
A PLATFORM FOR CONSTRUCTING VIRTUAL SPACES

By Per Brand, Nils Franzen, Erik Klintskog, Seif Haridi

SICS, Sweden

perbrand, nilsf, erik, seif @sics.se

Keywords: DCE, distributed programming, distributed graphics

1 ABSTRACT

Virtual spaces (worlds) applications are among the most
complex of distributed applications. They are both distributed
and open. Minimizing network latency, fault-tolerance,
persistence, resource control, and security are also important
aspects. Designing and implementing virtual spaces is currently
diff icult in that the already not insignificant complexities of
program functionality, distribution, openness, and eff iciency are
interwound and cannot be tackled separately.

We present a distributed programming language, distributed-
Oz, that greatly reduces the complexity of distributed
programming by clearly separating the different aspects of
distributed programming. The design and implementation of
distributed-Oz is ongoing work, but considerable progress has
been made. The current prototype demonstrates network
transparency, that computations behave the same way regardless
of how the computation is partitioned between different sites.
This is the basis for realizing clean separation of the
functionality aspect from other aspects. Network awareness
allows the programmer to predict and control network
communication patterns. The current system gives the
programmer the means to tackle separately the aspects of
openness, efficiency (minimizing latency), distribution, and
functionality.

We have extended distributed-Oz with a tool for graphics in a
distributed setting. This extends the idea of network
transparency and network awareness to graphics. From the
programmers point of view graphics programming for a multi -
user application is virtually the same as programming for a
single-user application. The differences are necessary extensions
for achieving network and site awareness, such as visualization
control (deciding which users should see what).

Finally we consider virtual space applications, and propose a
number of abstractions for use by developers of virtual spaces,
relating them to the properties of distributed-Oz upon which they
are based.

2 INTRODUCTION

Virtual spaces or virtual worlds are (or will be) characterized
by large numbers of people connecting and disconnecting
regularly from all over the Internet. They interact with each
other, the objects of the space they’ re in, as well as software
agents. The agents themselves may be long-lived and migratory
– moving from space to space. A virtual space has an existence
apart from any participant, and is continually changing in time,
as the various participants interact with and change the space
they’re in. When a person reenters a virtual space it is rarely the
same as before, not only because new participants have entered

and old participants have left the space, but also because the
space itself has changed.

We choose to use the word space rather than world in virtual
space, as we feel that the word world has a too limited a
connotation. This article focuses on the requirements for tools
for constructing a wide range of graphical distributed
applications, not necessary limited to the kinds of applications
that come into mind on hearing the concept virtual world. For
example, collaborative work environments can also be thought
of as virtual space applications.

Virtual spaces as programming applications are thus both
distributed and open. Eff iciency, in the sense of minimizing
network latency is also important. Fault-tolerance is necessary if
the distributed application is to be more robust than the most
failure-prone participating site. Persistence may be needed for
important virtual spaces that must survive site crashes. Various
security aspects may come into play. Sites must be able to
control the resources used by potentially hostile migratory
agents. The limitations of non-privileged participants must be
maintained. There may be private information between a
participant and the virtual space that is not to be shared with
other participants.

For the most part we will assume that the desired consistency
model of virtual space application is sequential consistency, i.e.
that all participants see the same order of changes to the virtual
space. It may be possible or even desirable, to relax consistency
for some things. This would be done as an optimization,
lowering the consistency requirements lessens the need to
synchronization across the network, and hence latency.
Sequential consistency is however clearly desirable in many
cases and is the most diff icult to achieve, which is why we focus
on this model.

2.1 Organization of the paper.

This paper is organized as follows. In the rest of this
introductory section, we first discuss the problems of distributed
programming and identify the desired characteristics of a good
distributed programming language. The described desired
characteristics are important for all kinds of distributed
applications, not only virtual space applications. Thereafter we
briefly introduce distributed-Oz, a general-purpose distributed
programming language. Distributed-Oz is still under
development, but a prototype implementation exists today that
demonstrate some, but not all , of the desired characteristics. As
virtual space applications are often graphical, it is important to
be able to easily program complex user-visualizations. We
therefore, discuss the special problems with graphics in a
distributed programming language. Finally, we look at the
situation today with respect to the tools and languages for
constructing virtual space applications.

