DOMAIN-INDEPENDENTLOCAL SEARCH
for LINEAR INTEGEROPTIMIZATION

JOACHIM PauL WALSER

DISSERTATION
ZUR ERLANGUNG DES GRADES
DOKTOR DER INGENIEURWISSENSCHAFTEN
DER TECHNISCHEN FAKULTAT
DER UNIVERSITAT DES SAARLANDES

SAARBUCKEN, OCTOBER 1998

Copyright(© October 1998, JACHIM PAUL WALSER

Programming Systems Lab
Universitat des Saarlandes, 66041 Saarbriicken, Germany

walser@ps.uni-sb.de
http://www.ps.uni-sb.de/~walser

This document was prepared with LaTeX.

PRUFUNGSAUSSCHUSY EXAMINING COMMITTEE:

Erstgutachter: ROF. DR. GERT SMOLKA

Zweitgutachter: [®. HENRY KAUTZ, AT&T SHANNON LABS
Vorsitzender: ROF. DR. JORG SIEKMANN

Dekan: RROF. DR. WOLFGANG PauL

Tag des Kolloquiums: 26. KrOBER 1998

Abstract

Integer and combinatorial optimization problems congitumajor challenge for
algorithmics. They arise when a large number of discretarumgtional decisions
have to be made, subject to constraints and optimizatioerizi

This thesis describes and investigates new domain-indigmeocal search
strategies for linear integer optimization. We introducsAMoIP), an inte-
ger local search method which operates on an algebraicgmoldpresentation.
WsAT(01P) generalizes Walksat, a successful local search procéoiupeoposi-
tional satisfiability (SAT), to more expressive constraystems.

For this purpose, we introduce over-constrained integegnams (OIPs), a
constraint class which is closely related to integer progaOIP allows for a nat-
ural generalization of the principles of SAT local searchnteger optimization.
Further, it will be shown that OIPs are a special case of gitéigear programs
and permit combinations with linear programming for bouldhputation, ini-
tialization by rounding, search space reduction, and bdégitesting. The repre-
sentation is similar enough to integer programs to make ftisgisting algebraic
modeling languages as front-end to a local search solvempmve performance
on realistic problems, WAT(0IP) incorporates strategies from Tabu Search.

We experimentally investigate $AT(01P) for a variety of realisic integer op-
timization problems from the domains of time tabling, spatheduling, radar
surveillance, course assignment, and capacitated ptioduglanning. The ex-
perimental design examines efficiency, scaling (with iasieg problem size and
constrainedness), and robustness. The results demerib@ginteger local search
can outperform or compete with state-of-the-art integegpmamming (IP) branch-
and-bound and constraint programming (CP) approachesete throblems in
finding near-optimal solutions.

Key findings of our empirical study include that integer loe@arch is able to
solve difficult constraint problems from time-tabling amqubas scheduling when
cast into a 0-1 representation, which are beyond the scdpelwainch-and-bound
strategies and for which devising robust constraint pnogres a non-trivial task.

For several realistic optimization problems (0-1 integeat inite domain) we
show that integer local search exhibits graceful runtineisg with increasing
problem size and constrainedness. It can therefore significoutperform IP
branch-and-bound strategies on large or tightly constthproblems in finding
near-optimal solutions. The problems under consideratrermostly beyond the
limitations of a previous general-purpose simulated almgatrategy for O-1 in-
teger programs.

Zusammenfassung

Ganzzahlige und kombinatorische Optimierungsproblegliesteine schwierige
Herausforderung im Gebiet der Algorithmen dar. Sie tretédnwenn eine grol3e
Anzahl diskreter organisatorischer Entscheidungen uB#égiicksichtigung von
Constraints und Optimierungskriterien zu treffen sind.

Diese Arbeit beschreibt und untersucht neue, domanehéngige Strategi-
en der lokalen Suche zur ganzzahligen linearen Optimierwig beschreiben
WsAT(0IP), eine Strategie “ganzzahliger lokaler Suche”, die auéealgebrai-
schen Problemreprasentation operiersAM01P) verallgemeinert Walksat, eine
erfolgreiche Prozedur lokaler Suche fur das Erfullbasgpeoblem der Aussagen-
logik (SAT), auf ausdrucksstarkere Constraint-Systeme.

Fur diesen Zweck fuhren wir die Klasse der “Over-considi Integer Pro-
grams” (OIPs) ein, eine Constraint-Klasse, die eng mit gahlzgen Program-
men verwandt ist. OIPs erlauben einerseits eine natiégrMenallgemeinerung der
Prinzipien von lokaler Suche fur SAT. Andererseits sing ain Spezialfall der
ganzzahligen linearen Programme und ermoglichen die Kaetibn mit linearer
Programmierung zur Berechnung von Schranken, Initialisig durch Rundung,
Suchraum-Reduktion und fur Gultigkeits-Tests. OIPsl gjanzzahligen Program-
men ahnlich, so dal3 existierende algebraische Modatigmsprachen als Einga-
beschnittstelle fur einen Problemldser benutzt werdiemkn, der auf lokaler Su-
che basiert. Um die Performanz auf realistischen Problereverbessern, ist
WsAT(0IP) mit Strategien der Tabu-Suche ausgestattet.

Wir fuhren eine experimentelle Untersuchung vosAY(o1P) auf einer Rei-
he von realistischen ganzzahligen Constraint- und Optimgsproblemen durch.
Die Probleme stammen aus den Domanen Zeitplan-Erstelgmgrt-Ablaufpla-
nung, Radatdberwachung, Kurs-Zuteilung und Produktions-Planung &xe-
rimentelle Design untersucht Effizienz, Skalierung mit elamender Problem-
grol3e und starkeren Constraints sowie Robustheit. Dygelifrisse zeigen, dald
ganzzahlige lokale Suche beziglich Performanz auf diPseblemklassen zeit-
gemale Ansatze der ganzzahligen Programmierung undoshestr@int-Program-
mierung beim Finden nahe-optimaler Losungen schlagt odeihnen konkur-
riert.

Kernergebnisse der empirischen Untersuchung sind, dafzghlige lokale
Suche in der Lage ist, schwierige Constraint-Probleme a#plan-Erstellung
und Sport-Ablaufplanung in einer 0-1 Reprasentationoaeih, die aul3erhalb der
Grenzen der ganzzahligen linearen Programmierung liagehfur die die Ent-
wicklung eines robustes Constraint-Programms eine nirchéle Aufgabe dar-
stellt.

Fur mehrere realistische Optimierungsprobleme (ganiz@tl und endliche Be-
reiche) zeigen wir, dald ganzzahlige lokale Suche einetmj@nSkalierung der
Laufzeit mit zunehmender ProblemgrofRe und Constrairssdagfweist. Dadurch
zeigt das Verfahren auf grof3en Problemen und auf Problenitestarken Cons-
traints deutlich bessere Performanz fur das Finden natieraler Losungen als
die Branch-and-Bound Strategie der ganzzahligen Programang. Die unter-
suchten Probleme liegen zumeist auf3erhalb der Grenzenestiistierenden Si-
mulated Annealing Strategie fur allgemeine lineare O-dgPamme.

Kurzzusammenfassung

Ganzzahlige und kombinatorische Optimierungsproblerakest eine schwieri-
ge Herausforderung im Gebiet der Algorithmen dar. DiesesAdteschreibt und
untersucht neue, domanenunabhangige Strategien agadefo8uche zur ganzzah-
ligen linearen Optimierung. Wir beschreibensf(oiIP), eine Strategie “ganz-
zahliger lokaler Suche”, die auf einer algebraischen Rrobéprasentation ope-
riert. WSAT(01P) verallgemeinert Walksat, eine erfolgreiche ProzedualekSu-
che fur das Erfullbarkeitsproblem der Aussagenlogik. filMiren eine experimen-
telle Untersuchung von WAT(0IP) auf realistischen, ganzzahligen Constraint-
und Optimierungsproblemen durch (Zeitplanung, Sportaéifglanung, Radar-
Uberwachung, Kurszuteilung und Produktionsplanung). émirischen Ergeb-
nisse zeigen, dal’ ganzzahlige lokale Suche auf diesereftklalssen bezuglich
Effizienz und Skalierung (zunehmende Problemgrofie uettest Constraints)
zeitgemalle Ansatze der ganzzahligen Programmieruagdbrand-bound) und
der Constraint-Programmierung im Finden nahe-optimadsuibhgen schlagt oder
mit ihnen konkurrieren kann.

ACKNOWLEDGEMENTS

First and foremost, | would like to thank my thesis advisoertGemolka, for
his support, guidance and advice during the course of tesareh. With him, |
believe | have learned that striving for simplicity is onetbé sharpest tools to
improve understanding.

| am indebted to Jimi Crawford for much support and encouragg over
the years. Jimi has had a profound influence on my researehtation since
getting me in touch with local search in 1995 at CIRL in Oregégain thanks
for inviting me to an exciting research stay at i2 Technasgnd for making it
possible to connect this research to manufacturing plamioblems.

| am grateful to Henry Kautz for the inspiring work of his gmpat AT&T
Labs, which provided the starting point for this work. It is @xaggeration to say
that without his and Bart Selman’s work on local search, tiesis wouldn'’t ex-
ist. Again thanks for accepting to join my examining comestand for valuable
feedback on a thesis draft.

Several colleagues have contributed to this researchdhrdiscussions, and
| owe them sincere thanks: Martin Henz, whose sharp obsengand ques-
tions pushed me forward through all phases of this work. Madtiller, who has
helped me to sort out many theoretical issues. Andrew Parkeshas shaped my
understanding of local search. Joachim Niehren and CémiSchulte who often
helped me to gain perspective. Martin Henz, Martin Mullexbias Muller, and
Joachim Niehren have provided valuable feedback on draftteins of this thesis.

Thanks to Seif Haridi and Per Brand at SICS for providing thktrapplication
problem at the right time and thereby sparking initial idiemghis work. Seif and
Per also encouraged me when the early algorithms failed @migilsuted through
many discussions. Again thanks to Seif for inviting me toeaghnt stay at SICS.

Many thanks to Alexander Bockmayr and Thomas Kasper at MRidlmable
feedback on integer local search and for pointers to therogaition literature.
At i2 Technologies, | have greatly benefitted from discussiwith people from
the optimization teams, particularly Mukesh Dalal, Rambsdr, and Narayan
Venkatasubramanyan. | thank my co-authors, Ramesh and/&gréor gener-
ously allowing me to include material from a joint publicati | am grateful to
Ravi Gujar, i2 and an i2 client from the process industry foe persistence to
make publication of the production planning study possible

| have enjoyed working with all the members of the Prograngriiystems
Lab, especially Martin Henz, Martin Muller, Tobias Milleloachim Niehren,
Christian Schulte, and Jorg Wirtz. Thanks to all of youifiiroducing me to the
fascinating world of Oz and for providing a pleasant workiemvment. Special
thanks to Ralf Scheidhauer and Michael Mehl for their eXpeidnd patience with
system-related questions.

| would further like to thank: Mike Trick and George Nemhaug® shar-
ing the ACC problem requirements at an early stage, and fooweaging feed-
back. Again thanks to Mike for valuable comments on a drathefACC chap-
ter. Thanks to David Abramson and Marcus Randall for praygdheGPSIMAN
solver of David Connolly, and for valuable hints on its paesens and a search
space reduction technique. Thanks to Mats Carlsson, Pergkreand Antonio
Kruiger for helpful discussions, and to David M. Gay for tgpgs AMPL.

| am deeply grateful to my parents, Irene and Peter, for fbee and support in
good times and bad. And to Christine, for her wise advice andlf the love we
share.

This research was supported by a doctoral scholarship @f¢hésche Forschungs-
gemeinschaft (DFG, German Science Foundation) within tredl@ertenkolleg
Kognitionswissenschaft, Saarbriicken. Many thanks tdR& for establishing
this excellent program. | would also like to acknowledge Almeerican Associa-
tion for Artificial Intelligence for providing three schakhips to participate in the
AAAI conference.

The work in this dissertation was carried out in the compsatéence depart-
ment of the Universitat des Saarlandes at Programminge@ysst.ab between
November 1995 and August 1998, during an internship as a meoflithe op-
timization team of i2 Technologies in Summer 1997, and dyushort visits at
the Computational Intelligence Research Lab, Oregon (1896 the Swedish In-
stitue for Computer Science (1998).

To my mother, Irene

Contents

1 Introduction 1
1.1 Integer Optimization and Heuristics 2
1.2 IntegerLocalSearch 6
1.3 ExperimentalResults 8
1.4 Contributions 11
1.5 ThesisOverview 12
2 Frameworks for Combinatorial Optimization 13
2.1 Integer Programming Branch-and-bound 13
2.2 Finite Domain Constraint Programming 51
2.3 LocalSearch 17
2.4 ModelingLanguages 22
2.5 Search Relaxations and Integer Local Search 23
3 Local Search for Integer Constraints 25
3.1 Over-constrained Integer Programs 26
3.1.1 Definition 28
3.1.2 Relation to Integer Linear Programs 29
3.1.3 Constraint-Bounds 32
3.2 Integer Local Search: $AT(OIP) 32
3.21 TheScore 34
3.22 TheMainLoop 35
3.2.3 Move Selection and Tabu Search Extensions 35
3.3 Combinations with Linear Programming 8 3
3.3.1 BoundsfromLP Relaxations 38
3.3.2 Initialization by Rounding LP Solutions 93
3.3.3 Search Space Reduction using LP Reduced Costs 42
3.3.4 Implementationissues 43
3.4 A Graphical Interpretation 44
3.5 RelatedWork 49
3.5.1 Integer Programming Heuristics 49
3.5.2 Local Search in Constraint Satisfaction 2 5

vii

4 Case Studies Methodology
4.1 Optimization in Practice: Criteria of Success.

4.1.1 Scaling with Increasing Problem Size

4.1.2 Scaling with Increasing Constrainedness

4.1.3 Flexibility and Residual Robustness

4.2 The Problem Class Selection
4.3 The Empirical Comparisons

5 Time-tabling and Sports Scheduling
5.1 The Progressive Party Problem

5.1.1 Problem Description and Formulation

5.1.2 Experimental Results and Comparison.
5.2 The ACC Basketball Scheduling Problem

5.2.1 Double Round Robin Scheduling

5.2.2 Problem Specification of ACC97/98

5.2.3 Integer Local Search Formulation
5.2.4 RedundantConstraints
5.2.5 Previous (Multi-Stage) Approaches
5.2.6 Experimental Results under Varied Constrainedness. .

5.2.7 Minimal Distortion Mirroring
53 Conclusions

6 Covering and Assignment

6.1 Radar Surveillance Covering
6.1.1 Problem Description and Formulation

6.1.2 Experimental Results under Varied Problem Size . . .

6.2 Course Assignment
6.2.1 Problem Description and Formulation

6.2.2 Experimental Results under Varied Problem Size . . .
6.3 Conclusions

7 Capacitated Production Planning
7.1 Capacitated Lot-sizing
7.2 Integer Local Search Formulation

7.3 Mixed Integer Programming Formulation

7.3.1 Lagrangean Relaxation Approach
7.3.2 Restricting the Problem

7.4 ExperimentalResults
7.4.1 ComparisonofResults

7.4.2 LowerBounds
7.5 Conclusions

8 Extensions

8.1 Current Limitations
8.2 An Alternative Scoring Scheme
8.3 FutureResearch

9 Conclusions

A A Complete AMPL Model for ACC97/98
Bibliography

List of Tables

List of Figures

Index

122

134

135

136

Chapter 1

Introduction

THE THESIS

Local search methods as developed for propositional siibfy can be general-
ized to linear integer optimization, yielding a domain-@pe&ndent, efficient and
scalable method for realistic problems. Empirically, illvie shown that the
method is:

domain-independenibecause it is directly applicable to a wide variety of diffi-
cult integer optimization problems when cast in the algebrapresenta-
tion of over-constrained integer programis particular, time tabling, sports
scheduling, radar surveillance, course assignment, gratitated produc-
tion planning will be studied, and representations usirig\v@riables and
finite domain variables will be considered.

efficient because, for the problems under consideration, it perfeemarkably
well in terms of solution quality and runtime, outperformiar competing
with state-of-the-art (i) integer programming branch-édind implemen-
tations, (ii) constraint programming approaches, angdiprevious general
purpose heuristic for 0-1 integer optimization.

scalable because its runtime gracefully increases with increasnogplpm size
and increasing problem constrainedness.

Chapter 1. Introduction 2

This introduction first establishes the context in whiclsthvork is situated
(integer optimization, heuristics, local search) and givgh-level descriptions of
the basic strategy of integer local search and the reprs@mbf over-constrained
integer programs. It then summarizes the experimentaltseand presents an
overview of the organization of this thesis.

This research is situated in the interface between arfifictalligence and
operations research. Since the two fields have been rdlateparated in their
past, terminology conflicts occasionally arise that we atifémpt to point out.

1.1 INTEGER OPTIMIZATION AND HEURISTICS

A major challenge in algorithmics to date is to devise efficimethods for com-
binatorial optimization problems. Combinatorial optimion is the problem of
solving a system of constraints over many discrete varsadohel finding solutions
that maximize or minimize some optimization criteria [1183]. The complex-
ity of many interesting combinatorial optimization profmg is known to beéNP-
hard?

Combinatorial optimization problems vary largely, profatal examples rang-
ing from time-tabling over machine-scheduling to resowibacation. A problem
class that captures a wide range of practically importaoblems is thenteger
linear programming problerfiLP).2 An ILP consists of a set of linear inequalities
(constraints) over integer variables, and a linggjective functiopand is usually
defined [113] as:

(ILP) min{ cx : Ax>b, xe Z },

whereZ" is the set of nonnegative integratlimensional vectors and= (x1,...,
Xn) are the variables. Amstanceof the problem is specified by thata(c, A,b),
with b andc n-vectors andA anm x n matrix, and all numbers are rational (note
that an equality constraint can be represented by two inigsa If all variables
are binary (0-1), the problem is also called 0-1 ILP. Thraughthis thesis, we
assume the optimization objective to be minimizing, andufoon integer pro-
gramming problems witlinear constraints and objective functions. A variable
assignment that meets all constraints is callésbaible solution

A wide variety of methods have been developed for solvingpkdblems and
are the subject of ongoing research in mathematical pragiagh When the in-
tegrality restrictionsx € Z7) of an ILP are relaxed, one obtains the well-studied

1A searchproblemX is NP-hard if for someNP-completedecisionproblemY there is a
polynomial-time reduction frony to X [86].

2The term ‘programming’ dates back to the 1940s, when Daudigsgribed the simplex method
for linear programming. ‘Programming’ was a military terimat, at the time, referred to planning
and scheduling of logistics.

Chapter 1. Introduction 3

linear programming problem (LP) for which polynomial alglbms are known
[91] and efficient implementations exist. ILP methods carkenase of LP re-
laxations in many ways, for instance for lower bounding asibility testing, and
most integer programming (IP) frameworks are based ortitvetg solving LP re-
laxations, e. g. branch-and-bound or cutting-plane aligors [113]. In summary,
ILP provides a good starting point for general-purposerjiation methods.

Domain-Specific vs. Domain-Independent Techniques

There are two orientations of research on optimizationrélyms. First, special-
ized techniques that excel in solving narrow classes ofrapétion problems for
which maximal quality is crucial and development times cambglected. Such
technigues often solve sub-problems of the general ILPlpnojfor example the
Set-Covering ProbletSCP).

LetM = {1,...,m} be afinite setand I§tM; } for j € | = {1,...,n} be a given
collection of subsets d¥l. We say that C | is acoverof M if J;cg Mj =M. In
the set-covering problerg; is a cost associated wiMj, and we seek a minimum-
cost cover [113]. SCP can be formulated as an integer linesgram using 0-1
variablesx; with x; = 1 if and only if j is in the coveP The ILP formulation of
SCP is:

n
(SCP) mir{ cx : Za,-jszl./izl,...,m xe{0,1}"},
=1

wherec is ann-vector, (&) is a 0-1 matrix, and the variables are binary (0-1).
Domain-specific strategies for the set-covering problesrestricted to problems
of the form (SCP) as specified. Incorporating other constisaypically requires
adjusting the algorithms or replacing the strategies aliogr.

In contrast, domain-independent techniques strive to kibfeeand applicable
to a wider range of practical problems without the need oigihéisg strategies on
a class-by-class basis [59]. Such techniques work franodelof a given prob-
lem instance (a representation in a suitable constraisstldhey are of practical
importance because practitioners often lack the necesisaeyand expertise to
research and develop effective special-purpose algasittrarther, in real envi-
ronments, flexibility is often critical to respond to rapidihanging requirements.

Research on domain-independent techniques for combiaktgtimization
has given rise to general-purpose tools in integer progragysuch as a va-
riety of branch-and-bound solvers (e. geEX, LINDO, XPRESSMP, MINTO
to name but a few). More recently, Constraint Programming)(€/stems have
entered the picture that support rapid development of derspecific methods

3x; € {0,1} can be constrained through inequalitigs> 0, —x; > —1.

Chapter 1. Introduction 4

and incorporate an increasing variety of techniques fostramt propagation and
search (e.g. CHIP [42], Oz [136], ILOG solver [119]).

Heuristics and Local Search

Optimization methods can either b&actor approximate While exact methods
perform a systematic search for optimal solutions, appnax¢ methods provide
no theoretical guarantee for finding optimal or even feassalutions. In oper-
ations research, approximate methods are commonly tehaedstics and we
will stay with this usagé. Heuristics concentrate on finding near-optimal solu-
tions quickly, and have received much interest in recentsygae to their practical
success [125, 122, 1, 61].

An important class of heuristics Iecal search[1] which has a long history
for combinatorial optimization and dates back to methodstfe travelling sales-
man problem in the 1950s and 1960s [20, 37, 101]. The key iébab local
search is to start from a solution and iteratively perforraraies to improve it.
There are many variations of local search methods, shanemgammon notion
of local moveswhich are transitions in the space of (feasible and possibly
feasible) solutions, typically according to a strategyt tharks by improving the
local gradientof a measure of the solution quality (a strategy caligidlimbing).
Many variants of local search exist that can be applied tolsoatorial optimiza-
tion problems, prominent examples being simulated anmg485] tabu search
[57, 61], genetic algorithms [112, 62] or the greedy randmdiadaptive search
procedure (GRASP) [127].

In artificial intelligence, local search strategies haweregly seen much suc-
cess for model finding in propositional satisfiability [134, 110, 53, 133] and
a variety of applications to combinatorial problems haverbeeported [131, 35,
127, 54, 92]. Local search strategies of this kind are alfect#erative repair
[107, 152, 134]: Given a problem that is stated in terms ofabdes and con-
straints, one first generates some initial assignment obakbles, normally vio-
lating a number of constraints. Subsequently, variableesére changed in order
to reduce the number of conflicts with the constraints, nerder torepair the
current variable assignment.

Heuristics for Integer Optimization

Most heuristics for integer optimization are dedicated specific problem (like
set-covering or job-shop scheduling) and often excel imseof the quality of
solutions found and efficiency. Perhaps surprisingly, daly efforts have been

“Note that in artificial intelligence, the term ‘heuristicmmonly refers to a ‘rule-of-thumb’
decision strategy of an algorithm.

Chapter 1. Introduction 5

made to devise heuristics that target a wider range of caabdiial optimization
problems and operate on problem representations usingraots.

Recently, several general-purpose heuristics have besenilded which aim at
solving general ILP problems (some being extensions of tbeegring work by
Balas and Martin [9]). These heuristics are of two typesafiproaches which
relax the integrality constraints and primarily operate camtinuous variables
[9, 3, 103, 59, 61] (e.g. by solving the linear program foléaby special pivot
moves), and (ii) local search methods in which the local rs@re performed di-
rectly in the space of integer solutions, such as simulategaing [33, 4] and
stochastic local search [146, 147].

The methods presented in this thesis are of the second typareae from
generalizing successful strategies of local search fopgsitional satisfiability
[146, 147]. We will refer to these methodsiateger local search

Local Search for Propositional Satisfiability

A problem of much interest in computer science isphgpositional satisfiability
problem(SAT). LetV be a finite set of 0-1Roolear) variables. An assignment
forV is a mapping fronV to {0, 1}. A literal is either a variable or its negatiorv
(v=1iff v=0). Aclauses a set of literals, and satisfiedoy a given assignment
A if at least one of its literals is assigned to 1. A set of clausés interpreted
in conjunctive normal fornfCNF): An assignmenA satisfiesC if and only if all
clauses irC are satisfied undeX.

(SAT) Given a setv of variables and a saf of clauses
overV, is there an assignment for that satisfies all
clausesirC?

We observe that SAT is also a special case of 0-1 ILP (withaivge function
c = 0), since each clause can be translated to a linear ineguglir instance,
the clause{x,y} can be translated tgl — x) +y > 1. The 0-1 ILP problem is
more general than SAT because it allows for arbitrary rigdntd-sidesk) and
coefficients A), and because SAT isdecision problemi. e. there is no explicit
representation of an objective function in SAT.

The Walksat Strategy.A number of efficient local search strategies have been
developed for SAT in recent years, one of the most successies being the
Walksat procedure by Selman, Kautz, and Cohen [133, 105fin@osolutions

to a setC, the basic Walksat strategy performs a greedy local seayalpeed
with a ‘noise’ strategy: Initially, all variables are assegl a random value from

5[9, 3, 103] actually contaiphasesf type (ii).

Chapter 1. Introduction 6

{0,1}. While some of the clauses will be satisfied, others are tadlaTo seek

an assignment that satisfies all clauses, the method welsagelects a violated
clausec € C, and fromc selects a variable such that changing its value yields
the largest increase in the total number of satisfied clause® variable exists
that improves the total number of satisfied clauses, a Variatm c is selected

at random according to some detailed scheme. Such varibblgesf{ips) are
repeated a fixed maximal number of iterations after whiclstaretakes place. If
no satisfying assignment is found after a fixed number ofrestthe procedure

is terminated unsuccessfully.

1.2 INTEGER LOCAL SEARCH

This dissertation is concerned with local search strasefgie integer optimiza-
tion. It describes, discusses and empirically analyzesa#bip), a domain-
independent method that generalizes local search for pitiqaal satisfiability
(the Walksat strategy) to integer optimization and integerstraint solving.

Over-constrained Integer Programs

Many integer optimization problems have no concise SAT dimgy and hence
SAT local search algorithms cannot be applied. In order teegadize SAT local
search to integer optimization, we introduce an extensfd®Ad to a constraint
system calledver-constrained integer progran{®IPs). Extending the repair
strategy of Walksat to OIP optimization will then be a natstap.

An OIP consists of hard and soft inequality constraints,neimethe optimiza-
tion objectives are represented by the soft constraingdl itiequalities are linear,
the OIP problem can be formulated in matrix notation as

Ax>b, Cx<d (soff)y, xeD,

whereA andC arem x n-matrices b, d arem-vectors, ank = (X1, ...,X,) is the
variable vector, ranging over positive finite domaigs D;. A variable assign-
ment that satisfies all hard constraints is callddasible solution Given a tuple

(A,b,C,d,D), the OIP minimization problem is

(OIP) min{ ||[Cx—d| : Ax>b, xeD}, |v|:= Zmax(o,vi),
|

wherein the objective is to find a feasible solution with mmal soft constraint
violation. In||.||, the contribution of each violated soft constraint to therai

objective is its degree of violation. As will be shown, OIRe a special case of
integer linear programs because each soft constraint escgiecewise-linear

Chapter 1. Introduction 7

convex objective function. The reduction enables effectembinations with
linear programming for lower bounding, initialization bgunding, search space
reduction, and feasibility testing.

