
Multiparadigm Programming in Oz �Martin M�uller, Tobias M�uller, Peter Van RoyGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, Germanyfmmueller,tmueller,vanroyg@dfki.uni-sb.deAbstractThe foundation of Prolog's success is the high abstraction level of its declarative subset,namely �rst-order Horn clause logic with SLDNF resolution. What's missing from Prolog isthat little attempt is made to give the same foundation to anything outside the declarative sub-set. We argue that multiparadigmprogramming can remedy this lack. We give a foundation formultiparadigmprogramming and we show how it is realized in the Oz language and system. Oznaturally encompasses multiple styles of programming, including (constraint) logic, functional,and concurrent object-oriented programming, by providing a common underlying foundationfor these styles through a simple formal model in the concurrent constraint paradigm. Weillustrate the integrative programming model with paradigmatical code examples.1 IntroductionSix blind sages were shown an elephant and met to discuss their experience. \It'swonderful," said the �rst, \an elephant is like a snake: slender and 
exible." \No,no, not at all," said the second, \an elephant is like a tree: sturdily planted on theground." \Marvelous," said the third, \an elephant is like a wall." \Incredible," saidthe fourth, \an elephant is a tube �lled with water." \What is then this mythicalbeast that is all things to all?," said the �fth. \Hell if I know," said the sixth, \butlet us now disperse and proclaim our wisdom."Programming languages are a means to describe computational behavior. Di�erent languagesmay rely on very di�erent credos or paradigms as to what computation is all about. A roughclassi�cation of paradigms distinguishes between stateful and stateless programming. Statefulprogramming explicitly represents data that change over time. Stateless programming representsdata that can be created but that never change. The distinction is useful because stateful pro-gramming is closer to the way the external world works, whereas stateless programming is muchsimpler to reason about.Stateful programming has evolved from traditional imperative programming into object-orientedprogramming. Among the stateless paradigms (by and large coinciding with the so-called declar-ative ones) one can distinguish between directed and undirected computation. The former hasbeen made most popular by functional programming languages, the latter by logic languages.1.1 Why Multiparadigm Programming?Multiparadigm programming is not feature stacking as in PL/I or C++. Multiparadigm program-ming is the integration of several programming paradigms in a simple model. From a foundational�In: Donald Smith, Olivier Ridoux and Peter Van Roy, eds., \Visions for the Future of Logic Programming: Layingthe Foundations for a Modern Successor of Prolog", A workshop in association with ILPS'95, December 7, Portland,Oregon. 1



point of view, this allows to understand various forms of computation as facets of a single phe-nomenon. Multiparadigm programming eases the coding of algorithms in a \natural" style. Thismay be the functional, the constraint, or the object-oriented paradigm, depending on whetherjust functions are evaluated, partial information is used, or state manipulation is necessary.From a systems point of view, using a single language avoids a proliferation of interfaces betweencomponents addressing di�erent concerns. In a distributed setting, using a single language al-lows the communication of arbitrary data structures. The set of data structures which can betransferred between di�erent languages is usually greatly restricted.Finally, multiparadigm languages are advantageous for the teaching of algorithms. They introduceonly those new concepts necessary for each language and they keep syntax changes minimal whendi�erent classes of algorithms are considered. The language Leda [Bud95], which supports multipleparadigms, was strongly motivated by this educational argument.1.2 Programming ParadigmsLet us look more closely to the speci�c contributions of the mentioned paradigms to the �eld ofprogramming.Logic programming (e.g., Prolog [SS86]) was devised as realization of computation as deduc-tion. Its major contributions to programming language design are logic variables and search.More generally speaking, it pioneered speculative computation with partial information,which subsequently was generalized into constraint programming.Functional programming (e.g., Haskell [Has92]) rests on the idea that computation is the(referentially transparent) evaluation of expressions. Among its contributions are functionsas �rst-class citizens, full compositionality, lexical scoping, and the development of typesystems for computing.Object-oriented programming (e.g., Smalltalk [GR83]) organizes computational activities in-to entities called objects which encapsulate state and methods to manipulate it. Often,inheritance is supported as a means for incremental development and code reuse.1 Ob-jects are a powerful concept to structure stateful (e.g., imperative) computation, which isparticularly important in applications that react with the external world.The choice of a programming paradigm depends on the particular task to be solved. It stronglyin