In section 2 an informal presentation of distributed-Oz is
given. A detailed presentation of distributed-Oz is beyond the
scope of this paper. The basic language constructs, which are
independent of distribution, are briefly described, For the reader
unfamili ar with Oz, the individual concepts will be famili ar from
other centralized programming languages, though not the
combination. The constructs of Oz include first-class procedures,
classes and objects, are give the programmer powerful
mechanism for creating abstractions. Distributed-Oz was
developed with the express purpose of minimizing the difference
between distributed and centralized programming. Our chief
purpose here is to describe the concepts and constructs that are
needed for realizing distributed applications.

In section 3, graphics in distributed applications is considered.
The focus here is on achieving one-to-many visualization; an
event occurs on one site, and this should result in visualization
changes on many other sites. There are a number of difficulties
in achieving, in a controlled way, distributed visualization.
These difficulties will be described in detail . Thereafter we
present our solution, a multi -user graphical tool, DTk, we have
developed in distributed-Oz.

In section 4 we consider the properties of virtual-space
applications. We argue that the constructor of virtual spaces
needs a distributed programming language and system that 1)
makes distribution easy and 2) has a powerful mechanism for
abstraction, and 3) provides for controlled distributed graphics
and visualization. We claim that distributed-Oz with the
developed graphical tool DTk meets these requirements. We
exemplify with a number of abstractions that are easily built i n
distributed-Oz and relate the abstractions to the underlying
properties and constructs of distributed-Oz that the abstractions
build on.

2.2 Aspects of distributed programming

We can identify the following aspects important for the
designer and implementers of virtual spaces, functionality,
distribution, efficiency (latency), openness, fault-tolerance and
persistence, resource control and security, scalability. Having to
take into account all these aspects in one application greatly
increases the complexity of program development, testing, and
maintenance. This increase of complexity is partly inherent, as
there are more aspects to consider than for centralized
applications. But the biggest increase of complexity with today’s
systems is due to the fact that the various aspects are interwoven
with each other, and cannot for the most part be tackled
separately. The resultant complexity, the tangling of the various
aspects, tends to produce a combinatorial explosion in
complexity.

It is well known that software development is a costly,
complex, and time-consuming process even on single-user
applications for centralized systems. But in the distributed
perspective this activity is simple in that only the one aspect,
functionality, is handled. Now consider the process of making
the same application distributed. The distribution aspects need to
be dealt with; data and subcomputations need to be partitioned
between sites. To some extent we may freely distribute
subcomputations and data, and to some extent this is forced
because we have to allow users to participate across the net.
Having decided this we must modify the program (realizing the
desired functionality) to transfer data and code between sites and
to synchronize between distributed but ordered subcomputations.

We now consider network latency. Latency may be
unacceptable if computations need to repeatedly fetch data from
other sites. Data may need to be moved to or cached at specific
sites. Distribution and functionality are both affected.
Synchronization and consistency must be considered.

Centralized applications fail or crash in the entirety, but
distributed applications may partially fail or crash when a fault
occurs on one of many sites. As the number of involved sites
increases the probabilit y of such faults grows, and error recovery
mechanisms become crucial. Faults will need to be detected,
analyzed, and computations and data will need to be
redistributed. Persistence may be necessary for vital functions.

There are many security aspects to consider in distributed,
open applications. We do not consider the question of secure
network communication, as this is almost standard. More
diff icult is the need to restrict access to some data between sites
while allowing access to other data. But even this is not always
enough; it may be necessary to transfer objects (data and code)
between sites where different sites are given different
capabiliti es. For example, consider a bulletin board in a virtual
space. We may want to give all users the abil ity to post
messages, i.e. change the state of the bulletin board, without
giving them the abilit y to remove messages which is a right
restricted to the owner (an advantage that the virtual bulletin
board has over a real one).

The problems of resource control and security in applications
that make use of migratory agents or let users directly or
indirectly inject subcomputations onto other sites are apparent.
The memory and processor resources that agents can use must
be limited. With foreign agents now running concurrently on the
same site it is no longer enough with a site-based security
mechanism. The state of agents may need to be protected from
arbitrary manipulation by thread involved with other activities
on the new site.

