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Abstract

Production planning is an important task in manufacturing
systems. We consider a real-world capacitated lot-sizing
problem (CLSP) from the process industry. Because the
problem requires discrete lot-sizes, domain-specific meth-
ods from the literature are not directly applicable. We there-
fore approach the problem with WSAT (OIP), a new domain-
independent heuristic for integer optimization which gener-
alizes the Walksat algorithm. WSAT (OIP) performs stochas-
tic tabu search and operates on over-constrained integer pro-
grams. We empirically compare WSAT (OIP) to a state-of-
the-art mixed integer programming branch-and-bound solver
(CPLEX 4.0) on real problem data. We find that integer
local search is considerably more robust than MIP branch-
and-bound in finding feasible solutions in limited time, and
branch-and-bound can only solve a sub-class of the CLSP
with discrete lot-sizes. With respect to production cost, both
methods find solutions of similar quality.

Introduction
Production planning is an important task in manufacturing
systems and gives rise to a variety of optimization prob-
lems. Here we study a real-world lot-sizing problem from
the process industry (manufacturing of chemicals, food,
plastics, etc.). The problem is expressed as follows: given
a set of products and a collection of customer orders with
due dates, construct a minimal-cost production plan such
that all orders are met in time without exceeding resource
capacity. The total cost of a plan consists of inventory and
labor costs.

The problem under consideration is similar to the well-
studied capacitated lot-sizing problem (CLSP, see (Drexl
& Kimms 1997) for a survey) but includes the require-
ment of discrete lot-sizes that prevents a direct application
of domain-specific methods from the literature (Diabyet
al. 1992; Kirca & Kökten 1994; Hindi 1996). We there-
fore approach the problem with a new domain-independent1This study was carried out during a visit of the first author
at i2 Technologies. Copyrightc
1998, American Association for
Artificial Intelligence (www.aaai.org). All rights reserved.

heuristic for integer optimization, WSAT (OIP), and empir-
ically compare it to a commercial mixed integer program-
ming (MIP) branch-and-bound solver (CPLEX 4.0).

The first part of the paper introduces the WSAT (OIP)
heuristic and the constraint class on which it operates,
over-constrained integer programs (OIPs). WSAT (OIP) is
a straightforward extension of the WSAT (PB) heuristic
(Walser 1997) from binary variables to variables ranging
over finite integer domains. While both methods generalize
the stochastic Walksat algorithm for propositional satisfia-
bility (Selman, Kautz, & Cohen 1994), their refined strat-
egy for move selection follows principles from tabu search
(Glover & Laguna 1993). By using an algebraic problem
specification as input, suchinteger local searchmethods are
potentially applicable to a range of optimization problems
of practical importance. This calls for investigating the ef-
fectiveness of such heuristics by empirical comparison with
established methods.

The second part of the paper describes a case study of
WSAT (OIP) on a large CLSP with discrete lot-sizes and
fixed charges. We compare the experimental results on
real data toCPLEX applied to a tight integer programming
model. We find that MIP branch-and-bound can only solve
a sub-class of the CLSP with discrete lot-sizes, namely the
problem where fixed charges and lot-sizes are equal. Fur-
ther, WSAT (OIP) is considerably more robust thanCPLEX

in finding feasible solutions in limited time, in particular as
the capacity constraints are tightened. With respect to pro-
duction cost, both methods find solutions of similar qual-
ity. We examine fixed-capacity and varied-capacity prob-
lems. Using a Lagrangean relaxation technique we provide
lower bounds that prove that the fixed-capacity problems
are solved with near-optimal overall cost. We show that
substantial savings can be achieved by varying capacity.