uences what a solution to a problem looks like. Much of programming pro�ciency in a givenlanguage is the ability to cast a program in this language's paradigm. The typical applicationsfor a language are those which can be expressed in it with the least e�ort. Other problems mayresist an elegant or concise realization (e.g., procedural abstraction in Prolog or imperative datastructures in stateless paradigms), or enforce the use of concepts which complicate reasoning aboutthe program (e.g., to consider arithmetics as an object interaction instead of function evaluation).1.3 How Multiparadigm Programming can Save PrologProlog maintains a stable niche position in industry for applications based on rapidly changing,structured data. Typical examples are natural language, program generation, expert systems,data transformation, and theorem proving. Prolog has many advantages for such applications.The bulk of programming can be done cleanly in its pure declarative subset. The code is compact1Languages that support objects but no inheritance are usually called object-based.2



due to the expressiveness of uni�cation and the term notation. Memory management is dynamicand implicit. E�cient, robust, and interoperable implementations exist. Primitives exist foruseful non-declarative operations, e.g., call/1 provides a form of higher-orderness (i.e., �rst-classprocedures) and setof/3 provides a form of encapsulated search.The foundation of Prolog's success is the high abstraction level of its declarative subset, namely�rst-order Horn clause logic with SLDNF resolution. What's missing from Prolog is that littleattempt is made to give the same foundation to anything outside the declarative subset. Twodecades of research have resulted in a solid understanding of the declarative subset and only apartial understanding of the rest.2 This results in two main 
aws of Prolog: First, the operationalaspects are too deeply intertwined with the declarative. The control is naive (depth-�rst search)and eager. The interactive top level has a special status: it is lazy and is not accessible toprograms. Second, to express anything beyond the declarative subset requires ad hoc primitivesthat are limited and do not always do the right thing. Freeze/2 provides coroutining as a limitedform of concurrency. Call/1 and setof/3 provide a limited form of higher-orderness [War82].Multiparadigm programming can remedy these defects. Its goal is to provide a �rm foundation forall facets of computation, not just the declarative subset. The semantics should be fully de�nedand bring the operational aspects out into the open. For example, encapsulating search gives�rst-class Prolog top levels, each with its own user-programmable search strategy. True higher-orderness results in compact, modular programs. Concurrency and stateful execution make it easyto write programs that interact with the external world.In the rest of this paper we give a foundation for multiparadigm programming and we show how itis realized in the Oz language and system. Oz is fully de�ned and has an e�cient implementationcompetitive with Prolog systems. Oz has much in common with Prolog, but it is not a superset ofProlog. Oz does not have the re
ective syntax of Prolog, nor does it have the meta-programmingfacilities (like call/1, assert/1) or the user-de�nable syntax (operator declarations). Like Prolog,Oz has a declarative subset. Like Prolog, Oz has been generalized to arbitrary constraint systems(currently implemented are �nite domains and open feature structures). Oz provides a cleanimplementation of logic programming that can be used for many of the tasks for which Prologand CLP are used today.1.4 Plan of the PaperSection 2 introduces the programming model underlying Oz. Section 3 quickly surveys relatedapproaches to the integration of programming paradigms. Section 4 illustrates programming inOz by paradigmatical code examples in the functional, logic, and object-oriented styles. Section5 presents the Oz Programming Model in an informal manner and relates its components to theexamples discussed earlier.2 A Uniform Model for Multiparadigm ProgrammingOur approach to multiparadigm programming is to start with concurrent constraint programming(ccp) as a foundation. Concurrency is important because it is the most general form of control andcan easily be restricted to the requirements of any programming style. Constraints are importantbecause they provide a simple and uniform way to express communication and synchronization.The ccp model [Mah87, Sar93] combines ideas from research in concurrent [Sha89] and constraintlogic programming [JM94], as well as from CCS [Mil80]:2The non-declarative aspect has received some attention, e.g., [Nai86, HL94, PS95, And95].3