The importance of scalabilit y can be ill ustrated by the example
of a virtual space manager running on one site communicating
with a small number of participants. It is then found that the
number of participants of the virtual space has grown too large
for good performance. The key to scaling up is to distribute the
virtual space managing functionality between sites, typically
multi -processors or multiple computers on a LAN (local area
network). This affects distribution, functionality and eff iciency.
Synchronization problems between the partitioned virtual space
manager may arise. Efficiency would be greatly reduced if the
same mutable data is repeatedly needed by one of the managers
was held by another, and all access and update would require
communication across the LAN.

Finally, openness requires not only that users can easily
connect and disconnect to running applications but also that
latecomers are not penalized, and can be given the same
environment or state as users that have been connected for some
time or even from the start. This is not trivial as programming
languages and tools that have been designed for single users do
not, as a rule, provide a means of extracting the current state of
the running application. New users may need sufficient
information to be able to create an environment identical to that
which he would have had if he had been participating from the
beginning.

2.3 Distributed Oz

Distributed-Oz is a general-purpose programming language for
distributed applications that has been and is specifically
designed to separate the different aspects of distributed
programming [2,3].

Distributed-Oz is based on Oz-2, a programming system
developed in collaboration between SICS and DFKI [1,4]. Oz is
a multiple-threaded data-flow object-oriented programming
language with excellent support for constraint solving and
encapsulated search. It is a language with lexical-scoping, and

all concepts are first-class including procedures, objects,
methods, threads, and spaces.

Distributed-Oz does not yet provide support for all of the
aspects mentioned above. The current design and
implementation, does however, address the aspects of
functionality, distribution, as well as efficiency in the sense of
latency control. To a limited degree scalabilit y and security are
handled. This work in ongoing, and the issues of fault-tolerance,
scalabilit y, and resource control are currently being tackled.

The central idea of distributed-Oz is that of network
transparency; computations behave in the same way
independent of the distribution structure. The language
semantics are obeyed independent of how (and even if) the
computation is partitioned between sites. This cleanly separates
the aspect of functionality from other aspects. Network-
transparency requires a distributed shared computation space
providing the illusion of a single network-wide address space for
all Oz-entities (including threads, objects and procedures).

The system also provides flexible network awareness, giving
predictabil ity and programmabilit y over network communication
patterns. Network awareness is the basis of the way in which the
programmer can partition computations between sites, i.e.
dealing with the distribution aspect. With network-awareness the
programmer can deal with efficiency issues. One of the most
important features is the abilit y to control the mobil ity of
objects.

To achieve scalabilit y it is important to be able to partition
large computations between sites which is only possible given
network transparency. With network-transparency openness
becomes easy, reducing to a question of establishing the initial
connection between sites.

2.4 Graphics

Many virtual space applications, if not already now, will i n the
future make use of sophisticated graphics. The virtual space will
be visualized in two or three dimensions, and the participants
can interact with the space and other participants through a GUI
(graphical-user interface). The interweaving of functionality,
distribution, efficiency, and openness aspects is very noticeable
in graphics.

The virtual space is graphically visualized and for the most
part the users should see the same image (modulo network
delay). Irrespective of the number of participants a state change
in the virtual space needs to be communicated to all participants.
The final step in the process (the back-end) for each participant
is some communication with his terminal (or other I/O device).
Various graphical tools are available that provide for
abstractions that hide to various extents the low-level details of
I/O directives from the programmer.

It is generally not acceptable that visualization change be
made on the initiative of the participants, e.g. through repeated
inquiries, as this increases network latency and traffic, but rather
that changes are multicast to all participants by the virtual space
manager. It is also desirable that the messages are as succinct as
possible to minimize the size of network messages.

New users may enter the virtual space (openness), and need to
be given enough information to be able to create the correct
visualization on the user’s terminal. Single-user graphical tools
tend not to provide enough information to generate the correct
visualization. In a single-user application there is generally no
need for this functionality and the graphical state of the
application is partly implicit. One complete characterization of
the graphical state of an application is the complete sequence of
graphic events since the start-up of the application, the
uncompressed history. In many applications, including virtual

spaces, the application will run for indefinite periods of time and
the uncompressed history can easily become prohibitedly long.
The history can, of course, be compressed with standard
compression techniques but much more can be done making use
of domain knowledge. Consider the case where an object enters
a room, moves around from place to place, and then leaves the
room. Thereafter all graphic events having to do with that object
can be removed from the history, which would not be possible
with standard compression techniques.