Part I. Integer Local Search

Many domain-specific heuristics for problem classes like
set-covering, generalized assignment, or time-tabling ex-
ist in the operations research literature. In contrast, only
few general purpose heuristics for integer programming



have been described that aim at covering a broader range
of combinatorial problems. These heuristics are of two
kinds, (i) approaches based on linear programming which
relax the integrality constraints (Aboudi & Jörnsten 1994;
Løkketangen, Jörnsten, & Storøy 1994; Glover & Laguna
1997; Balas & Martin 1980), and (ii) techniques in which
local moves are performed directly in the space of inte-
ger solutions, such as simulated annealing (Connolly 1992;
Abramson, Dang, & Krishnamoorthy 1996) and stochas-
tic local search (Walser 1997). We will refer to the second
class of heuristics asinteger local searchmethods.

In this paper we generalize WSAT (PB) (Walser 1997)
from 0-1 variables to finite domain integer variables, in-
troducing WSAT (OIP). For reasons of its variable selec-
tion strategy, WSAT (OIP) operates on over-constrained in-
teger programs (OIPs) instead of classical integer programs
(Nemhauser & Wolsey 1988). Unlike integer programs
(IPs), OIPs represent the overall optimization objective by
competing sub-objectives instead of using a single objective
function. Similarly as discussed in the context of constraint
hierarchies (Borning, Freeman-Benson, & Wilson 1996),
OIPs encode optimization objectives with soft constraints.

Over-Constrained Integer Programs
We define a constraint system of hard and soft inequalities
and equations over integer variables as anover-constrained
integer program. Here, we consider the special case where
all constraints are linear and the system can be denoted in
matrix notation as Ax � bCx � d (soft)xi 2 Di: (1)A andC are real valued coefficient matrices,b;d are real-
valued vectors, andx is the variable vector, all variablesxi
ranging over finite integer domainsDi.1 The objective is
to minimize some measure of the overall violation of soft
constraints, subject to the hard constraints. Given an eval-
uation functionk:k to measure the overall violation of soft
constraints, (1) is interpreted as the following optimization
problem.

min kCx� dk
subject toAx � b; xi 2 Di: (2)

The following sections describe WSAT (OIP), a local search
heuristic to find approximately optimal solutions to over-
constrained IPs.1We will refer to a problem of the form (1) as being inmin
normal form. Every OIP minimization problem can be converted
into min normal form by multiplying every ‘incorrect’ inequality
(e. g.� instead of�) by �1 and converting every equality into
two inequalities. Input to WSAT (OIP) is not required to be in
min-normal form.

The Variable Selection Cycle ofWSAT (OIP)
WSAT (OIP) is an iterative repair heuristic. Starting with a
random variable assignment, individual variable/value pairs
are iteratively selected to be changed, thereby moving in
the space of feasible and infeasible solutions. Generaliz-
ing from the Walksat algorithm (Selman, Kautz, & Cohen
1994), variable changes are selected in a two-stage process
of first randomly selecting an unsatisfied (hard or soft) con-
straint for partial repair and within the constraint selecting
a variable to be changed. The criterion for move selection
is to perform hill-climbing on ascorewhich reflects both
the degree of infeasibility and the optimization objective.

A move of WSAT (OIP) consists oftriggering the value
of a finite domain integer variable to a smaller or greater
value close to its current assignment. This extends
WSAT (PB) in which Boolean variables areflipped(com-
plemented). Occasionally, a restart with a new initial as-
signment takes place to escape from local optima, typically
after a fixed number of moves. To describe the move se-
lection strategy for over-constrained IPs in more detail, we
first need a score definition. Given a particular assignmentx, we define a score to evaluate a system of the form (1) as

score(x) = kb�Axk� + kCx� dk (3)

We employ a simple evaluation functionk:k which scores
each violated constraint in proportion to its degree of viola-
tion: kvk := Pimax(0; vi). Additionally, the score com-
putation (3) uses a vector� � 0 for weighting the violations
of hard constraints, defined bykvk� := Pimax(0; �ivi).
These weights can be statically assigned or dynamically up-
dated during the search (Selman & Kautz 1993). The re-
ported experiments were all performed with statically as-
signed weights.