Concurrent constraint programming consists of primitive concurrent agents which commu-nicate and synchronize through a monotonically growing constraint store. It relies on Ma-her's characterization of synchronization as logical entailment between constraints.We extend ccp with higher-order procedures (i.e., �rst-class procedures). The resulting higher-order ccp model is simple and theoretically clean. Its restriction to the pure functional paradigmrecovers nice formal properties such as con
uence [Nie96], both in the lazy and eager cases.For a deeper introduction, see the Oz programming model [Smo95a] and the calculi underlyingOz [Smo94, NM95b, Nie96]. A closely related model of concurrency is the � calculus [Mil93]. See[Nie96] for a formal comparison between the two models.The higher-order ccp core is minimally extended with state and search (see Section 5). Theprogramming style arising from the resulting model can be sketched as follows: Computation isorganized as a network of concurrent objects which react with each other and with the externalworld (I/O). Inside the objects, functions and predicates are used to process stateless knowledgein algorithmic or declarative (constraint) form.3 Related WorkIntegration of paradigms is a very active area of research and has produced a variety of di�erentlanguages. The development of Oz has bene�ted from this fertile atmosphere. This section canonly take a glimpse into the �eld.Most of the research on integration has originated from within the stateless paradigm. Therehas been very little research originating from within the stateful paradigm to integrate statelessprogramming. Typed imperative languages (e.g., Algol, Ei�el, or C++) may be viewed as anexception since types add a level of stateless semantics to a possibly stateful program. They donot, however, provide for stateless programming.A short-term solution to integrate di�erent paradigms is to use a coordination model [CG89, CG92].The paradigmatic coordination model is Linda, which provides a uniform global tuple space thatcan be accessed with a small set of basic operations from any process that is connected to it.Linda layers have been added to languages of various paradigms. Only primitive data objects(numbers and strings) can be put in the tuple space.The easiest way to allow imperative programming in a functional framework is to add locationswith destructive assignment. This route was taken by languages such as Lisp [Ste90], Scheme[CJR91], and SML [HMM86]. Also the M-structures of Id [Nik91] and its successor pH [Nik94]fall in this category. In Oz, the location primitive is the cell, introduced to provide state for theobject system. In contrast to the mentioned languages, stateful programs in Oz never use cellsdirectly but only the higher-level concept of objects.In Haskell, state is integrated using the monadic style of programming [Wad92, PW93] which gen-eralizes the continuation-passing style. The monadic style allows to control the sequentializationnecessary for various kinds of side e�ecting (I/O, error handling, non-deterministic choice).Concurrent logic programming has investigated in depth the use of logic variables for synchroniza-tion and communication. Since logic variables are constrained in an incremental manner, theyallow one to express monotonic synchronization and hence determinism in a concurrent setting.The concurrent logic language Strand has evolved into the coordination language PCN [Fos93] forimperative languages. In the functional programming community, the I-structures of Id [Nik91]realize a restricted form of logic variables. Further, the Go�n project [CGK95] uses a �rst-orderconcurrent constraint language as a coordination language for Haskell processes.4



A constraint logic language with a concurrent 
