Multiparadigm Programming in Oz *

Martin Muller, Tobias Miller, Peter Van Roy
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany
{mmueller,tmueller,vanroy } @dfki.uni-sb.de

Abstract

The foundation of Prolog’s success is the high abstraction level of its declarative subset,
namely first-order Horn clause logic with SLDNF resolution. What’s missing from Prolog is
that little attempt is made to give the same foundation to anything outside the declarative sub-
set. We argue that multiparadigm programming can remedy this lack. We give a foundation for
multiparadigm programming and we show how it is realized in the Oz language and system. Oz
naturally encompasses multiple styles of programming, including (constraint) logic, functional,
and concurrent object-oriented programming, by providing a common underlying foundation
for these styles through a simple formal model in the concurrent constraint paradigm. We
illustrate the integrative programming model with paradigmatical code examples.

1 Introduction

Six blind sages were shown an elephant and met to discuss their experience. “It’s
wonderful,” said the first, “an elephant is like a snake: slender and flexible.” “No,
no, not at all,” said the second, “an elephant is like a tree: sturdily planted on the
ground.” “Marvelous,” said the third, “an elephant is like a wall.” “Incredible,” said
the fourth, “an elephant is a tube filled with water.” “What is then this mythical
beast that is all things to all?,” said the fifth. “Hell if I know,” said the sixth, “but

let us now disperse and proclaim our wisdom.”

Programming languages are a means to describe computational behavior. Different languages
may rely on very different credos or paradigms as to what computation is all about. A rough
classification of paradigms distinguishes between stateful and stateless programming. Stateful
programming explicitly represents data that change over time. Stateless programming represents
data that can be created but that never change. The distinction is useful because stateful pro-
gramming is closer to the way the external world works, whereas stateless programming is much
simpler to reason about.

Stateful programming has evolved from traditional imperative programming into object-oriented
programming. Among the stateless paradigms (by and large coinciding with the so-called declar-
ative ones) one can distinguish between directed and undirected computation. The former has
been made most popular by functional programming languages, the latter by logic languages.

1.1 Why Multiparadigm Programming?

Multiparadigm programming is not feature stacking as in PL/I or C+4. Multiparadigm program-
ming is the integration of several programming paradigms in a simple model. From a foundational

*In: Donald Smith, Olivier Ridoux and Peter Van Roy, eds., “Visions for the Future of Logic Programming: Laying
the Foundations for a Modern Successor of Prolog”, A workshop in association with ILPS'95, December 7, Portland,
Oregon.

point of view, this allows to understand various forms of computation as facets of a single phe-
nomenon. Multiparadigm programming eases the coding of algorithms in a “natural” style. This
may be the functional, the constraint, or the object-oriented paradigm, depending on whether
just functions are evaluated, partial information is used, or state manipulation is necessary.

From a systems point of view, using a single language avoids a proliferation of interfaces between
components addressing different concerns. In a distributed setting, using a single language al-
lows the communication of arbitrary data structures. The set of data structures which can be
transferred between different languages is usually greatly restricted.

Finally, multiparadigm languages are advantageous for the teaching of algorithms. They introduce
only those new concepts necessary for each language and they keep syntax changes minimal when
different classes of algorithms are considered. The language Leda [Bud95], which supports multiple
paradigms, was strongly motivated by this educational argument.

1.2 Programming Paradigms

Let us look more closely to the specific contributions of the mentioned paradigms to the field of
programming.

Logic programming (e.g., Prolog [SS86]) was devised as realization of computation as deduc-
tion. Its major contributions to programming language design are logic variables and search.
More generally speaking, it pioneered speculative computation with partial information,
which subsequently was generalized into constraint programming.

Functional programming (e.g., Haskell [Has92]) rests on the idea that computation is the
(referentially transparent) evaluation of expressions. Among its contributions are functions
as first-class citizens, full compositionality, lexical scoping, and the development of type
systems for computing.

Object-oriented programming (e.g., Smalltalk [GR83]) organizes computational activities in-
to entities called objects which encapsulate state and methods to manipulate it. Often,
inheritance is supported as a means for incremental development and code reuse.! Ob-
jects are a powerful concept to structure stateful (e.g., imperative) computation, which is
particularly important in applications that react with the external world.

The choice of a programming paradigm depends on the particular task to be solved. It strongly
influences what a solution to a problem looks like. Much of programming proficiency in a given
language is the ability to cast a program in this language’s paradigm. The typical applications
for a language are those which can be expressed in it with the least effort. Other problems may
resist an elegant or concise realization (e.g., procedural abstraction in Prolog or imperative data
structures in stateless paradigms), or enforce the use of concepts which complicate reasoning about
the program (e.g., to consider arithmetics as an object interaction instead of function evaluation).