We have extended distributed-Oz with a graphical interface for
programming distributed graphical applications, which we call
distributed-Tk, or DTk. DTk extends the ideas of network-
transparency to graphics. Sites not only share a common
network-wide computation space, but can also share
visualizations. DTk is, as the name suggests, based on Tk, and
uses Tk (single-user graphical tool) as a back-end. The
methodology used is, we believe, applicable to building
distributed graphics using other single-user graphical tools as
back-ends.

2.5 The situation today

Traditional text-based MUDs (multi -user dungeons) can be
seen as precursors to virtual spaces. They exemplify the simplest
kind of server-based distributed application. The only data
exchanged between sites are byte strings, and all computation is
done at the server site. The application at the server is not
concurrent, but a normal sequential computation that takes
messages from a mailbox, processes them, and then proceeds
with the next message. During the processing of a message the
server may send messages to other sites. Distribution is limited
to a simple message- or mail -handling system.

It was unlikely that the designers and developers of MUDs did
not want sophisticated GUIs, migratory agents, and the like, but
they were, and to a large extent are, limited by the technology of
their day. It was necessary to keep the distribution aspects as
simple as possible, in order to concentrate on the functionality of
their application. This approach taken was to avoid the tangling
of the various aspects of distributed programming by making
very littl e use of the possibiliti es of distributed systems.

All systems for distributed programming that we know of
except Emerald and Obliq, do distributed execution by adding a
distribution layer on top of a centralized language. This has the
disadvantage that distribution is not a seamless extension to the
language, and therefore distributed extensions to language
operations have to be handled by explicit programmer effort.
This is not only an extra burden on the programmer, but directly
entangles the functionality, distribution, and eff iciency aspects
of distributed programming.

Emerald [6] and Obliq [7] are concurrent languages that most
closely resemble distributed-Oz. Objects can be shared across
the network, and can be moved between sites. Distributed-Oz is
a considerable richer programming language than Emerald, and
somewhat richer than Obliq. A more detailed comparison is
made in [3].

Consider graphics there are languages and tools that provide
for distributed graphics. Simple broadcast visualization can be
achieved with XTV [8]. Tools li ke Tcl-dp [9] can be used to
provide distributed graphics in a more flexible manner, but are
not integrated into a distributed-programming language and
require the programmer to deal with distribution and broadcast
visualization explicitl y.

Visual-Obliq [10] is an open graphical extension to the
distributed programming language Obliq, much as DTk is a
graphical extension of distributed-Oz. However, Visual-Obliq
provides for distributed forms, tables, buttons, etc., but is not a

general-purpose graphical tool. It does not, for example, provide
the necessary functionality in order to program a distributed
drawing board. Much of the diff iculty in combining openness
with graphics, extracting the complete graphical state when new
users connect, is thus avoided. For example, consider the
example of two rectangles on a canvas (drawing area) where the
visualization is dependent on the order of creation.

A number of commercial distributed graphical collaborative
tools are available today, e.g. Lotus notes. The graphics can be
quite sophisticated. Of course, they are not general-purpose
graphical programming tools. We would expect that
considerable time and effort was put into these applications, and
that much of the effort went into explicit control of distribution,
communication, etc.

Distributed virtual-reality applications, e.g. DIVE [12], are
graphically the most interesting. Not only because they offer 3-D
visualization, but also because of their flexibilit y – all kinds of
graphical entities can be displayed. Once again, they are not, as a
rule integrated into a general-purpose distributed programming
language. Visualization is distributed, but the computations
behind them are ordinary centralized applications. Also, the
underlying communication mechanism is unsynchronized
multicast, so they do not offer sequential consistency.

3 DISTRIBUTED OZ

3.1 The programming language Oz

The programming language Oz is a high-level concurrent
programming language. It is based on a computation model
combining concepts from functional programming, logic
programming, object-oriented programming and concurrency
theory. The most important concepts related to concurrent and
distributed programming are:

1. Concurrent objects: Objects are the primary structuring
concept for concurrent programming. Objects combine
data abstraction and state. Objects may be locked to
achieve mutual-exclusion. Locking is reentrant (like
Java). Object invocation is synchronous.

2. Lexical scoping: The initial references of a program are
determined by its static structure. Other references are
obtained during execution.

3. Full procedural abstraction: Procedures are first-class
citizens.

4. Full compositionality: Full procedural abstraction is
generalized. All l anguage features are first-class,
including objects and classes. Through full
compositionality it is possible to transfer arbitrary
computational tasks between threads.