While ILP encodes the optimization objectives using a mibimial objective
function, OIP uses many competing soft-constraints. Ohesaanatural repre-
sentation to generalize iterative repair strategies liledkdat: Only violated con-
straints need to be repaired, and no principal distincsairawn between repair-
ing hard and soft constraints, thereby seeking solutioaisate both feasible and
near-optimal. OIP is similar enough to ILP to make use of ladigie modeling
languages like AMPL [48] as front-end to an integer locakskeaolver.

Unlike methods that rely on properties of the linear relegtnote that in-
teger local search is not limited to inequality and equationstraints but can be
extended to other types of constraints, for example didggeanstraints X # y)
or symbolic constraintsa{l-different(xs, . . ., X)).

TheWsAT(0IP) Strategy

WsAT(0IP) is now a natural generalization of Walksat. It performsalanoves
in the space of feasible and infeasible solutions by repgiconstraint violations.
Iteratively, WSAT(0IP) changes a variable value as follows. First, select a \edlat
constraint: if only hard or only soft constraints are violated, seleat random.
If hard and soft constraints are violated, with some probabiptyq select a ran-
dom violated hard constraint and with-1p,,¢ @ random violated soft constraint.
The pharg parameter controls how quickly the search is driven intofdasible
region of the search space.

Next, to decide which variable fronto change, it no longer suffices to reduce
the number of violated constraints as Walksat does. Insgesmbreis maintained
that accounts for both the soft constraint violation anddégree ofinfeasibility
of an assignment (using || above for both soft and hard constraints). For 0-1
variables, a variable change amounts to flipping the valaexiend the principle
to finite domain variables, a new class of local moves is thiced that changes
a variable value to a smaller or greater values nearby. Lait@able flips, such
trigger moves are also induced by violated linear inequalities arig @pairs in
c are considered that reduce the violatiorcof

Among the possible repairs, the strategy greedily chodsegie that most
improves the overall score, but occasionally resorts tdl@enmoves if no im-
provement is possible. Following Walksat,9Af(01P) is stochastic local search
and inherits Walksat’s noise strategy. To improve the parémce for realistic
problems, the method is further extended with principlesiftabu search [57, 58]
by keeping a history of past moves. History information carubed to diversify
the search process. For instance, variables can have attdabs that disallows

Chapter 1. Introduction 8

changes that would undo a recent change (tabu status carelvelden byaspi-
ration criteria). Finally, detailed tie breaking rules [53] are built inteetstrategy
that are based on the history of the search and decide whicé ra@erform when
several variables have an equal score.

1.3 EXPERIMENTAL RESULTS

A substantial part of this thesis is concerned with an ermglininvestigation of
the WsSAT(01P) method for practical optimization problems. The problams
der consideration are the Progressive Party Problem (FBBY),[scheduling of a
basketball season (ACC) [114], radar surveillance (RS), [@durse assignment
(CA), and capacitated production planning (CPP) [147]. prablem instances
stem from real applications (ACC, CA, CPP) or contain réalistructure (PPP,
RS). Each class contains large-scale instances, invoengral thousand vari-
ables and constraints.

We compare the results of integer local searcbAn(01P) to approaches from
the recent literature (ACC [114, 69], PPP [135, 75]), anddmse of the best
state-of-the-art methods for the respective problems. altiqular, we compare
the results to IP branch-and-boundr{&x 5.0 [79], an efficient general-purpose
mixed integer programming solver), several constraingpamming approaches
and a previous general-purpose simulated annealing mén@dl ILPs GPst
MAN) [33].

The problems fall into three broad classes, grouped in tergeerimental
chapters: (i) tightly constrained 0-1 integer constramatogems (PPP, ACC), (ii)
0-1 integer optimization problems (RS, CA), and (iii) inéegpptimization prob-
lems with finite domain variables (CPP).

Because the problems vary remarkably, the experimentaltsedemonstrate
the general-purpose nature of the method. Further, therdiit types of prob-
lems will shed light on different performance aspects: Bgabf runtime with
increasing size, scaling with increasing constrainedraass residual robustness
(performance variation on a distribution of similar instag). The experimental
results can be summarized according to the three probleestyp

(i) 0-1integer constraint problenisom time-tabling (PPP, ACC). Even though
such feasibility problems can be formulated as ILPs, thesedings pose
a difficult challenge for integer programming strategie®5175, 114, 146].
Our case studies demonstrate that integer local searctobanssich prob-
lems directly from a 0-1 representation.

For PPP, a constraint programming approach is known [135kee indi-
vidual instances of the problem, while the problem appeatset beyond

Chapter 1. Introduction 9

(ii)

(iii)

the size limitations of integer programming branch-andszb[135, 75].
Our experiments show that the core problem can be solved eficently
using WSAT(0IP). Further, when slight variations of the instance given in
[135] are considered, we find that local search is robust wsipect to the
modifications, while we were not able to find a CP enumeraticategy to
solve all test problems.

The second problem, ACC basketball scheduling, was pregsamd solved
in a multi-stage approach in [114]. The approach uses IRchrand-bound
and explicit enumeration in four separate stages, with éopeance of
roughly 24h to generate a set of feasible schedules. A méieet CP
strategy is also known [69]. We present a 0-1 linear integeoding of the
problem that does not separate the problem into stages.n®i&emono-
lithic 0-1 representation, we study the performance ofgatdocal search
with increasing problem constrainedness. Our experimsmbsy that for
loosely constrained instances, integer local search fintigigns in sec-
onds. As the constraints are tightened, runtimes tend tease moder-
ately. When the entire constraints from [114, 139] are eadpa@ve show
that WsAT(01P) still finds solutions in 30 minutes, despite only 87 solu-
tions remain! In experiments with IP branch-and-bound we tirat G>LEX
manages to solve only the loosely constrained instancésnwitasonable
runtime.

0-1 integer optimization problenfRS / CA — extended set covering / gen-
eralized assignment) are classical domains of IP brandHkannd meth-
ods, and pose a difficult challenge for constraint programgrapproaches.

On these problems, the experiments show thaaWoir) and GPLEX effi-
ciently find solutions of similar quality for small problem&s the problem
size increases, the runtime of 3AT(0IP) scales gracefully. Integer local
search therefore outperforms IP branch-and-bound on |argiglems by
orders of magnitude.

In one series of experiments on (RS), we further find that tHe ©pre-
sentation (soft constraints) is critical for %t(0IP) to achieve the above
reported performance. The results show that the OIP repassn cap-
tures structural aspects that can be exploited by integal search, leading
to a promising primal heuristic for large-scale problems.

OIPs with finite domain variablesT'he last experimental chapter studies a
real production planning problem (CPP) from the processstrg (manu-
facturing of chemicals, food, plastics, etc.), technictédrmed ‘capacitated
lot sizing’.

Chapter 1. Introduction 10

Because the problem requires discrete lot-sizes, donpeoiHsc methods
from the literature are not directly applicable. We therefapproach the
problem with WSAT(01P), and empirically compare the results to a mixed
integer programming branch-and-bound approach (agangtLEX) on
real problem data. We find that integer local search is cenaly more
robust than MIP branch-and-bound in finding feasible sohgiin limited
time, in particular as the capacity constraints are tigkdieWith respect to
production cost, both methods find solutions of similar gual

With respect to parameters for &t(o1P) we find that a set of standard parame-
ters usually performs well on the given domains without mmemual fine-tuning,
and little further customization was necessary, with edoef constraint-weights
(used for CPP), and redundant constraints (used for ACC).

GPSIMAN. Where applicable, we additionally perform experimenthwapst
MAN, a general-purpose simulated annealing method [88%IMAN was not able
to find solutions to the 0-1 constraint problems, even atdhest tightness levels
within 12 hours. For the optimization problems under coasation,GPSIMAN
was able to solve instances of only one class (RS), but didutmteed in solving
the larger instances satisfactorily.

Limitations and Scope

The computational study of integer local search descrileedih contains a num-
ber of limitations. First, throughout our experiments, vgsumepure integer
optimization problems. Industrial problems, howeverenftontain a continuous
component and require handling mixed integer programmialglpms, which are
not addressed in the framework of integer local search aepted in this thesis.

Second, our case studies do not investigate problems thigtio@ strong intri-
cate solution structure, like traveling salesman problenjsb-shop scheduling.
Encodings of these problems into ILP are typically large @nedsolution structure
is difficult to maintain by local moves that change singleialale-values, as per-
formed by WsAT(0IP). For such problems, more informed local moves need to be
considered. Another general and effective strategy fon gucblems is “Abstract
Local Search” by Crawford, Dalal and Walser [36]. In Abstraocal Search, a
greedy constructive heuristic is combined with local mawean abstract search
space.

Third, with exception to one problem class (CPP), we obsémaé the in-
stances under consideration contain mainly éséfficients In fact, for the basic
version of WSAT(0IP), strongly differing coefficients are problematic becatse
score gradient favors variables that appear with largeficaaits. An extension
of the basic scoring scheme will be discussed that addrésges coefficients.

Chapter 1. Introduction 11

1.4 CONTRIBUTIONS

The results reported in this dissertation have partly aygokia previous publica-
tions:

(1) WALSER, J. Solving Linear Pseudo-boolean Constraint Problents at
cal Search. IfProceedings of the Fourteenth National Conference on Arti-
ficial Intelligence (AAAI-97§1997).

(2) WALSER, J., IYER, R., AND VENKATASUBRAMANYAN, N. An Integer
Local Search Method with Application to Capacitated PraigduncPlanning.
In Proceedings of the Fifteenth National Conference on Axdifimtelli-
gence (AAAI-98§1998).

| believe that the original contributions described in ttlissertation, and partly
reported in the above publications, include:

e Generalization of SAT local search to linear integer optition over bi-
nary (0-1) and finite domain variables.

¢ Development of over-constrained integer programs (OIR) laasis for ap-
plying iterative repair to integer optimization. Reductiivom OIP to ILP
in order to permit combinations with linear programming.

e Development of a carefully engineered local search stydtagover- con-
strained integer programs ($%T(01P)) including a new type of local move
for “triggering” finite-domain variable values.

¢ Implementation of the strategy in an efficient solver, ifaeing with AMPL
and GqPLEX, and providing the first local search solver for integer imia-
tion to interface with an algebraic modeling language.

e Empirical study of the approach demonstrating its flexijiefficiency and
graceful scaling on a variety of hard realistic integer imation / integer
constraint problems. Within the empirical study, our argiresults include

— evidence that large and tightly constrained problems beyloa limi-
tations of ILP branch-and-bound can be solved directly feomono-
lithic 0-1 integer encoding by integer local search,

— evidence that OIP soft-constraint encodings can captuetatal as-
pects exploitable by integer local search,

— two problem-specific results: (i) a heuristic can solve aperally
dense double-round robin sports scheduling problem, gradgeneral-
purpose heuristic can solve a large production planninglpro en-
coded with finite domain variables.

Chapter 1. Introduction 12

e Development of the notion ahteger local searcland its characterization
in terms of search relaxations.

1.5 THESIS OVERVIEW

Chapter 2 briefly introduces three general frameworks fartwoatorial optimiza-
tion and their terminology, i.e. ILP branch-and-bound,térdomain constraint
programming and local search heuristics. It then discuss@plementary search
relaxations as a characteristic of optimization methodsapfer 3 describes the
technical contributions, over-constrained integer paagg (OIPs) with reductions
to ILP, and gives a detailed description ofSAf(oiP). It further discusses sev-
eral possible combinations with linear programming, arehthlustrates differ-
ent variations of the WAT(0IP) strategy by a graphical example. Chapter 4 de-
scribes the case study methodology. It discusses critésaazess for practical
optimization methods: flexibility, robustness and scaiiith increasing problem
size and constrainedness, and motivates the problem setisal Chapters 5 to
7 contain the experimental case studies, each chapterifigcas one problem
type and demonstrating that integer local search meets ebthe above criteria
of success. Chapter 5 describes experiments on constraisiems from time-
tabling and sports scheduling; Chapter 6 describes expatsron radar surveil-
lance and course assignment; and Chapter 7 describesragpésion capacitated
production planning. Chapter 8 discusses limitations atehsions of the current
WSsAT(01P) method and suggests future work. Finally, Chapter 9 caleduhis
thesis.

Chapter 2

Frameworks for
Combinatorial Optimization

This chapter introduces several general frameworks forbooatorial optimiza-
tion that are being applied in the case studies of this thédlishree frameworks,
integer linear programming (ILP), finite domain constrgragramming (CP) and
local search are well established and many successfulcapipihs have been re-
ported. In this chapter, we will briefly describe the basratsigies and introduce
the terminology of the respective frameworks.

2.1 INTEGER PROGRAMMING BRANCH-AND-BOUND

Here, the basics of th® branch-and-boundlgorithm will be discussed that uses
linear programming relaxations. It is the basic algorithgediby all commercial
codes for solvingnixed-integer programming probleni8IILP) [113]. The ex-
position follows [113]. For a more complete presentatiod for discussions of
linear programmingLP), the reader is referred to [113, 31].

IP branch-and-bound is concerned with finding optimal sohs to the ILP
problem,

(ILP) ze=min{cx : x€ S}, whereS={xecZ" : Ax>b},
Note that the ILP becomes a MILP problem that includes comotiis variables
when some of the integrality constraints are relaxed. Thadir-and-bound strat-
egy can equally be applied to MILP problems.
LP relaxation
In IP branch-and-bound, a tree is searched. Initially, atrot node, dinear
relaxation of the original problem is solved, i. &is replaced withS, = { x €

13

Chapter 2. Frameworks for Combinatorial Optimization 14

R? @ Ax>b }. Subsequently, constraints are added to the problem tdelivi
it into subproblems to be solved separately. At each nodeear relaxation is
solved,

Z,=min{cx: xeS,},

whereg, constitutes the linear relaxation of the respective sutiproS.
Also, at any nodeé during search, there are three conditions when a node can
bepruned i. e. none of its children need to be considered. The canditare

(i) infeasibility,if §. = 0, i. e. no solution to the linear program exists
(i) optimality,if X' € Z7, i. e. the solution is integral

(i) value dominanceiuZZ Z», Wherez; is the value of a known feasible solution
to ILP.

Tree Search

If the node is not pruned by one of the conditions (i)-(iiiyabching occurs.
Branching is done by adding linear constraints to the ctarpeablem. There
are various ways to perform branching. One common way is tfope ‘vari-
able dichotomy’, that is choose some variakjavhich has a non-integral solu-
tion valuex; in the linear relaxation. Branch @& n{x € ZT : x; < [x{]} and
Sn{xeZ : xj > [x{] +1}, and recursively search both nodes. Atany niode
if the given LP solution is optimal, the current feasibleutmn is stored.

The size of the enumeration tree depends largely on thergyunie. on the
quality of the bounds produced by the linear programmingxaion and on the
solutions found early in the search. If the linear relaxaabthe root yields solu-
tions whose objective function values are close to the agtsulutions of (ILP),
we say that the relaxation fght.

Many issues need to be considered to develop efficient brandbound
strategies, such as the selection of branching variabtelsy@re generally search
strategies to explore the search tree. Efficient branchbanghd implementations
like CPLEX further add valid inequalities (also called cuts) whichiaferred from
specific classes of constraints present in the originaltcainss. Using these com-
ponents plus efficient algorithms to compute and re-compBteelaxations, ILP
branch-and-bound provides a general and efficient teckrfigumany ILP opti-
mization problems. A variety of efficient commercial braraid-bound solvers
are available, (e.g.@LEX, LINDO, XPRESSMP, MINTO).

Chapter 2. Frameworks for Combinatorial Optimization 15

2.2 FINITE DOMAIN CONSTRAINT PROGRAMMING

Finite domain constraint programmir(@P) is a programming technique designed
for solving constraint satisfaction problem(€SPs). A CSP is typically defined
[140] in terms of (i) a set of variables, each ranging overiédfidiscrete domain of
values, and (i) a set of constraints, which are relatiores subsets of the variable
domains. The problem is to assign values to all variables ftleeir domains,
subject to the constraints. A large number of problems ind ather areas of
computer science can be viewed as special cases of thisafjemotion of CSP
[97].

Constraint programming evolved from research in condttaiic program-
ming languages ([81] gives a survey), and led to the devedopraf constraint
programming languages such as CHIP [42], Oz [136], CLP(R2),[ECLiPSe
[6], and the constraint programming library ILOG Solver [489]. Concurrent
constraint programming properly addresses the concuaspects of constraint
programming [128, 70, 136]. CP technology is becoming iasiregly successful
for industrial problems, and many emerging applicationsthzeen attacked with
constraint programming (see [143] for a survey). We will nggscribe the CP
framework, following [69, 137].

Constraint Store

Every variable of the CSP problem is represented by a finiteailo variable. All
information on the variables is stored directly im@nstraint storg80], in terms
of the sets of possible values that each variables can tdiie sé&t is called the cur-
rent domain of the variable. Computation starts with theentrdomain of every
variable being the one given in the CSP. For exampte{1,...,5} might be the
initial current domain. Subsequently, the information be turrent variable do-
mains is updated in the constraint store. This means thatdhmin information
of the variables is treated agpamitive constraint.

Constraint Propagators

In addition to the primitive constraints, combinatoriabplems requir@on-prim-
itive constraints, which are handled through computationaltagetiedpropaga-
tors[150]. Propagators operationalize the semantic definiioimne constraints.
Some of the corresponding local consistency techniques ba@en established in
artificial intelligence [140]. In finite domain constraimggramming, the basic in-
ference principle of propagatorsd®main-reduction Each propagator observes
the variables that occur in the constraint. Whenever ptessttamplifies the con-
straint store in terms of these variables by excluding \s&ft@m their domains.

Chapter 2. Frameworks for Combinatorial Optimization 16

For example, a propagator can realize a constadirdifferent(xs, ..., X), re-
quiring that all variableg, ..., x, be assigned different values. There are different
ways to operationalize this constraint [126, 120]. A stnéfigrward way is to wait
until the domain of one of the variables becomes a singletohtlen eliminate
its element from the domains of the other variables. Rengpthe value from the
domains of the other variables may in turn trigger other pgapion. If a propa-
gator is entailed, it ceases existence. If a propagator eterrdine that a variable
domain becomes empty, the constraint store becomes irstensi

The propagation process continues until no propagatongémefr amplify the
constraint store. Theomputation spacé. e. the constraint store together with
the propagators) is said to become stable. Still, at thistpmany variables will
typically have multiple values in their domains. Thus thastoaint store does not
represent a solution to the CSP.

Tree Search

Once a constraint store has become stable, no further iafaymcan be inferred
by the propagators. To solve the current finite domain proli*eat nodei, one
can choose a constrai@tand solve two subprobleni® U {C} andP' U {-C}.
Suchbranchingon constrain€ is likely to trigger new propagation. After stability
is reached again, the branching process is continued reelyron both sides.
Often, the constrainC is an assignment of a variable to one of its remaining
values, e.gx=11if {1,...,3} are remaining.

To obtain a complete search for all solutions, the branchomginues recur-
sively until either all variables have a unique value in tteges or until the store
has become inconsistent. The branching scheme yields alemget of solu-
tions to the original problem because of the soundness amgleteness of the
branching.

The choice of constrair@ is a critical issue for the performance of the search.
If C assigns one variable, @mumeration strateggetermines which variable and
which value from its domain are selected for assignment. i$&@e here is to
find good heuristics for variable and value selection. A @ékcription of the
branching is called a search strategy.

Finite domain CP systems usually offer rich support for theppgators that
can be used to model constraint problems. Also CP systerastakrol of prop-
agation and search. Different CP systems offer varying supp the design of
search strategies. An advanced concept for high-levelranogning of search
strategies is through using first-class computation sgd&€8. By providing the
building blocks of constraint propagation, branching aedrsh, constraint pro-
gramming can be viewed as a supporting framework for thelrdgvelopment of
domain-specific optimization strategies.

Chapter 2. Frameworks for Combinatorial Optimization 17

CP has seen much success in a variety of domains; for insitascheduling,
various algorithmic techniques from OR (e. g. [26, 8]) hagerbintegrated in con-
straint programming by encapsulation into propagatorstaadching strategies
[10, 150] and are available in a academic and commerciaésobsuch as ILOG
Scheduler, Oz or CHIP.

2.3 LOCAL SEARCH

Many combinatorial optimization problems a¥>-hard [50], and the theory of
NP-completeness has reduced hopes Mfahard problems can be solved within
polynomially bounded computation times. Neverthelesb-@utimal solutions
are sometimes easy to find. Consequently, there is muclestter approxima-
tion algorithms feuristicg that can find near-optimal solutions within reasonable
running times, even at the cost of giving up the optimalitgiguntee under infinite
runtime.

Practically, for many realistic optimization problems dosolutions can be
found efficiently, and heuristics are typically among thsttstrategies in terms
of efficiency and solution quality for problems of realissize and complexity
[1, 122, 61, 125]. Heuristics can be classified as eittmrstructive(greedy)
heuristics or adocal searchheuristics. The former are typically efficient one-
pass algorithms whereas the latter are strategigsrative improvementVe will
be concerned exclusively with local search heuristics.hByerelaxing the guar-
antee of finding optimal (or even feasible) solutions, rsig$ are not required to
search for solutions systematically. Instead they canyffedow a local gradient
in the search space.

Local search algorithms have been applied to many combiahtiptimiza-
tion problems in one or another variation. Local search rdlgms can be de-
scribed in terms of several basic components. ddmebinatorial problento solve,

a cost functiorof a solution to the problem, @eighborhood functiothat defines
the possible transitions in the search space. And finale/ctimtrol strategyac-
cording to which the local moves are performed. In the foltaydefinitions, we
will informally follow [1] extended to apply to feasibilitproblems.

Combinatorial Problem For the purpose of this discussiorg@mbinatorial prob-
lemcan be specified by a set pfoblem instancet be solved. A problem
is either a minimization or maximization problem.

Cost Function.An instance of a combinatorial problem is defined by the set of
feasible solutiongnd acost functionthat maps each solution to a scalar
cost. The problem is to find a globally optimal feasible soluti.e. a

Chapter 2. Frameworks for Combinatorial Optimization 18

feasible solution that optimizes the cost function. We willy consider
minimization problems here.

Neighborhood FunctionLocal search progresses by making transitions from one
nodeto another. The set of nodes includes the feasible solutiohimay
also include other, infeasible, solutions. Given an instaof a combinato-
rial problem, theneighborhood functioms defined by a mapping from the
set of nodes to iteeighbors i. e. the subsets of the set of nodes. A solu-
tion islocally optimalwith respect to a neighborhood function if its cost is
strictly better than the cost of each of all its neighbors.tidéthat there
can also be ‘stateful’ neighborhood functions, i. e. theo$eteighbors can
change as the search progresses.

Control Strategy.The final component is the control strategy. It defines tha-str
egy of how the nodes are examined. For example, a basic tettegy
of local search isterative improvementHere, one starts with some initial
solution and searches its neighborhood for a solution oéfawest. If such
a solution is found, the current solution is replaced andgéagch continues.
Otherwise, the algorithm returns the current solution,cvhs then locally
optimal.

A central problem of local search alecal optima i.e. nodes in the search
space where no neighbor strictly improves over the curredenn terms of the
cost function. Many strategies have been proposed thaessldine problem of
how to overcome local optima. In many cases, non-improvaogll moves are
admitted based on a probabilistic decisiowiég or based on the history of the
search. A number of ‘meta-heuristics’ have been proposachiiidress the prob-
lem of local optima.

Meta-Heuristics

To obtain guiding principles for designing effective opization strategies, a
number of conceptual meta-level strategies have been geplwith local search.
These strategies are referred tonaesta-heuristicsa term coined by Glover [56].
The most prominent meta-heuristics for optimization giwethe following. Note
these strategies can typically be superimposed on the basiml strategy.

Simulated Annealingintroduced for optimization by Kirkpatrickt al. in 1983,
uses the metaphor of the annealing process in steal manfacby which
the brittleness of the steal can be reduced [95]. The cadgalis to accept
a candidate move that decreases the solution quality basedpoobabil-
isitc decision. During the time of the search, the probgbdi acceptance

Chapter 2. Frameworks for Combinatorial Optimization 19

of such deteriorating moves is decreased according to a gimaealing
schedulg2].

Genetic Algorithmsmodel optimization as an evolutionary process. The styateg
is to have a pool of chromosomes and iteratively apply thecgles of
mutation, mating and selection to attain ‘survival of théet’ [73, 62].
Genetic algorithms extend the basic local search scherpepolationsof
solutions. Early applications in Atrtificial Intelligence the 1960s were in
game-playing, pattern recognition, or adaptation, argiitaore recently that
applications to optimization problems have been repoG@d124, 112].

Tabu Searchuses information based on the history of the search [57,81,is
a particularly successful strategy for many practical ots. The central
idea is the use of adaptive memory to overcome local optindrivyng the
search to differentdjversificatior) or back to promisingiftensification
parts of the search space.

Artificial Neural Networksmake use of the metaphor of the neuron and are or-
ganized in network structures. The network of nodes is titexly modi-
fied by adjusting the interconnections between neuronsrdicgpto var-
ious schemes. Neural networks have been popular since tid 3&0s,
and have more recently been successfully applied to omioiz problems
[77, 44, 118, 38].

Meta-heuristics express orthogonal concepts and hybrelgpassible. Meta-
heuristics are domain-independent conceptual stratedi@s particular appli-

cation problems, they require concrete implementationtaed success varies
between different application domains.

RISC and CISC Local Search

We can distinguish local search strategies for combiratoptimization accord-
ing to the structure of the local neighborhood. We have eagiven a short de-
scription of Walksat, a local search method for proposélaatisfiability in which
the local neighborhood of an assignméntonsists of a subset A’ : A’ =
A with one variable flippeHand contain©(n) neighbors for a problem instance
with n variables. This local neighborhood is simple and small.

On the other hand, many local search strategies use logdilmmihoods that
are more intricate and larger. For example, considetrthesling salesman prob-
lem the problem of finding a minimal-cosbur visiting a number of cities such
that each city is visited exactly once. Effective local sbastrategies for travel-
ing salesman move in the space of feasible tours by complga-edchanges on

Chapter 2. Frameworks for Combinatorial Optimization 20

tours [88]. Another example is job-shop scheduling, whaeegoal is to assign
start-times to a number of tasks that compete for resousceh, that the finishing
time of the latest finishing task is minimized (makespanroation). Effective

techniques for job-shop-scheduling move in the space @ilfEaschedules by
complex move operations between tasks that are @itieal path! of the sched-

ule [7].

Such local search strategies differ from the SAT case ingirailem solutions
are expressed in terms of complex entities likers or schedules All solutions
are required to comply with this structure, and to avoid tifiecdlty of restoring
it, the local moves are designed to be structure-preserVing is contrasted with
local search for SAT and the proposed methods for integat kearch, in which
no explicit solution structure is preserved.

In this thesis, we exclusively consider strategies whigloerate by chang-
ing variable-values, (i) have neighborhoods with a simedir in the problem size
(number of variables), and (iii) guarantee to preserve onky property with any
move, namely that all variables are assigned exactly one\fedbm their domain.
Because of this atomic nature of the local moves we can refstrategies with
properties (i)—(iii) as ‘reduced instruction set’RISC local searchThis is in con-
trast with theCISC local searclstrategies for the domains traveling salesman or
scheduling. We consider both feasibility and optimizagooblem formulations.