1.3 How Multiparadigm Programming can Save Prolog

Prolog maintains a stable niche position in industry for applications based on rapidly changing,
structured data. Typical examples are natural language, program generation, expert systems,
data transformation, and theorem proving. Prolog has many advantages for such applications.
The bulk of programming can be done cleanly in its pure declarative subset. The code is compact

'Languages that support objects but no inheritance are usually called object-based.

due to the expressiveness of unification and the term notation. Memory management is dynamic
and implicit. Efficient, robust, and interoperable implementations exist. Primitives exist for
useful non-declarative operations, e.g., call/1 provides a form of higher-orderness (i.e., first-class
procedures) and setof/3 provides a form of encapsulated search.

The foundation of Prolog’s success is the high abstraction level of its declarative subset, namely
first-order Horn clause logic with SLDNF resolution. What’s missing from Prolog is that little
attempt is made to give the same foundation to anything outside the declarative subset. Two
decades of research have resulted in a solid understanding of the declarative subset and only a
partial understanding of the rest.? This results in two main flaws of Prolog: First, the operational
aspects are too deeply intertwined with the declarative. The control is naive (depth-first search)
and eager. The interactive top level has a special status: it is lazy and is not accessible to
programs. Second, to express anything beyond the declarative subset requires ad hoc primitives
that are limited and do not always do the right thing. Freeze/2 provides coroutining as a limited
form of concurrency. Call/1 and setof/3 provide a limited form of higher-orderness [War82].

Multiparadigm programming can remedy these defects. Its goal is to provide a firm foundation for
all facets of computation, not just the declarative subset. The semantics should be fully defined
and bring the operational aspects out into the open. For example, encapsulating search gives
first-class Prolog top levels, each with its own user-programmable search strategy. True higher-
orderness results in compact, modular programs. Concurrency and stateful execution make it easy
to write programs that interact with the external world.

In the rest of this paper we give a foundation for multiparadigm programming and we show how it
is realized in the Oz language and system. Oz is fully defined and has an efficient implementation
competitive with Prolog systems. Oz has much in common with Prolog, but it is not a superset of
Prolog. Oz does not have the reflective syntax of Prolog, nor does it have the meta-programming
facilities (like call/1, assert/1) or the user-definable syntax (operator declarations). Like Prolog,
Oz has a declarative subset. Like Prolog, Oz has been generalized to arbitrary constraint systems
(currently implemented are finite domains and open feature structures). Oz provides a clean
implementation of logic programming that can be used for many of the tasks for which Prolog
and CLP are used today.

1.4 Plan of the Paper

Section 2 introduces the programming model underlying Oz. Section 3 quickly surveys related
approaches to the integration of programming paradigms. Section 4 illustrates programming in
Oz by paradigmatical code examples in the functional, logic, and object-oriented styles. Section
5 presents the Oz Programming Model in an informal manner and relates its components to the
examples discussed earlier.

2 A Uniform Model for Multiparadigm Programming

Our approach to multiparadigm programming is to start with concurrent constraint programming
(cep) as a foundation. Concurrency is important because it is the most general form of control and
can easily be restricted to the requirements of any programming style. Constraints are important
because they provide a simple and uniform way to express communication and synchronization.
The ccp model [Mah87, Sar93] combines ideas from research in concurrent [Sha89] and constraint
logic programming [JM94], as well as from CCS [Mil80]:

2The non-declarative aspect has received some attention, e.g., [Nai86, HL94, PS95, And95].

Concurrent constraint programming consists of primitive concurrent agents which commu-
nicate and synchronize through a monotonically growing constraint store. It relies on Ma-
her’s characterization of synchronization as logical entailment between constraints.

We extend ccp with higher-order procedures (i.e., first-class procedures). The resulting higher-
order ccp model is simple and theoretically clean. Its restriction to the pure functional paradigm
recovers nice formal properties such as confluence [Nie96], both in the lazy and eager cases.
For a deeper introduction, see the Oz programming model [Smo95a] and the calculi underlying
Oz [Smo94, NM95b, Nie96]. A closely related model of concurrency is the 7 calculus [Mil93]. See
[Nie96] for a formal comparison between the two models.

The higher-order ccp core is minimally extended with state and search (see Section 5). The
programming style arising from the resulting model can be sketched as follows: Computation is
organized as a network of concurrent objects which react with each other and with the external
world (I/O). Inside the objects, functions and predicates are used to process stateless knowledge
in algorithmic or declarative (constraint) form.

3 Related Work

Integration of paradigms is a very active area of research and has produced a variety of different
languages. The development of Oz has benefited from this fertile atmosphere. This section can
only take a glimpse into the field.

Most of the research on integration has originated from within the stateless paradigm. There
has been very little research originating from within the stateful paradigm to integrate stateless
programming. Typed imperative languages (e.g., Algol, Eiffel, or C++) may be viewed as an
exception since types add a level of stateless semantics to a possibly stateful program. They do
not, however, provide for stateless programming.