Observation of the two-stage move selection strategy
motivates the use of OIP encodings for integer local search:
In the constraint/variable selection, the selected constraint
induces a choice of moves leading towards a local goal (i. e.
satisfying the constraint). In contrast with standard IP en-
codings, decision alternatives in OIPs are grouped together
within one sub-objective and are evaluated in direct compe-
tition. We hypothesize that this helps to focus the search.

Local Moves
The remaining degrees of freedom are how to select a vari-
able from within a clause and which new value to assign
to it. The fundamental principle behind WSAT (OIP) is
greediness: Select local moves that most improve the total
score. Additionally, adaptive memory (Glover & Laguna
1993) and noise are employed to overcome local minima.
Figure 1 outlines the variable selection strategy in detail.
As has been reported for SAT local search (McAllester,
Selman, & Kautz 1997; Parkes & Walser 1996), the de-
tails of the variable selection are important for performance.
The described strategy includes a tabu mechanism (Glover



1. Randomly select an unsatisfied constraint� (with
probability phard a hard constraint, and with1 �pharda soft constraint).

2. From�, select all variables which can be changed
such that�’s score improves. For each such vari-
able, select one or more�-improving values and
compute the hypothetical total scores (finite domain
integer variables are triggered up or down, Boolean
variables are flipped).

3. From the selected variable-value pairs, remove the
ones which aretabu(tabu-aspiration by score).

4. Of the remaining variable-value pairs, select one
which most improves the total score, if assigned.
Break ties according to i)frequencyand ii) recency

5. Only if the total score cannot be improved: With
probability pnoise, select a random�-improving
non-tabu variable-value pair. With1 � pnoise, se-
lect the best possible one.

Figure 1: A move selection strategy for WSAT (OIP).

& Laguna 1993) with tenure of sizet: No variable-value
pair may be assigned that has been assigned in the previ-
oust moves. Further, all ties between otherwise equivalent
variable-value pairs are broken by a history mechanism: On
ties, choose the move that was chosen i) least frequently,
and then ii) longest ago. The experimental results section
reports on parameter settings.

Part II. Production Planning
The problem under consideration can be classified as
single-level, dynamic-demand capacitated lot-sizing prob-
lem (CLSP) with discrete lot-sizes and fixed charges. Given
is a set of products and a number of customer orders (or
forecasted demands) with due dates on a finite planning
horizon. The goal is to compute a minimal-cost production
plan such that all customer orders are met in time. No late-
ness or shortage of orders is permitted. Products (oritems)
can be produced in discrete periods of the planning hori-
zon (weeks). Because production consumes resources and
resources have limited capacity, items often have to be pro-
duced earlier than needed and carried to the period where
they are shipped. Such carrying incurs inventory cost (op-
portunity cost of capital and storage cost) which is one of
two cost factors in the problem considered here. Solving the
CLSP optimally is known to be NP-hard (Bitran & Yanasse
1982). Table 1 specifies the problem parameters.

The CLSP considered here has two particularities: (i)
Items can only be produced in predefined quantities (lots)
and setup costs are compensated by economic production
quantities (EPQs). At any time, production of itemi is pos-
sible in quantities of 0 orEi+k �Li, wherek � 0,Li is the

Index Definitioni Index for items/products.t Index for time periods.
Symbol DefinitionLi Lot-size of producti.Ei Economic production quantity of producti.Dit Demand of producti in time periodt.Tt Total labor units available in time periodt.Ri Unit labor requirement for producti.Ci Cost of carrying producti per unit/period.
it Future demand of producti starting periodt.T Number of periods.N Number of items.S cost per labor shift.

Table 1: Parameters for the CLSP with discrete lot-sizes
and fixed charges (EPQs).

lot-size andEi is the EPQ for itemi (every EPQ is a multi-
ple of the lot-size). (ii) The only resource is labor, available
in either one or two shifts in any period. The amount of
available labor has an associated cost (labor availability and
consumption are expressed in cost units). Thus, production
cost is equal to the sum of labor and inventory costs.