Local Search for SAT

Local search strategies have recently seen much successofiel finding in
propositional satisfiability [134, 64, 110, 53, 133]. Figw.1 gives the outline
of a typical local search routine in the spirit of the now elasstrategy GAT

by Selman, Levesque and Mitchel [134]. It searches for afyatg variable as-
signment for a set of claus#s Here, local moves are “flips” of variables that
are chosen bgelect-variableusually according to a randomized greedy strategy.
The parametelaxtries can be used to ensure termination, wiilexflips deter-
mines the frequency of restarts that can often help to oweedocal minima (in
the number of unsatisfied clauses).

Walksat. The Walksat strategy by Selman, Kautz and Cohen [133, 92p&a
ticularly effective local search strategy and follows tiseeme in Figure 2.1. Its
variable selection operates as follows. First, it randoselgcts one of the clauses
from c that are not satisfied by the given assignm&ntlt then flips the value
of one of the variables i, thereby rendering satisfied. Because of the flip,
however, one or more other clauses may become unsatisfiedefdre, to decide

1A path through the directed graph of adjacent tasks whicls @ndne of the tasks that finish
latest.

Chapter 2. Frameworks for Combinatorial Optimization 21

proc Local-Search-SAT
Input clause<C, Maxflips, andMaxtries
Output a satisfying total assignment Gf if found
for i := 1to Maxtries do
A:=random truth assignment
for j := 1to Maxflips do
if A satisfie<C then return A
P := select—variabl&C, A)
A= Awith P flipped
end
end
return “No satisfying assignment found”
end

Figure 2.1: A generic local search procedure for SAT.

which variable to flip, it considers the number of clause$ le@ome unsatisfied
(break when one of the variables ois flipped, for each of the variables dr{this
‘breakcountapproximates the true change in the number of satisfiedeu If it

is not possible to maketrue without breaking some other clause, Walksat follows
a probabilistic scheme. The entire strategy is given in FEedl2, whereb(A, v)
denotes the number of clauseddrihat break if a variable is flipped given the
assignmena.

proc select—variablgC, A)
¢ := arandom unsatisfied clause fr@n
m:=min{b(A,v) : vec}
if m=0 then s:=avariable inv e cwith b(A,v) =0
else with probability p : s.= arandom variable in

probability 1— p: s:= a variablev € ¢
with minimal b(A, v)

end
return s

end

Figure 2.2: The Walksat variable selection strategy, tiedaoken at random.

Application Domains

Walksat and other flavors of local search for propositioatik§ability have been
applied to a variety of combinatorial problems. The followgilist gives a short

Chapter 2. Frameworks for Combinatorial Optimization 22

survey on application domains various local search praesdior propositional
satisfiability have been applied. The domains of study melgraph coloring,
N-queens and Boolean induction [134, 131], circuit diaggiosircuit synthe-
sis various planning problems (logistics, rocket, towdrianoi, blocks world)
[133, 92], Sadeh’s scheduling problems [35, 145], quasigspand number fac-
torization [54], and Hamiltonian circuit [76]. Some of thbave problems have
been used in the Beijing SAT competition [100]. Further, Sédal search algo-
rithms have been applied to a collection of benchmarks witie DIMACS effort
on “Cligues, coloring, and satisfiability” [89], in partilar Boolean function syn-
thesis, circuit testing, parity function learning, randgrgenerated one-solution
problems [127]. Another source of SAT benchmarks whictaateéd much inter-
est and igandom 3-SAT109, 34]. Random 3-SAT has been a driving force for
studying and improving local search algorithms e. g. [132,52, 53, 133, 117].

Maximum Satisfiability. There are also optimization counterparts of SAT, MAX-
SAT and and weighted and/or partial MAXSAT. The goaMAXSATIs to find an
assignment that maximizes the number of satisfied clausegijhted MAXSAT
a weight is associated with each clause and the sum of thétsegthe satisfied
clauses is to be maximized. Another recent variamiaigial MAXSATIn which
the clauses are classified irttard andsoft clauses, and the goal is to maximize
the number of soft clauses while all hard clauses must sanetiusly be satisfied.
Local search methods applied to randomly generated MAXSAbIpms have
been reported [67, 133, 144], partial MAXSAT has been usecfzodings of
class-scheduling and random formulas [29], and partiaghteld MAXSAT has
been used for solving steiner tree problems [84].

2.4 MODELING LANGUAGES

The optimization frameworks given above are computatibvaateworks forsolv-
ing constraint optimization problems that are given by a sigtabt of constraints.
Complementary to the aspect of problem solvingpdelinglanguages have
been designed to allow to formulate constraint problemye&oiently and ana-
lyze their solutions. An ILP modeling system takes as inpdéscription of the
constraints and objective functions in some natural foataih. Often, this repre-
sentation is quite similar to the mathematical descripti®iven the model, there
is typically some presolving stage performed for simpliimaand feasibility test-
ing [47]. Subsequently, the model is presented to an ILPesdhat is connected
to the modeling system. Finally, after the solutions ararretd from the solver,
the modeling system allows for inspection of the solutionosMmodeling sys-
tems support a variety of algorithmic codes. The integeallsearch procedure

Chapter 2. Frameworks for Combinatorial Optimization 23

that will be given later, VBAT(0IP), has been hooked up to the AMPL modeling
language [49]. Other popular modeling systems include GANVE, LINGO,
PLAM [13].

2.5 SEARCH RELAXATIONS

Search strategies for combinatorial optimization can b@rested according to
different criteria in order to better understand their eleteristics. For example,
the ‘systematicity’ view contrasts search strategies ashether they are sys-
tematic (complete) or follow a local gradient (usually ingaete). For instance,
intelligent backtracking and local search can be contdast¢his view and com-
binations have been proposed [55].

Another view is the ‘inference’ view, which classifies ségies according to
which constraints in a system are treated as primitive @ffecient methods can
be used to solve them) vs. non-primitive (i. e. adding therkeadhe system hard
to solve) [142]. Integer programming and finite domain camst programming
can be contrasted and integrated in this view [21].

To improve our understanding of integer local search, letie& combina-
torial search in terms aklaxations Combinatorial search means to traverse the
nodes of a search space, be it in a systematic or non-systemagt and indepen-
dent of the amount of inference that takes place to get froemnmale to the next.
Either way, the essence of combinatorial search is to se€kddect’ nodes (in
the sense of feasible and optimal solutions) by traversiagynimperfect’ nodes
(solutions that meet only a subset of the requirements wivlating others).

If the solutions to a discrete optimization problem are a=fiby variable as-
signments, the assignments must meet three requiremaptmtality, i.e. all
variables have exactly one value assigned,ifiig@grality, i. e. all assigned vari-
able values are integral, and (igpnsistencyi. e. the assignment meets all prob-
lem constraints. We argue here that it is an important facter strategy which
requirements areelaxedduring search.

Integer programming branch-and-bound. The relaxation view of integer pro-
gramming branch-and-bound strategies is: relax the iali#giconstraints
in order to make use of efficient strategies to solve a lineaggam. In
branch-and-bound, this relaxation occurs at each node efecls tree:
branching constraints are added, the linear system isgalve all variables
are assigned values—some of which happen to be integralsddreh tree
Is traversed in this fashion until a solution is found with\ariables inte-
gral. Then, the solution is stored, the objective funct®baunded and the
search continues, in the following using the relaxationratsufor pruning.

Chapter 2. Frameworks for Combinatorial Optimization 24

Hence, the requirement that is relaxed by IP branch-anddb@.integral-
ity, while maintaining that all variables be assigned valtesljty) and all
intermediate LP solutions easibleto the problem constraints (one way
to defineconsistency

Constraint satisfaction search. Conversely, complete search strategies for con-
straint satisfaction (CSP) [140] are based on propagadesesmnch and only
assign integral values to variables. Here, the variablegaaver finite inte-
ger domains and the search starts fropagtial assignment of the variables.
At any point, some variables have a value assigned while®tre unas-
signed (more than one value is left in their domain): Foransg, suppose
we start with a variable € {1,...,5}, which due to some constrairt 3
becomex € {1,2}, and next due to branching ammight become assigned
to x= 1. The power of CSP methods stems from strong propagatian alg
rithms (e. g. arc-consistency) that rule out all variablei®a that are known
to be inconsistent with the current partial variable assignt and the set
of constraintslpcal consistency Search in CSP progresses in the space
of partial variable assignments where variable values peeldatively as-
signed (and possibly later retracted) with the goal to exaht assign one
value toeveryvariable, such that the solution is optimal. Hence, condtra
satisfaction search maintains integrality and local cstesicy, but relaxes
totality, i. e. the requirement that all variables be assigned oneval

Integer local search. Complementary to the two previous frameworks, integer
local search relaxes the third propergonsistency That is, all variables
are always assigned individual values, and all values degyiial, yet the
assignments may violate problem constraints and may thugbasistent
The goal is to find a consistent solution (one which does noiate any
problem constraints) that is optimal. Thus, integer loearsh maintains
integrality and totality, but relaxes consistency.

We hope that this view of combinatorial search can fosterutigerstanding of
integer local search and also stimulate ideas for new hybethods.

Chapter 3

Local Search for
Integer Constraints

“Integer programming has gone through many phases in the last
three decades, spurred by the recognition that its domain encom-
passes a wide range of important and challenging practical applica-
tions.”

Fred Glover in [56], 1986

This chapter introduces new local search strategies fegertoptimization and
represents the technical core of this thesis. It describeslescusses WAT(0IP),

a domain-independent method that generalizes the Walkseggure of Selman,
Kautz, and Cohen [133] for propositional satisfiability boeiger optimization and
integer constraint solving. For performance on realigbipli@ations, the method
additionally incorporates principles from tabu search.[58

WSsAT(0IP) operates orover-constrained integer progrant®IPs), an alge-
braic representation for combinatorial optimization pgeohs which is similar to
integer programs. The chapter first introduces and dissuS#e, showing that
OIP is a special case of integer linear programs. We will atipat OIPs are well
suited for devising efficient iterative repair strategiesihteger optimization. On
the other hand, OIPs allow for combinations with linear pamgming via a re-
duction to integer linear programs.

Then the WsAT(01P) procedure will be described in terms of its basic princi-
ples and we give the details of a carefully engineered sjydta the selection of
local moves that evolved in the course of the case studies.

Several combinations with linear programming will then BEdssed for com-
puting bounds on the optimal solution, approximation ararde space reduc-
tion. Finally, we will illustrate the basic algorithms aneveral extensions by a

25

Chapter 3. Local Search for Integer Constraints 26

graphical example to review the described techniques. Tapter concludes by
discussing related work on local search for integer prognarg and constraint
satisfaction.

3.1 OVER-CONSTRAINED INTEGER PROGRAMS

The first step in solving an optimization problem is to choaselitable represen-
tation. In Artificial Intelligence, a popular representattis propositional satisfi-
ability (SAT). SAT can represent a variety of interestingntmnatorial problems,
for example graph coloring [134, 131], circuit diagnosisl @ynthesis [90, 133],
or various Al planning problems [92, 93].

A number of efficient search strategies have been devel@peiNT in recent
years, both complete [34, 40] and incomplete [134, 133 6K&Jowever, many
combinatorial problems have no concise encoding in préiposil logic, espe-
cially those involving arithmetic constraints. Hence #hedgorithms cannot be
applied.

For example, consider the pigeonhole problem which occsii@g e@ore prob-
lem within many combinatorial problems. Consider a statgméth Boolean
variablespjj, where pj; means pigeon is in hole j. A natural encoding is to
use two different constraints, (a) every pigeon is in eyactie holey ; pjj =1
(for all i), and (b) no two pigeons are in the same hplej; <1 (for all j).
Givenn pigeons anan holes, this formulation consists af+ m pseudo-Boolean
constraints. On the other hand, a SAT encoding would bev{api; (for all i)
and Vjvk # j : pij — Pk (for all i, O(n?n) clauses); similarly for (b). With
O(n?n -+ n’m) constraints, the size of the SAT encoding would be impratfiar
larger instances.

Pseudo-Boolean / 0-1 Integer Constraints

The class ofinear pseudo-Boolean constrainfgénear 0-1 integer constraints) is
defined as follows [66]. A linear pseudo-Boolean constriainf the form

Zci Lj ~d, (3.2)
e

wherec;,d are rational numbersy € {=, <, <,>,>}, and theL; are literals for
all'i €1 (aliteral is a Boolean variable or its negation). A set ofyzkeBoolean
constraints together with an objective function yields & 0-P. Pseudo-Boolean
constraints generalize SAT in the sense that every Boolkarse (disjunction

1The corresponding OR terminology is exact vs. heuristic.

Chapter 3. Local Search for Integer Constraints 27

of literals) can be translated into a single linear pseudot&n inequality. For
example, the clausevy would be translated tal — x) +y > 1.

On the other hand, when converting linear pseudo-Booleaquialities to
propositional satisfiability, the number of SAT clausesuiegd to represent one
inequality can grow exponentially with the number of valéshin the inequality.
To see this, consider an example from Barth [12], the comwexsf |1 + - -- + 1, >
d. Without introducing new variables, its equivalent SAT negentation is a con-
junction of (,_{1,,) SAT clauses,

n—d+1
A (Viel li).

IC{1,...,n}:|l|=n—d+1

Generalizing SAT Local Search

There are still practical shortcomings of the pure pseudol&an constraint rep-
resentation (3.1). First, optimization problems (as oppds decision problems)
contain objectives which should be included in the repregem.

Second, certain problems may better be represented usmgaowmean deci-
sion variables (e. g. production of a good could vary betweamd 100 items).
Compiling such problems to a pseudo-Boolean system wowdthagcur an in-
crease in both the number of variables and the length of thetints?> Depend-
ing on the applied algorithms, the structure present in tigiral formulation
may not be accessible in the compiled version of the problem.

Despite the fact that SAT does not quite have the right esprigg for many
realistic optimization problems, efficient methods exist$AT and it is desirable
to generalize their principles to more expressive constrelasses. Obtaining
leverage from a generalization is especially interestomdhe efficient SAT local
search algorithms developed recently, e. g. Walksat [133].

Over-constrained Integer Programs: Motivation

To give a natural generalization, we will introduceer-constrained integer pro-
grams (OIPs)an algebraic representation that is suited for a range obouato-
rial optimization problems. With respect to expressivitg will show that OIPs
are a special case of integer linear programs (ILPS).

The principal difference to ILPs is that while ILPs use a miahic objective
function, OIPs represent the overall optimization objextoy many competing
soft-constraints. Using soft constraints to encode olvestit is natural to apply
iterative repair[108] to integer optimization. Further, the OIP structuam e

2Binary and gray code representation for large variable dosrare possible [104], but we will
see some limitations for local search in Chapter 7.

Chapter 3. Local Search for Integer Constraints 28

exploited by iterative local search: After a short initigse, only a small fraction
of the soft constraints are violated and the search can fonugpairing those
violated constraints.

In general, an over-constrained system is a set of contiiaiwhich typically
not all constraints may be satisfied and some are thereforkechas ‘soft’ or
ranked according to a preference system [83]. Optimizailgactives have also
been encoded by soft constraints in the context of constnararchies [22].

OIPs are similar to ILPs. So can we make use of techniques lirgar pro-
gramming? The answer is yes. We will give a transformatio@Iéf into ILP that
is inspired from piecewise-linear programming. Anothgoexs concerns stan-
dard modeling languages like AMPL [48]. Can they be apple&dbdel OIPs?
The answer is, again, yes. ILP modeling languages can befasgtbdeling. In
fact, combining a modeling language with a local searchralyao directly yields
a practical constraint solver. For illustration, we willopide a detailed AMPL
model of one case study from sports scheduling in the Appendi

3.1.1 Definition

We refer to a constraint system of hard and soft inequaldies finite domain
variables as anver-constrained integer progrartQIP). Here, we only consider
the case where all constraints are linear inequalities laadystem is given by a
tuple O = (A,b,C.d, D), formulated in matrix notation as

Ax>b
Cx <d (soff (3.2)
xeD,

where A = (aj) andC = (cjj) are mx n coefficient matricesp andd are m-
vectors, andk = (Xy,...,%n) IS the variable vector, ranging over positive finite
domainsD = (Dg,...,Dp).2 (3.2) will be interpreted as the OIP minimization
problem

min{ ||Cx—d| : AXx>Db, x € D}, with ||v| := Zmax(o,vi). (OIP)
|

In ||.||, the contribution of each violated soft constraint to therall objective is
its degree of violation. An assignment to all the variablest satisfies all hard

3For conciseness, we will discuss OIPs in the form (3.2) witiochld be referred to ain-
normal form Every OIP minimization problem can be converted into minnmal form by mul-
tiplying every incorrectly directed inequality (e. . instead of>) by —1 and converting every
equality into two inequalities.Input to the algorithms ddsed in the following is not required to
be in min-normal form. Also, implementations use sparseimegpresentations.

Chapter 3. Local Search for Integer Constraints 29

constraints of) is called aeasible solutiopand for every feasible solutiathe
value of||Cs— d|| will be calledsoft constraint violatiorof O. As will be shown,
OIPs are a special case of integer linear programs.

Based on OIPs, a single strategy will later be formulateth bofind feasible
solutions to difficult problems of hard constraints, and talfgood solutions to
optimization problems. The strategy will proceed by iteny repairing violated
hard and soft constraints.

3.1.2 Relation to Integer Linear Programs

For many practical applications, we would like to enabldatmration of OIP
solvers with existing optimization technology based oedinprogramming. Ex-
amples of such combinations are lower bounding techniqliles l{near relax-
ations or Lagrangean relaxation), approximation algorghbased on linear pro-
gramming, or search space reduction techniques (see B&c8dor a detailed
discussion).

Due to the evaluatiof.||, however, a given OIP is not immediately equivalent
to an integetinear program (ILP). Next, it will be shown that every OIP can be
converted to an ILP. We consider the following cases: (i) ffiegen OIP has a
certain property (calledonfinednegsit is equivalent to an ILP. Further, (ii) every
OIP can be converted to an equivalent ILP.

Equivalence is defined here in the sense that two ILPs/O¥squivalent if
they have the same feasible solutions and their objectretiion values are the
same for every feasible solution.

Notational Convention. To simplify the following discussion, we will write
min{cx : AXx > b, x € D},
as an abbreviation for the ILP
min{cX : AX' >b, X = p i Vijs p vij =1, vij € {0.1}}, (3.3)
j€D; j€D;

in which the finite domain variables € D; are replaced by variable$ and ad-
ditional binary variableg;j € {0,1} are introduced for all € D;. If all finite
domains range over integers (no loss of generality) thed) {8an ILP & € Z1).

Definition 1 (Confinedness)An over-constrained integer prografA,b,C.d, D)
is confined if and only if for every feasible solutigrhe following holds:

0
Cs—d>

Chapter 3. Local Search for Integer Constraints 30

Proposition 1 A confined OIRA,b,C.d, D) is equivalent to the ILP
min{ ||Cx—d||1 : Ax>b, xe D}, with ||v||1:= Zvi, (3.4)
|

Proof. As confinedness holdg,|| is equivalent to the norrj.||1 for all feasible
solutions. 0O

The following proposition shows that every OIP can be cameeto an ILP
by introducing additional constraints.
Proposition 2 An over-constrained integer prografA, b, (c;),d,D),

Ax>b, cx<d (softy xeD
is equivalent to the ILP
min{y & : Ax>b, cix+s—e=d. &,5>0 xeD}. (3.5)
|

Proof. The basic idea behind the conversion is that every soft a@glwcan be
converted into an equality constraint with two additionatiables: a slack vari-

ables and an excess variabég, where the excess variable accounts for the in-
curred penalty. The OIP minimization problem is

min{z max0,cix—d;) : Ax>b, x e D}.
|
To show equivalence, it suffices to show equality of the twctive functions

for all x. We will employ (componentwise) ordered tuplesb). It remains to
show that for alk,

min{(x,e1+---+em) : cix+s—g=0d, §>0,>0}
= (x,max0,c;x —d1) + -+ max0,CcmX — dm)).

This can be shown componentwise foriddecause thg, g are independent from
sj,ej foralli # j. For each, we consider the components €) = min{(x,&) :
...} and(x,max0, cix — d;)). We consider two cases:

1. ¢ix—dj < 0. The right-hand-side is mé ¢; x — di) = 0. The left-hand-side
also yieldss® = 0 since this is the smallegt> 0 satisfyings = ¢ x+s —di.

2. ¢ix—d; > 0. Now the left-hand-side yields
g =min{eg : g =cXx+s5—d.,5>0¢ >0} =cx—d,

which is also the value of the right-hand-side. 0

Chapter 3. Local Search for Integer Constraints 31

In summary, OIPs are a special case of ILPs. We notice th@&l&Imodels
which will be given in the case studies happen to be confindi;iwis typically
easy to check. The algorithms that will be described subsequently arectljre
applicable to general OIPs, however.

There is a close relation of OIP to integer linear programih wiecewise-
linear objective function8.A piecewise-linear function is a function that is pieced
together from linear segments. Every soft constrexrit d gives rise to a penalty
that is expressed by a piecewise-linear convex function(ax—d), as shown
in Figure 3.1. Given the fact that the sum of two convex fumudiis a con-
vex function, OIP objectives are piecewise-linear convBiecewise-linearities
are employed in models to give a more realistic descriptiocosts than can be
achieved by linear terms alone [48]. There are also extaasih the simplex
algorithm for piecewise-linear convex programming [46].

penalty penalty

cX cX
d d

(@) cx<d (soff (b) cx>d (soff

Figure 3.1: Piecewise-linear penalty functions

An OIP Example. As an example of a piecewise-linear objective function,-con
sider the problem of assigning a set of ta3kto a workforceW. Suppose that
every task consumes one hour and every wonkisremployed for 8 hours, but can
work overtime at some cost. The problem can be modeled witarpivariables,
ayw = 1 iff taskt is assigned to workex. The constraints are:

Assign every task Y, aw =1, forallt.
Limit workday Staw < 12, for all w.
Minimize overtime Y aw < 8 (soff), for all w.

The goal is to assign the tasks to the workers such that thensdnovertime is
minimized. The problem as stated above is not a hard condsiahproblem but
it may occur as subpart of one.

“Note that the following is a simple sufficient condition famfinedness: for every soft con-
straintcx < d, there exists a hard constraox> d.

5] thank Andrew Parkes for bringing my attention to the relatbetween soft constraints and
piecewise-linear functions, which eventually lead to Prsifion 2.

Chapter 3. Local Search for Integer Constraints 32

3.1.3 Constraint-Bounds

A soft constraintcx < d of an over-constrained integer program is similar to an
objective function with a bound. Therefore, the right-harakd will be referred

to asconstraint-boundFor modeling, we need to understand the degrees of free-
dom of choosing the constraint bounds: Consider an OlBontaining a soft
constraints: cx < |, to minimize the excess of a functiax overl. We observe
that the larger the values bfthe larger the (soft) feasible region®fSometimes,

for a given value of there may be no feasible solution to the problem that saisfie
s. This raises the question in what range the constraint-t®gan be increased

or decreased without changing the optimization problem?

Definition 2 (Rebounding) Given an OIPO = (A,b,C.d,D), the OIP(A,b,C,
d’,D) is a called a rebounding aP.

Proposition 3 (Invariance under Confined Rebounding)If ©; andO- are con-
fined OIPs, and), is a rebounding of,, then the set of optimal solutions is the
same for®; and O».

Proof. Since; is confined, it is equivalent to an IP with minimization ob-
jective [|Cx — d1||1. As O, is also confined and a syntactic reboundingtaf
its corresponding IP has the same set of constraints but immation objective
of ||Cx —da||1 = ||Cx — d1]||1 + k, for somek. Obviously, every solution of O,
with objective valuesis a solution of©, with objectives+ k and thus the sets of
optimal solutions are the same. O

Proposition 3 implies that if for operational purposes ihépful to increase
the constraint-bounds, this may be done provided that cedifi@ss is maintained.

Proposition 4 Let (A,b,C,d,D) be a confined OIP. For evey with d < d; for
all i, the rebounding A, b,C, d’, D) is confined.

The proof follows directly from the definition of confinedisegogether with
Proposition 3, Proposition 4 states that optimal solutidosnot change if the
soft constraint-bounds are tightened (note that theiraivge function values do,
however). This tells us that choosing soft constraint-lasutoo tightly does not
affect the optimization problem except for a shift in theeadtjve function values.

3.2 INTEGER LOCAL SEARCH: WSAT(OIP)

This section introduces WAT(0IP), a local search method to solve optimization
and feasibility problems represented by OIPs. Startinppfsmme initial assign-
ment, the procedure performs changes of variable valueseltif moving in the
space of integer assignments to find feasible or good sakitio

Chapter 3. Local Search for Integer Constraints 33

two-stage move selection

initialize variabl randoml | lect variable/val .
- tialize alabes a'dg yseect' select val abe{ alue [L)\ riable = value
(randomly, biased) unsatisfied constraint from constraint

A

restart

Figure 3.2: Local search and the two-stage control stratéyyalksat.

WsAT(0IP) generalizes Walksat (described in section 2.3), but it$ope
mance on realistic problems is often critically dependemttize incorporated
concepts from Tabu Search [61]. As the case studies will dstnate, despite
its conceptual simplicity, WAT(0IP) is surprisingly effective in terms of perfor-
mance and robustness. HistoricallyS\W(o1P) builds upon WSAT(PB) [146]
which performs stochastic tabu search on over-constrggseddo-Boolean sys-
tems. Generalizing from Boolean variables to general fiddeain variables,
WSAT(0IP) subsumes WAT(PB).

The Strategy

We describe the method starting from its basic principled, @oceed by giving
the main loop of the algorithm and the (important) detailb@iv the local moves
are selected. A summary of the parameters concludes thejglest Section
3.4 will further illustrate the search process and sevet@resions by a graphical
example.

WsAT(01P) follows an ‘iterative repair’ strategy and operates ototal as-
signmenian assignment to all variables). Individual variablekegpairs are iter-
atively selected to be changed in order to improve the loalignt of an overall
measure of the satisfaction of the constraints. The maitedpc selecting lo-
cal moves is illustrated in Figure 3.2. Generalizing frora Walksat algorithm
[133], variable changes in ¥AT(01P) are selected in a two-stage strategy of first
randomly selecting annsatisfiedconstraint for partial repair and from the con-
straint selecting a variable to be chan§ethis two-stage control strategy, which
we will call *Walksat-Principlé distinguishes Walksat among the many flavors
of recent local search algorithms for SAT and CSP (includbsaT [134], GSAT
+walk [133] and MN-CoNFLICTS [108]).” Note that it favors those variables that
appear in many unsatisfied constraints [133].

The criterion for move selection is to perform hill-climigion ascorewhich
reflects both the degree of infeasibility and the optim@atbjective. A value

6In contrast to SAT, a variable change does not always repaselected constraint completely.
"More generally, this two-stage control strategy is (i) sekeconstraint for repair, and (i)
select a partial repair for constraint

Chapter 3. Local Search for Integer Constraints 34

change of a Boolean variable isflpp (complement) the variable to improve the
score. As a generalization, a move oBW(0IP) consists otriggeringthe value
of a finite domain variable to a smaller or greater value inrtaghborhood of
its current value assignment. Occasionally, a restart witiew initial assign-
ment takes place to escape from local optima, for exampde afiixed number of
moves.

3.2.1 The Score

To describe the move selection strategy for over-constdhiRs in detail, we first
need a score definition. Given a particular assignmert system of the form
(3.2) is evaluated as,

scoréx) = ||b— Ax||, + ||Cx —d||. (3.6)

using the usual norriv|| = $;max0,v;). A useful property of the score (3.6) is
that it is identical to the value of the objective functiortioé equivalent ILP.