A short-term solution to integrate different paradigms is to use a coordination model [CG89, CG92].
The paradigmatic coordination model is Linda, which provides a uniform global tuple space that
can be accessed with a small set of basic operations from any process that is connected to it.
Linda layers have been added to languages of various paradigms. Only primitive data objects
(numbers and strings) can be put in the tuple space.

The easiest way to allow imperative programming in a functional framework is to add locations
with destructive assignment. This route was taken by languages such as Lisp [Ste90], Scheme
[CJRI1], and SML [HMMS6]. Also the M-structures of Id [Nik91] and its successor pH [Nik94]
fall in this category. In Oz, the location primitive is the cell, introduced to provide state for the
object system. In contrast to the mentioned languages, stateful programs in Oz never use cells
directly but only the higher-level concept of objects.

In Haskell, state is integrated using the monadic style of programming [Wad92, PW93] which gen-
eralizes the continuation-passing style. The monadic style allows to control the sequentialization
necessary for various kinds of side effecting (I/O, error handling, non-deterministic choice).

Concurrent logic programming has investigated in depth the use of logic variables for synchroniza-
tion and communication. Since logic variables are constrained in an incremental manner, they
allow one to express monotonic synchronization and hence determinism in a concurrent setting.
The concurrent logic language Strand has evolved into the coordination language PCN [Fos93] for
imperative languages. In the functional programming community, the I-structures of Id [Nik91]
realize a restricted form of logic variables. Further, the Goffin project [CGK95] uses a first-order
concurrent constraint language as a coordination language for Haskell processes.

A constraint logic language with a concurrent flavor is LIFE [AKP93]. It provides automatic
delaying of functions and “demons” that wait until data structures have a particular form. LIFE
is designed around record constraints (called 1-terms) that live in a stateless inheritance hierarchy.
They are especially useful for knowledge representation and natural language processing. DFKI
Oz supports record constraints much in the style of LIFE.

There have been many proposals to incorporate an object system into (concurrent) logic languages
[Dav93]. These proposals remain unsatisfactory due to the absence of first-class procedures and
mutable state in these languages.

The logic language Gédel [HL.94] aims at being a more declarative Prolog. It provides for a strong
type system and a module system. The control facilities provided by Gdédel allow for coroutining, a
pruning (or commit) operator related to parallel conditionals in concurrent Prolog, and constraint
solving capabilities in the domains of integers and rationals.

Also in the logic programming tradition, the design rationale of Lambda Prolog [NM95a] is to
develop more powerful logic than Horn logic as a basis for programming. In particular, functional
programming is supported by providing A terms as data structures, which are handled by higher-
order unification. In contrast, Oz combines first-class procedures with first-order constraints via
atomic constants (called names), which represent abstraction in the constraint solving process.

Another stream of research aims at integrating functions into first-order logic programming by
extending resolution towards deterministic evaluation of functions (called narrowing) [Han94].

The language Leda [Bud95] has been developed mainly for educational purposes. It makes different
programming styles available in a single language but does not provide a simple operational model
for this integration.

4 Examples

This section presents Oz programs exemplifying the logic, functional, and object-oriented style.
Based on the Oz programming model, these styles smoothly integrate to yield, e.g., a first-order
logic language, a higher-order constraint language, a concurrent object-oriented language, or a
functional language. Since explanation of the examples has to be brief, we refer the reader to
the Oz documentation [ST95]. The sample applications in the DFKI Oz release illustrate how
paradigms mix in larger programs. For instance, a multi-agent transportation scenario is set
up as a collection of concurrent objects which interact with each other while locally performing
speculative computation.

The Oz programming model is defined in terms of a simple kernel language [Smo95b] (see Sec-
tion 5). When translated into the kernel language, the different paradigms show up as different
idioms. Since these tend to be verbose, Oz provides notational support for the most common
idioms [Hen94]. To increase readability, we present the examples in the Oz notation.

4.1 Higher-order Functional Programming

For a long period functional languages have been the first choice for symbolic computation. There-
fore symbolic mathematics and parsing are among the typical applications. Consider the problem
of encoding a text (list of characters) with respect to a Huffman tree. A Huffman tree 7" is an
ordered binary rooted tree whose leaves carry pairwise distinct characters, the domain of T'.

fun {CEncode T C}
case T
of n(L R) then

case {CEncode L C} of y(P) then y(1|P)
elsecase {CEncode R C} of y(P) then y(O|P)
else n end
elseof 1(D) then case D==C then y(nil) else n end
else n end

end

Given a Huffman tree T', the function application {CEncode T C} maps the character C' from the
domain of 7" to the unique path of the leaf carrying C'. The function CEncode assumes binary trees
to be encoded with constructors n/2 for nodes and 1/1 for leaves. An application {CEncode T C}
will return y(P) where P is the path of ¢ in T if € lies in the domain of T. Otherwise, {CEncode T C}
will return n.