avor is LIFE [AKP93]. It provides automaticdelaying of functions and \demons" that wait until data structures have a particular form. LIFEis designed around record constraints (called  -terms) that live in a stateless inheritance hierarchy.They are especially useful for knowledge representation and natural language processing. DFKIOz supports record constraints much in the style of LIFE.There have been many proposals to incorporate an object system into (concurrent) logic languages[Dav93]. These proposals remain unsatisfactory due to the absence of �rst-class procedures andmutable state in these languages.The logic language G�odel [HL94] aims at being a more declarative Prolog. It provides for a strongtype system and a module system. The control facilities provided by G�odel allow for coroutining, apruning (or commit) operator related to parallel conditionals in concurrent Prolog, and constraintsolving capabilities in the domains of integers and rationals.Also in the logic programming tradition, the design rationale of Lambda Prolog [NM95a] is todevelop more powerful logic than Horn logic as a basis for programming. In particular, functionalprogramming is supported by providing � terms as data structures, which are handled by higher-order uni�cation. In contrast, Oz combines �rst-class procedures with �rst-order constraints viaatomic constants (called names), which represent abstraction in the constraint solving process.Another stream of research aims at integrating functions into �rst-order logic programming byextending resolution towards deterministic evaluation of functions (called narrowing) [Han94].The language Leda [Bud95] has been developed mainly for educational purposes. It makes di�erentprogramming styles available in a single language but does not provide a simple operational modelfor this integration.4 ExamplesThis section presents Oz programs exemplifying the logic, functional, and object-oriented style.Based on the Oz programming model, these styles smoothly integrate to yield, e.g., a �rst-orderlogic language, a higher-order constraint language, a concurrent object-oriented language, or afunctional language. Since explanation of the examples has to be brief, we refer the reader tothe Oz documentation [ST95]. The sample applications in the DFKI Oz release illustrate howparadigms mix in larger programs. For instance, a multi-agent transportation scenario is setup as a collection of concurrent objects which interact with each other while locally performingspeculative computation.The Oz programming model is de�ned in terms of a simple kernel language [Smo95b] (see Sec-tion 5). When translated into the kernel language, the di�erent paradigms show up as di�erentidioms. Since these tend to be verbose, Oz provides notational support for the most commonidioms [Hen94]. To increase readability, we present the examples in the Oz notation.4.1 Higher-order Functional ProgrammingFor a long period functional languages have been the �rst choice for symbolic computation. There-fore symbolic mathematics and parsing are among the typical applications. Consider the problemof encoding a text (list of characters) with respect to a Hu�man tree. A Hu�man tree T is anordered binary rooted tree whose leaves carry pairwise distinct characters, the domain of T .fun {CEncode T C}case Tof n(L R) then 5



case {CEncode L C} of y(P) then y(1|P)elsecase {CEncode R C} of y(P) then y(0|P)else n endelseof l(D) then case D==C then y(nil) else n endelse n endendGiven a Hu�man tree T , the function application {CEncode T C} maps the character C from thedomain of T to the unique path of the leaf carrying C. The function CEncode assumes binary treesto be encoded with constructors n/2 for nodes and l/1 for leaves. An application {CEncode T C}will return y(P) where P is the path of C in T if C lies in the domain of T. Otherwise, {CEncode T C}will return n.Functions are not primitives of Kernel Oz. Rather, the basic form of �rst-class procedures isrelational. All n-ary functions (using keyword fun) are syntactically expanded to n+1-ary relations(using keyword proc) (see Section 5). Oz supports di�erent conditionals as derived from the basicguarded conditional if: : :then: : :else: : :fi (see Section 5). The case statement is a notationalvariant that can be used as a conditional expecting a boolean condition. There is an optional elsebranch which is selected if none of the patterns match.fun {Encode T}fun {CAppend C Cs}case {CEncode T C} of y(P) then {Append P Cs} else Cs endendfun {E Cs} {FoldR Cs CAppend nil} endin E endThe function Encode takes a tree T and returns the function E which maps a string of charactersCs to its encoding with respect to T. This is done by appending all single character encodingsusing a FoldR, where the function CAppend strips the bookkeeping information y or n (and simplyignores illegal characters).Assuming some Hu�man tree over the alphabet of vowels, the following expression will bind E toits corresponding encoding function:declare E={Encode n(n(l(a) l(e)) n(n(l(u) l(i)) l(o)))}Applying the function E to an input list as in C={E [a e i o u]} binds C to its Hu�man code[1 1 1 0 0 1 0 0 0 0 1 1].4.2 Logic ProgrammingA driving motivation for the development of