In the problem, labor capacity can be varied between one
and two shifts. Because less capacity enforces earlier pro-
duction of items, a tradeoff exists between labor and inven-
tory costs. Because labor costs dominate inventory costs,
reducing labor is critical to substantially save costs. How-
ever, due to practical considerations it is not acceptable to
have too many labor level changes; thus the number of la-
bor level changes considered was limited to 2 in our exper-
iments. To optimize the overall problem, we take the ap-
proach to solve a series of capacitated lot-sizing problems
with different ‘labor profiles’ and choose the best solution,
as follows.

Labor Profiles Labor consumption varies between items
and is expressed by parametersRi in terms of resource con-
sumption per production of one unit of itemi. In any periodt, the total labor consumption is limited byTt, available in
one or two shifts. One shift incurs a per-week cost ofS,
two shifts incur2S. A labor profile thus corresponds to a
setf(t; Tt) j 1 � t � T; Tt 2 fS; 2Sgg. Possible labor
profiles are restricted to the pattern 2-shifts/1-shift/2-shifts
and can be denoted by an interval[s1; s2] referring to pe-
riods s1 : : : s2 on one shift, and periods1 : : : s1 � 1 ands2+1 : : : T on two shifts. The cost of a labor profile[s1; s2]
is thus(T � (s2� s1 + 1)) � 2S + (s2� s1 + 1) � S:

Every labor profile has an optimal inventory cost. If la-
bor could be freely varied, the labor availability would have
to be modeled with problem variables. However, since the
number of allowed labor profiles is small, we factored the



labor variability out from the optimization problem and ap-
proached the problem by solving each permitted labor pro-
file, optimizing one CLSP at a time. Possible shift bound-
aries[s1; s2] were generated starting withs1 = 1 and an
initial one-shift period lengthl (s2 = s1+l�1). Iteratively,s2 was then increased as long as WSAT (OIP) found feasi-
ble solutions for the resulting CLSP (forCPLEX, as long
as infeasibility was not proved). If no feasible solution was
found (forCPLEX, if infeasibility of the profile was proved),s1 was increased to the next period ands2 was reset.

The two different integer solvers require different alge-
braic models which are described in the following.

Integer Local Search Model
The integer local search model is straightforward. Produc-
tion quantities per item and time period are expressed by
finite domain variablespit that range over the allowed pro-
duction quantities (and are bounded by the summed future
demand
it):pit 2 fp � 
it j p = 0 _ p = Ei + k � Lg
wherek = 0; 1; 2; : : : , for every itemi and time periodt
and
it is determined as
it =Pt�s�T Dis:

To formulate the constraints, we will make use of the ab-
breviationS[i; t] representing the amount of producti car-
ried in inventory in time periodt (textually substituted in
the constraints):S[i; t] = tXs=1 pis �Dis
The formulation is as follows.S[i; t] � 0 8i; t (NOH)Xi Ri � pit � Tt 8t (CAP)

soft:Ci � S[i; t] � 0 8i; t (INV)

Negative-on-hand constraints (NOH) ensure that all orders
are met in time. Capacity constraints (CAP) express that
available labor capacity is not to be exceeded. The soft
constraints (INV) express the competing objectives of min-
imizing inventory costs; for every item and time period, the
inventory cost from carrying material has to be minimized.
For every feasible solution, the resulting objective (the to-
tal inventory cost) is the summed violation of all soft con-
straints measured by our definition ofk:k in (2). Using fi-
nite domain variables to model production, the local search
progresses by moving production up or down in allowed
quantities induced by the violated constraints.