5. Stateless data: Oz provides records, tuples etc. as
stateless data structures. The distinction between
stateful and stateless data structures is clear.

6. Abstract store: Oz computes over an abstract store
containing abstract entities. This is important for
automatic memory management including garbage
collection.

7. Threads: For concurrency, Oz provides for fine-grained
thread serving as virtual processors. Threads are also
first-class.

8. Logic variables: Logic variables are the basis of data-
flow synchronization and communication. For example,
a thread can query by sending a fresh logical variable
along with the variable. The answering thread will i n
due course answer the query and instantiate the
variable. The inquiring thread need only suspend if and

when it needs the value of the variable and finds the
variable still unbound.

9. Ports: asynchronous communication channels that
support many-to-many communication. A port consists
of a send procedure and a stream. A stream is a list
whose tail i s a logic variable. The sends appear at the
end of the stream. The order of sends within a thread is
maintained, while no guarantee is given on the order
between threads. A reader can wait until the stream’s
tail becomes bound. Multiple readers waiting on the
same tail are informed of the binding simultaneously.

With first-class procedures, objects, and ports, it is
straightforward to program asynchronous objects (each
invocation is executed in its own thread), active objects (each
object has one thread serving it), synchronous send, etc [3].

The entities of Oz can be divided into three categories, 1)
stateless, 2) stateful and 3) single-assignment. Examples of the
first are records, tuples, atoms, numbers and strings, procedures,
classes and methods. Examples of the second are objects, or
more precisely, the object state. The third category consists
exclusively of logical variables. Logical variables can also be
considered stateful, but as opposed to object-state the state is
changed only once upon binding the variable.

3.2 From Oz to Distributed-Oz

Distributed-Oz is a conservative extension to Oz for
distributed-programming. We started from four basic
requirements that are generally agreed to be important in a
distributed setting.

3.2.1 Network-transparency

Network-transparency means that computations behave the
same way independent of the distribution structure. Language
semantics are obeyed, irrespective of how the computation is
partitioned onto multiple sites. This requires a distributed shared
computation space, which provides the il lusion of a single
network-wide address space for all entities of Oz. The
distinction between local and remote references (an entity on a
different site) is invisible to the programmer. Another
requirement is concurrency, the language semantics must
provide for multiple computational activities.

Network-transparency is essential for the clean separation of
the functionality aspect of distributed programming from other
aspects. For example, in order to deal with distribution and
efficiency aspects it may be necessary to move computations and
stateful data between sites. Without network-transparency such a
move would affect functionality, and we would back to the
tangling of aspects that we wish to avoid.

3.2.2 Network-awareness

Network-awareness means that network communication
patterns are both predicable and programmable. The
communication patterns should be simply and predictably
derived from the language entities being used. The language
should be flexible enough to be enable the programmer to
achieve the desired communication patterns.

Network-awareness is coupled to state-awareness, and that the
three kinds of basic entities of distributed-Oz are handled
differently. Stateless data is replicated between sites. Once a site
has referenced the data, the data is available locally, and hence
there is no network latency involved in further access1.

1 Data is generally replicated eagerly, but a discussion of this is

beyond the scope of this paper. It is easy to build abstractions to
achieved lazy replication, when desired.

The most important aspect of network-awareness is the
location of stateful data, e.g. an object, or more precisely an
object-state. Such data must reside on exactly one site at any one
time. As part of network-awareness distributed-Oz provides
mobility control of stateful data. The programmer can choose to
make an object stationary (the object resides on the creation site
forever), or mobile (the object moves to the invoking site).
Operations on stationary objects require a network operation for
each remove invocation. Operations on mobile objects may
require a network operation on the first invocation, but thereafter
further invocations will be local2. Controlled mobilit y is also
programmable, where some sites are given the capabilit y of
moving the object and others are not.

Network awareness is necessary for dealing with the
distribution and eff iciency aspects of distributed programming.
The fact that objects can be given a mobilit y behavior
independent of their definition gives clean separation of the
efficiency and functionality aspect.

3.2.3 Latency tolerance

Latency tolerance means that the eff iciency of computations is
as littl e affected as possible by the latency of network
operations. Concurrency provides latency tolerance between
threads. When one thread on site is suspended on a data-
dependency (across the net or between threads on the same site),
other threads continue.