Prolog was grammars for natural language [Col93].Logic grammars are also easily written in Oz. In Oz, the �rst-class procedures, concurrency, andlocal computation spaces add much expressiveness to what is easily expressed in Prolog. For ex-ample, an HPSG (head-driven phrase structure grammar) parser can be written declaratively andexecuted e�ciently. The DFKI Oz release comes with an example HPSG parser. For simplicity,we consider a grammar for Lisp s-expressions. A code segment, using Prolog's DCG (De�niteClause Grammar) notation, is given below. It de�nes an attribute grammar that can build ans-expression from a list of tokens. This notation has a straightforward translation into standardProlog. We assume that the notation is close enough to standard BNF to be understandable evenwith no Prolog knowledge.main(S) :- sexpr(S, ['(','(',c,d,')',e,')'], []). % ((c d) e)6



sexpr(S) --> atom(S).sexpr([U|V]) --> ['('], sexpr(U), sexpr_star(V), [')'].sexpr_star([]) --> [].sexpr_star([U|V]) --> sexpr(U), sexpr_star(V).atom(S) --> [S], {S=c; S=d; S=e}.To be as clear as possible about what is actually executed, we present the above grammar as aself-contained Oz program that does not need a preprocessor. The procedure {SExpr S T1 T0} isa predicate that de�nes the relation between an s-expression S as a tree and the token list T1 thatrepresents it. T0 is the remaining list of tokens, i.e., which are not consumed by SExpr. We showthat this program can be used not only as a parser but also as a generator of token lists.proc {SExpr S T1 T0}or {Atom S T1 T0}[] T2 T3 T4 U V in T1=�(�|T2 S=U|Vthen {SExpr U T2 T3} {SExprStar V T3 T4} T4=�)�|T0roendproc {SExprStar S T1 T0}or T1=T0 S=nil[] U V T2 in S=U|V then {SExpr U T1 T2} {SExprStar V T2 T0}roendproc {Atom S T1 T0}T1=S|T0 or S=c [] S=d [] S=e roendThe or: : :[]: : :ro construct is a logical disjunction (see Section 5). Each branch of the disjunctioncorresponds to a Horn clause and has a guard consisting of simple constraints such as T1=T0, S=nil,and S=U|V. The execution of a disjunction follows the so-called Andorra principle [SWY91, HJ90],suitably extended to concurrency and encapsulation. A disjunction reduces if it is deterministic,i.e., if all branches but one have failing guards. The last remaining branch is then executed.Execution continues until all disjunctions that remain have more than one non-failing guard. Thisis able to �nd a solution in all cases in which Prolog does so, and also in many cases where Prologwould deadlock or go into an in�nite loop. However, this strategy is not complete, i.e., it doesnot always �nd a solution when one exists. To make it complete, it is necessary to add a searchprimitive to the computation model.The procedure SExpr speci�es the grammar's constraints without implying any particular searchstrategy. With the appropriate strategy, SExpr can be used both as a parser and as a generator.This can be done with one of the prede�ned search procedures in the module Search, whichimplement various search strategies using the Solve combinator (see Section 5). The use of Searchillustrates the separation of logic and control in Oz. The function Parse parses a given token list,using a �rst-solution search with depth-�rst strategy:33For generality, solutions are returned as procedures wrapped in a tuple. To actually access a solution, theprocedure has to be selected and applied. 7



fun {Parse T}{Search.one.depth proc {$ S} {SExpr S T nil} end}endS={Parse [�(� �(� c d �)� e �)�]} {Browse {S.1}} % ((c d) e)The browser Browse is a concurrent tool used to inspect Oz data structures [Pop95]. The functionGenerate lazily generates pairs of parses and their token lists using an all-solution search. Lazinessmeans that solutions are generated on demand, which is expressed by incrementally constrainingthe output to a list.fun {Generate}{Search.all.lazy proc {$ Sol} S T in Sol=S#T {SExpr S T nil} end}end{Generate}=S1|_|_|_|_|S2|_ {Browse s({S1.1} {S2.1})} % s(c#[c] [e]#[�(� e �)�])This example illustrates that logic programming in Oz is based on the notion of encapsulatedsearch, which was originated in the AKL language [Jan94].4.3 Object-oriented ProgrammingA standard application for object-oriented languages from their beginning is window programming.The Smalltalk programming environment [LP91] was one of the earliest successful window systems.Inspired by Logo's turtlegraphics [Pap81] and Smalltalk's Pen class, we sketch a turtle class inOz. Note that Oz objects are based completely on a single state primitive (see Section 5). Thefull concurrent object system of Oz is de�ned in terms of higher-order ccp with state [HSW95].class Turtle from Tk.canvasTagattr x y ang:0.0 pen:True size:400 canvasmeth initx<-(@size div 2) y<-(@size div 2) <<display>>endmeth up pen <- False endmeth down pen <- True endmeth left(A) ang <- @ang-{ToRad A} endmeth right(A) ang <- @ang+{ToRad A} endmeth forward(D)DX={F2I {I2F D}*{Cos @ang}} DY={F2I {I2F D}*{Sin @ang}}in case @pen then <<line(DX DY)>> else <<move(DX DY)>> endendmeth move(DX DY) <<tk(move DX DY)>> end%% ... further methods (display, line) left outend