Additionally, the score (3.6) uses a veclor> 0 for weighting the hard con-
straint violations, defined byv||) := >;Aimax0,v;). Note that the soft con-
straints do not carry weights in order that the score of lasiolutions bequal
to the objective function value. Only one case study will maise of non-unit
weights, and all experiments were performed with weightd there assigned
statically.

e = feasible integer point
6 o = infeasible integer point
N(‘l + % =6 o= feasible continuos points

Figure 3.3: Manhattan distance, a shortest path to entde#stble region of a
constraint with all coefficients frori—1,0,1}.

Graphical lllustration. To illustrate the score (3.6), assume a current variable
assignmens and a constraint : cx > d with all elements ot from {—1,0,1}.

Chapter 3. Local Search for Integer Constraints 35

Then,||d — cs| measures the number of unit variable changes required ¢o et
feasible region of the constraint, i. e. thanhattan distancef sto c. Figure 3.3
illustrates the situation for the constrat+ X, > 6 over two variables;, s, €
{1,2,...,5}. The score o= (1,2) is 6— (1+ 2) = 3 unit variable changes.
Section 8.2 will discuss a refinement of this scoring scheme.

3.2.2 The Main Loop

In each iteration, VBAT(0IP) makes a change of exactly one variable-value pair,
Figure 3.4 illustrates the basic main loop ofs\f(oiP). If an assignment is
found that is better than the best one found in the past, #visbest assignment
is stored. If an assignment is found that is known to be opt{®ay. using a
relaxation-proof), the optimal assignment is returnedegtart is performed after

a fixed number of iterations.

proc WSAT(OIP)
input OIP O, Maxmoves, Maxtries
output an approximately optimal feasible solution
for O, if found
for i := 1to Maxtries do
a:= initial total assignmenig|v] € domv),
possibly infeasible
u:=o0
for j:=1to Maxmoves do
if ais known to be optimathen return a
if ais feasibleA scorda) < uthenu:=a
c := select-unsatisfied-constraifl, a)
(v,s) := select—partial-repajo, c, a)
a:=alv+ 9|
end
end
if U< oothenreturn u
else return “no feasible solution found”
end

Figure 3.4: Main loop of VBAT(0IP) for over-constrained integer programs.

3.2.3 Move Selection and Tabu Search Extensions

The fundamental principle behind $%1(01P) is steepest-descent (selecting local
moves that most improve the total score) combined with agaptemory [58]

Chapter 3. Local Search for Integer Constraints 36

1. Randomly select an unsatisfied constrainfwith probability
Prarg @ hard constraint, and with-1 p,,.g @ SOft constraint).

2. Froma, select all variables which can be changed such that
a’s score improves. For each such variable, select one or more
a-improving values and compute the hypothetical total ssore
(Boolean variables are flipped, finite domain variables age t
gered up or down by at modtstpes).

3. From the selected variable-value pairs, remove the ohéshw
aretabu(tabu-aspiration by score).

4. Of the remaining variable-value pairs, select one thattrm-
proves the total score, if assigned. Break ties accordiny to
frequencyand ii) recency

5. If the total score cannot be improved: With probabilfyise
select a randora-improving non-tabu variable-value pair. With
1 — pnoise Select the best possible one.

Figure 3.5: A stochastic tabu search strategy for move sefemn
WsAT(0IP). The strategy extends Walksat to systems of hard and
soft constraints (1.) and its variable selection to gengnge do-
main variables (2.). Additionally, the straegy is mergethveidaptive
memory from tabu search (3.) and an extended version ofristo
based tie-breaking (4.) [53].

and a noise strategy to overcome local minima. The remaidéggees of free-
dom are how to select (i) a constraint and (ii) a partial repae. a variable and
its new value. It a time-consuming engineering task to finddystrategies for
() and (ii) which has a strong impact on performance. Theuerite of differ-
ent variable selection strategies on performance has bgestigated previously
for SAT local search [117, 105]. Throughout the case studiasatisfied con-
straints are selected at random. Although different cairgtiselection schemes
have been studied (among those selecting one of the viatatestraints ordered
by increasing/decreasing ‘constrainedness’), we coulfimsa selection scheme
that improved over random selection.

Figure 3.5 gives a scheme that combines successful elerfnentsstochas-
tic local search and deterministic tabu search. The pdaticirategy evolved in
the course of our case studies and includes a tabu mechansory-based tie-
breaking, and timid noise: A tabu mechanism with tenure ¥ tsavoids assign-
ing a variable-value pair that has been assigned in thequsvimoves—unless

Chapter 3. Local Search for Integer Constraints 37

parameter std value description

Proise 0-0.2 probability of a allowing random downhill move
Phard 0.8-0.9 probability of selecting a hard constraints forarep
Pzero 0.5-0.9 probability of initializing a variable with zero

t 1-2 tabu-tenure (overridden by score-aspiration)
Maxstep 2 maximal trigger distance of non-binary variables
tie-breaking on history-based tie breaking (frequencgney)
Maxtries total number of tries

Maxmoves number of moves within a try

Table 3.1: Parameters of $%T(0IP) with standard ranges.

the score would improve over the best past score (in tabiwcls¢arminology,
overriding the tabu-status of a move is calbspiration). All ties between other-
wise equivalent variable-value pairs are broken by a histeechanism inspired

by Gent and Walsh’s BIAT [53]: On ties, choose the move that was chosen i) least
frequently, and then ii) longest ago.

In contrast to SAT local search, the length of 0-1 inequegithat can be han-
dled efficiently can be quite large. This is because onlyegh@siables need to
be scored that contribute to the violation of a constrainbr &le, in the
course assignment problems, inequalities contained upQov&riables of which
typically only 10% needed to be scored for repair.

Parameters

Finally, Table 3.1 summarizes the parameters of the bagarigim. It also re-

ports parameter ranges as rules of thumb. Most parametergsein the case
studies were performed with settings from these rangesefthet values will be

reported). Additionally, for practical purposes a seedpuaater is used: fixing the
seed yields a deterministic algorithm.

Chapter 3. Local Search for Integer Constraints 38

3.3 COMBINATIONS WITH LINEAR PROGRAMMING

Local search methods like $AT(01P) suffer from several principal drawbacks
when used in an optimization context. These are:

() The inability to detect if a (specific) obtained solutismoptimal or to esti-
mate how far from optimality the solution is.

(i) The lack of any guarantee of the quality of the solutiorturned. (For
some NP-hard problems, approximation algorithms existdtéia give such,
although weak, guarantees [72]).

(i) The absence of sound search-space pruning methodsydhe local search
process.

We will argue that combinations with linear programming ¢esfp to over-
come these drawbacks to some extent. Especially, for (igtdvounding, (ii)
initial assignment by rounding, and (iii) search space c&dn.

The first section describes the standard use of the lineaxatbn to obtain
(lower) bounds for (minimization) problems. The secondiseacdescribes the
computation of initial assignments by linear programmialipived by random-
ized rounding, and a novel extension of this idea fos A 01P). And the third
section discusses the use of ‘reduced costs’ for searcle spdaction, as pro-
posed by Balas and Martin [9].

3.3.1 Bounds from LP Relaxations

It is well-known that linear programming problems are palgmally solvable in
theory, and can often be solved efficiently in practice [3lhis fact can be ex-
ploited by using linear programming (LP) to efficiently conte bounds on the
optimum of a problem at hand. In practice, bounds obtainezttly from the LP
relaxation are often valuable estimates of the solutiotityua

Consider the following 0-1 integer problem in matrix nodati(note that LP
relaxations are applicable to general integer programs)

Zp = Minimize cx
subjecttoAx > b (3.7)
x; € {0,1}.

One way to generate a lower bound to problem (3.7) is to rédexirtegrality
constraintsg € {0,1} by substitution with bounds on the variables. This yields

Chapter 3. Local Search for Integer Constraints 39

the linear program

Z,p = Minimize cx
subjecttoAx > b (3.8)
X € [0,1].

As (3.8) is a relaxation of (3.7), every lower bound of (3iB8)particular its opti-
mal solution, is a valid lower bound of (3.7). In absence efdptimal objective
value for the integer programming problem, this fact can $eduo estimate the
quality of a solution to (3.7) by solving the linear relaxati(3.8).

The difference between the optimal IP and LP solutiahs— Z,», iS usu-
ally referred to asntegrality gap Practitioners have observed that problems with
small integrality gaps tend to be solved more efficiently igger programming
branch-and-bound than problems with large gaps. Otherrgeneethods for
lower bounding could be used as well, e. g. Lagrangean riatenxgl.7].

3.3.2 Initialization by Rounding LP Solutions

Solving the linear program followed by rounding the noregral solutions can
be combined with integer local search in useful ways. Carsiddcombinatorial
optimization problem given by the ILP

minimize cx
subject toAx > b (3.9)
X integer

As before, the first step is to relax the integrality consiiaiand apply linear
programming to solve the system

minimize cX

3.10
subject toAX > b. ()

The result is an LP-optimal solutioq,i = 1...n. As theX; may be fractional,
the LP solution may not constitute a feasible solution fa ihteger program.
In order to restore integrality, the resulting valugsan therefore be rounded
(i) deterministically or (ii) in a randomized fashion (up @own) to yield values
xi. There are several benefits that can be obtained from rognedimd we will
start by describing two practical benefits that arise ireespely of the employed
rounding scheme. Subsequently, we will touch on a the@alekienefit of the
combination.

Chapter 3. Local Search for Integer Constraints 40

Practical Benefits

Some discrete optimization problems exhibit a low level istteteness because
even although all variables are integer, their domainsagel An efficient way
to solve such problems is by linear programming and rounigitige initialization
stage of an integer local search method. To illustrate tuissider the following
problem formulation, occurring as a subtask of a real condition problen?

Zpr = Minimize X1 + 20x2 + 20x3 + 20%4
subject tox;y + 4Xp + 2x3 + X4 > 800
X1+ X2 + 4X3+ X4 > 100
X1+ X2 + X3+ 4x%4 > 600
X1+ X2 + X3+ X4 > 400
xi € {1,...,1000}.

(3.11)

Due to the large variable domaigg, ..., 1000}, this problem is in a sense
‘close’ to its linear relaxation. This fact is illustrategl hable 3.2 which contains
the optimal LP and IP solutions. Using the optimal LP solutamd determin-

var LP IP
X1 200 201
Xo 133.33 133
X3 0 0
X4 66.667 67
Z 6000 6010

Table 3.2: Optimal solutions for a subtask of a configuragioyblem (3.11).

istically rounding it yields a solution which violates ontllye first constraint in
problem (3.11).

Because of the type of local moves SAWF(01P) as described above is not the
method of choice for problems with very large domains iftetfrom a random
initial variable assignment. However, when initializedwihe rounded LP solu-
tion from Table 3.2 it only takes one variable flip to restagadibility and arrive
at the optimal IP solution. This is because examining theswayepair the only
violated constraint, all variables of the first constraimgt scored and increasing
yields the smallest increase in the overall score.

8Thanks to Thomas Axling for providing the example.

Chapter 3. Local Search for Integer Constraints 41

Observations for Binary Variables

Even if all variable domains are binary, rounding the naegnal solutions ob-
tained from linear programming can be helpful. In genemrdstbility with the
constraints is lost due to the rounding step. However, artégral search can be
expected to recover feasibility quickly in most cases. Adithal benefit may
arise with problems for which the LP relaxation yields a éargimber of integral
values. For instance on “large-sized” generalized assgmrbenchmarks from
OR-library [16], instances exist for which the LP optimunsiwanly 1% (5 out of
500!) non-integral variables; all other variables were Q.or

Leashed Local Search.For the case that a significant number of integral val-
ues are obtained from the LP relaxation, we propose an egten§ WSAT(OIP)
which we callleashed local searclStarting from an initial rounded LP solution,
perform local search as usual. However, limit the radiusseésrch may divert
from the initial assignment, by limiting the hamming distarbetween the ini-
tial solution and the current solution (theamming distancbetween two Boolean
variable assignments is the number of bits that differ). \iderabt explore this
technique in the case studies because the principal aimsofvtitk is to examine
what can be achieved by local search; the effectivenessashezl Local Search
on the other hand would be tied to the question how close tdRlsolution a
corresponding LP solution is. Also, in some of our caseistusee Section 6.1),
solving the LP relaxation took orders of magnitude longantkolving the origi-
nal integer problem with \WAT(OIP).

Approximation by Randomized Rounding

The approach of randomized rounding is due to Raghavan aachp$on [121],
and can be used to formulate efficient (polynomial) appratiom algorithms
with provable performance guarantees. The key insightmdeeized rounding
is that certain performance guarantees can be derived if@nes a linear relax-
ation (3.11) and randomly rounds the fractional variabl&snerally, ifX is the
solution obtained from linear programming, we assign atsmiwariable for the
IP, x; = 1 with probabilityx; andx; = 0 with probability 1- X;. Recently, a number
of approximation algorithms falP-hard problems have been presented based on
randomized rounding, whose characteristic is to give aityugiiarantee for the
returned solution [72]. One example is maximum satisfigb{(IMAXSAT) for
which randomized rounding can be combined with random blgiassignment
(pzero = 0.5) to yield an approximation algorithm which guaranteeg itsasolu-
tion satisfies at least 3/4 of the clauses [151, 111].

If, for a particular problem, such a performance guarankésgtsefor random-
ized rounding, this guarantee is of course directly inkdriby an integer local

Chapter 3. Local Search for Integer Constraints 42
search method if randomized rounding is used to obtain thialirolution.

3.3.3 Search Space Reduction using LP Reduced Costs

We next describe a method for dynamic search space redudftimeal search
which can be employed in combination with3Afr(oipP), and which has been
reported by Balas and Martin [9] and Abramsztral. [4].

The idea is that solving the LP relaxation of an integer progto optimality
reveals information about the sensitivity of the solutidthwespect to changes in
the problem’s parameters. In mathematical programmirady analysis is referred
to assensitivity analysi§31, 149].

An important instrument in sensitivity analysis aeeluced costswhen solv-
ing the linear program to optimality using the simplex methimgether with the
optimal solution one obtains an optimal tableau which costédasic variables
(the variables that are non-zero in the optimal solutiorg aonbasic variables
(the variables that are zero). We describe the idea in tefn@slointeger pro-
grams.

For any nonbasic variable, its reduce cost; is the amount by whiclv;’s
objective function coefficient must be improved befarewill become a basic
variable in some optimal solution to the LP. Another intetption ofr; is that it
is the amount by which the objective functidps will increase (in a minimization
problem) if the variable is increased by one.

Reduced costs can be employed for a dynamic pruning of threlsspace in
the following way. If at any time during the search the beasfble solution found
(upper bound) has an objective function valuegf, then all variables; can be
fixed to zero for whictZ,, +ri > Z,s. This is true because assigning one to these
variables would yield a solution which is provably worserthibe best solution
already found.

This strategy can be used to extendiV(01P) by allowing it to fix variables
in the following way: Every time an improved feasible satuti(upper bound)
with objective valueZ; is found, all variables; for which Z» +r; > Zyg holds
can be fixed to 0. Notice that the current valuevofust then be 0 (because
if vi =1 then it would follow thatZ,z > Z,, + r; which is in contradiction with
Zys < Zp+ri). If all variables are fixed, the upper bound is provably gt

A requirement for the pruning to be effective is that a sigaifit percentage
of the reduced cost values be sufficiently large. For exantpis is typically
the case for set-partitioning problems where many vargab#n be fixed by the
techniquée In the case studies conducted here, except for Chapter fedeed
costs were not significant (the particular covering andgassent problems had

9David Abramson, personal communication.

Chapter 3. Local Search for Integer Constraints 43

mostly zero reduced costs and the feasibility problems haweue reduced costs
because there is no objective function).

Preliminary Results. Because of the small reduced costs in our case studies, we
have not evaluated search space reduction in detail at d¢ing. pNevertheless,

in addition to the observations by Abramseinal. [4], our observations on gen-
eralized assignment benchmarks from OR-library [16] amy yeomising. For
example, on a ‘large-sized’ GAP instance, 334 out of 500ryimariables would
have been fixed to 0 during the search process using the uppadidound by
WSsAT(0IP) after a short time—a remarkable reduction of the searcbespa

3.3.4 Implementation Issues

WSsAT(0IP) has been implemented in C/C++, making use of the Lax/Yaot-co
piler genererator for parsing and of the standard Gnu C++taguer libraries for
hashing. Including interfaces to Oz, AMPL, an@l&X the code is roughly 7000
lines of source code. However, the core algorithms &fAN(01P) require only
around 2500 lines.

Incremental Data Structures

In order to perform the local moves efficiently, it has oftexeb emphasized for
SAT local search that incremental data structures canlgreahance the per-
formance. The bottleneck of this computation is the evadnatf the proposed
moves. Therefore, the ¥AT(0IP) implementation employs incremental data
structures similar to the ones used by Walksat asd13134] (discussed in detall
in [106]).

The fundamental data structure used to represent the sims@tconstraints
are two cross-linked arrays (used once for hard and oncefocanstraints): At
any point in time, one directioa|[1...k] maintains the indices of all unsatisfied
constraints for efficient selection of a random unsatisfiedstraint. The other
directionui[1...m| is used to efficiently update and maintains the index where
constrainti is positioned in theu array if currently unsatisfied, i. e/ui[i]] = i.
These arrays are updated whenever a constraint changesepesat and unsat.
Also, the evaluation of the left hand side of each constraider the current
assignmentdx) is incrementally maintained. Further, to efficiently camgpa
change of the overall score upon changing a variable vallis{ B maintained
for each variabler which linksv to all the constraints it occurs in with non-zero
coefficient. To compute the score of changing a variables #ufficient to visit
all constraints that it appears in, add or subtract the coeffi to the current left
hand side, and reevaluate if the constraint is sat or unstéér A changing the

Chapter 3. Local Search for Integer Constraints 44

value of a variable, an update takes place ofutadui arrays, and the value of
the incremental total score is adjusted as before.

3.4 A GRAPHICAL INTERPRETATION

To illustrate the search process, its limitations and werioays to improve it,
we will now look at how WEAT(01P) moves in the space of integer solutions in a
graphical example. Consider the following OIP (3.12) ar@phical equivalent
in Figure 3.6, as it is usually depicted for IP/LP problems.

(A) 9 +5x; >45

(B) X1+Xo >6

(C) 8xp1+5x2 <0 (soff
x1,% €{1,2,...,5}.

(3.12)

One easily verifies that the OIP (3.12) is confined and can bleusduced
to an integer linear program with minimization objective 8 5x,. Figure 3.6
shows the feasible region of the LP relaxation shaded in, guag delimited by
the constraints (the feasible region of soft constrainti@C3haded light gray).
The black circles are the points that are feasible to thgertproblem, the white
circles are the points that are integer but are outside #slike region defined by
the (hard) problem constraints. Also plotted is @sweost lingarbitrarily starting
at point (3,5)) and denoted by the equatioa 8x; + 5xp. All isocost lines are
parallel to the plotted one, and the intersection of theibdagegion with the
leftmost possible isocost line (minimizirgy yields the LP optimum.

To illustrate the search process ofsfr(oIP) and several improvements by
this example, we will consider in order (a) the search pregath vanilla param-
eters, (b) search with tabu tenure- 1, (c) search with constraint weigtXs (d)
initialization by rounding of the LP optimum, and (e) seagdter constraint LP
rebounding.

The Figures 3.7 illustrate the moves ofSAf(oiP) to solve the problem
(3.12) using different strategies. First, Figure 3.7(aicls the progress of vanilla
WsAT(0IP) after an initialization tg/0,0). Each diamond plots one variable as-
signment visited during the search. Each arrow plots thediary between two
assignments, and each arrow is marked by the constraint @%,B) that is se-
lected for partial repair. If different selected consttailead to the same move,
the transition arrow is marked with more than one letter (&,8).1°

To eliminate the random aspect from this discussion, we dalfmv random
moves, i. e. we always start at point (0,0) (settmg,= 1), always take the best

101n the particular example we are lucky in that no branchiaggttories exist.

Chapter 3. Local Search for Integer Constraints 45

e = |P feasible point
o = IP infeasible point
O = LP relaxation’s feasible points

9x%; + 5% =45
X+ % =6

5 T T3
\ Z = 49+
4 & ¢} O \v\o ®
N
3¢ o] o o o
\ ; PR
] Optimal LP solution = 41.25
2o o o o ® X = 3.75
] Xo = 2.25
1o o o o o \
e X,
ol 2 3 4 5 6

\
N\ 8% +5% =0
2L \

Figure 3.6: Graphical Interpretation of Problem (3.12)

possible movefoise = 0) and always pick a hard constraint for repair when one
is violated @nharq = 1). Otherwise, we employ standard parameter settings., Thus
Maxstep is 2, which means that individual variable changes are &tbup to two
units in this example, leading to arrows of up to length 2.

The vanilla search 3.7(a) starts by greedy moves alongitlais, since the
score improvement is larger alomg thanx,. For another 3 moves, YAT(OIP)
continues moving towards the feasible region, first reagia feasible region at
(5,0), then the overall feasible region and then reachieddbal optimum (5,1)
with an objective function value of 45. Now, both hard coasits are satisfied
and the soft constraint C is selected for repair. With resfwethe score gradient,
decreasing, appears to be the best alternative, reaching the previsisted
point (5,0). At this point, the search starts cycling beeahe noise level is zero.

Tabu Search. The tabu search 3.7(b) proceeds similarly, except thatdnsition
back to (5,0) is tabu and the search happens to enter thdleasgion at the
IP optimal point (4,2) with an objective function value of.42Ve notice that
although the tabu element prevents cycling in this caseséaech reaches the
optimal solution only after a detour. The tabu mechanismalsa critical to find

Chapter 3. Local Search for Integer Constraints 46

optimal IP
solution

(a) Vanilla WsAT(0IP). (b) Search process with tabu tentire
1

Figure 3.7: Search trajectories of differenSWf(01P) strategies.

good solutions in several case studies.

Observation of 3.7(a) reveals that the mistake of the \@as#larch was that it
did not turn at (4,0). Instead of moving more directly towsatte IP optimum,
the score suggested that the better move was to achieveifidasif constraint
A. Using this example, we will discuss more elaborate tegphes to alleviate
the situation. Some of the following techniques have begslieg within the
application case studies.

Constraint Weights. In the vanilla search at point (4,0), why did the score sug-
gest to move along;? Clearly, in terms of feasibility, (4,2) is superior as it is
feasible with respect to both constraintsaAd B. Nevertheless, the violated of
soft constraint C dominates and the score indicated to tekenbve (5,0). In this
example, however, moving towards the feasible region fitld have yielded

a better solution. One way to achieve this withs¥(0IP) is to increase the
weights of hard constraints. The trajectory in Figure 3. ¢the result of setting

A to a large integer for A and B, say 100 (illustrated by bolaé$h Constraint
weights were also critical in the case study on capacitatedyztion planning.

Initializing by Rounding LP Solutions.Sometimes it is useful to start from an
initial solution which is close to the LP optimum, as sketthe the previous

Chapter 3. Local Search for Integer Constraints 47

7
» 4 ®
optimal IP | optimal IP
P solution 3 ¢ solution
3 2+ ‘/o
f 14+ \
Xl . 1 } } } I Xl
5 6 v 1 2 3 4 5 6
14N
\
N\
2 L \C

(c) Search process with weights on (d) Search process initialized by
hard constraints. rounding the LP optimal solution

Figure 3.7: (cont) Search trajectories of differensW(01IP) strategies.

section. Figure 3.7(d) depicts this search process whioBists of no moves at
all, as the initial solution is already IP optimal (which fxourse rarely the case in
practice). Notice that optimality is proved here by the LBropm of 41.25: there
exists no integer solution with a cost better than 42 and alto LP optimum.

Constraint Rebounding.In section 3.1.3, we mentioned that it can be advanta-
geous to relax the threshold of a soft constraint and enliésgeasible region.
As we will see, our example is such a case. By solving the L&e&tion, we
determine that the soft constraint C can never be fully Badisis the LP optimum

is 41.25. Relaxing the right-hand-side of inequality C toaéid/lower bound is

a confined rebounding and yields the system (3.13), whichth@same set of
solutions as the original problem (by proposition-3).

(A) 9x;+5x, >45
(B) X1+X2 >6
(C') 8 +5% <4125(=Z,) (soff (3.13)

X1, X2 € {172,...,5}.

UNotice that in general there is more than one soft consteaidtmore complex rebounding
techniques need to be applied if the bounds are not inhgnervided in the model.

Chapter 3. Local Search for Integer Constraints 48

>
optimal IP
p solution

-

(e) Search process after constraint LP
rebounding.

Figure 3.7: (cont) Search trajectories of differensW(01P) strategies.

The search process on the rebounded system is illustrafigdia 3.7(e). Through
the rebounding, the assignments along the trajectory aveatian the feasible re-
gion for C’, and the search concentrates on entering théileaggion of the hard
constraints. Notice that after the rebounding, the objedlunction values are
shifted down by 45— 0, thus the optimal IP solution is nowb.

Chapter 3. Local Search for Integer Constraints 49

3.5 RELATED WORK

There are three principal lines of related work. (i) Geng@wlpose heuristics
for integer programming, (ii) local search strategies fongtraint satisfaction
(CSP) problems, and (iii) domain-specific heuristics farlppem classes like set-
covering, generalized assignment, or time-tabling. We fe@dus on (i) and (ii)
and will not discuss the numerous domain-specific heusiiii¢ here.

In the following, we will present a thorough review of thesli&ture on general-
purpose heuristics and summarize the problem classes aisedderimentation.
As one indicator of problem difficulty, the largest probleines are additionally
reported in the formi*™, wheren is the largest number of variables (‘columns’)
andmis the largest number of constraints (‘rows’) reported i éxperiments.

3.5.1 Integer Programming Heuristics

We start by discussing related work on general purpose stesfor integer pro-
gramming from the OR literature. There are two principalrelgeristics ofin-
teger programming heuristicsThey either relax the integrality constraints and
operate on continuous variables. Or, they adhere to thgradity constraints and
perform local moves in the space of integer solutions, likeAn(0OI1P) does.

Integrality Relaxing Heuristics

A pioneering 0-1 integer programming heuristic which conasia variety of tech-
niques is theivot&complement heuristi(P&C) of Balas and Martin [9]. It ex-
ploits the fact that an optimal solution to a 0-1 IP problem ba found at one of
the extreme points of the linear programming feasible megio

P&C has both of the above characteristics and operates iplases. The first
(“search”) phase performs mainly pivot moves (in the simpddleau) attempting
to find at a good feasible 0-1 solution. Once feasibility hesrbachieved, the sec-
ond (“improvement”) phase attempts to improve the solublojective by flipping
in turn one variable, a tuple or a triplet of variables. Expental results with
P&C have been reported in [9] for capital budgetiffg®®, set covering®<*, set
partitioning®*<®® (crew scheduling). Tabu search enhancements of P&C (treat-
ing P&C as a black-box subroutine) a have been evaluated din-constrained
knapsack problem¥><3% [3, 103] as well as special set coveriffg*® and mis-
cellaneous problentg**" [3].