0-1 Integer Model The first modeling attempt used an
over-constrained 0-1 integer model with a logarithmic en-
coding of production quantities (Eix1 + Lix2 + 2Lix3 +4Lix4 + : : : ). In addition to the blowup of the number of

SetsSKU Set of products (stock keeping units).
SKU1 Set of products for which lot-size (Li) is equal

to economic production quantity (Ei).
SKU2 Set of products for which lot-size is a multiple

of economic production quantity.
Variablessit Amount of producti carried in inventory in time
periodt.xit Amount of producti produced in time periodt.yit Number of lots of producti produced in time
periodt.zit Binary variable which is unity if producti is
produced in time periodt.

Table 2: Sets and decision variables for the MILP model.

variables for this model, running WSAT (PB) did not yield
solutions of acceptable quality. We put this failure down to
the fact that with a logarithmic encoding, a small change of
production often requires a long sequence of local moves.
For example, an increase from2k�1 to 2k lots can only be
achieved by flippingk + 1 variables. This appeared to be a
strong hindrance of the search process.

Mixed Integer Programming Model

This section requires some familiarity with integer
programming terminology, as covered for example in
(Nemhauser & Wolsey 1988). The sets and variables de-
fined in the mixed integer programming model (MILP) are
given in tables 1 and 2. The problem formulation (P) is as
follows. P : minxit;yit;zit;sit NXi=1 TXt=1 Cisit (4)

subject toxit + si;t�1 = Dit + sit 8i; t (5)xit = Liyit 8i 2 SKU1 (6)xit = Eizit + Liyit 8i 2 SKU2 (7)Eizit � xit � 
itzit 8i 2 SKU2 (8)tXk=1 xik � Lid tXk=1Dik=Lie 8i 2 SKU1; t (9)t�1Xk=1 xik � t�1Xk=1Dikzit + tXk=1Dik(1� zit)8i 2 SKU2; t (10)Xi Rixit � Tt 8t (11)zit 2 f0; 1g; yit integer



In the MILP model, equation (4) represents the sum of
total inventory carrying costs. Equation (5) is the material
balance in each time period and equations (6)-(7) determine
the total production quantity of each product in time periodt. Note that binary variables are only defined fori 2 SKU2.
Equation (8) states that ifzit is non-zero, then the minimum
amount (EPQ) must be produced, and cannot exceed the
bound
it (only for items inSKU2).

Equations (9)-(10) represent constraints that tighten the
relaxation gap between the integer solution and the LP re-
laxation of the problem. Equation (10) states that if producti is produced in periodt, then the total amount produced
up to periodt� 1 must meet the total demand up to periodt� 1. However, if the product is not made in periodt, then
the amount produced up to periodt � 1 must meet the de-
mand up to periodt. From our observation, this equation
reduces the relaxation gap significantly and helps reduce
the number of nodes branched on in a branch-and-bound
solution method. Finally, equation (11) represents the labor
constraints that link the problems across all products.

Due to the modelling of discontinuous integer values
(xit 2 f0; Ei; Ei+Li : : : g) for itemsi 2 SKU2 with binary
variableszit, solving large problems is extremely expen-
sive. We therefore attempted a Lagrangean relaxation tech-
nique (see (Beasley 1993) for an overview of Lagrangean
relaxation) where the problem is decomposed by relaxing
the equations (11) to obtain the value of binary variables
and then solving problem (P) for fixed value of binary vari-
ables, thereby solving subproblems that are less expensive
to solve in each step.

Lagrangean Relaxation Approach

The Lagrangean relaxation method used for solving the
problem (P) relaxes the complicating constraints (11) using
Lagrange multipliers, thus resulting in a relaxed problem
that is decomposable for eachi. The relaxed problem (PL)
is as follows

PL: minxit;yit;zit;sit[ NXi=1 TXt=1 Cisit]� TXt=1 �t NXi=1(Rixit � Tt)
subject to Equations (5)-(10).
Thus, (PL) is a relaxation of (P) and represents a lower

bound to the solution of (P). Since (PL) is decomposable
with respect toi, each subproblem is combinatorially less
complex, and can be solved to determine the variableszit.
Then, for fixed values ofzit, the problem (P) may be solved
to determine a specific solution that is an upper bound to the
solution of (P). We note that due to the discrete lot-sizes, the
integer solution of (P) may result in slacks in equation (11)
and therefore may result in all multipliers of value zero (to
satisfy complementary slackness). Therefore, the multipli-
ers�t for the next iteration were obtained from the LP re-
laxation of (P). The problem is then solved iteratively until

the bounds converge. Note that the bounds are not guar-
anteed to converge as there may be a duality gap due to
discrete nature of the problem.

