transparency is esentia for the dean separation o
the functionality aspea of distributed programming from other
aspeds. For example, in order to ded with dstribution and
efficiency aspedsit may be necessary to move mmputations and
stateful data between sites. Withou network-transparency such a
move would affed functionality, and we would bad to the
tangling of aspeds that we wish to avoid.

3.2.2 Network-awareness

Network-awareness means that network communicaion
patterns are both predicable and programmable. The
communicéion patterns should be simply and predictably
derived from the language entiti es being used. The language
shoud beflexible enough to be enable the programmer to
adieve the desired communicaion petterns.

Network-awarenessis couped to state-awareness and that the
threekinds of basic entities of distributed-Oz are handled
differently. Statelessdatais replicated between sites. Once asite
has referenced the data, the datais avail able locdly, and hence
thereis no network latency involved in further acces'.

! Datais generally replicated eagerly, but adiscussion of thisis
beyond the scope of this paper. It is easy to build abstractions to
adhieved lazy replicaion, when desired.

The most important asped of network-awarenessis the
location of stateful data, e.g. an objed, or more predsely an
ohjed-state. Such data must reside on exadly one site & any one
time. As part of network-awarenessdistributed-Oz provides
mobility control of stateful data. The programmer can choacse to
make an ojed stationary (the objed resides on the aedion site
forever), or mobil e (the objed moves to the invoking site).
Operations on stationary objeds require anetwork operation for
ead remove invocaion. Operations on mobil e objeds may
require anetwork operation an the first invocation, but theredter
further invocaions will be loca?. Controlled mobility is also
programmable, where some sites are given the caability of
moving the objed and others are nat.

Network awarenessis necessary for deding with the
distribution and efficiency aspeds of distributed programming.
Thefad that objeds can be given amohility behavior
independent of their definiti on gives clean separation o the
efficiency and functionality asped.

3.2.3 Latency tolerance

Latency tolerance means that the eficiency of computationsis
aslittl e dfeded as possble by the latency of network
operations. Concurrency provides latency tolerance between
threads. When ore thread on site is suspended onadata-
dependency (acossthe net or between threads on the same site),
other threals continue.

Logicd variables also provide latency tolerance by decuging
the operations of cdculating and using the vaue, i.e. the data
dependency, from the operations of sending and receving the
vaue. In dstributed-Oz when avariable is bound the new
binding is multicast to all sites that have referencesto it.3

3.2.4 Language security

Language seaurity guarantees integrity of computations and
data. Thisis provided in Oz by giving the programmer the
means to restrict accessto data. Datais represented as references
to entities in the shared computation space This address paceis
abstrad because it provides awell -define set of basic operations.
In particular, unrestricted accessto memory is forbidden. One
can ony accessdata to which ore has been given an expli cit
reference Thisis controlled through lexicd scoping and first-
classprocedures.

3.2.5 Openness

Opennessis achieved by new builti ns that store and load
references to orgoing computations onto a fil e identified with a
URL. For example, aserver site (Oz-procesy may store a
referenceto aportin afile. A thread onthe server reads from the
asociated stream. Anather site, the dient, may load the
reference, and wse that port to make arequest of the server. For
example, send atuple containing an dbjed, aport, avariable,
and a procedure. The procedureis replicaed. The server and
client now share two pats (onein eah dredion), an objed, and
avariable.

4 DISTRIBUTED GRAPHICS

One of the main goals of distributed-Oz is to make distributed
programming easy, or put in another way, only slightly more
difficult than centralized programming. Distributed
programming isinherently more complex, there ae more aspeds

2 Providing ather sites do not invoke the object in-between.

3 There may be references to the variable in the network that later
arrive at a site that has not previously held a reference to the variable.
The system guarantees, which is necessary for network transparency,
that the binding will also in due course become known to the new site.

to ded with. What we can hope to do, however, isto minimize
the alded complexity by preventing the tangling of aspeds.

Our goal with DTk was to extend the notions of distributed-Oz
to graphics, as far asposgble. We want network transparency,
and clean separation of the functionality asped with resped to
other aspeds. This means that programmer shoud be @leto
program and test his application, for the most part, without
considering the structure of distribution. Theredter, having
fulfill ed the functionality requirements there should be means
viasmall changes to the program control distribution.

Therest of this ®dionisorganized, asfoll ows. First, the
technicd problemsrelated to distribution of graphics are
presented. Theredter, the DTk-interface programming interface
is presented. Thisinterfaceprovides for graphicd distributed
programming in distributed-Oz in a network transparent and
network-aware way. Thereafter the principles used in designing
and implementing the DTk-modue ae presented.

4.1 Technical problems.

Programming languages and toals for graphics generally
model graphicd display in an objed-oriented manner. Thisis
very natural as both dbjeds and graphics are stateful. For
example, arectangle objed is creaed. The redangle objed hasa
number of attributes, color, position, height, depth, etc. The
attributes are subjed to change, as the user moves the redangle,
changesits color, and so on. But thereis some magic here, as
changesto graphicd attributes are immediately reflected onthe
display.

Consider ordinary objects, i.e. non-graphica ones, in a
concurrent objed-oriented language. When one thread causes
the state of an ordinary objed to change thisis ‘ not known’ by
other threads until they accessthe state of the objed. Or consider
objedsin distributed-Oz, if one user changes the state of an
ordinary objed in dstributed-Oz other users that have references
to the objea are not aware of this change until if and when they
accessthe state. Thisisasit should be. It would be completely
impradical that state changes to oljeds were aitomatically
broadcast to all other sites with references to that objed.

Graphicd objeds are different from ordinary objedsin that
changesin the objed-state should be refleded in visualizaion
changes automaticdly. In a distributed multi-user appli cation we
often require the update to be broadcast to all the participants. In
this case it would be impradicd to wait with the update
visudlizaion until the participant accesses the objed. Neither is
it pradicd to demand that the participants regularly probe the
various graphicd objeds; thiswould increase the anourt of
network traffic enormously.

We identify four difficulties with graphicsin a distributed
system.

1. Push problem: Thereisafundamenta difference between
graphicd objeds and non-graphicd objeds. The underlying
desired pattern of communicaionin adistributed setting
where objeds are shared is different. State update is pushed
rather than pull ed.

2. Sequential-consistency. The problem with achieving
sequentia consistency differs with graphicd push objeds
as compared to non-graphicd pull objeds.

3. Visualization control. There ae difficultiesin controlling
visuali zaion, i.e. which users ewhat.

4. Openness. The ordinary mecdhanism for achieving openness
may nat be enough.

We focusin this sdion on visualizaion, the difficult fina
stage in amulti-user graphicd applicaion. Given that some site
initi ates a visuali zation change (i.e. changes the objed-state of
graphicd objed), we cnsider how thisresultsin avisualizaion