Another strategy that superimposes tabu search principlextreme-point
transitions has been given by Lgkketangen and Glover [102)ses advanced
tabu search strategies for diversification and a learnimyageh called ‘target
analysis’. Experimental results are reported for multistoained knapsack prob-

Chapter 3. Local Search for Integer Constraints 50

lems®=% Recently, Glover and Laguna [59, 60] have proposed a thiealre
basis for IP heuristics. Their approach shares a foundatittna framework for
generating cutting planes for IP problems, but has not yeh experimentally
evaluated.

Integer Local Search

The next of kin of WSAT(0IP) is the class of integer local search heuristics.
Among the few strategies which have been reported is a sietiémnealing strat-
egy (GPSIMAN) by Connolly [33] as well as a refinememAsA) and a variation
(Pi1sA) thereof by Abramsost al. [4]. RFSA adds the search space reduction tech-
nique of Section 3.3.3 taPSIMAN, andPISA uses a different (inferior) neighbor-
hood transition approach.

In essenceGPSIMAN proceeds as follows. In each iteration, suppose we start
from a feasible assignmeit A random 0-1 variable is selected and flipped.
Then, an attempt is made to restore feasibility of the chdagsignment, yielding
A'. Next, the scor€(A) is compared t€C(A') and the move is always accepted
provided it is not deteriorating the score (i.&C = C(A') —C(A) < 0). If A
is worse thanA, the move is accepted with a probabilg§c/T, whereT is a
temperaturdhat is decreased according to an annealing schedule. Tiealamy
schedule starts from a high temperature (many deterigratioves allowed) and
is slowly reduced. Occasionally, a temporary heheatinggltakes place.

The feasibility restoration o6PSIMAN and RFSA (‘restore feasibility’) pro-
ceeds by ranking the variables according to a ‘help-scoré’anoosing the best
variable. Unlike WsAT(0IP), the computation of the help-score does not predict
the true the effect of flipping a variable. Instead, it congswdn intricate measure
of the repair effect, taking into account a ‘criticality’ tie violated constraints.
Details of the computation can be found in [4] or [33]. In gast,PISA (‘penal-
ize infeasibility’) takes a different approach by incorating violated constraints
into the objective function, and not restoring feasibibtfyer each flip. Similarly
as WSAT(01IP), PISA allows the search to move through infeasible regions of the
search space. Abramsehal. do not commit to a particular penalty function but
find PISA to have inferior performance th&¥FsA In [4], a number of disadvan-
tages of this scheme are discussed that do not applygat{@ip), e. g. “a new
cost function is required every time a new problem is encenéick” The version
of GPSIMAN we had available is implemented in Fortran.

WSsAT(0IP) is related to bottrisa andrRFsA: Although WSAT(0O1P) can move
through infeasible regions, its repair strate@y.f) may be set to immediate fea-
sibility restoration as well. We see the principal diffecea toGPSIMAN in the
score computation of WAT(0IP), the applied principles from tabu search, and
the fact that VBAT(01P) operates on OIPs according to the Walksat-Principle.

Chapter 3. Local Search for Integer Constraints 51

Experimental Comparison withPSIMAN. We have evaluated tl@ SIMAN sol-

ver on our benchmarkRR€saA has ceased service and was not available). How-
ever, with exception to the radar surveillance problemgt{Se 6.1), it did not
succeed in finding acceptable solutions. For the radar slarvee problems, the
results were not competitive to those ofs\f(oIP), despiteGPSIMAN was al-
lowed more than two orders of magnitude the runtime &fAN(01P). The results
are consistent with previously reported experiments [4].

For the course assignment problens®SIMAN was not able to find satis-
factory solutions to even small instandés Also, the timetabling problems in
Chapter 5 (all tightness levels) were beyond the limitatiohGPSIMAN, which
gives supporting evidence for Abramsehal’s conclusion that “although the
RFSA approach performs better than thisA approach, it fails for problems that
are heavily constrained”GPSIMAN does not support general integer variables
and therefore not applicable to the Chapter 7 problems. 3h §€SIMAN ex-
periments are described on quadratic assignfient®, grids-and-crosse®™™®,
knapsack®", processor-communicatiéf®®®, graph colorin¢?*®***°, and class
timetabling*®“®?. RFsA andPISA have been evaluated and compared on large set
partitioning problem§®#<4 ysing extensive preprocessing and dynamic search
space reduction [4].

A Simulated Annealing Code A recent approachNTsA, by Abramson and Ran-
dall [5] combines different neighborhood transition sclesrof simulated anneal-
ing for different combinatorial problemaNTSA is reported to perform well in
comparison witlGPSIMAN and a IP branch-and-bound solver (OSL). The goal of
the framework is to automatically choose an appropriate &ghborhood based
on the given algebraic problem description. For examplepsh value changes
for graph coloring, but choose a 2-opt move for the type ofst@mnt used to
represent traveling salesman problems.

While this is clearly an appealing idea, it remains to be ghéat INTSA
will be able to handle problems with mixed types of constsaiin addition to
the pure problems handled by problem-specific SA implentiemis). In fact, as
[5] note, “theINTSA results were actually gathered from a number of different
programs, each of which handled one of the classes of camtstrather than one
program which could differentiate the constraint class elmoose the appropri-
ate algorithm."INTSA has been evaluated on quadratic assignment (30 facilities)
travelling salesman (666 cities), graph coloring (300 sp@d0 edges), bin pack-
ing (500 items, 201 bins), and generalized assignment (8tagé2 jobs).

We would very much like to see an approach that combines thagths of
INTSA and WSAT(0IP): different neighborhood schemes combined with flexi-

2ynfortunately, the implementation produced illegal (supgtimal) solutions when given
more promising parameters.

Chapter 3. Local Search for Integer Constraints 52

bility in the type of constraints. One possible scenario Mdie to employ the
Walksat Principle for dispatching the repairs to be made.

CSP Tabu Search as a General Problem Solv&hortly before the submission of
this thesis, an independent approach of iterative repdimear integer constraints
was published by Nonobe and Ibaraki [115] (previously pnese at APORS-97
in Melbourne, December 97, shortly afterSAf(PB) appeared at AAAI-97).
It shares with this work the iterative repair approach to [iBblems, and also
provides a comprehensive empirical study with encouraggsglts. Technically,
the approaches are less similar. First, the framework byoNemand Ibaraki does
not start from SAT local search, and hence uses differerdl lowves (‘shift’
and ‘swap’) instead of the atomic flip moves performed bgAMo1P). Further,
to approach optimization problems, [115] introduces a raadm to tighten a
bound on the objective function and an additional controtima@ism. This is
in contrast to our use of OIP for this purpose. Further, [1d4fploys an open
definition of CSP as base representation and hence doesdresadtombinations
with linear programming. Also, [115] employs solely 0-1iedles, and while two
of the experimental studies are on similar problem typesapuication to tight
0-1 ILP feasibility problems seems to be provided in [116vduld be interesting
to further compare the two approaches.

3.5.2 Local Search in Constraint Satisfaction

The other line of work on domain-independent local searchtalen place in the
context of constraint satisfaction problems (CSPs) irfieidl intelligence. For
the purpose of the discussion, we distinguish between pi@&Ps (in which all
constraints involve exactly two variables) and non-bin@8Ps. Also, we distin-
guish between an extensional representation (in whicht@ings are represented
by an explicit set of allowed or forbidden variable-valuglas) and intensional
representations. Of course, algebraic constraints areer@msional and gener-
ally non-binary representations.

One of the earliest approaches of heuristic search in @nssatisfaction is
the min-conflictsheuristic by Mintonet al. [108] (previously published 1990).
It has been formulated both as a backtracking algorithm and hill climbing
strategy. The basic principle is the same as in SAT locatbeaamely to “select
a variable that is in conflict, and assign it a value that min@s the number
of conflicts” [108]. Min-conflicts was evaluated on grapharahg (binary), the
n-queens problem (binary), and scheduling of the Hubble &patescope (non-
binary).

Different methods in the same spirit were evaluated for lgregloring and
frequency assignment by Hao and Dorne [68]. The min-cosfithtegy was en-

Chapter 3. Local Search for Integer Constraints 53

riched with noise and applied to randomly generated bina®XMCSP problems
by Wallace and Freuder [144].

Another line of work is the connectionist approach GENET bgrdy, Tsang,
Davenportet al. [38, 39]. GENET is an iterative repair network approach tha
operates by a heuristic learning rule. Although GENET watsaity formulated
for binary extensionally represented CSPs, various exiea$o non-binary non-
extensional CSPs have taken place, among them the work cBNE=G [98, 99].
In E-GENET, more expressive constraints have been studach(on one type
of benchmark): A ‘linear-arithmetic’ constraint (cryptiametic puzzles), an ‘at-
Most’ constraint (car sequencing), a ‘disjunctive’ coastt (Hamiltonian path),
and a ‘cumulative’ constraint (simple scheduling problem)

Chapter 4

Case Studies Methodology

“Any choice of [benchmark] problems is open to the criticism that it is un-
representative. There is another way, however. One can investigate how
algorithmic performance depends on problem characteristics. The issue of
problem choice, therefore, becomes one of experimental design. Rather
than agonize over whether a problem set is representative of practice, one
picks problems that vary along one or more parameters.”

John N. Hooker in [74]

The previous chapter has described new methods for integar$earch and
presented the WAT(0IP) procedure. The next three chapters will empirically
investigate the performance of XT(01P) in a number of realistic case studies.
In between, this chapter reflects on issues and goals of periexental analysis.

There are three chapters for three different aspects ®AMIP): Chapter 5
investigates VBAT(01P)’s ability to solve difficult 0-1 integer feasibility probins.
Chapter 6 concentrates on 0-1 integer optimization problefmally, Chapter 7
focuses on the extension of $XT(01P) to (non 0-1) finite domain problems.

There can be different goals of experimental analysis [¥2311]. Because
integer local search is at an early stage, our case studiegynavestigate two
central aspects: Domain-independence and applicalolipptimization in prac-
tice. To demonstrate domain-independence, we draw afiplsarom a range of
integer optimization problems. To support the claim of gcadity, we highlight
the aspects that we believe matter for practical concerimgs dhapter contem-
plates criteria of success for practical optimization mdtand motivates the
case studies on the grounds of those criteria.

54

Chapter 4. Case Studies Methodology 55

4.1 OPTIMIZATION IN PRACTICE:
CRITERIA OF SUCCESS

Theoretical analysis of algorithms is usually concerneth @spects ofvorst-case

or average case resource requiremeritormally, one is interested in bounds on
resource usage such as time or memory, usually under vabtem parameters
such as size. Additionally, for approximation algorithraege attempts to derive
lower bounds on the quality of the solutions. However, asent most practical
optimization algorithms foNP-hard problems are beyond the scope of rigorous
theoretical analysis [74, 85, 11], even worse so when aghpdieealistic problem
classes. In this situation, one needs to resort to expetatiesting.

When moving from theoretical to experimental analysis, isrfaced with an
unfamiliar amount of freedom. Factors that often limit trettcal analyses dis-
appear, such as restrictive assumptions on the instanciddi®n or restrictions
on the algorithmic properties to investigate. Hence, camécisions need to be
made what aspects an empirical evaluation should invéstigeéne central deci-
sions are how to define algorithmic performance and to seleett of ‘typical’
problems to evaluate.

Normally, given a problem instance, performance is measuréerms of (i)
time to obtain the first or best solutipor (ii) best solution quality obtained in
limited time Orthogonally, however, it is critical to investigate thariation of
these measures on a given instance distribution. We refertormance variation
over a given instance distribution asbustness Note that there is an another
issue of robustness, namely performance variation wd@mgingthe instance
distribution (i. e. considering different problems), winiwe callflexibility.

On first sight, robustness might be regarded as a questioacohdary im-
portance in comparison to solution quality or runtime. Butact, it is of critical
importance and inseparable. In particular KiP-hard problems, an algorithm
that performs well on one set of problem instances is harting practical use
if small variations of the instance parameters break itgifuntime changes from
4.83 seconds, precisely measured on one given instance, tekswe the next).

There are several aspects of robustness. First, we arestedrin thescaling
of runtime withincreasing problem sizé&eeping other problem characteristics
similar). The second aspect is scaling of runtime wittreasing constrainedness
i.e. how does performance vary as additional constraimt$shaown at the prob-
lem?! A third aspect isesidual robustness. e. robustness under minor variations
of instance characteristics which only remotely affecé siz constrainedness.

IWe will not attempt to give a rigorous definition of ‘constradness’.

Chapter 4. Case Studies Methodology 56

4.1.1 Scaling with Increasing Problem Size

At the center of most theoretical algorithm analysis is thesgion how an algo-
rithm’s performance varies with increasing problem sizespite the importance
commonly attributed to this question on a theoretical leites sometimes ne-
glected in experimental studies.

Sometimes, there are good reasons not to study scaling éhespecially
on real problem instances, where one usually has no handieeosize of the
problem. Even if instance size varies, real problems sonestihappen to vary
strongly along a number of characteristics and size mayaapge ‘just another
parameter’. It is then difficult to isolate size from the atlparameters. How-
ever, if artificially generated problems are studied, therermally no reason not
to investigate scaling (care must be taken not to changertitdgm characteris-
tics when crafting instances of different size). We meaguoblem size by the
number of variables and constraints of a given encoding.sthéng behavior is
of practical importance since real problems are often laftypically at least as
large as state-of-the-art technology can handle.

Moreover, what makes scaling critical is that differentasithms exhibitdif-
ferentscaling behavior. Empirically, what is a excellent algamitfor small prob-
lems may not be applicable to large-scale problems. Coelgts heuristic that
works well for large problems may not have the desired pitogsefor small prob-
lems (i. e. because it is approximate and one might care famapty). Scaling
of local search has previously been examined on hard rarydgenlerated satis-
fiability problems and sub-exponential (average) scaliag abserved [53, 117].
In our case studies, we examine the scaling behavior ofentlegal search for
realistically structured (randomly generated) coverirapfems as well as for real
course assignment problems in Chapter 6.

4.1.2 Scaling with Increasing Constrainedness

A second dimension in scaling occurs with increasing cairsdness. Investi-
gating algorithmic behavior along this dimension is impattin particular as the
typical practitioner’'s approach to constraint problem#asative repair. “State
some known constraints and find a solution by invoking a sol@bserve that it
exhibits certain unliked characteristics and state aoluliti constraints that disal-
low them. Re-solve and iterate.” In this typical spiral pgss, it is critical that both
the loosely constrained and the more tightly constrainetllpm can be solved.
In recent years, there has been some interest in Al in stgdiie algorith-
mic performance across different degrees of constrairesdf®r several problem
domains and algorithms, an easy-hard-easy pattern habserved in time-to-
first-solution as the problem constrainedness is beingased. Most of these

Chapter 4. Case Studies Methodology 57

studies have investigated performance on randomly gestepaibblem instances.
As yet, there is no generally accepted way to quantify thescamedness of a
problem instance, although measures for the constraissdri@n ensemble have
been given [51, 109, 148].

Chapters 5 (timetabling) and 7 (production planning) shedeslight on the
issue of scaling with increasing constrainedness on reddl@ms. While in the
first study we use the number of solutions as a rough measugmnefrainedness,
the latter uses a parameter of the input problem, i. e. resaapacity.

4.1.3 Flexibility and Residual Robustness

Another requirement of practical optimization methoddléxibility. When a
method is specifically tailored to a narrow problem clasg.(set coveringr
generalized assignmeot time-tabling etc.), incorporating additional constraint
to solve a closely related problem usually requires adjgsthe algorithms or
replacing the strategies altogether. Flexibility is irtigted both across the dif-
ferent case studies (if a method is domain-independenti] ihave to be flexible)
and within the case studies (each of the considered prohtesiugles a variety of
different constraints).

The last aspect of runtime variationresidual robustnesdfter factoring out
issues of size and constrainedness, we are left with a rasidif performance
variation on a given instance distribution. For real profde however, it may be
difficult to obtain several instances with similar param&teOne solution is to
perturb the input parameters of a given instance, therebgrgéng ‘pseudo-real’
problems? We refrained from perturbing real problems to avoid the clity of
choosing which factors to perturb. In most cases, the casiéestexamine several
similar instances of a given problem.

4.2 THE PROBLEM CLASS SELECTION

In recent years, the use of randomly generated benchmalbkepns has increas-
ingly been criticized for empirical evaluation of algontis, e.g. [87]. To ad-
dress the need for a realistic assessment of optimizatamedogy, our choice
of benchmark problems focuses on problems ‘as real-worldvagable’. All
benchmark problems have either been studied in the receot SR literature
(timetabling and sports scheduling), are the result of étalal cooperations (radar
surveillance covering and capacitated production plag)nn originate from op-
erating applications (course assignment, sports schreguli

2A term used by Toby Walsh in personal communication.

Chapter 4. Case Studies Methodology 58

The benchmarks have been selected to examine the foureetgnts for prac-
tical optimization methods stated above: (i) scaling witblgpem size and (ii)
constrainedness, (iii) flexibility and (iv) residual robmsss. All benchmark prob-
lems under consideration share that they stem from NP-haldgm classes, have
a large number of variables and constraints, contain a dgg@ous set of con-
straints, and are difficult for the best general state-efdlt optimization tech-
niques available (both scientific and commercial packagé&$le set of bench-
marks diverges from the classical pure problems (e.g. setrow, set parti-
tioning, generalized assignment etc.) and involves caraptig side constraints
which, in most cases, would have prevented a direct apjgitaf domain-specific
heuristics from the literature. All case studies are ongaténear problems. All
but one case study are on 0-1 integer optimization (binamnabkes).

Two case studies (Chapter 5) address the ability to solafeasibility prob-
lems, a property not commonly addressed by optimizatiorchmarks. Such
problems are typically difficult for general-purpose irgegptimization meth-
ods like IP branch-and-bound. We did not investigate gragbrmg problems
because several studies of iterative repair exist for tbimaln [134, 68, 108].
Clearly, integer optimization problems vary largely and fharticular selection
only covers a small fraction. The claim on domain-indep@&cdeshould hence be
viewed in relation to the state-of-the-art ILP solver tealogy.

The benchmark problems have the following size charatiesigmaximal
number of variables and constraints): Radar surveillaogering (1098% 14595),
course assignment (84841350), the Progressive Party Problem (463R965),
ACC Basketball (13393053), and production planning (using finite domain vari-
ables, 7528 3047). Although problem size does not directly imply hash)et is
a relevant problem characteristic and we notice that theefizthe benchmarks is
larger than in many previous studies of general-purposéaaast

With exception to capacitated production planning (whichtains proprietary
data), all benchmark problems have been made availableghrimne Constraints
Archive athttp://www.cirl.uoregon.edu/constraints/.

4.3 THE EMPIRICAL COMPARISONS

To demonstrate the performance and range of applicabflityeger local search,
this thesis takes a competitive approach to performandeati@n. It focuses on
comparing WAT(0IP) to othergeneral-purposeptimization frameworks, which
have been described in Chapter 2. Whenever appropriatehwgecompare to
IP/MIP branch-and-bound @.EXx 5.0 [79]), constraint programming solvers (Oz
[136] and ILOG Solver [78] approaches from the literatua)d GPSIMAN, a
domain-independent simulated-annealing heuristic [33,The employed con-

Chapter 4. Case Studies Methodology 59

straint programming approaches incorporate some domaivlkdge in the form
of enumeration heuristics or suitable problem factoraagi

In order to compare the results of thesW(o1P) heuristic to exact algorithms,
the exact methods are run in “heuristic mode” [9], i. e. thetlsmlution found
within a given time limit is reported (occasionally, secdvest solutions are also
reported if qualities are similar but time differs signifitly), if optimality can be
proved, this is reported. To evaluate the experimentaltsesuabsence of prov-
ably optimal solutions, we employ methods for generatinigdvawer bounds,

I. e. linear relaxation and Lagrangean relaxation.

For the MIP branch-and-bound experiments, tire€x 5.0 MIP optimizer
[79] is used as it is commonly regarded as one of the fastewtrgkepurpose
MIP-optimizers and has been in commercial use for over 18syé€2LEX 5.0 uti-
lizes state-of-the-art algorithms and techniques, inalgiduts (cliques & covers),
heuristics, a variety of branching and node selectionegiias, and a sophisticated
mixed integer pre-processing system [79]. We often ren&X with standard pa-
rameters which involvesautomaticcontrol of several MIP subroutines (such as
heuristics, branching, cut generation). The standardpater settings are usually
non-trivial to improve upon (in many cases we report on niamdard settings as
well). It should be recognized thatrCEX is the product of several man-decades
of development and research, whereas trsaWo1P) implementation is compar-
atively simple.

Mostly, run-times are reported but no memory requiremewes ¢hough in
some applications space usage may be an important issueegMxnthe issue
in our study, but point out that the memory usage may diffgnisicantly for the
different frameworks: Tree-search approaches like&x and CP sometimes oc-
cupy hundreds of megabytes of main memory while integet kearch uses con-
stant memory during the search. To compensate for exaggemsmory usage,
all runtimes are measured as wall clock time, which purpgdleincorporates a
penalty for paging.

Chapter 5

Time-tabling and
Sports Scheduling

This chapter investigates two difficult time-tabling/sdbkng problems, ‘the Pro-

gressive Party Problem’ (PPP) and scheduling of the Atabtiast (basketball)
Competition of 1997/98 (ACC). Both problems were recentifraduced and

solved in the literature [114, 135]. The previous resultmdestrate that finding

feasible solutions for these problem is challenging, eveemusing approaches
that incorporate domain-knowledge.

Both problems can be encoded with 0-1 integer constraintso@el for PPP
has been given in [135] and a model for the full ACC probleni ba& presented
here), but no approaches have previously been reporteddtadintions directly
from 0-1 encodings of these problems.

This chapter reports on experiments of integer local segiran 0-1 integer
models of problem instances of PPP and ACC. For both problgrmgxperimen-
tal results will be compared to the previously reported ltssivioreover, we will
study the performance of local search with increasing gmbtonstrainedness.
In particular, for the ACC problem, an extensive study oegdr local will be
presented that investigates the scaling of runtime witheiasing problem con-
strainedness.

5.1 THE PROGRESSIVE PARTY PROBLEM

The problem in the first case study, “the progressive paxplem”, was recently
introduced in a comparison between constraint programraimyinteger linear
programming [135]. A main result of the study is that the peabappears to be
beyond the size limitations of integer linear programmirgpj but can be solved
using constraint propagation and chronological backireck Our experiments

60

Chapter 5. Time-tabling and Sports Scheduling 61

show that the problem can be solved significantly fasterqugusAT(01P). Fur-
ther, we look at slight variations of the instance given iBgJland find that local
search is robust with respect to the modifications. On therdtiand we were
not able to find a constraint program that could solve all afteat problems. To
solve the problem with \WWAT(0I1P), we factor it into two stages. In the first stage,
a small number of principal variables are explicitly enuated (e. g. using con-
straint programming), while in the second stage, the vlasabalued in stage one
are propagated through the theory, and the remaining shigonds attacked with
local search.

5.1.1 Problem Description and Formulation

In the integer local search approach, we employ a 0-1 modelasito the one
used by Smitlet al. [135]. The problem model is large and incorporates a wariet
of different constraints which suggested that it would beraeresting test case
for integer local search.

The problem scenario is an evening party in the context ofcatyag rally.
Certain boats are selected to be hosts, and the crews oftia@ieg boats in turn
visit the host boats for several successive half-hour geridhe crew of a host
boat remains on board to act as hosts while the crew of a gaastdgether visits
several hosts. Every boat can only host a limited number e$tguat a time and
crew sizes are different. Table 5.1 reports boat capaatidsrew sizes. There are
six time periods. A guest boat cannot revisit a host and gerests cannot meet
more than once. The problem facing the rally organizer isahaninimizing the
number of host boats (presumably for reasons of supplytiog)s Certain boats
are constrained to be hosts, and selecting the hosts amemgrttaining boats is
stated as part of the problem.

We do not claim that this problem is of immediate practicghgicance; how-
ever, it has the advantage of being a well-studied hard tabkrg problem with
a variety of constraints. The variables in the problem aegfdliowing: & = 1 iff
boati is used as host boat. Variabhag = 1 iff boatk is a guest of boatin period
t. Constant; is the crew size of boatandK; is its total capacity. The objective is
to minimize the number of hostg; &, subject to:

Constraints CD.A boat can only be visited if it is a host boat.
Yikt — 0 < Oforalli,k,t; i #k.
Constraints CCAPThe capacity of a host boat cannot be exceeded.

Z CeYikt < Kj —¢; for all i, t.
ki

Chapter 5. Time-tabling and Sports Scheduling 62

boat cap crew boat cap crew boat cap crew
1 6 2| 15 8 3] 29 6 2
2 8 2| 16 12 6| 30 6 4
3 12 2| 17 8 2| 31 6 2
4 12 2| 18 8 2| 32 6 2
5 12 4| 19 8 4| 33 6 2
6 12 4| 20 8 2| 34 6 2
7 12 4| 21 8 4| 35 6 2
8 10 1| 22 8 5/ 36 6 2
9 10 2| 23 7 4| 37 6 4
10 10 2| 24 7 4| 38 6 5
11 10 2| 25 7 2| 39 9 7
12 10 3| 26 7 2| 40 0 2
13 8 4 27 7 4| 41 0 3
14 8 2| 28 7 5/ 42 0 4

Table 5.1:Boat specifications. The entries are boat nunipgpare capaciti; — ¢; and
Crew Sizeg;.

Constraints GA.Each crew must always have a host or be a host.

Ok + Vike = 1 for all k. t.
i1k

Constraints GB.A guest crew cannot visit a host boat more than once.
Zyikt <1foralli,k; i #k.
An additional set of 0-1 variables was introduced to staterntfeet-once re-

strictions.my; = 1 if boatsk andl meet at time. This simplifies the ILP model
described in [135].

Constraints U.Link my; with yi:.
Yike + Vit —Mge < Lforallk,I,t; k<.

Constraints M. Every pair of hosts can meet at most once.

Zﬁkltélforallk,l; k<l.

1The original ILP description [135] iy, = 1iff boatsk andl meet at time. The modifica-
tion simplifies the problem and saves approximately 30Ks#au According to Sally Brailsford
(personal communication) this had been tried in the ILP rhode

Chapter 5. Time-tabling and Sports Scheduling 63

With B boats andT time periods, the problem ha3(B2T) variables and
O(B?T) constraints in this formulation. Smitt al. note that the CP representa-
tion is more compact and has “far fewer constraints and bkasathan the ILP”.
This is not the case since the number of both constraints anables is actually
O(B?T) in both encodings (even in the improved ILP model in [135]).

Although the problem is formulated as an optimization peotl given the
particular description of the participating boats the testo find a feasible as-
signment with 13 host boats. Every solution with 13 hostgisneal because the
capacity constraints cannot be met with 12 hosts even fonglestime period.
Solving the problem can be divided into two stages: (i) dedawf the host boats,
and (ii) assignment of guest boats to hosts for all time isridt turns out that the
spare capacityof the boats is a good indicator of whether a boat should be hos
or guest, so after forcing special boats to be hosts (e.gralheorganizer), the
remaining hosts were selected by decreasing spare cafthetypare capacity of
a boat is its total capacity minus its crew size). In both thie &nd the CP ap-
proach, Smittet al. treat both stages of the problem. However, the searchespac
for a particular host selection is too large to be explordthestively within hours
of computation. This shows that solving stage (ii) by itsslf hard subprob-
lem and we therefore focus on stage (ii): Finding a guestatlon given a fixed
selection of hosts. Thereafter we will outline a strategt taptures both stages.

Smithet al. report the problem could not be solved with a commercigget
programming tool (XPRESSMP, using a variety of tricks) hesgait appears to be
beyond the size limitations of ILP.