8



DFKI Oz provides an object-oriented interface to the Tcl/Tkgraphics package. This interface provides a class Tk.canvasTagfrom which the class Turtle inherits. Instances of the Turtleclass have as attributes (instance variables) the coordinates xand y, an angle ang, and a 
ag pen. Turtles move and turn onthe screen on receipt of messages and leave a trail if the pen
ag is set. The init method places a turtle in the center of itsassociated canvas and applies its method display for Tk inter-facing. Methods up and down set the pen 
ag. Methods left(A)and right(A) take an argument A in degrees and update thecurrent angle ang accordingly. Method forward(D) moves theturtle forward by D units. The explicit coercions I2F and F2Iare used to convert between integers and 
oats.Modeling Objects in Kernel Oz. We now sketch how Oz objects are modeled by the kernellanguage. Objects are procedures that reference a cell whose content designates the current state.A cell is the primitive that incorporates stateful computation into Oz. Cells may be seen aslocations which can be atomically updated (see Section 5).The object's state is a record whose �elds are the object's attributes. Lexical scoping guaranteesencapsulation of the state. After executing a class de�nition as for Turtle, the prede�ned procedureNew can be used like {New Turtle init T} to create an instance T of Turtle and send it the initialmessage init. Since objects are procedures, message sending amounts to application, for example:{T forward(50)} {T left(90)}At any point in time, the current state of an object is designated by the logic variable in its cell.On receipt of a message like forward(50), the cell is updated to hold a fresh logic variable OutStateand the method selected by the label of the message (forward) is scheduled to compute the newstate, which is put in OutState:case {DetB InState} then {Method InState Msg Object OutState} endThis conditional defers the execution of the method until the object's current state is available(i.e., until the DetB test succeeds). This setup results in a queue of messages waiting for mutually-exclusive access to the object's state. Note that messages are enqueued even if the current stateof the object is not yet available, i.e., if its cell holds an unbound variable. A message queue maybe depicted as: s1 s2 s3 s4m1 m2 m3where the circled states have become available, s4 is the current state, and methods m1 throughm3 have been scheduled to compute the state sequence s1 through s4. Note that the methods mayexecute concurrently. Methods are modeled as procedures {Method InState Msg Object OutState}computing an output state from an input state, a message, and the object invoking the message(the self reference). The body of a method threads the input state through attribute accesses,assignments and method applications to ensure the correct sequentialization of state accesses ina concurrent context:InState OutState@ <- <<>> @access assign method application accessS1 S2 S39



Attribute access, assignment and method application is modeled as application of the procedures�@�, �<-� and �<<>>�, accordingly, to an intermediate state. E.g., {`<-` InState A V OutState}waits until InState is determined, checks InState for the �eld A and then computes OutState byreplacing InState's value at A by V. By using the expression <<display>> inside a method body, themethod display is called without relinquishing the exclusive access to the state. This is realizedby threading the intermediate state through the body of the called method, in the same way asfor state accesses.5 The Oz Programming ModelThis section brie
y summarizes the ingredients of the Oz ProgrammingModel OPMwith its exten-sion by encapsulated search, and relates them to the programming abstractions above [Smo95a].For more background, see [Smo94, Smo95b, HSW95, SS94]. The paradigms are compared on thecalculus level in [NM95b, Nie96].Concurrent Constraints. The core of OPM is similar to Saraswat's concurrent constraintmodel [Sar93], providing for concurrent control and synchronization via logic variables.E ::= local x in E end j E ^ F j C j if C then E else F fiC ::= x= y j x= f(y) j : : :Computation in OPM takes place in a computation space hosting anumber of tasks (also called actors) connected to a shared store. Com-putation advances by reduction of tasks which can manipulate the storeand create new tasks. When a task is