Functions are not primitives of Kernel Oz. Rather, the basic form of first-class procedures is
relational. All n-ary functions (using keyword fun) are syntactically expanded to n+1-ary relations
(using keyword proc) (see Section 5). Oz supports different conditionals as derived from the basic
guarded conditional if...then...else...fi (see Section 5). The case statement is a notational
variant that can be used as a conditional expecting a boolean condition. There is an optional else
branch which is selected if none of the patterns match.

fun {Encode T}
fun {CAppend C Cs}
case {CEncode T C} of y(P) then {Append P Cs} else Cs end
end
fun {E Cs} {FoldR Cs CAppend nil} end
in E end

The function Encode takes a tree T and returns the function E which maps a string of characters
Cs to its encoding with respect to T. This is done by appending all single character encodings
using a FoldR, where the function CAppend strips the bookkeeping information y or n (and simply
ignores illegal characters).

Assuming some Huffman tree over the alphabet of vowels, the following expression will bind E to
its corresponding encoding function:

declare E={Encode n(n(1(a) 1(e)) n(n(1(u) 1(i)) 1(o)))}

Applying the function E to an input list as in ¢={E [a e i o ul} binds ¢ to its Huffman code
[111001000011].

4.2 Logic Programming

A driving motivation for the development of Prolog was grammars for natural language [Col93].
Logic grammars are also easily written in Oz. In Oz, the first-class procedures, concurrency, and
local computation spaces add much expressiveness to what is easily expressed in Prolog. For ex-
ample, an HPSG (head-driven phrase structure grammar) parser can be written declaratively and
executed efficiently. The DFKI Oz release comes with an example HPSG parser. For simplicity,
we consider a grammar for Lisp s-expressions. A code segment, using Prolog’s DCG (Definite
Clause Grammar) notation, is given below. It defines an attribute grammar that can build an
s-expression from a list of tokens. This notation has a straightforward translation into standard
Prolog. We assume that the notation is close enough to standard BNF to be understandable even
with no Prolog knowledge.

main(S) :- sexpr(S, [’C,’(’,c,d,?)’,e,’)’], [1). % ((c d) e)

sexpr(S) --> atom(S).
sexpr([UIV]) --> [’(°], sexpr(U), sexpr_star(V), [’)’].

sexpr_star([1) -—> [].
sexpr_star([U|V]) --> sexpr(U), sexpr_star(V).

atom(S) ——> [S], {S=c; S=d; S=e}.

To be as clear as possible about what is actually executed, we present the above grammar as a
self-contained Oz program that does not need a preprocessor. The procedure {SExpr S T1 TO} is
a predicate that defines the relation between an s-expression S as a tree and the token list T1 that
represents it. TO is the remaining list of tokens, i.e., which are not consumed by SExpr. We show
that this program can be used not only as a parser but also as a generator of token lists.

proc {SExpr S T1 TO}
or {Atom S T1 TO}
[T2 T3 T4 UV in T1="("|T2 S=U|V
then {SExpr U T2 T3} {SExprStar V T3 T4} T4=") |TO
ro
end

proc {SExprStar S T1 TO}
or T1=TO S=nil
[0 UV T2 in S=U|V then {SExpr U T1 T2} {SExprStar V T2 TO}
ro

end

proc {Atom S T1 TO}
T1=S|TO or S=c [] S=d [] S=e ro
end

The or...[1.. ro construct is a logical disjunction (see Section 5). Each branch of the disjunction
corresponds to a Horn clause and has a guard consisting of simple constraints such as T1=T0, S=nil,
and s=U|V. The execution of a disjunction follows the so-called Andorra principle [SWY91, HJ90],
suitably extended to concurrency and encapsulation. A disjunction reduces if it is deterministic,
i.e., if all branches but one have failing guards. The last remaining branch is then executed.
Execution continues until all disjunctions that remain have more than one non-failing guard. This
is able to find a solution in all cases in which Prolog does so, and also in many cases where Prolog
would deadlock or go into an infinite loop. However, this strategy is not complete, i.e., it does
not always find a solution when one exists. To make it complete, it is necessary to add a search
primitive to the computation model.