5.1.2 Experimental Results and Comparison

For the experiments, we use the original problem instan&nuothet al. and ran-
domly vary the host selection to produce 5 additional instanFor all instances,
we keep the original description of boat capacities and @ees. After fixing
the 13 hosts and performing constraint propagation as anesffipreprocessing,
the original problem has 4632 variables and 30965 remaiciengses in pseudo-
Boolean formulation. VBAT(0IP) finds a feasible guest allocation in 5.5 seconds
(averaged over 20 successful runs on a SPARCstation 203 asiabu memory
of size 1 and initializing with a bias ob, = 0.9. Additionally, setting up the
constraints from an abstract representation requiredrbb seconds. Table 5.2
summarizes the results.

For comparison, Smitket al. report 27 minutes of runtime of their ILOG
Solver program on a SPARCstation IPX. To reproduce the t&€swe imple-
mented the described modeling in ©a, concurrent constraint language [136].

2| thank Jorg Wiirtz and Thorstébigart for modeling the progressive party problem in Oz.
3Publically available fromhttp:://www.ps.uni-sb.de/oz/.

Chapter 5. Time-tabling and Sports Scheduling 64

host boats h| g | %cap| WsAT(OIP)
1-12,16 100| 92| .92 2.9s
1-13 (orig)| 98|94 | .96 5.5s
1,3-13,19 | 96|92| .96 6.4s
3-13,25,26) 98| 94| .96 8.8s
1-11,19,21) 95| 93| .98 31.6s
1-9,16-19| 93|91| .98 42.5s

Table 5.2: Experimental results for variations of the Pesgive Party Problem.
The columns are: Selected hosts, total sum of host spareitiaph, total sum of
guest crew sizeg, percentage of total capacity used as a measure of coreirain
ness (%cap- g/h). Runtimes averaged over 20 runs o8 (01P), Maxmoves=
oo, flip-rate 1.1 K-flips/s.

We used constraints and a labeling strategy similar to tleed@scribed by Smith
et al.. Although our constraint program was able to solve theigignstance in
8 minutes (on a SPARCSstation 20), we could not find a labelirajegyy that was
able to solve all sample instances.

It has been claimed [135] that the progressive party proldambe solved
with constraint programming in a straightforward way. Oype&riments confirm
this for the original problem instance, but we find that dligariations can make
the problem too difficult to solve in hours of computatiecause CP is not a
particular algorithm but subsumes a wide variety of techegjto operationalize
constraint solving, no general conclusion can be drawntab®performance on
the particular problem. Stronger propagation, betterliaerandomization [63]
or search strategies might be able to improve the perforenestaustness on this
problem.

The authors of [135] also report an integer programming @ggr (using
XPRESSMP) given the stage (ii) problem, in which a problerthwp to 15 boats
and 4 time periods could be solved.

Embedding into constraint programmingTo solve both stages of the problem,
we propose a loose coupling of systematic and local seaftahapproach simply
enumerates the principal variables heuristically (in tase thed’s, stage (i)),
then performs constraint propagation/simplification apglias local search to
solve the remaining subproblem (stage (ii)). In our implatagon, we use an
embedding of V8AT(0IP) into the constraint language Oz. The advantage of

4Jbrg Wiirtz, personal communication.
SWe thank Mats Carlsson for confirming this observation wigi@Stus FD implementation.

Chapter 5. Time-tabling and Sports Scheduling 65

using a constraint language is the high-level support fobl@m modeling and
solution checking. Oz additionally offers the use of conagion spaces which
simplifies the embedding of a solver like3AfT(0IP) into CP.

Notes on the Experiments

Before using the two-stage approach, we experimented actd earch on a ver-
sion of the problem that included host selection. Obseywuati the local search
process revealed that host selection and guest allocagoa mvixed and the host
selection was changed almost as often as the guest allocatiich seemed to be
an unreasonable strategy.

Before introducing theng; variables and U, M constraints we solved Smith’s
first encoding (constraints S,V,Y) with local search. Wi@136 variables and
90844 constraints (after fixing the hosts), this encoding mach larger. Never-
theless, VBAT(0IP) solved it in a few minutes.

Related Work

Recently, Hooker and Osorio [75] introduced a frameworkechMixed Log-

ical/Linear Programming (MLLP). They apply MLLP to the pregsive party
problem and compare the experimental results to a MIP engosblved with

CpPLEX. Instead of using the two-stage factoring presented alddweker and
Osorio encode both stages of the problem using a compaasamation with
the number of host boats as minimization objective. Theragch (MLLP) can
solve problems of up to 10 boats and 4 time periods to optignalithin sev-

eral hours (for comparison, the original problem has 29%aat 6 time periods);
MILP is reported [75] to find optimal solutions up to 8 boatsldperiods without
manual intervention.

Chapter 5. Time-tabling and Sports Scheduling 66

5.2 THE ACC BASKETBALL SCHEDULING PROBLEM

In the second case study in timetabling/scheduling, westiyate a difficult prob-
lem from sports scheduling that was recently studied angdegdby Nemhauser
and Trick [114], the scheduling of the Atlantic Coast Conitpet in basketball
(ACC Basketball 97/98 The previous approach by Nemhauser and Trick (N&T)
involved a domain-specific problem factorization togetiwéh a mix of integer
programming and explicit enumeration leading to a solutiat was accepted by
the ACC.

Here, we investigate an integer local search approach #@@i@&problem that
works directly from a monolithic 0-1 integer linear programd includes all of
the documented constraints [114, 139] of the original probl

With respect to the experimental results, integer programgrand explicit
enumeration have been reported [114] to find a set of schedvithin around
24 hours on a modern workstation (the approach is exact add &lh solutions
to the problem modulo certain restricting assumptions,the particular mirror-
ing scheme$. More recently, a very efficient approach to the problem hanbe
reported by Henz [69] that applies constraint programmang problem factor-
ization by Schreuder [129] (similar to the factorizatioredsn [114]).

In contrast to the previous approaches, the integer loeatBeapproach uses
no problem factorization, but still finds solutions that ammpetitive with the
official timetable [114] with respect to several optimipeticriteria. In summary,
the results of the case study are:

() Both modeling and solving of the ACC problem can be acclishpd using
a monolithic IP representation. Requiring solutions totdeast as good as
the official timetable with respect to all optimization erita given in [114],
solutions are found in 30 minutes (on average) bgANoIP). This is an
exciting result for local search as the problem (with a pbé¢search space
of 21773 variable assignments) has only 87 solutions!

(ii) A general purpose heuristic, $AT(0IP), can solve a real instance of a
dense double-round-robin (DDRR) scheduling problem.

(i) In a double round robin competition, the second haltledé schedule typi-
cally mirrors the first. However, to comply with given teamrp® require-
ments, such perfect mirroring is not always possible: Tadl@additional
pairing requirements, the previous approaches based twrifation resort
to swapping slots of the schedule, which is not possible wdwatilicting

5Note that much shorter times have been reported for findingsesilution (Michael Trick,
personal communication). In the last stage, 300 millioresicites are generated and filtered.

Chapter 5. Time-tabling and Sports Scheduling 67

pairing requirements exist. To deal with conflicting pagsn we present
minimal distortion mirroring a new approach in which only few pairings
are swapped while the basic mirroring scheme is preserved.

5.2.1 Double Round Robin Scheduling

In aDouble Round Robi(DRR) sport competition, which is a popular scheme in
many sports, every teatrplays against every other team exactly twice during the
competition, once at home (the placetpand once away.

There are two types of sports schedules: temporally dendeeamporally
relaxed. In temporally dense double round robin schedUlPQRR) like the
ACC competition, the number of slots (time periods in whi@ngs may take
place) is almost equal to the number of games that each teahpiay. If there
is an even numbar of teams, a DDRR schedule hag2- 1) slots. Ifnis odd,
there are @ slots in whichn— 1 teams play and one team is bye.

Contrary to temporally relaxed schedules where local imgmeent heuris-
tics appear to be used frequently (e.g. [45]), a brief suimejl14] attests for
temporally-dense schedules that “while some local impromet heuristics have
been found, they tend to be rather limited in scope and hedejpendent on find-
ing good initial solutions.” Hence, by using a (i) domairdé@pendent (ii) heuristic
which starts from (iii) a random initial solution, our appah takes several steps
in one.

As with most other real sport scheduling problems, the ACZ7198 problem
is constrained by a wide variety of requirements and objesti For example, it
is desired to have a large separation between the two ganepaif of teams.
If the criterion is to minimize the maximal distance betweery two teams, the
minimal separation is half the number of teams. In this sibma the problem is
typically simplified by requiring that the pairings in thestiand the second half be
identical, except that the places of the games are revelfsétek timetable meets
this condition, it is said to bgerfectly mirrored In the ACC 97/98 problem,
individual team pairing constraints prohibiparfectmirroring.

Another important aspect concerns the satisfaction ofadbal spectators who
prefer not too few and not too many local games in a sequenberefore, the
succession of home and away matches needs to be altere@ritgguThe re-
quirements of the ACC given in [114] with respect to the akoWwsequences of
home/away and bye are intricate and rule out a direct apgjgicaf previous work
on double round robin tournaments [25, 129]. Further, tlaeeeconstraints that
no team should face the particularly strong teams in imntediaccession.

The third aspect concerns broadcasting, as televisioronk$wequire a stream
of “high quality” games and have additional requirementgmwthe most popular
pairings should occur. Since teams return home after alevesy away game in

Chapter 5. Time-tabling and Sports Scheduling 68

the ACC, there are no travel constraints.

Because the problem characteristics change if detailseo$plecification are
omitted, it is unavoidable to present the entire list of ¢rmsts (as will be shown,
simplified versions of the problem are in fact very easy foeger local search).
The following section therefore presents the completerithy-list” [114] of con-
straints.

5.2.2 Problem Specification of ACC97/98

The ACC in basketball consists of nine universities: Clem§Blem), Duke,
Florida State (FSU), GeorgiaTech (GT), Maryland (UMD), tda€arolina (UNC),
North Carolina State (NCSt), Virginia (UVA), and Wake Foféfake). The prob-
lemis to find a 18 slot DDRR for the period of nine weeks (120314 Wednesday
to 3/1/89, a Sunday), such that in each week there is a weekttha weekend
game. In the following description of the requirements, wolofv exactly the pre-
sentation of Henz [69] and distinguish ‘requirements’ frotimization criteria’.
The requirements can be viewed as a minimal set of congtrtaisatisfy, whereas
the optimization criteria may be met in different ways sitioey are generally in
conflict. The requirements are the following:

RO. Double round robinThe teams play a temporally dense double-round robin
competition.

R1. Return match separatio.he teams wish return their games as separate as
possible (i.e. iaatbin sloti, thenb ata ati + D for suitably largeD). The
measure is to maximizing the minimum distance. The reqdesgparation
between games between two teams also holds for byes: No teats s
two byes too close together. The minimal temporal distarete/denfirst
leg and correspondingeturn matchmust be 7 slots. Considering that UNC
plays Duke in slot 11 an 18 (see requirement 9 below) 7 is theina
value for this minimal distance.

R2. No two final awaysNo team can play away in both last slots.

R3. Home/Away/Bye pattern constraintilo team may have more than two
away matches in a row. No team may have more than two home asaith
a row. No team may have more than three away matches or bya®wm a
No team may have more than four home matches or byes in a row.

Similar conditions hold for consecutive weekend slots. dkmt may have
more than two away matches on subsequent weekends. No teaimanea
more than two home matches on subsequent weekends. No teaimerea

Chapter 5. Time-tabling and Sports Scheduling 69

R4.

R5.

R6.

R7.

R8.

RO.

R10.

more than three away matches or byes on subsequent weekémdsam
may have more than three home matches or byes on subsequeanas.

Weekend patternOf the weekends, each team plays four at home, four on
the road, and one bye.

First weekendsEach team must have home matches or byes at least on two
of the first five weekends.

Rival matches.Every team except FSU has a traditional rival. The rival-
pairs are Duke-UNC, Clem-GT, NCSt-Wake, and UMD-UVA. In thst
slot, every team except FSU plays against its rival, unlepkays against
FSU or has a bye.

Popular matches in FebruaryThe following pairings must occur at least
once in slots 11 to 18: Wake-UNC, Wake-Duke, GT-UNC, and Gik&

Opponent ordering constraintsNo team plays in two consecutive slots
away against UNC and Duke. No team plays in three consecskbie
against UNC, Duke and Wake (independent of home/away).

Other idiosyncratic constraintsUNC plays its rival Duke in the last slot
and in slot 11. UNC plays Clem in the second slot. Duke has arbgkt
16. Wake does not play home in slot 17. Wake has a bye the btsiGlem,
Duke, UMD and Wake do not play away in the last slot. Clem, FSU,
and Wake do not play away in the first slot. Neither FSU nor Nisbe a
bye in the last slot. UNC does not have a bye in the first slot.

A small set of additions to the original descriptionébeen published very
recently [139]: Every team must have an H in the first threéssl&very
team must have an H in the last three slots. Wake is bye in stesfot and
must end AH.

Optimization criteria

There are several additional criteria the ACC requires afne-table [114]. As

Henz notes [69], some of these optimization criteria areflmpimg, so the best
one can hope for are Pareto-optimal solutions. The goakoftieger local search
approach is to find solutions that are at least as good asfibel®7/98 schedule.

O1.

Avoid two opening aways. The number of teams that playawé#he first
two slots should be small. We denote this numbeO&®A

Chapter 5. Time-tabling and Sports Scheduling 70

away away
= Q = Q
§232.-528s% §¥3.-988<%
ocQaLow>3>53=z5= OoLvw>>Sz5=
Clem|/0 0 00O OB O0OO0OOQ(Clem|/0 00O 0O OAO0OOQOQ
Duke|0 0O OB A O O0OBB Duke|l0 O O BAAOBB
FSU|0 0 0O0O0O0O0O0GQ(FSU|0O 00 0OO0OO0OO0(U@
o|/GT (0B OOBAOOB o|GT |00 0OO0BOOORB
E/UMDIO AOBOAOBO| |[5/UMD|0 0 00O OO O G
“/UNCIBAOBBOOOO </UNC|0 0O OBBOOOO
NCSt|0 B 0O 0O 0 B 0 0 B NCStj0 B 0O 0 0 B O 0 B
UVA 1O B OOOOUO OO OB UVA |10B O OOOO0O00GQ
Wakel0 B O B O BBOO Wakel0 B 0 B 0 BB 0 O

Weekday Games Weekend Games

Table 5.3: Game quality

02. Good slots in February. Table 5.3 classifies (a) weekddy(la) weekend
games into A-games, B-games and bad games (represented lby 8)ot
contains at least one A-game or at least two B-games, itlisccah A-slot.
If a slot is not an A-slot and contains at least one B-games & B-slot.
All other slots are bad slots. In February (slots 11 throug)) the A-slots
should be maximized and the bad slots minimized.

03. Home/Away/Bye pattern criteria. The number of occuresnof three sub-
sequent home matches or byes should be sidBY). Similarly, the number
of occurrences of three subsequent away matches or Ak (And again,
for weekends the same criteria should hdtiBg, AB;).

Any schedule can be rated according to the above optimizatiteria, sum-
marized by a vector of 7 numbers. The official timetable cotegbby Nemhauser
and Trick meets these optimization criteria as follows:

OAA HB; AB; HB; AB; bad A-slots
1 4 3 5 4 2 3

5.2.3 Integer Local Search Formulation

In this section, a 0-1 integer linear local search modellaltleveloped to state all
the requirements. To simplify the model, we number the tearttse order given
above. For the integer local search model, we introduce&siiand j that range

Chapter 5. Time-tabling and Sports Scheduling 71

over teamg1...9} andt which ranges over slot§l... 18}. The binary decision
variables aregjr andxij = 1 iff teami plays as guest of teamin slott, for all
1<i,j <9. Additionally, a team index of 0 is used to express byes, ag= 1
iff teami is bye in slot. Similarly, xj; encodes homes, i. g = 1 iff teami plays
at home in slot.

We present the constraints from the most general ones todhespecific and
finish with the idiosyncrasies of the ACC97/98 season.

RO. The following constraints implement the basic double rototain scheme,
requirement RO.

Every team plays at exactly one place (or is bye) in every slot

xijt =1, foralli> 0t (5.1)
0<J<9

Every team is visited by at most one team in every slot.

xijt <1, forall j>O0,t (5.2)
O<I#]j
All pairings are consistent.
Xijt — Xjjt, forall0O<i# jandt (5.3)

Double round robin: Every team plays every other team on@ydand once
at home which is implied in combination with (5.3)).

injtzl, foralli,0< j#1i (5.4)

R3. The following constraints restrict the allowed game segasriHome/Away/
Bye pattern constraints), and need to be duplicated for tekend slots.

Treating bye as away, no more than 2 away games in a row.

Xis <2, foralli,1<t<T-2 (5.5)
s=t..t+2

Treating bye as home, no more than 3 home games in a row.

(Xiis + Xios) <3, foralli,1<t<T-3 (5.6)
s=t..t+3

Treating bye as away, no more than 2 home games in a row.

Xis <2, foralli,1<t<T-2 (5.7)
s=t.. 142

Chapter 5. Time-tabling and Sports Scheduling 72

Formulating the Mirroring Scheme

R1. To ease comparison with the previous approaches [114, 69)wil use

the same mirroring scheme throughout our experiments. ®uequirement R9
which states that UNC and Duke meet in slots 11 and 18, pemnf@coring is

not possible. For this reason, the N&T approach resorts tarernmg scheme
that switches slots 9 and 11 and obtain a mirroring scheméiohathe minimal
distance between any pair of teams is 7. The N&T approachsaltches slots
8 and 9 (although no obvious constraint enforces this), aridea at a set of
mirrored slots of

MnT ={(1,8),(2,9),(3,12), (4,13),(5,14), (6,15),(7,16),(10,17),(11,18)}.

Note that fixing a conflict in a perfect mirroring scheme bytshing entire slots
also affects all the other pairings; all teams meeting in Slwill meet again in
slot 9—only because of the UNC-Duke meeting. We will disausslternative
to this scheme in Section 5.2.7. The constraints that eafitie mirroring can be
formulated as:

Mirror return games.
Xijs — Xjit foralli# jand(st) € MnT (5.8)
Mirror byes.

Xiot — Xios foralli# jand(st) € MnT (5.9

ACC Specific Requirements

R2, R4, R5. The following restrictions are more specific to the ACC andasyn
unliked sequences of H/A/B.

No team finishes AA.
XiiT-1+Xo0T-1+XiT+X 071 >1 foralli (5.10)

Of the 9 Saturdays, each team plays four at home, four on #f Bnd one

bye.
; Xit = 4, Z Xior =1 (5.11)
t=24...T t=214...T

Each team must be home or bye at least on two of the first five eneksk

Z Xit + Xiot > 2, foralli (5.12)
t=1..5

Chapter 5. Time-tabling and Sports Scheduling 73

R6, R7, R8, R9, R10.Finally, the team-specific requirements of the ACC97/98.
We do not present the constraints here as for most of thesgreatents the
the constraint encoding is straightforward. An except®eaonstraint R6 (rival
games), for which an equivalent formulation can be used, iheee of the four
rival games must be played in the last slot.

Optimization Criteria

The optimization criteria are modeled here as hard coms&an ensure that all
resulting solutions will be at least as good as the officiaksitile. Soft constraints
could be used alternatively, of course.

01, 02, O3. Modeling O1 is straightforward:

Avoid opening away/away (no more than 1 team).

> (Xia+xi01+Xi2+%02) > 8 (5.13)

To formulate O2, additional variables need to be introduicedall slots in
Februarygr = 1 if the quality of slot € Febisr, wherer € {0,1,2,r = 0 repre-
sents a bad slot,= 1 aB, andr = 2 anA slot, respectively (of coursg, g = 1
for all t). An example from the constraints that link tkandq variables:

Given the game quality matri@" for weekdays, every weekday slot in Febru-
ary that is marked as ahslot must contain at least oeor two B games.

2% < ; Gi| *xit, for all weekdayd € Feb (5.14)
iZ]

Similarly for B slots and for week ends.

Ensure the N/T quality level for game qualities.

Z G2 > 3 Z Co < 2 (5.15)
teFeb teFeb

Similarly, to ensure the Home/Away/Bye sequences stat@Biradditional vari-
ables are introduced for every team and time pwijtitat state when long unliked
sequences occur startingt@t For the full list of constraints, the reader is referred
to Appendix A.

Chapter 5. Time-tabling and Sports Scheduling 74

5.2.4 Redundant Constraints

There are certain simple truths about DDRR schedules tleaingplicit in any
DDRR encoding and that can be explicated in order to imprbeeoperational
performance of integer local search.

Suchredundant constraintare often employed in other domain-independent
frameworks to improve a representation with respect to trexational behavior
of a solver when applied to it. In constraint programming.ewample, redundant
constraints can strengthen the propagation. In integeatiprogramming, redun-
dant constraints are used to tighten the LP relaxation. Aéstundant constraints
have recently been used for local search by Kautz and Selé®nn SAT plan-
ning models. The following redundant constraints are usédeé DDRR model.

Every team is bye twice.

Zx;()t =2, foralli (5.16)

One team is bye in every time slot (holds for an odd numberashteonly).

inOt =1, forallt (5.17)
|

Half the teams are home in each slot.

me =4, forallt (5.18)
|

5.2.5 Previous (Multi-Stage) Approaches

The previous strategies to solve the ACC problem [114, 6&pfathe problem
into several stages, following earlier approaches to sgatieduling by Cain [25],
Schreuder [129], and others. Each stage of the problemvsaatdividually and
ensures that a subset of the full set of constraints are nwving all stages in
sequence yields complete timetables that meet all the remist.

(i) The first stage of the multi-stage approach generatesalied patterns
A feasible pattern is a sequence of H/A/B (one letter for eslohof the
DDRR) which meets the particular mirroring scheme and akgiH/A/B
constraints.

"We notice that there is an interesting connection to theepattet approaches: The redundant
constraints (5.17) and (5.18) express exactly the comssran grouping patterns into pattern sets.

Chapter 5. Time-tabling and Sports Scheduling 75

(i) The second stage produces so-calpadtern setsa number of patterns (as
many as there are teams) are selected from the collectioatt&rps into a
pattern set. The chosen patterns of each pattern set mustimae®ndition
that for every slot, there must be four patterns with an Ht feith an A and
one B. Additionally, one can require a pattern set to minarle number
of less preferred patterns [114] (e. g. requirement O1).

(i) The third stage, finally, renders the compldimetables A timetable is
computed on the basis of a given pattern set by assigningeame to each
pattern in the set. A timetable is feasible if all problem stoaints are met.
In [114] ACC timetables are computed with an additionalimtediate stage
that assigns team placeholders to pattern sets first.

To solve the problem, the N&T approach [114] uses expliaitrearation in stage
(i), integer programming in stage (ii), and integer progmamgy and explicit enu-
meration in stage (iii). This indicates the difficulty of swig the problem.

Henz [69] uses constraint programming to solve the indiaidtages. The CP
approach, implemented in Oz [136], turns out to be signitigamore efficient
than integer programming with explicit enumeration, prittydbecause the time-
consuming final explicit enumeration phase is more effityemtcomplished by
using constraint propagatidn.

5.2.6 Experimental Results under Varied Constrainedness

In this section, we describe the experimental results @get local search. All
above constraints were modeled with the AMPL algebraic riiogléanguage.
After AMPL preprocessing, the constraints were handed ®AWOIP) in ex-
panded form using an AMPL-WBAT(0IP) interface (Appendix A contains the full
AMPL model).

Figure 5.1 shows a timetable found bysSWt(o1P) for the entire set of con-
straints given above (R0O-R10,01-03). The quality of theestahle improves the
official timetable given in [114] with respect to severalrf@lized quality mea-
sures (note that additionaiformal considerations lead to the selection of the
official timetable [114]).

OAA HB; AB; HB; AB; bad A-slots
1 3 1 5 4 0 4

The initial experiments of WAT(0IP) were carried out before all require-
ments were available and lead to promising resuis.more and more constraints

80z is publically available fromttp:://www.ps.uni-sb.de/oz/.
9 thank Michael Trick and George Nemhauser for sharing toeirements at an early stage.

Chapter 5. Time-tabling and Sports Scheduling 76

slots
1 2 3 45 6 7 8 910 11 12 13 14 15 16 17 n8
Clem y+8 -6+4-3-2+5-9-8+46+7 0-443+2-5+9-7 O
Duke 2-5+7+9-4+4+1-3 045-7+8-6-9+4-1+3 0-8+6
FSU 3+6 -9-74+1 0+2-8-6+9-544+7-1 0-2+8+5-4
GT 4+7-8-1+2-5 0+6-7+48-9-3+4+1-2+5 0-6+9+3
uvD 5|1+2 0-6+9+4-14+7-2 0+3-8+6-9-4+1-7-3+8
UNC 6|-3+1+5-8+7+9-4+4+3-1 0+2-5+8-7-9+4 0-2
NCSt7-4-2+43 0-6+48-544+2-1+9-3 0+6 —-8+5+1-9
UVA 8/-1+4 0+6-9-7+3+1-4-2+5 0-6+9+7 -3 +2-5
Wake 9 0+3-2-5+8-6+1 0-3+4-7+2+5-8+6-1-4+7

teams

Figure 5.1:A Schreuder-timetable computed bysAf(oiP) from an AMPL model of

the constraints R1-R10, O1-03. The format is the same asnéhesed in [129].+1
means home against 4,1 means away at team 1, 0 means 'bye’. The particular run took
150s.

unfolded, the solution times increased. To capture thisbieh we next present
experimental results for a sequence of problems with irsingeconstrainedness.
Table 5.4 investigates the scaling ofSAf(0o1P) with increasing constrained-
ness. The problem instances start from general constiitiie DDRR scheme
and successively incorporate more specific constrainte.nimber of solutions
to the problem was computed using the Oz constraint prograidemz [69]1°
We additionally ran an IP branch-and-bound procedura &3 5.0) on the given
problems to obtain an estimate of its capabilities for theatithic 0-1 ILP.

Discussion of Results

The approach by Nemhauser and Trick [114] yielded a complettef solutions
for the problem of tightness t9 with a turn-around time of 2tits. The multi-
stage constraint program [69] is currently the most efficagproach and finds
all solutions to the full problem, requiring only a few miest(depending on the
exact tightness of the problem). Interestingly, opposeddal search, runtimes of
the CP approach to find the first solution tend to decreas@jtet the problem is
constrained. Conversely, it occasionally exhibits protden loosely constrained
variants of the problem, when the deterministic search éappo enter large sub-
trees that do not contain solutions. For example, tightt¥edees not render a so-
lution within hours. When the number of generated pattdiirst 6tage) is large,

10] thank Martin Henz for sharing the Oz program. Note that @hthess level t5 corresponds
to tightness 0 reported in [69].