Restricting the Problem: Li = Ei
It is comparatively easier to solve the problem whenxit
has no discontinuous discrete integer values. Thus, with
the assumptionLi := Ei 8i 2 SKU2, binary variableszit and equations (8) and (10) can be eliminated from the
formulation. Restricting a given problem instance increases
the lot-sizes for all products inSKU2, thereby reducing the
set of feasible solutions. As we could not find solutions
to the unrestricted problem withCPLEX, we used restricted
models for all experiments with IP branch-and-bound. The
restricted problem is a sub-class of the original problem.

Experimental Results
The experimental results reported in this section are based
on a study of real data for 190 items and 52 weeks pro-
vided by a client of i2 Technologies from the process in-
dustry. The OIP model resulting from the given data is
large: 7520 finite domain variables (average domain size
10) and 3047 constraints (average number of variables 30,
1525 constraints soft). To summarize the experimental re-
sults from the viewpoint of the client, what has the study
achieved? (i) It found a solution which is provably within
1.4% of the optimal total cost for constant labor (two shifts),
which (ii) shows that substantially cutting down cost re-
quires reducing labor. (iii) It showed that labor can be re-
duced to one shift in up to 25 weeks with over 15% potential
savings of total cost (or USD 1.9 million).

Comparison of Solvers

Table 3 reports the best solutions found byCPLEX and
WSAT (OIP) in limited time and for different labor profiles.
The table divides horizontally and vertically, distinguishing
the original from the restricted model and the fixed-capacity
from the varied-capacity case.

real problem restricted problem
cost WSAT (OIP) CPLEX WSAT (OIP)
profile fixed capacity, two shifts (230K)
labor 11,960,000 11,960,000 11,960,000
inventory 1,023,106 1,120,680 1,040,373
total 12,983,106 13,080,680 13,000,373
profile one shift [28,52] one shift [30,51]
labor 9,085,000 9,430,000 9,430,000
inventory 1,961,049 1,715,043 1,819,634
total 11,046,049 11,145,043 11,249,634

Table 3: Computational results with WSAT (OIP) and
CPLEX 4.0. The restricted model forcesLi := Ei.
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(a) CPLEX on the restricted MILP model.
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(b) WSAT (OIP) on the over-constrained IP model.

Figure 2: Solutions for various labor profiles. Each impulse
represents the total cost of the best solution found at one
labor profile (start/size coordinates correspond to profiles[start, start+size�1], the vertical axis is overall cost).

With respect to overall quality, the best solutions among
all profiles obtained from both methods are approximately
equal (WSAT (OIP) leading by less than 1% of the total
cost, or USD 98,994). In the experiments, the runtime of
WSAT (OIP) was limited to 10 minutes,CPLEX and was al-
lowed 15 minutes for optimization and was cut-off after 30
minutes in case no feasible solution was found. All exper-
iments were performed on a Sun Sparc Ultra II. Run-times
were kept short because many labor profiles had to be ex-
amined to find solutions of good overall quality.