reduced it disappears. As com- Task � � � TaskStoreputation proceeds, the store accumulates constraints on variables in the constraint store.Concurrent composition E ^ F and declaration local x in E end provide the glue for tasks E andF . Reduction of E ^ F yields two tasks E and F , and reduction of local x in E end generates afresh variable y and reduces to E[y=x]. Reduction of a constraint C (tell) advances the constraintstore S to the logical conjunction S ^ C, provided S ^ C is consistent. Otherwise, the constraintstore is not changed and failure is announced.Conditional tasks are the observers of the constraint store (ask). Telling a constraint communicatesit to all tasks, while asking means to synchronize on the constraint in the store. Assuming C inthe constraint store, the conditional if D then E else F fi reduces to E if C logically entails D,and to F if C and D are inconsistent. Otherwise, the conditional cannot reduce.Higher-Order Abstraction. Procedures in Oz are used to model functions, predicates, meth-ods, and objects. Procedures in OPM are triples of the form �:x=E consisting of a name �, formalargument x and a body E.4 Procedures may be de�ned and applied as follows:E ::= : : : j proc {x y} E end j {x y}Reduction of a de�nition proc {x y} E end binds the variable x to a freshly created name � andenters the procedure �:y=E into the procedure store. An application task {x z} must wait untilthe procedure store contains a procedure �:y=E such that the constraint store entails x=�. Then,it can reduce to the task E[z=y], which is obtained from the procedure body E by replacing theactual argument z for the formal one y.4The restriction to single arguments is for notational simplicity.10



State. OPM supports state by means of cells �:x. A cell represents a mutable binding of a nameto a variable, i.e., a location. There are two primitives for creation of and operation on cells:E ::= : : : j {NewCell x y} j {Exchange x y z}Cells are created by reducing a task of the form {NewCell x y}. Similar to procedure de�nition,reduction of this task picks a fresh name �, binds x to � and enters the cell �:y into a thirdcompartment of OPM's store, the cell store.Cell store observers are tasks of the form {Exchange x y z} which wait until the cell store containsa cell �:u such that the constraint store entails x= �. In that case, the cell binding is updated to�:y and the equation z = u is entered into (told to) the constraint store.Cells plus higher-order procedures are su�cient to give an operational explanation of a powerfulobject system [Smo94, HSW95].Constraint Programming and Search. OPM has been extended to subsume full constraintlogic programming. This is done by means of a non-deterministic choice combinator and a solvecombinator, which together allow to encapsulate search in a concurrent setting [SS94]:E ::= : : : j or E [] F ro j {Solve x E}The task {Solve x E} opens a new, local computation space for reduction ofE in search of solutionsfor x (roughly, in the predicate E(x)). Local computation proceeds just as global computationuntil the local space is either failed or stable. A computation space is called failed after reduction ofa constraint which is inconsistent with the store. Failure is a run-time error unless in a local spacewhere it signals the absence of solutions. Stability of a local space means that the computationhas run to completion and that the global space cannot in
uence the local space. If a stable localspace contains a non-deterministic choice or E [] F ro, it is distributed into two spaces wherethe choice is replaced by its right or left alternative, respectively. Both spaces are returned asprocedures which can be explored with a suitable strategy.6 ConclusionWe have presented and justi�ed multiparadigm programming in Oz by means of programmingexamples and an introduction to the underlying formal model. There are two reasons why multi-paradigm programming is important:� In the theoretical development of computer science, all computational phenomena must beunderstood as aspects of a single underlying model. The design of Oz is an attempt toprovide such a model.� Independently of the theoretical importance of multiparadigm programming, we have to in-vestigate whether it can be realized in a practical system and whether this provides advan-tages over single-paradigm languages such as Prolog. The DFKI Oz system is a realizationof Oz that can be used for many of the tasks for which Prolog is used today.Future research on Oz will be continued in two major directions: to use constraints (e.g., �-nite domains and feature structures) to solve real-world problems and to extend the model fortransparent open distributed programming. 11
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