Chapter 5. Time-tabling and Sports Scheduling 77

constraints comment tight n m #sols| WSsAT(OIP) CPLEX

added —red. +red.. 5.0
(5.1)-(5.4) DDRR | t0 1620 1737 unkKrn 1s 0.1s| 183s
(5.5)- (6.7) H/A/B t1 1620 2286 unkn 15s 0.4s| 649s
Weekends H/A/B | t2 1620 2520 unkr 79s 1s| 873s
(5.8)- (5.9) Mirror t3 1620 3249 > 1e5 27s 9s| 10462s
(5.10)-(5.12) R2,45| t4 1620 3285 - 631s 1625 CNS
Idiosyncratic R6-R9 | t5 1339 3052 321 245nm 1664s| CNS

(5.13) O1 t6 1335 3047 321 — 1484s| CNS
(5.14)-(5.15) 02 t7 1359 3069 272 — 2128s| CNS
Opt. H/A/B 03 t8 1773 3466 88 — 2847s| CNS
Recent add. R10 t9 1773 3479 87 — 1798s| CNS

Table 5.4:Experimental results for increasing constrainednessur@oes report the con-
straints added, the ‘tightness’ level, the number of véemland constraints of the prob-
lem, the total number of solutions (‘'unkn’ means unknownhe WWsAT(01P) columns
report on runtimes with (+red.) and withouted.) redundant constraints (5.16)-(5.18).
All runtimes are time to first solution on an Intel Pentium B@Mhz (- means no
experiment performed, CNS=could not be solved in 12h rugtifkor WSAT(OIP), run-
times are averaged over 50 ruagéd) and 20 runs{red), and 10 run§=. The maximal
standard error in columsred is 13%.

the CP approach can also run into difficulties if uselesepatets are produced
first.

Integer Local Search. The general observation from Table 5.4 is that as the the
number of solutions decreases, runtimes GAMOIP) increase, as is to be ex-
pected with local search. What is surprising, however, & folutions are still
found when the constrainedness has reached a level thatouti@ll but 87 solu-
tions! Another observation is that the redundant congsailay an important role

for local search in this problem, in particular as the caistrdness is increased
(thus we did not conduct experiments above tightness |éweithout redundant
constraints). More evidence is provided by the fact thatipgsadditional con-
straints which do not change the number of solutions tends¢eoease runtime.

Throughout the experiments, 31(01P) was run in single-solution mode, al-
though a multi-solution search would arguably be more gmpate for a compari-
son to the previous approaches. A multi-solution searcHahviouolve continuing
search after having found a feasible solution, while avadoreviously gener-
ated timetables. Possibly, the search could be encouragedtin ‘close’ to the
previously found solutions.

Chapter 5. Time-tabling and Sports Scheduling 78

Comparison. Since local search is incomplete, it is not possible to $efancthe
complete set of solutions and then stop. On the other hangg &ble to solve
the problem, restrictive assumptions are made in the N&T @Rdormulations
(the mirroring scheme) which rule out a number of solutianthe problem that
would otherwise be considered perfectly acceptable. Tha advantage of the
completeness of N&T and CP for this problem is thus theirigttib detect when
no solutions exist to the constraints.

The main disadvantage ofpaurelocal search approach is thus that there is no
response if no feasible solution exists to a particular rhodewever, since the
problem is formulated using integer constraints, LP reiaxa can be employed:
When tightening the constraints leads to IP infeasibility corresponding LP
will sometimes also be infeasible. LP infeasibility can matly be determined
efficiently by linear programming. For example considehtaning constraint
(5.5) to “treating bye as away, no more than 1 away game in &; rthve LP
relaxation of the resulting model is proved infeasible I3LEX in 75 seconds.
Also, existing LP presolving can sometimes prove infeéigybiFor instance, we
accidentally swapped incorrect slots of the mirroring sceend obtained an in-
feasibility warning from the AMPL presolver instantly.

Parameters. WSAT(0OIP) was run with parametens= 2, pnoise = 0.01, Max-
moves=2€6, P,ero = 0.9. Note that the runtime variation due to parameter vari-
ations turned out to be small (similar to the standard eoo260 runs). For exam-
ple, changing parameters paoise= 0.2, or additionally turning off history yielded
similar results for these problems. However, a rigorousdrpental analysis is
beyond the scope of this thesis.

To obtain an estimate of the capabilities of IP branch-aoiAld for the mono-
lithic 0-1 ILP, we also ran €LEX on the given problems. All results report on
standard parameter settingsPIEX was further tried with a feature (‘sosscan’)
that identifies special ordered sets (sos type 3, i. e. a batafy variables that ap-
pear in a less-than or equality constraint with +1 coeffitsemd an RHS value of
+1), to apply special branching strategies. Despite 20%e¢€bnstraints being of
this type, performance degraded with this option. We alsangited other option
changes which did not improve performance, e. g. changi@dptanching direc-
tion (by setting the branch variable first to one in order tpriave propagation),
and “strong branching”, recommended for hard pure integagnamming prob-
lems. Note that we cannot rule out that a different IP modedther parameter
settings might improve performance.

Chapter 5. Time-tabling and Sports Scheduling 79

5.2.7 Minimal Distortion Mirroring

As mentioned earlier, in order to comply with the given teamripg constraints
that are in conflict with the mirroring scheme, the previopigraaches swap entire
slots. Swapping slots, however, is problematic when séyeemssigned team
pairings are in a conflict: For example, suppose that the teainng {1,2} is
required in slotg,t, while pairing{3,4} is required in slot$;,t3 (neithert, nor

t3 mirroringty). In this case, ity # t3, swapping slots is not possible because two
swaps would be required that are inconsistent with eachr.ofbdnandle this case,
we will resort to swap individual opponents instead of entiolumns.

We will refer to the slot mirroring some slbtn the original mirroring scheme
ast’. Consider the case in which the input constraints fix the tpaimng {a, b}
for slotst; < tp whereint} # t; (i. e. t, does not mirrot;). Now instead of swap-
ping columnt] andt; like before, we limit the distortion of the original mirroug
scheme. The idea is to pick two suitable teanandc, (calledsweepeteams)
and make the following changes: Relax all mirror consteaimiolvinga, b, ¢, ¢,
for the slotd,],t2,t5 and add constraints to fix the pairings of the sweeper teams.
Figure 5.2 illustrates the situation for the casdiadndt, both being in the first
half of the season.

In this minimal distortion mirroring, the basic mirror pattern is mostly pre-
served and additional team pairing requirements can beded. The distance to
return games remains the distance of the perfect mirroonglf pairings except
(i,j) € {a,b.c1,c2}2.i # j, thereby improving the mean distance between a game
and its return game.

ot]t LI
{a,b} ab} | = |[{ac} {a,co}
‘ {c1,¢2} ‘ {c1, ¢} {b,c2} ‘ ‘ {b.c1} ‘

Figure 5.2: Minimal distortion mirroring

Modeling

In order to formulate minimal distortion mirroring, we eropladditional vari-
ables to select the teammg andc,. For each team X i <9, the binary variable

yi = 1iff i is a sweeper team (of course, teasrendb cannot be sweeper teams).
First, to achieve aninimaldistortion, we require the number of sweeper teams to
be minimal, i.ey;yi = 2.

1] thank Martin Henz for coining this term in a discussion.

Chapter 5. Time-tabling and Sports Scheduling 80

Next, we need to reformulate the mirror constraints, chapsi perfect mirror
Mp = {(s,5+9) : 1 < s< 9}. While we mirror byes exactly as before (5.9), the
following constraints substitute (5.8).

Mirror return games as usual except in shat$; , to, t5.

Xijs — Xjit foralli# jand(s;t) € Mp; st ¢ {tl,ti,tz,té} (5.19)

In slotst. t1.to,t5, mirror return games as usual except for games against con-
flict teams & andb) and the (current) sweeper teams.

Vi VYjV (Xijs — Xjit) forallij; i,j#ab
(5.20)
and(s,t) € Mp; {s,t} N{ty,t3,t2,t5} # 0

In slott; andty, if i and j are sweeper teams, they must meet.

(YiAYj) = (Xije Vxjie) foralli < j;i,j#ab;te {t,t} (5.21)

In slott; andt), if i is a sweeper team, it must meet a conflict team.

yi— V(i Vi) foralli #ab;te {t],ty) (5.22)
je{ab}

Note that (5.21) and (5.22) are still linear inequalitieszgd the above model
of the ACC problem (R1-R9), we obtain the timetable in Fig&ré together
with the automatically assigned sweeper teams froea¥{o1P) (average runtime
was not measured in this experiment). In contrast taMigg mirror, which has
an average distance between pairings of 8.11, the minins&brtion schedule
achieves a distance of 8.8 The quality vector of timetable 5.3 is:

OAA HB; AB; HB; AB; bad A-slots
0 4 3 5 4 1 3

120f the 9x 9 = 81 return games (counting byes), only 8 have a distance afrii their first
leg, all others have a distance of 9.

Chapter 5. Time-tabling and Sports Scheduling

8

1

slots

1 2 3 45 6 7 8
b &

D10 11 12 13 14 15 16 17
t1 to

18

1
Duke 2
3
GT 4
UMD 5
UNC 6
NCSt 7
UVA 8

+2[-6 -8 0+4 -7 -9 +5[+§
13 +45-9+7 -4 0+8[-3
+8[-2+7+4-9+6 -5 0[R2
+5-8+49-3-142-6+7 0
-449-2-746 043 -1-8
~7+1 0+8-5-3+4-9[-1
+6 0-3+45-2+4+1+8 -4 +9
~-3+4+1-6 0+49-7-2+5

-2[-3+8 0-4+7+9-5+3
+1[-6-5+9 -7 +4 0-8[4§
—-8H1-7-449-6+5 01
548 -94+3+1-246-7 0
+4 -9+42+7 -6 0-3+1+8
+72 0-8+5+3-4+9[2
6 0+3-542-1-8+4 -9
+3-4-1+46 0-9+474+2 -5

teams

Waeke 9 0 -5-4+4+2+3-8+1+6 -7 0+5+4-2-3+8-1-6+7

Figure 5.3:A minimal distortion timetable from WAT(01P), meeting the requirements
R1-R9. Preassigned games that conflict with the regulaorare shown in boldface. To
correct the conflict, two sweeper teams are selected, whippdns automatically when
the described model is solved. Games that do not follow twedsird mirroring scheme
are drawn in boxes (as well as the sweeper teams).

5.3 CONCLUSIONS

This chapter has studied two hard timetabling/schedulinglpms, The Progres-
sive Party Problem and scheduling of the ACC97/98 basKeatbaference. Both
problems can be formulated as 0-1 integer linear prograrhssireported the first
ILP model for the ACC problem that we are aware of and impraedexisting
ILP model for progressive party.

To the best of our knowledge, no previous techniques hava bemorted
to solve either of the problems from a given 0-1 ILP represton (Smithet
al. [135] report a number of unsuccessful attempts using @mt@gogramming
branch-and-bound). From the viewpoint of integer programgmthe contribu-
tion of this chapter is thus to demonstrate that both probleam be solved in a
0-1 integer constraint encoding using a general solvesAWoIP)).

From the applications viewpoint, we have shown in the firsecgtudy that the
progressive party problem can be solved efficiently andstipusing WSAT(OIP),

I. e. the strategy scales gracefully with increasing cams&dness of the instances
(the original study [135] investigated only one instance).

The second case study has demonstrated that integer lacahsg able to find
solutions to ACC97/98, a difficult and complex timetablinglplem. We have
shown that our approach yields solutions competitive whith dfficial timetable
(reported in [114]). We also presented minimal distortianraning, a mirroring

Chapter 5. Time-tabling and Sports Scheduling 82

scheme that can still handle the situation when team paieggirements conflict
with swapping time slots of a mirroring scheme, the stratgployed in previous
(factorization) approaches.

Additionally, the second case study in this chapter hasetiutie behavior of
WSsAT(0IP) across a range of increasingly tight problems. While weehssen
that the runtime of local search does increase on very tigtttlems, we have
demonstrated that even extremely tight problems can beddly WSAT(OIP).
Moreover, we have shown that adding redundant constraamtfelp local search
to find solutions more quickly.

Chapter 6

Covering and Assignment

This chapter investigates two integer optimization protderadar surveillance
and course assignment. For both problems, the 0-1 OIP emgasistraightfor-
ward. Structurally, the problems are extensions of setrogyeand generalized
assignment, respectively. The first problem stems from dnstrial project at the
Swedish Institute for Computer Science (SICS), while thmed problem arose
from an operating application at the Universitat des Sawaés. Both studies in
this chapter will focus on performance variation of integmral search and IP
branch-and-bound with increasing problem size.

Further, using the radar surveillance problems, we wiligyen experiments to
determine the impact of the OIP representation on perfocaanhe experiments
demonstrate that the $AT(01P) method critically depends on the soft constraint
representation using constraint bounds.

6.1 RADAR SURVEILLANCE COVERING

The problem considered in this section is related to thesedd$P-hard set- cov-
ering problem (see (SCP) in the Introduction). It extendseeering by compli-

cating side-constraints that are specific to the radar domad which prevent a
direct application of domain-specific heuristics from therhture. On the other
hand, its particular structure is well-suited for an enogdinto OIP and makes it
an intersting test case for integer local search.

6.1.1 Problem Description and Formulation

The case study and its basic modeling originate from a proj@cently carried
out at the Swedish Institute of Computer Science (SICS). [2A¢ goal is to plan
radar surveillance of a geographic area. As customary imatlar surveillance
domain, the area is divided inteexagonal cellsAs part of the problem statement,

83

Chapter 6. Covering and Assignment 84

a number of radar stations are given that are located in figksl@n the map. The
problem is to find a static plan that determines for every cdlly which radar
stationsc is observed, subject to the constraints that each cell beraéxs by at
least three stations. Figure 6.1 gives an illustration.

Each radar station can divide its signal scope circle imtcssctors and can
vary the signal strength in each sector independently frem to some given
maximum distanceé,,. Aside from some insignificant cells, the majority of the
cells must be covered by 3 radar stations (desired coverpgad3all coverage
beyond this is to be minimizeayer-coverage Small over-coverage is desired
for economic reasons as well as for reasons of detectabilgyradar can more
easily be detected in areas with a high exposure.

Because of the placement of stations, some cells cannosiftly) be cov-
ered by at least three stations and hence must be coveredrbgrgsstations as
possible (and can then be factored out from the problem)hdrotiginal model,
a radar station can be switched on to cover only the cell thatlocated in. It
always covers it provided it is switched on for some sector.

sector 2

sector 1

@ radar station

Figure 6.1: Radar map with hexagonal cells.

The problem can be modeled by the following over-constchidl integer
program. For every combination of radar unjtsector 1< s < 6 and possible
observation distanced d < d.,.y a Boolean variablegqis introduced. Variable
Ousd = 1 if and only if stationu is switched on in secta at distanceal. The set
of all cells that statiom reaches in sect@at distancal is denoted byC,sq. The
over-constrained integer program (OIP) model is as follows

Cover each cell. There are significant and insignificanscéhile insignif-
icant cells should not be observed, significant cells mustdwered by at
least three stations.

Z Ousd> D¢, forallc, (6.1)

celysd

Chapter 6. Covering and Assignment 85

where for all cellsc, D = 3 if ¢ is significant and. = 0 if c is insignifi-
cant. For anyc, oysq leads to all stations that can reacls (ands,d yields
their respective observation field in terms of sector anthdie where is
reached).

Consistency. If station is switched on at distanak> 1 in sectors, it is also
be switched on at distanck- 1 in sectors.

Ousd— Ousqg <0 forall u,s1<d<dna d=d-1. (6.2)

Soft Constraints.Minimize over-coverage. Cells should not be exposed be-
yond their desired coverage.

(soff) Z Ousd < D¢, forallc. (6.3)

CE ysd

It is important to note that in order to minimize the total beeverage,
minimizing thenumberof violated soft constraints is not sufficient. Over-
coverage can occur in different degrees for each cell.

Minimizing Over-coverage in the OIP

To understand the OIP minimization problem, we first obsémaeit isconfined
for every soft constraintx < d, there exists a hard constraok > d. Therefore,
the OIP minimization problem has the linear objective fiumtt

min Z(Z Ousd) — De, (6.4)

€ ceCysq

and can directly be translated to an integer linear progreimgu6.4). The ILP
can be approached with IP branch-and-bound and the linkeaaten can be used
to compute lower bounds on the over-coverage.

Relation to Set-Covering

As observed above, the radar surveillance problem shamae sbits structure
with the set covering problem (SCP). It is the side constsanri physical con-
sistency (6.2) that avoid the direct application of domspecific methods for
set-covering. Also, it should be noted that we are not ctlyeware of anNP-
hardness result for the radar-surveillance domain.

Chapter 6. Covering and Assignment 86

6.1.2 Experimental Results under Varied Problem Size

This section reports on experimental results for a colbectf radar surveillance
instances that were generated according to different ctarstics. All instances
were randomly generated and vary in size (100 to 2100 callshe percentage
of insignificant cells (0%, 2% and 5%), and in the spread oaradations on
the map (even or uneven). The density of stations remainest@ot. Since real
placement information for radar stations was not availabtegnificant cells were
randomly positioned on the map. Table 6.1 summarizes thererpntal results,
based on a suite of radar instances generated at SICS. Waegerilocal search
WsAT(01IP), IP branch-and-boundrLEX 5.0, a 0-1 simulated annealing strategy
GPSIMAN [33], and the ®@LEX 5.0 linear programming optimizer.

Parameters. WSAT(0IP) was run with standard parametepadq = 0.8, Pzero =

0.5, pnoise= 0.01,t = 1) and with varying settings dflaxmoves for the different
problem sizes: 30K, 100K, 300K, 500K respectivelypLEX was run with dif-
ferent variations of the standard/auto parameter settMigsonly report standard
parameters since this yielded the overall best performéorcthe collection of
instances. €LEX was limited to 12h of computation time and did not reach the
given memory limit of 400MB. FoGPSIMAN, we used the following parameters:
Maximum neighborhood size suggested by the solver (372,4446/7, 10772, re-
spectively), 20 runs, 100 iterations, highest level of tenjzation, default cooling
schedule (including re-heating).

Experiments with Constraint ProgrammingVarious models (finite domain in-
teger and Boolean) and enumeration schemes have been2dgd Although
small problems are solved to optimality quickly, the largample instances could
be solved with large over-coverage values only, given me@sie time. We hy-
pothesize that it is thrashing that makes these problenasfbaa constraint pro-
gram that backtracks chronologically: Two distant radatishs hardly affect
each other, yet with chronological backtracking the stdteng station is only
changed after visiting the complete subspace of configuratf many other sta-
tions.

Discussion

According to Haridiet al., the long-term goal of the project is to cover a large
geographical area with thousands of cells. It is thus an mapo criterion of
success that the solution strategy scale well. The expatahesults clearly show
that while both IP branch-and-bound agésimMAN can handle small problems
efficiently, problems of realistic size are beyond theiedimitations.

size n m | spread %sig LP oc* CPLEX GPSIMAN WSAT(OIP)

Ib time best to-best tota] best mean time/r best mean m-best

100:22 434 606 even 100 0 Os 0| opt 1s 1s| opt 0.2 10s| opt 0.0 0.0s
200:44 933 1273 even 100 1 2s 1] opt 7s 7s| opt 2.3 35s| opt 1.0 0.0s
900:200 4616 6203 even 100 2 70s 2| opt 2213s 22133 3 124 528s| opt 2.0 0.6s
2100:467 10975 14644 even 100 3 391s| 3 4 9.7h 12h - - —| opt 3.0 1.9s
100:22 410 581 even 98 1 Os 1| opt 1s 1s| opt 1.8 9s| opt 1.0 0.0s
200:44 905 1244 even 98 2 2s 2| opt 7s 7s| opt 4.4 34s| opt 2.0 0.1s
900:200 4623 6174 even 98 4 88s 4 || opt 676s 6765 17 31.3 7005 opt 5.2 4.5s
2100:467 10989 14595 even 98| 115 661s| 12 14 9.1h 12h| 14 54.0 34629 13 149 18.4s
100:22 371 518 uneven 100 3 Os 3| opt 1s 1s| opt 3.3 7s| opt 3.0 0.1s
200:44 772 106Y uneven 100 0 1s 0| opt 4s 4s| opt 0.8 24s| opt 0.0 0.1s
900:200 4446 5699 uneven 100 5 46s 5 6 1293s 12h 6 154 611s| opt 5.0 3.6s
2100:467 10771 14002uneven 100 8.1 362s| 9 11 4.2h 12h - - -/ 10 10.8 11.7s
100:22 371 518 even 95 4 Os 4 || opt Os Os 5 6.8 9s| opt 5.0 0.1s
200:44 772 1065 even 95 5 2s 51 opt 3s 3s| 14 18.3 28s| opt 5.3 1.1s
900:200 4446 5699 even 95 19 92s| 19| opt 456s 4563 61 75.3 6675 25 27.4 9.3s
2100:467 10771 14002 even 95| 64.25 740s - 67 3077s 12h - - -] 96 1024 21.1s

swubissy pue buliano) °9 usrdeyd

Table 6.1: Experimental comparison for radar surveillapaablems: Columns are problem size in number of cells and

stations (stations have a maximal reachdgfx = 4), encoding size in number of variablasand clausesn, spread of
stations on the map, percentage of significant cells, anewerbound for over-coverage. oc* gives optimal over-cager

(integer). ®@LEX 5.0 columns are: best over-coverage found, time-to-bdstign, and total runtime. €LEX was run with

standard/auto parameter settin@®SIMAN: best over-coverage found within 20 runs, mean over-cgeecver all runs,
and time per run. \WAT(0IP): best over-coverage found within 20 runs, mean over-agepver all runs, and mean-time

to best over-coverage over all runs. All runtimes measured S8PARCstation 20.

.8

Chapter 6. Covering and Assignment 88

In contrast, VAT(0OIP) is very effective on the sample problems of this do-
main, even for realistically sized problems. Only one cta#gsoblems with many
insignificant cells (essentially ‘holes’ in the map) wadidiilt to solve. We did not
systematically make attempts to improve performance osetirestances because
it is unknown if realistic maps would show this charactérist

From the LP optimal solutions, one observes that for mantantes of the
sample, the LP relaxation is tight, i. e. the optimal valuehaf over-coverage is
the same as the LP lower boufiGuch problems are usually easier than problems
with larger relaxation gaps (under otherwise similar patears). The difficulty
for the IP is thus closely linked with the size of the problenisterestingly, in
many cases the LP relaxation optimization takes longer toamputing the opti-
mal IP solutions using WAT(OIP).

Dropping the Constraint Bounds

The surprising effectiveness of $%1(01P) in this domain raises the question what
the reasons are for the performance. To address this gueattoperformed the
following experiment, which is based on the hypothesis thatperformance is
related to the OIP problem structure. Each problem instavece modified by
changing the bounds of the soft constraints frefr8° to * < 0. From Proposition

4 (in Section 3.1.3), we know that tightening bounds of a cmdiOIP does not
change the set of solutions. Further, we can account forhifieiis the objective
function by substracting a value from the resulting obyextins (if ng is the
number of insignificant cells).

Table 6.2 reports on the experimental results. Parametems manually re-
tuned to adjust for the change of the representation, reguih switching off
both the tabu mechanism and history-based tie breaking.rdats in the table
demonstrate that the constraint bounds are critical toioli@ previous perfor-
mance. This result is consistent with our expectation beeaunopping the con-
straint bounds effectively makes the repair strategy bluith respect to which
soft constraints are violated. When dropping the boundss#arch thus looses
its focus and blindly makes perturbations of the variablees

lincreasing noise and decreasing,q provides some better solutions.
2We thank Alexander Bockmayr for initially pointing this out

Chapter 6. Covering and Assignment 89

size spread %sig oc* WSsAT(0IP)
STD no-bounds total
100:22 even 100 O opt opt 16s
200:44 even 100 1 opt 8 48s
900:200 even 100 2 opt 47 314s
2100:467 even 100 3 opt 93 1144s
100:22 even 98 1 opt 3 14s
200:44 even 98§ 2 opt 9 58s
900:200 even 98 4 opt 56 448s
2100:467 even 98 12 13 166 866s
100:22 uneven 100 3 opt 5 16s
200:44 uneven 100 O opt 1 58s
900:200 uneven 100 5 opt 36 564s
2100:467 uneven 10D 9 10 102 1132s
100:22 even 98 4 opt 10 16s
200:44 even 98 5 opt 12 58s
900:200 even 95 19 25 95 290s
2100:467 even 9% - 96 266 756s

Table 6.2: Performance drop of $¥T(01P) when dropping constraint-bounds.
STD repeats the optimal solutions from the previous table;bounds’ reports on
the best solution found in 20 runs, and total reports totatinue.

Chapter 6. Covering and Assignment 90

6.2 COURSE ASSIGNMENT

The course assignment problem considered in this sectials @éth assigning

students into pre-planned courses according to their fme¢es. The study was
carried out based on real data of the School of Law of the Usityedes Saarlan-

des in the semesters of Summer 97 and Winter 97/98, and thmebdtesults were
used by the school to assign students to classes. As thetsesneave different

numbers of students, the task created a collection of redl@ms of varying size,

ready-to-use for an investigation on real data. The prohieder consideration is
related to the generalized assignment problem (GAP) blides additional side

constraints.

6.2.1 Problem Description and Formulation

The scenario is the following. Students of a law school (upa0 per semester)
have to be assigned to courses (up to 30) with pre-assigmedstots and rooms.
The law school offers to use a Web based inteddoeregister for a number of
legal fields according the students’ current intereststhiéurstudents may submit
a timetable stating the preferred time slots and the slotstwthey are unable to
attend (islikedslots or aversions). As several courses are taught in eddhtfie
aim is to assign students to courses maximizing the ovextadifaction (satisfying
aversions and preferences) such that every student isnadsig one course in
every one of her registered fields, while the capacity of theses is not exceeded
and the courses are not filled too sparsely.

The formulation of the problem is stated in the followingpa6.3 summa-
rizes the indices, constants and sets. Thd=seéénotes the different legal fields,
each fieldf € F is represented by a s€ of courses. The s&f contains all
courses and and, is the desired number of participants of coukse C (usu-
ally the average number of participants of a course withefigld). The fields for
which a studentis registered are given 8% C F. Further, the student preferences
are part of the problem statement and are encoded by binasfards py = 1 if
student prefers the slot of courdeand otherwise 0. Conversely, =1 if i has
dislikes coursdk (because is taught during a time slot whidghcannot attend).

The aim is to fill the courses within given upper and lower tgwihile mini-
mizing the number of disliked assignments and minimizirggrihmber of unsat-
isfied preferences (in this order). The problem can be erttaddollows: For
every student and coursé, use a variablegjy, = 1 if i is assigned td&, otherwise
0 (if i is not registered for the field of courkexi is 0).

3An application provided to the students at Saarbriickendigitiard Schu.

Chapter 6. Covering and Assignment 91

Index Definition

i Index for students.

K, Indices for courses.

f Index for field.

Symbol Definition

F Set of legal fields.

C Set of all courses.

R; Fields which studeritis registered for.

Cs Set of courses in field.

Ck Desired number of participants of coulse
Pik binary constant, 1 iff prefersk.

ajk binary constant, 1 iff dislikesk.

m Upper bound on satisfiable preferencesifor

Ucap lcap Relative upper/lower capacity limits for courses.

Table 6.3: Parameters for the course assignment problem.

OIP Formulation. The OIP formulation uses the following constraints.

Every student must attend exactly one course of each fielssbgistered for.

xik = 1, for all students, and fieldsf € R,. (6.5)
ke Ct

The number of participants of a course may not exceed theediesumber of
participants by more thamap and not fall belowcap.

lcap- Ck < ink < Ucap- Ck. for all coursesk € C. (6.6)
|

No student can visit two courses that temporally overlap.

Xik + X < 1, for all students, registered fields < t,

6.7
such thak € Cg,| € G, undk,| overlap 6.7)

Soft Constraintskor every student, minimize the number of aversions, i.e. th
number of assigned courses that are disliked due to thearglot.