Logical variables also provide latency tolerance by decoupling
the operations of calculating and using the value, i.e. the data
dependency, from the operations of sending and receiving the
value. In distributed-Oz when a variable is bound the new
binding is multicast to all sites that have references to it.3

3.2.4 Language security

Language security guarantees integrity of computations and
data. This is provided in Oz by giving the programmer the
means to restrict access to data. Data is represented as references
to entities in the shared computation space. This address space is
abstract because it provides a well -define set of basic operations.
In particular, unrestricted access to memory is forbidden. One
can only access data to which one has been given an explicit
reference. This is controlled through lexical scoping and first-
class procedures.

3.2.5 Openness

Openness is achieved by new builti ns that store and load
references to ongoing computations onto a file identified with a
URL. For example, a server site (Oz-process) may store a
reference to a port in a file. A thread on the server reads from the
associated stream. Another site, the client, may load the
reference, and use that port to make a request of the server. For
example, send a tuple containing an object, a port, a variable,
and a procedure. The procedure is replicated. The server and
client now share two ports (one in each direction), an object, and
a variable.

4 DISTRIBUTED GRAPHICS

One of the main goals of distributed-Oz is to make distributed
programming easy, or put in another way, only slightly more
diff icult than centralized programming. Distributed
programming is inherently more complex, there are more aspects

2 Providing other sites do not invoke the object in-between.
3 There may be references to the variable in the network that later

arrive at a site that has not previously held a reference to the variable.
The system guarantees, which is necessary for network transparency,
that the binding will also in due course become known to the new site.

to deal with. What we can hope to do, however, is to minimize
the added complexity by preventing the tangling of aspects.

Our goal with DTk was to extend the notions of distributed-Oz
to graphics, as far as possible. We want network transparency,
and clean separation of the functionality aspect with respect to
other aspects. This means that programmer should be able to
program and test his application, for the most part, without
considering the structure of distribution. Thereafter, having
fulfill ed the functionality requirements there should be means
via small changes to the program control distribution.

The rest of this section is organized, as follows. First, the
technical problems related to distribution of graphics are
presented. Thereafter, the DTk-interface programming interface
is presented. This interface provides for graphical distributed
programming in distributed-Oz in a network transparent and
network-aware way. Thereafter the principles used in designing
and implementing the DTk-module are presented.

4.1 Technical problems.

Programming languages and tools for graphics generally
model graphical display in an object-oriented manner. This is
very natural as both objects and graphics are stateful. For
example, a rectangle object is created. The rectangle object has a
number of attributes, color, position, height, depth, etc. The
attributes are subject to change, as the user moves the rectangle,
changes its color, and so on. But there is some magic here, as
changes to graphical attributes are immediately reflected on the
display.

Consider ordinary objects, i.e. non-graphical ones, in a
concurrent object-oriented language. When one thread causes
the state of an ordinary object to change this is ‘not known’ by
other threads until they access the state of the object. Or consider
objects in distributed-Oz, if one user changes the state of an
ordinary object in distributed-Oz other users that have references
to the object are not aware of this change until i f and when they
access the state. This is as it should be. It would be completely
impractical that state changes to objects were automatically
broadcast to all other sites with references to that object.

Graphical objects are different from ordinary objects in that
changes in the object-state should be reflected in visualization
changes automatically. In a distributed multi -user application we
often require the update to be broadcast to all the participants. In
this case it would be impractical to wait with the update
visualization until the participant accesses the object. Neither is
it practical to demand that the participants regularly probe the
various graphical objects; this would increase the amount of
network traffic enormously.

We identify four diff iculties with graphics in a distributed
system.
1. Push problem: There is a fundamental difference between

graphical objects and non-graphical objects. The underlying
desired pattern of communication in a distributed setting
where objects are shared is different. State update is pushed
rather than pulled.

2. Sequential-consistency. The problem with achieving
sequential consistency differs with graphical push objects
as compared to non-graphical pull objects.

3. Visualization control. There are difficulties in controlli ng
visualization, i.e. which users see what.

4. Openness. The ordinary mechanism for achieving openness
may not be enough.

We focus in this section on visualization, the diff icult final
stage in a multi -user graphical application. Given that some site
initiates a visualization change (i.e. changes the object-state of
graphical object), we consider how this results in a visualization