The procedure SExpr specifies the grammar’s constraints without implying any particular search
strategy. With the appropriate strategy, SExpr can be used both as a parser and as a generator.
This can be done with one of the predefined search procedures in the module Search, which
implement various search strategies using the Solve combinator (see Section 5). The use of Search
illustrates the separation of logic and control in Oz. The function Parse parses a given token list,
using a first-solution search with depth-first strategy:®

®For generality, solutions are returned as procedures wrapped in a tuple. To actually access a solution, the
procedure has to be selected and applied.

fun {Parse T}
{Search.one.depth proc {$ S} {SExpr S T nill} end}
end

S={Parse ['(" (" c¢cd)" e ")71} {Browse {S.1}} % ((c d) e)

The browser Browse is a concurrent tool used to inspect Oz data structures [Pop95]. The function
Generate lazily generates pairs of parses and their token lists using an all-solution search. Laziness
means that solutions are generated on demand, which is expressed by incrementally constraining
the output to a list.

fun {Generate}
{Search.all.lazy proc {$ Sol} S T in Sol=S#T {SExpr S T nill} end}
end

{Generate}=S1|_|_|_I|_IS2|_ {Browse s({S1.1} {S2.1})} % s(c#lc] [eJ#[(" e 7)°])

This example illustrates that logic programming in Oz is based on the notion of encapsulated
search, which was originated in the AKL language [Jan94].

4.3 Object-oriented Programming

A standard application for object-oriented languages from their beginning is window programming.
The Smalltalk programming environment [LLP91] was one of the earliest successful window systems.
Inspired by Logo’s turtlegraphics [Pap81] and Smalltalk’s Pen class, we sketch a turtle class in
Oz. Note that Oz objects are based completely on a single state primitive (see Section 5). The
full concurrent object system of Oz is defined in terms of higher-order ccp with state [HSW95].

class Turtle from Tk.canvasTag
attr x y ang:0.0 pen:True size:400 canvas
meth init
x<-(@size div 2) y<-(@size div 2) <<display>>

end
meth up pen <- False end
meth down pen <- True end

meth left(4) ang <- @ang-{ToRad A} end
meth right(A) ang <- Qang+{ToRad A} end
meth forward(D)

DX={F2I {I2F D}*{Cos @angl}} DY={F2I {I2F D}*{Sin @ang}}
in

case Open then <<line(DX DY)>> else <<move(DX DY)>> end
end
meth move (DX DY) <<tk(move DX DY)>> end

4% ... further methods (display, line) left out
end

DFKI Oz provides an object-oriented interface to the Tcl/Tk
graphics package. This interface provides a class Tk.canvasTag
from which the class Turtle inherits. Instances of the Turtle
class have as attributes (instance variables) the coordinates x
and y, an angle ang, and a flag pen. Turtles move and turn on
the screen on receipt of messages and leave a trail if the pen
flag is set. The init method places a turtle in the center of its
associated canvas and applies its method display for Tk inter-
facing. Methods up and down set the pen flag. Methods left(4)
and right(4) take an argument A in degrees and update the
current angle ang accordingly. Method forward(D) moves the
turtle forward by D units. The explicit coercions I2F and F2I
are used to convert between integers and floats.

Modeling Objects in Kernel Oz. We now sketch how Oz objects are modeled by the kernel
language. Objects are procedures that reference a cell whose content designates the current state.
A cell is the primitive that incorporates stateful computation into Oz. Cells may be seen as
locations which can be atomically updated (see Section 5).

The object’s state is a record whose fields are the object’s attributes. Lexical scoping guarantees
encapsulation of the state. After executing a class definition as for Turtle, the predefined procedure
New can be used like {New Turtle init T} to create an instance T of Turtle and send it the initial
message init. Since objects are procedures, message sending amounts to application, for example:

{T forward(50)} {T left(90)}

At any point in time, the current state of an object is designated by the logic variable in its cell.
On receipt of a message like forward(50), the cell is updated to hold a fresh logic variable OutState
and the method selected by the label of the message (forward) is scheduled to compute the new
state, which is put in OutState:

case {DetB InState} then {Method InState Msg Object OutState} end

This conditional defers the execution of the method until the object’s current state is available
(i.e., until the DetB test succeeds). This setup results in a queue of messages waiting for mutually-
exclusive access to the object’s state. Note that messages are enqueued even if the current state
of the object is not yet available, i.e., if its cell holds an unbound variable. A message queue may
be depicted as:

my my ms
O—=@—> v ==

where the circled states have become available, s4 is the current state, and methods my through
ms have been scheduled to compute the state sequence s; through s4. Note that the methods may
execute concurrently. Methods are modeled as procedures {Hethod InState Msg Object OutStatel}
computing an output state from an input state, a message, and the object invoking the message
(the self reference). The body of a method threads the input state through attribute accesses,
assignments and method applications to ensure the correct sequentialization of state accesses in
a concurrent context:

S So S3
InState o\ /_\ /\ OutState
Q <-

™ <<>> e

access assign method application access

Attribute access, assignment and method application is modeled as application of the procedures
T@', “<-" and “<<>>7, accordingly, to an intermediate state. E.g., {‘<-‘ InState A V OutState}
waits until InState is determined, checks InState for the field A and then computes OutState by
replacing InState’s value at A by V. By using the expression <<display>>inside a method body, the
method display is called without relinquishing the exclusive access to the state. This is realized
by threading the intermediate state through the body of the called method, in the same way as
for state accesses.