Figure 2 visualizes the experiments across different la-
bor profiles. The right edge of the triangle reflects the fact
that the size of the one-shift period must decrease as week
52 is approached, because the planning horizon is finite.
On the restricted model,CPLEX could not find a solution
with more than 22 one-shift periods in the given time while
WSAT (OIP) was able to solve a problem with 25 one-shift
periods. In general,CPLEX had difficulties to find feasi-
ble solutions as the labor constraints were tightened: Of
115 profiles solved by WSAT (OIP), CPLEX only solved 68
profiles (59%) within the given time limit (for compari-
son, WSAT (OIP) could still solve 100 given the restricted

model). For the profiles that could be solved with both
methods, WSAT (OIP) found better solutions in 41 cases;
CPLEX found better solutions in 22 cases, despite the fact
that it was applied to the restricted model. In the cases
where WSAT (OIP) [CPLEX] was better, on average it im-
proved overCPLEX [WSAT (OIP)] by 3.7% [1.3%] with re-
spect to pure inventory cost.

Parameters CPLEX was run with standard parameter set-
tings. In all experiments with WSAT (OIP), the following
parameters were used: Initial production was set to zero
(pzero = 1), and a number of 10 tries were performed,
each with 100K moves. Allowed variable triggers were lim-
ited to 2 steps up or down the current variable value. Hard
constraints were repaired with high priority (phard= 0:9).
Random moves appeared to deteriorate the solution qual-
ity, therefore we setpnoise = 0. A long tabu tenure ap-
peared to be important to find feasible solutions for prob-
lems with very tight capacity (t = 100). Constraint weights
were critical to obtain good feasible solutions and were as-
signed statically: The hard NOH constraints were weighted
with a large number, expressing a preference to keep NOH
constraints satisfied. In contrast, CAP constraints were
weighted below1:0 so that temporarily violating them dur-
ing the search was encouraged.

Lower Bounds

To assess the quality of the solutions, we applied bound rea-
soning based on Lagrangean relaxation as described above.
We used a relaxed labor profile of constant 300K, which is
over two shifts per week and therefore an unrealistic prob-
lem. For a precise estimate of the solution quality, table
4 reports pure inventory costs based on this profile for the
different methods. Using Lagrangean decomposition, we
found solutions to the relaxed labor profile, but unfortu-
nately could not find solutions for realistic capacity con-
straints. Table 4 also indicates that WSAT (OIP) is still con-
siderably away from the best Lagrangean relaxation based
solution (3.4% of inventory costs). With respect to the over-
all cost of this profile, the difference vanishes (0.2%). The
reported lower bound is valid also for the original problem
with constant two-shift labor, because the 300K-problem is
a relaxation of the original problem.

Solution/bound (Tt = 300K) type value
Best IP solution restricted 986,780
Best solution from WSAT (OIP) restricted 973,834
Best solution from WSAT (OIP) original 942,511
Best Lagrangean solution original 911,960
Best valid lower bound original 839,875

Table 4: Solutions (inventory cost) based on a fixed-
capacity labor profile of 300K in all weeks.



Conclusions
We have studied a real-world capacitated lot-sizing prob-
lem (CLSP) from the process industry. Because the prob-
lem includes discrete lot-size requirements not reported in
the CLSP literature, existing domain-specific methods are
not directly applicable. We therefore approached the prob-
lem with WSAT (OIP), a new domain-independent local
search method for integer optimization. WSAT (OIP) oper-
ates on over-constrained integer programs and generalizes
the WSAT (PB) heuristic. We experimentally compared the
results to a commercial mixed integer programming solver.

While exact techniques for general purpose integer op-
timization (such as IP branch-and-bound) are widely re-
searched and developed into industrial tools (such as
CPLEX), few domain-independent heuristics for combina-
torial optimization have been described. In this paper, we
have presented a new local search heuristic for integer op-
timization and evaluated its performance on a capacitated
production planning problem. Although the research on in-
teger local search (ILS) is only at its beginning, the empir-
ical results are promising: Integer local search can solve a
CLSP with discrete lot-sizes of which a commercial MIP
solver can only solve a sub-class. In terms of robustness,
WSAT (OIP) is superior toCPLEX on the given data, in par-
ticular as the capacity constraints are tightened. The ILS
model is simpler than the MIP model, and with respect to
solution quality, the techniques are on par.
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