5 The Oz Programming Model

This section briefly summarizes the ingredients of the Oz Programming Model OPM with its exten-
sion by encapsulated search, and relates them to the programming abstractions above [Smo95a].
For more background, see [Smo094, Smo95b, HSW95, SS94]. The paradigms are compared on the
calculus level in [NM95b, Nie96].

Concurrent Constraints. The core of OPM is similar to Saraswat’s concurrent constraint
model [Sar93], providing for concurrent control and synchronization via logic variables.

E = localzinFEFend | EAF | C | if C then F else F fi
C o= omyle=1@ | ..

Computation in OPM takes place in a computation space hosting a
number of tasks (also called actors) connected to a shared store. Com-
putation advances by reduction of tasks which can manipulate the store Store
and create new tasks. When a task is reduced it disappears. As com-
putation proceeds, the store accumulates constraints on variables in the constraint store.

Task e Task
g -

Concurrent composition ¥ N F and declaration local z in E end provide the glue for tasks F and
F. Reduction of F¥ A F yields two tasks ¥ and F, and reduction of local z in F end generates a
fresh variable y and reduces to E[y/xz]. Reduction of a constraint C' (tell) advances the constraint
store S to the logical conjunction S A C, provided S A C'is consistent. Otherwise, the constraint
store is not changed and failure is announced.

Conditional tasks are the observers of the constraint store (ask). Telling a constraint communicates
it to all tasks, while asking means to synchronize on the constraint in the store. Assuming ' in
the constraint store, the conditional if D then E else F £i reduces to F if (' logically entails D,
and to F if ¢ and D are inconsistent. Otherwise, the conditional cannot reduce.

Higher-Order Abstraction. Proceduresin Oz are used to model functions, predicates, meth-
ods, and objects. Procedures in OPM are triples of the form &:x /E consisting of a name &, formal
argument x and a body E.* Procedures may be defined and applied as follows:

E == ...|proc {2y} F end | {z y}

Reduction of a definition proc {z y} E end binds the variable z to a freshly created name & and
enters the procedure &:y/FE into the procedure store. An application task {z 2} must wait until
the procedure store contains a procedure £:y/F such that the constraint store entails @ =¢. Then,
it can reduce to the task F[z/y], which is obtained from the procedure body E by replacing the
actual argument z for the formal one y.

*The restriction to single arguments is for notational simplicity.

10

State. OPM supports state by means of cells £:z. A cell represents a mutable binding of a name
to a variable, i.e., a location. There are two primitives for creation of and operation on cells:

E = ... | {NewCell z y} | {Exchange z y 22}

Cells are created by reducing a task of the form {NewCell z y}. Similar to procedure definition,
reduction of this task picks a fresh name &, binds z to £ and enters the cell &y into a third
compartment of OPM’s store, the cell store.

Cell store observers are tasks of the form {Exchange x y 2z} which wait until the cell store contains
a cell &:u such that the constraint store entails = £. In that case, the cell binding is updated to
&:y and the equation z = u is entered into (told to) the constraint store.

Cells plus higher-order procedures are sufficient to give an operational explanation of a powerful
object system [Smo94, HSW95].

Constraint Programming and Search. OPM has been extended to subsume full constraint
logic programming. This is done by means of a non-deterministic choice combinator and a solve
combinator, which together allow to encapsulate search in a concurrent setting [SS94]:

E == ...|or E[] Fro| {Solvez E}

The task {Solve z F} opens a new, local computation space for reduction of F in search of solutions
for « (roughly, in the predicate F(z)). Local computation proceeds just as global computation
until the local space is either failed or stable. A computation space is called failed after reduction of
a constraint which is inconsistent with the store. Failure is a run-time error unless in a local space
where it signals the absence of solutions. Stability of a local space means that the computation
has run to completion and that the global space cannot influence the local space. If a stable local
space contains a non-deterministic choice or F [1 F ro, it is distributed into two spaces where
the choice is replaced by its right or left alternative, respectively. Both spaces are returned as
procedures which can be explored with a suitable strategy.

6 Conclusion

We have presented and justified multiparadigm programming in Oz by means of programming
examples and an introduction to the underlying formal model. There are two reasons why multi-
paradigm programming is important:

e In the theoretical development of computer science, all computational phenomena must be
understood as aspects of a single underlying model. The design of Oz is an attempt to
provide such a model.

e Independently of the theoretical importance of multiparadigm programming, we have to in-
vestigate whether it can be realized in a practical system and whether this provides advan-
tages over single-paradigm languages such as Prolog. The DFKI Oz system is a realization
of Oz that can be used for many of the tasks for which Prolog is used today.

Future research on Oz will be continued in two major directions: to use constraints (e.g., fi-

nite domains and feature structures) to solve real-world problems and to extend the model for
transparent open distributed programming.

11

Acknowledgement

We thank the members of the Programming Systems Lab at DFKI. We thank Christian Schulte
for his comments on this paper. The research reported in this paper has been supported by
the Bundesminister fiir Bildung, Wissenschaft, Forschung und Technologie (FTZ-ITW-9105), the
Esprit Project ACCLAIM (PE 7195), and the Esprit Working Group CCL (EP 6028). The
DFKI Oz system is available through WWW at http://ps-www.dfki.uni-sb.de/oz/ or through
anonymous ftp from ps-ftp.dfki.uni-sb.de

References

[AKP93]

[And95]
[Bud95]

[CG89]
[CG92]

[CGK95]

[CIRII]
[Col93]

[Dav93]

[Fos93]
[GHR95]
[GR83]
[Han94]
[Has92]
[Hen94]
[HJ90]

[HL94]

Hassan Ait-Kaci and Andreas Podelski. Towards a meaning of LIFE. Journal of Logic Program-
ming, 16:195-234, 1993.

James Andrews. The logical semantics of the Prolog cut. In ILPS 95, December 1995.

Timothy A. Budd. Multi-Paradigm Programming in LEDA. Addison-Wesley, Reading, MA,
1995.

Nicholas Carriero and David Gelernter. Linda in context. Communications of the ACM,

32(4):444-458, 1989.

Nicholas Carriero and David Gelernter. Coordination languages and their significance. Commu-

nications of the ACM, 35(2):96-107, February 1992.

M. Chakravarty, Y. Guo, and M. Kohler. Goffin: Higher-Order Functions meet Concurrent
Constraints. In First International Workshop on Concurrent Constraint Programming, Venice,

Italy, May 29-31 1995.

William Clinger and eds. Jonathan Rees. The Revised* Report on the Algorithmic Language
Scheme. LISP Pointers, IV(3):1-55, July-September 1991.

A. Colmerauer. The Birth of Prolog. In The Second ACM-SIGPLAN History of Programmaing
Languages Conference, pages 37-52. ACM SIGPLAN Notices, March 1993.

Andrew Davison. A Survey of Logic Programming-based Object Oriented Languages. In Re-
search Directions in Concurrent Object-Oriented Programming. The MIT Press, Cambridge, MA,
1993.

Tan Foster. Strand and PCN: Two Generations of Compositional Programming Languages.
Preprint MCS-P354-0293, Argonne National Laboratories, 1993.

D.M. Gabbay, C.J. Hogger, and J.A. Robinson, editors. Handbook of Logic in Artificial Intelli-
gence and Logic Programming. Oxford University Press, Oxford, UK, 1995.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation. Addison-
Wesley, Reading, MA, 1983.

M. Hanus. The Integration of Functions into Logic Programming: From Theory to Practice.
The Journal of Logic Programming, (19,20):583-628, 1994.

Report on the Programming Language Haskell: A Non-Strict, Purely Functional Language.
ACM SIGPLAN Notices, 27(5), May 1992.

Martin Henz. The Oz notation. DFKI Oz documentation series;, German Research Center for
Artificial Intelligence (DFKI), Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany, 1994.

Seif Haridi and Sverker Janson. Kernel Andorra Prolog and its computation model. In 7th
International Conference on Logic Programmaing, pages 31-48. MIT Press, 1990.

P. M. Hill and J. W. Lloyd. The Gédel Programming Language. The MIT Press, Cambridge,
MA, 1994.

12

[HMMS86] Robert Harper, Dave MacQueen, and Robin Milner. Standard ML. Technical Report ECS-

[HSW95]

[Jan94]

[TM4]

[LP91]

[Mah87]

[Mil80]

[Mil93]

[Nai86]
[Nie96]
[Nik91]
[Nik94]
[NM95a]
[NM95b]
[Pap81]
[Pop95]
[PS95]
[PW93]
[Sar93]
[Shas9]

[Smo94]

[Smo95al

LFCS-86-2, Department of Computer Science, University of Edinburgh, 1986.

Martin Henz, Gert Smolka, and Jorg Wirtz. Object-oriented concurrent constraint programming
in Oz. In V. Saraswat and P. Van Hentenryck, editors, Principles and Practice of Constraint
Programming, chapter 2, pages 29-48. The MIT Press, Cambridge, MA, 1995.

Sverker Janson. AKL-A Multiparadigm Programming Language. PhD thesis, Uppsala University,
Box 1263, S-164 28 Kista, Sweden, June 1994.

Joxan Jaffar and Michael J. Maher. Constraint Logic Programming: A Survey. The Journal of
Logic Programming, 19/20:503-582, May-July 1994.

Wilf R. Lalonde and John R. Pugh. Inside Smalltalk, volume 1. Prentice-Hall, Englewood Cliffs,
N.J., 1991.

Michael J. Maher. Logic Semantics for a Class of Committed-Choice Programs. In Jean-Louis
Lassez, editor, International Conference on Logic Programming, pages 858-876. The MIT Press,
Cambridge, MA, 1987.

Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany, 1980.

Robin Milner. The Polyadic n-Calculus: A Tutorial. In F. L. Bauer, W. Brauer, and H. Schwicht-
enberg, editors, Proceedings of the 1991 Marktoberndorf Summer School on Logic and Algebra
of Specification, NATO ASI Series. Springer-Verlag, Berlin, Germany, 1993.

Lee Naish. Negation and Control in Prolog. Springer-Verlag, 1986. Lecture Notes in Computer
Science Volume 238.

Joachim Niehren. Functional Computation as Concurrent Computation. In 29°¢ ACM Sympo-
stum on Principles of Programming Languages, 1996.

Rishiyur S. Nikhil. ID Language Reference Manual Version 90.1. Computation Structures Group
Memo 284-2; MIT, July 1991.

Rishiyur S. Nikhil. An Overview of the Parallel Language Id - A Foundation for pH, a Parallel
Dialect of Haskell. Technical report, Digital Cambridge Research Laboratory, 1994.

G. Nadathur and D. Miller. Higher-Order Logic Programming. In Gabbay et al. [GHR95].

Joachim Niehren and Martin Muller. Constraints for Free in Concurrent Computation. In Asian
Computer Science Conference, Pathumthani, Thailand, 11-13 December 1995. Springer-Verlag,
Berlin, Germany. LNCS, to appear.

Seymour Papert. MindStorms: Children, Computers and Powerful Ideas. Basic Books, 1981.

Konstantin Popov. An exercise in concurrent object-oriented programming: The Oz Browser. In
WO0z’95, International Workshop on Oz Programming, Martigny, Switzerland, November 1995.

Andreas Podelski and Gert Smolka. Operational semantics of constraint logic programs with
coroutining. In ICLP 95, pages 449-463, 1995.

Simon L. Peyton-Jones and Philip Wadler. Imperative Functional Programming. In 20/* ACM
Symposium on Principles of Programming Languages, pages 71-84. ACM Press, January 1993.

Vijay A. Saraswat. Concurrent Constraint Programming. The MIT Press, Cambridge, MA,
1993.

E. Shapiro. The Family of Concurrent Logic Programming Languages. ACM Computing Surveys,
21(3):413-510, September 1989.

Gert Smolka. A Foundation for Concurrent Constraint Programming. In Jean-Pierre Jouannaud,
editor, Conference on Constraints in Computational Logics, volume 845 of Lecture Notes in
Computer Science, pages 50-72, Munchen, Germany, 7-9 September 1994.

Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer Science
Today, Lecture Notes in Computer Science, vol. 1000. Springer-Verlag, Berlin, 1995. to appear.

13

[Smo95b] Gert Smolka. The Definition of Kernel Oz. In Andreas Podelski, editor, Constraints: Basics

[SS86]

[SS94]

[ST95]

[Ste90]
[SWY91]

[Wad92]

[War82]

and Trends, volume 910 of Lecture Notes in Computer Science, pages 251-292. Springer-Verlag,
Berlin, Germany, 1995.

L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, Cambridge, MA, Cambridge,
MA, 1986.

Christian Schulte and Gert Smolka. Encapsulated search in higher-order concurrent constraint
programming. In Maurice Bruynooghe, editor, Logic Programming: Proceedings of the 1994
International Symposium, pages 505-520, Ithaca, New York, USA, 13-17 November 1994. The
MIT Press.

Gert Smolka and Ralf Treinen, editors. DFKI Oz Documentation Series. German Research
Center for Artificial Intelligence (DFKI), Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany,
1995.

Guy L. Steele. Common LISP: The Language. Digital Press, second edition, 1990.

Vitor Santos Costa, David H. D. Warren, and Rong Yang. Andorra-I: A parallel Prolog system
that transparently exploits both And- and Or-parallelism. In 3rd ACM SIGPLAN Conference
on Principles and Practice of Parallel Programming, pages 83-93, 1991.

Philip Wadler. The Essence of Functional Programming. In 19" ACM Symposium on Principles
of Programming Languages, New York, January 1992. Invited Talk.

D.H.D. Warren. Higher-order Extensions to Prolog: Are they Needed? 1In J.E. Hayes, Don-
ald Michie, and Y.-H. Poa, editors, Machine Intelligence 10, volume 125 of Lecture Notes in
Mathematics, chapter 22, pages 441-454. Wiley, Chichester, England, 1982.

14