(soff) aik - Xik < 0, for all students. (6.8)
1<k<s

Chapter 6. Covering and Assignment 92

Soft ConstraintsFor every student, minimize the number of unsatisfied pref-
erences.

(soff) Pik - Xik > my, for all students. (6.9)
1<K<s

wherem; is an upper bound on the number of satisfiable preferemes:
min{|Ri|,¥; pij } for student where|R;| is the number of registered fields
andy j pij is the number of preferred coursesi of

The reasoning behind the bound is as follows: Obviously,nin@ber of
registered fields is an upper bound on the number of satisfipldfer-
ences. However, if a student has less preferred coursesréigastiered
fields, the number of satisfiable preferences is the maximumber of
non-overlapping preferred courses that cover all regstéelds. To keep
the modeling simple, however, we approximate this valuenleynumber of
courses in preferred time slofg pij, which is a valid upper bound.

In order to account for the order of the goals (minimize thenbar of aver-
sions first), constraints (6.8) are weighted such that caimés (6.9) are always
dominated.

ILP Reducibility

In order to apply lower bounding from the direct ILP conversiwe establish
confinedness first. The given OIP (6.5)—(6.8) is confined.

Proof: The soft constraints (6.8) are confined as all coefficiaptare positive.

The soft constraints (6.9) are confined because the uppedbsaure valid accord-
ing to the above reasoning.

Given the confinedness of the problem, we can directly reducean ILP
without the need to introduce additional variables. All iRrich-and-bound ex-
periments are subsequently applied to the transformed. OIPs

Note that in the given OIP minimization problem, the objeefunction value
is given as a paiA-P, whereA is the number of aversions in the assignment
andP relates to the number of unsatisfied preferende@snay overestimate the
number of unsatisfied preferences becanse an (approximate) upper bound on
the exact number of satisfiable preferences for stuident

6.2.2 Experimental Results under Varied Problem Size

Table 6.4 reports on results ofPCeEx 5.0 and WsAT(0IP). Both solvers were
run with standard parameter settings. Additionally repdrare ®@LEX results
using strong branching. Several other parameter settiags been tried (e.g.

name n m | LP opt| MIP Ib WSsAT(OIP) CPLEX * CpLEXx !

A-P A-P | best mean to-best best to-best total best to-best total
ss97-6| 256 171 3-04| 3-04 | opt opt 0.0s| opt 0.0s 0.0s opt 0.0s 0.0s
ws97-5| 906 640| 26-42| 26-42 opt opt 2.1s| opt 0.1s 0.1s opt 0.1s 0.1s
ss97-4| 2288 1130; 8-08| 8-13 | opt opt 0.2s| opt 145s 68rh opt 10.1s 22.3s
ws97-3| 3299 2416| 2-21.8| 3-24.5| 3-33 3-35 6.39 3-31 5.0s 4.9h| 3-31[33] 46m[65s] 12h
ss97-2| 8404 11350, 9-10| 9-10.2| 9-39 9-40 39.09 14-75 47m 12.2h| 9-47[50] 12h[70m] 12h

Table 6.4: Course assignment, problem characteristiceegpdrimental results. LP opt reports the optimal LP sofutio
value, MIP Ib the best MIP solution found by branch-and-lb{nprovably optimal). All objective values measure the
aversion—preference (A-P) values.SWf(01P) results report the best solution found over 20 runs, thennbest solution
found, and the mean time to best solutior.LEX * 5.0 report the best solution found, the time to the best [@adsd-best]
solution, and the total runtime (including optimality pfabthe IP optimum was found). ColumnrZEX * reports results

obtained with the ‘strong branching’ strategy. All runsfpemed on an Intel Pentium Pro 300Mhz running Linux.

swubissy pue buliano) °9 usrdeyd

€6

Chapter 6. Covering and Assignment 94

different root heuristics) but did not improve performan€@PLEX tree memory
was bounded to 400 megabytes to avoid paging, runs mdrkeste cut-off to
avoid paging and did not prove optimality.

Relation to the Generalized Assignment Problem

The standard generlized assignment problem can be foreaudet follows. Let

be a set of agents ardbe a set of jobs. Fare |, j € J, definecj; as the cost of
assigning jobj to agent, rjj as the resource required by agetd perform jobj,
andb; as the capacity of agent Let x;j be the binary decision variable that is 1
if agenti performs jobj and O otherwise. Th&eneralized Assignment Problem

(GAP) is
minimize Zqux;j,
i€l je
subject to ZXij =1 jed,
IS
Z]rijxij <b, i€el,
2

The course assignment problem differs from the standard @Al no-overlap
constraints (6.7) and in the capacity constraints (6.&)eéhéorce a lower level of
participation for every course.

(GAP)

Related Work on the GAP.Cattrysse and VanWassenhove [27] report that most
existing techniques for the GAP are based on branch-andebeith bounds sup-
plied through heuristics and through relaxations of thgioél problem (not nec-
essarily linear programming relaxations). According t@][ounds are usually
derived from relaxation of the assignment or capacity cairgs and a variety of
technigues have been applied to the GAP. Some of the existoigiques might
thus be applied to the course assignment problems.

Chapter 6. Covering and Assignment 95

6.3 CONCLUSIONS

In this chapter, two 0-1 integer optimization problems,arasurveillance cover-
ing and course assignment, have been studied, whose difftou& large extent
Is a result of their unavoidable size. For each of the probleanconfined OIP
encoding was given, which was directly converted to a cpording ILP.
Experimental results of integer local searchgav(oirP)) and IP branch-and-
bound (GLEX) have been reported for both domains. While for both domains
similar results were obtained for small problem instancib toth frameworks,
the experiments have shown that their scaling propertiésrdargely. Because
integer local search exhibits a much more graceful scaliMgaTt(oiP) was able
to outperform @LEX by orders magnitude (runtime) on some of the largest given
problems.

Chapter 7
Capacitated Production Planning

“An important and widespread area of applications concerns the
management and efficient use of scarce resources to increase pro-
ductivity.”

[Nemhauser and Wolsey, 1988]

Production planning is an important task in manufacturiygfems and gives
rise to a variety of optimization problems. Here we studya-veorld lot-sizing
problem from the process industry (manufacturing of chaisjcfood, plastics,
etc.). The problem is expressed as follows: given a set afynts and a collection
of customer orders with due dates, construct a minimalqm@sgtuction plan such
that all orders are met in time without exceeding resourpaciy. The total cost
of a plan consists of inventory and labor costs.

The problem under consideration is similar to the well-stddcapacitated
lot-sizing problem (CLSP, see [43] for a survey) but inclsidee requirement of
discrete lot-sizes that prevents a direct application ohain-specific methods
from the literature [41, 94, 71]. We therefore approach treblgm with a new
domain-independent heuristic for integer optimizatiorssAMo1P), and empiri-
cally compare it to a commercial mixed integer programmi¢f) branch-and-
bound solver (BLEX 5.0).

This chapter describes a case study sAMoiIP) on a large CLSP with dis-
crete lot-sizes and fixed charges. We compare the expeihrestlts on real data
to CPLEX applied to a tight integer programming model. We find that Mi&nch-
and-bound can only solve a sub-class of the CLSP with distoétsizes, namely
the problem where fixed charges and lot-sizes are equalhéfuMSAT(OIP) is
considerably more robust tharPQ=Xx in finding feasible solutions in limited time,
in particular as the capacity constraints are tightenedh Véispect to production
cost, both methods find solutions of similar quality. We exsnfixed-capacity

96

Chapter 7. Capacitated Production Planning 97

and varied-capacity problems. Using a Lagrangean relaxatichnique we pro-
vide lower bounds that prove that the fixed-capacity prokleme solved with

near-optimal overall cost. We show that substantial savoan be achieved by
varying capacity.

7.1 CAPACITATED LOT-SIZING

The problem under consideration can be classified as slegi- dynamic-de-
mand capacitated lot-sizing problem (CLSP) with discretesizes and fixed char-
ges. Given is a set of products and a number of customer ofolefesrecasted
demands) with due dates on a finite planning horizon. The igdal compute a
minimal-cost production plan such that all customer or@deesmet in time. No
lateness or shortage of orders is permitted. Producigefog can be produced in
discrete periods of the planning horizon (weeks).

Because production consumes resources and resourcesrhiégd tapacity,
items often have to be produced earlier than needed ancddanithe period
where they are shipped. Such carrying incurs inventory @ggiortunity cost of
capital and storage cost) which is one of two cost factoriserptroblem considered
here. Solving the CLSP optimally is known to be NP-hard [T@ple 7.1 specifies
the problem parameters.

The CLSP considered here has two particularities: (i) Iteersonly be pro-
duced in predefined quantitidets) and setup costs are compensated by economic
production quantitiesHPQ9. At any time, production of item is possible in
quantities of 0 ol + k- L;, wherek > 0, L; is the lot-size andk; is the EPQ for
itemi (every EPQ is a multiple of the lot-size). (ii) The only reswaiis labor,
available in either one or two shifts in any period. The amairavailable labor
has an associated cost (labor availability and consumjatierexpressed in cost
units). Thus, production cost is equal to the sum of laboriawentory costs.

In the problem, labor capacity can be varied between onevandghifts. Be-
cause less capacity enforces earlier production of itertradaoff exists between
labor and inventory costs. Because labor costs dominagaiawy costs, reducing
labor is critical to substantially save costs. However, ttupractical considera-
tions it is not acceptable to have too many labor level chenifpels the number of
labor level changes considered was limited to 2 in our erpenmis.

To optimize the overall problem, we take the approach toesal\series of
capacitated lot-sizing problems with different ‘labor flles’ and choose the best
solution, as follows.

Chapter 7. Capacitated Production Planning 98

Index Definition
i Index for items/products.

t Index for time periods.

Symbol Definition

L; Lot-size of product.

E Economic production quantity of product
Dit Demand of produdtin time periodt.

T Total labor units available in time periad
R Unit labor requirement for product

G Cost of carrying produdtper unit/period.
Qjt Future demand of producstarting period.
T Number of periods.

N Number of items.

S Cost per labor shift.

Table 7.1: Parameters for the CLSP with discrete lot-sinddiaed charges (eco-
nomic production quantities, EPQs).

Labor Profiles

Labor consumption varies between items and is expressediaymetersR; in
terms of resource consumption per production of one unieofi. In any period
t, the total labor consumption is limited bly, available in one or two shifts.
One shift incurs a per-week cost 8f two shifts incur &. A labor profile thus
corresponds to a séft,T;) | 1 <t <T,T; € {S,2S}}. Possible labor profiles are
restricted to the pattern 2-shifts/1-shift/2-shifts aad be denoted by an interval
[s1,S] referring to periods; . ..sp, on one shift, and periods.1s; — 1 ands, +
1...T ontwo shifts. The cost of a labor profilgl, 2] is thus(T — (s2—sl1+1)) -
25+ (2—-s1+1)-S

Every labor profile has an optimal inventory cost. If laboulcbbe freely
varied, the labor availability would have to be modeled witbblem variables.
However, since the number of allowed labor profiles is smad, factored the
labor variability out from the optimization problem and apg@ched the problem
by solving each permitted labor profile, optimizing one CL&8R time. Possible
shift boundariegs;, sp] were generated starting with = 1 and an initial one-
shift period length (s, = 51+ 1 — 1). Iteratively,s, was then increased as long as
WsAT(0I1P) found feasible solutions for the resulting CLSP (fapLEX, as long
as infeasibility was not proved). If no feasible solutionswiaund (for GPLEX,
if infeasibility of the profile was proved}; was increased to the next period and
S was reset. The two different integer solvers require déffiéralgebraic models
which are described in the following.

Chapter 7. Capacitated Production Planning 99

7.2 INTEGER LOCAL SEARCH FORMULATION

The integer local search model is a straightforward OIRd&cton quantities per
item and time period are expressed by finite domain varigidbat range over
the allowed production quantities (and are bounded by thesed future demand
Qjt):

pit €{p<Qit | p=0V p=E +k-L}

wherek=0,1,2,..., for every itemi and time period andQ;j; is determined as

Qit = Jt<s<7 Dis-

To formulate the constraints, we will make use of the ablatésm Si, t] rep-
resenting the amount of productarried in inventory in time periotl (textually
substituted in the constraints):

t
S[I/t] = Z Pis — DiS
s=1

The OIP formulation is as follows.

Sit]>0 Vit (NOH)
SRop<T W (CAP)
(sofy G-Si,t] < 0 Vit (INV)

Negative-on-hand constraints (NOH) ensure that all oralersnet in time. Capac-
ity constraints (CAP) express that available labor cagasihot to be exceeded.
The soft constraints (INV) express the competing objestoEminimizing in-
ventory costs; for every item and time period, the inventargt from carrying
material has to be minimized. For every feasible solutiba,resulting objective
(the total inventory cost) is the summed violation of alltsminstraints measured
by ||.|| (OIP). Notice that for every soft (INV) constraint, thereaisorrespond-
ing (NOH) constraint, thus the OIP is confined. Using finitendan variables to
model production, the local search progresses by movinguatan up or down
in allowed quantities induced by the violated constraints.

0-1 Integer Model

The first modeling attempt used an over-constrained O-f@ntenodel with a log-
arithmic encoding of production quantitiegj%; + Lixo + 2Lix3 + 4Lixqg + ...).

In addition to the blowup of the number of variables for thisdual, running
WsAT(01P) did not yield solutions of acceptable quality. We put thaigufre down
to the fact that with a logarithmic encoding, a small chanfyproduction often

Chapter 7. Capacitated Production Planning 100

requires a long sequence of local moves. For example, aedserfrom ®—1 to
2¢ lots can only be achieved by flippifg+ 1 variables. This appeared to be a
strong hindrance of the search process.

7.3 MIXED INTEGER PROGRAMMING FORMULATION

This section requires some familiarity with integer pragnaing terminology, as
covered for example in [113]. The sets and variables defined in the mixed in-
teger programming model (MILP) are given in tables 7.1 arad The problem
formulation (P) is as follows.

N T
P : minimize Z ZCisit (7.2)
Xit,¥it,4t:St 3¢S
subject to
Xt +St—1 = Di+st Vit (7.2)
Xig = Liyit Vi € SKU]_ (73)
Xt = Eizt+Lyr VieSKW (7.4)
Eize < Xt <Qitzt Vie SKU (7.5)
t t
Z Xik > Lif Z Dik/Li| Vi € SKU,t (7.6)
k=1 k=1
t—1 t—1 t
> Xk = > Dizt+) Di(1—z)
K=1 K=1 K=1
Vi € SKU,t (7.7)
SRx < T v (7.8)
|

Zy € {O/ 1}7yit integer

In the MILP model, equation (7.1) represents the sum of tova@ntory carry-
ing costs. Equation (7.2) is the material balance in eack period and equations
(7.3)-(7.4) determine the total production quantity offepcoduct in time period
t. Note that binary variables are only defined fer SKU,. Equation (7.5) states
that if z; is non-zero, then the minimum amount (EPQ) must be prodused,
cannot exceed the boui2; (only for items inSKW,).

Equations (7.6)-(7.7) represent constraints that tigtterrelaxation gap be-
tween the integer solution and the LP relaxation of the mnobl Equation (7.7)

1The MILP modeling and ELEX experiments were carried out by Ramesh lyer and Narayan
Venkatasubramanyan.

Chapter 7. Capacitated Production Planning 101

Sets
SKU Set of products (stock keeping units).
SKU; Set of products for which lot-siz&) is equal to economic production

quantity).

SKUW, Set of products for which lot-size is a multiple of economigguction
quantity.
Variables

St Amount of product carried in inventory in time periotd

Xit Amount of product produced in time periotd

Vit Number of lots of produdtproduced in time periotl

Zit Binary variable which is one if producis produced in time period

Table 7.2: Sets and decision variables for the MILP model.

states that if produatis produced in period,, then the total amount produced up
to periodt — 1 must meet the total demand up to pertod1. However, if the
product is not made in periddthen the amount produced up to pertedl must
meet the demand up to peribdFrom our observation, this equation reduces the
relaxation gap significantly and helps reduce the numbeodés branched on in

a branch-and-bound solution method. Finally, equatioB)(&presents the labor
constraints that link the problems across all products.

Due to the modeling of discontinuous integer valugsq {0, E;.E +L;...})
for itemsi € SKU, with binary variables;;, solving large problems is extremely
expensive. We therefore attempted a Lagrangean relax@obmique (see [17]
for an overview of Lagrangean relaxation) where the prolbkedecomposed by
relaxing the equations (7.8) to obtain the value of binanaldes and then solving
problem (P) for fixed value of binary variables, thereby saj\subproblems that
are less expensive to solve in each step.

7.3.1 Lagrangean Relaxation Approach

The Lagrangean relaxation method used for solving the prol{P) relaxes the
complicating constraints (7.8) using Lagrange multigjehus resulting in a re-
laxed problem that is decomposable for eacihe relaxed problem (PL) is as
follows

PL:minimize s] — $ A SR
Xit Yt ,Zit ,Sit [i;t;C'St] t; ti;<R|X|t t)

subject to Equations (7.2)-(7.7).

Chapter 7. Capacitated Production Planning 102

Thus, (PL) is a relaxation of (P) and represents a lower baoarnke solution
of (P). Since (PL) is decomposable with respedt gach subproblem is combina-
torially less complex, and can be solved to determine thablasz;. Then, for
fixed values ofz;, the problem (P) may be solved to determine a specific solutio
that is an upper bound to the solution of (P).

We note that due to the discrete lot-sizes, the integerisolof (P) may result
in slacks in equation (7.8) and therefore may result in alkipiters of value zero
(to satisfy complementary slackness). Therefore, theiptigits A; for the next
iteration were obtained from the LP relaxation of (P). Thelbem is then solved
iteratively until the bounds converge. Note that the bowsrgésnot guaranteed to
converge as there may be a duality gap due to discrete ndttive problem.

7.3.2 Restricting the Problem

It is comparatively easier to solve the problem wh@nhas no discontinuous
discrete integer values. Thus, with the assumplior= E; Vi € SKU,, binary
variablesz; and equations (7.5) and (7.7) can be eliminated from the dtam
tion. Restricting a given problem instance increases ttsiies for all products
in SKU,, thereby reducing the set of feasible solutions. As we caoldind so-
lutions to the unrestricted problem wittPCEX, we used restricted models for all
experiments with IP branch-and-bound. The restrictedlprobs a sub-class of
the original problem.

7.4 EXPERIMENTAL RESULTS

The experimental results reported in this section are basedstudy of real data
for 190 items and 52 weeks provided by a clientidfTechnologie’ from the
process industry. The OIP model resulting from the givermdatlarge: 7520
finite domain variables (average domain size 10) and 3043%tnts (average
number of variables 30, 1525 constraints soft).

To summarize the experimental results from the viewpoirthefclient, what
did the study achieve? (i) It found a solution which is prdyabithin 1.4%
of the optimal total cost for constant labor (two shifts),iefh(ii) shows that
substantially cutting down cost requires reducing labid). I{ showed that labor
can be reduced to one shift in up to 25 weeks with over 15% piatesavings of
total cost (or USD 1.9 million).

2A leading provider of supply chain scheduling systems.

Chapter 7. Capacitated Production Planning 103

real problem restricted problem
cost WSAT(0IP) CPLEX WSAT(OIP)
profile fixed capacity, two shifts (230K)
labor 11,960,000 11,960,000 11,960,000
inventory 1,023,106 1,120,680 1,040,373
total 12,983,106 13,080,680 13,000,373
profile one shift [28,52] [32,51] [29,52]
labor 9,085,000 9,660,000 9,200,000
inventory 1,961,049 1,609,344 2,003,884
total 11,046,049 11,269,344 11,203,884

Table 7.3: Computational results (Dollar costs) oxv(oi1P) and G°LEX. The
restricted model forcels; := E;.

7.4.1 Comparison of Results

Table 7.3 reports the best solutions found LEX and WsAT(0IP) in limited
time and for different labor profiles. The table divides kontally and vertically,
distinguishing the original from the restricted model ahe fixed-capacity from
the varied-capacity case. With respect to overall qualiybest solutions among
all profiles obtained from both methods are similargav(o1P) leading by less
than 2%, or USD 223,295). In the experiments, the runtime shWoirP) was
limited to 10 minutes, €ELEX was allowed 30 minutes for optimization and was
cut-off after 60 minutes in case no feasible solution wasitbuAll experiments
were performed on a Sun Sparc Ultra Il. Run-times were kept flecause many
labor profiles had to be examined to find solutions of goodal/quality.

Figure 7.1 visualizes the experiments across differerdrlaipofiles for both
WsAT(01P) and GPLEX. The right edge of the triangle reflects the fact that the
size of the one-shift period must decrease as week 52 is agped, because
the planning horizon is finite. On the restricted modeabLEX could not find a
solution with more than 21 one-shift periods in the givenetiwhile WSAT(0IP)
was able to solve a problem with 25 one-shift periods.

In general, ®LEX had difficulties to find feasible solutions as the labor con-
straints were tightened. Of 115 profiles solved bgA(01P), CPLEX 5.0 only
solved 66 profiles (57%) within the given time limit. For thefles that could be
solved with both methods, ¥AT(0IP) found better solutions in 41 casesRIEX
found better solutions in 25 cases, despite the fact thaas applied to the re-
stricted model. In the cases wheresWr(oIP) [CPLEX] was better, on average it
improved over @LEX [WSAT(0IP)] by 2.8% [1.4%] with respect to pure inven-
tory cost.

Chapter 7. Capacitated Production Planning 104

cost (M) cost(M)
11.8 |

11.6
11.4
11.2 i
14

(a) WsaT(o1P) on the over-constrained IP (b) CPLEX 5.0 on the restricted MILP model,
model, 10mins per profile. 30-60mins per profile.

Figure 7.1: Solutions for various labor profiles. Each inggulepresents the total
cost of the best solution found at one labor profile (sta/sioordinates corre-
spond to profilesstart, start+size1], the vertical axis is overall cost).

Influence of Restricted Model

To better understand the influence of the restricted modgiesolutions obtained
by CPLEX, we further experimented with WAT(0IP) on the restricted model, the
results of which are shown in Figure 7.2. InterestinglysA/(oiIP) could still
solve 100 of the 115 profiles given the restricted model. guFé 7.2 (b), crosses
indicate those labor profiles for which feasible solutiorstto the restricted
model that ®LEX could not find within a time bound of 1h.

Parameters

CPLEX was run with standard parameter settings. Throughout tpergrents
with WsAT(0IP), the following parameters were used: Initial producticesvget
to zero (.0 = 1), and a number of 10 tries were performed, each with 100K
moves. Allowed variable triggers were limited to 2 steps wglown the cur-
rent variable value. Hard constraints were repaired with tpriority (Pharg =
0.9). Random moves appeared to deteriorate the solutiontygubkrefore we set
Pnoise = 0. A long tabu tenure appeared to be important to find feasitligtions
for problems with very tight capacityt & 100). Constraint weights were criti-
cal to obtain good feasible solutions and were assigneidaitst The hard NOH
constraints were weighted with a large number, expressingfrence to keep
NOH constraints satisfied. In contrast, CAP constraintewerighted below D
so that temporarily violating them during the search wa®areged.

Chapter 7. Capacitated Production Planning 105

cost (M) 5 | cost (M)

12 Y

11.8 }

11.6

11.4

11.2
14

H

(a) WsaT(01P) on the restricted OIP model. (b) CPLEX on the restricted MILP model.

Figure 7.2: Performance comparison the restricted models<es indicate pro-
files that were solved by BAT(OIP).

7.4.2 Lower Bounds

To assess the quality of the solutions, we applied bounsnéag based on La-
grangean relaxation as described above. We used a reldb@dgeofile of con-
stant 300K, which is over two shifts per week and thereforemmealistic prob-
lem. For a precise estimate of the solution quality, table@ports pure inventory
costs based on this profile for the different methods. Usiagrangean decom-
position, we found solutions to the relaxed labor profile, imfortunately could
not find solutions for realistic capacity constraints. &bl4 also indicates that
WsAT(01P) is still considerably away from the best Lagrangean reélaradased
solution (3.4% of inventory costs). With respect to the allezost of this pro-
file, the difference vanishes (0.2%). The reported lowemidois valid also for
the original problem with constant two-shift labor, becatise 300K-problem is
a relaxation of the original problem.

Solution/boundT; = 300K) type value
Best IP solution restricted 986,780
Best solution from VEAT(OIP) restricted 973,834
Best solution from VAT(0OIP) original 942,511
Best Lagrangean solution original 911,960
Best valid lower bound original 839,875

Table 7.4: Solutions (inventory cost) based on a fixed-aap#abor profile of
300K in all weeks.

Chapter 7. Capacitated Production Planning 106

7.5 CONCLUSIONS

We have studied a real-world capacitated lot-sizing prolleLSP) from the pro-
cess industry. Because the problem includes discretédetsquirements not re-
ported in the CLSP literature, existing domain-specifichnds are not directly
applicable. We approached the problem witrsAV(0IP), and experimentally
compared the results to a commercial mixed integer progiagsolver, GLEX.
The empirical results are promising: Integer local seamh solve a CLSP
with discrete lot-sizes of which a commercial MIP solver cary solve a sub-
class. In terms of robustness,SAr(0lIP) is superior to ®LEX on the given data,
in particular as the capacity constraints are tightenea LB model is simpler
than the MIP model, and with respect to solution quality, téehniques are on

par.

Chapter 8

Extensions

The primary goals in this thesis so far have been twofold: 8scdbe new effec-
tive algorithms within the integer local search framewankl &0 demonstrate their
capabilities for practical applications. In this sectiarg will critically examine
the limitations of the current methods and subsequentlgesigan extension to
overcome some of the current limitations and suggest futgearch.

8.1 CURRENT LIMITATIONS

The limitations of integer local search as laid out withirsttnesis can be charac-
terized in terms of (i) the range of problemst under consideration, and (ii) the
factorsnotinvestigated by the experimental analysis.

Range of Problems

The limitations with respect to the range of studied proldeare the following.
First, throughout this dissertation, we assysaesinteger optimization problems.
Practical industrial problems, however, often contain aticmous component
(witness thereof is the ubiquity of the linear programminegtinod). The frame-
work of integer local search presented herein does not milyraddress mixed
IPs.

Also, the case studies do not address problems in which tbheé@ts are re-
quired to adhere to some intricate and dominating structsweh as traveling
salesman problems or job-shop scheduling. Such problesugessolution struc-
ture liketoursin a travelling salesman problem schedulesn job-shop schedul-
ing, which are difficult to maintain by local repairs on thedeof variable assign-
ments. For those problems, a local search in another segaack ¢e. g. swapping
cities on a tour or jobs on a critical path in a schedule) toutgo be more suitable.
Alternatively if it is easy to obtain solution structure abructively, combining a

107

Chapter 8. Extensions 108

greedy constructive heuristic with local moves in an ala${paority space can be
very effective, as proposed in the framework of “AbstractaldSearch” by Craw-
ford, Dalal and Walser [36]. While the greedy heuristic cacorporate domain
knowledge, the abstract moves change decisions in a sipaiolrity space (“to

schedule task A earlier increase its priority”).

Finally, with exception of one problem class (capacitateadpction plan-
ning), the problems under consideration happen to containlyn0-1 coefficients.
In fact, for the basic version of WAT(0IP), larger coefficients can impose a prob-
lem since the score gradient favors variables with largdficamts. Section 8.2
below suggests a way to extend the basic scoring scheme tibeHarge coeffi-
cients.

Experimental Analysis

Several limitations of the experimental analysis shouldiseussed that translate
directly into suggestions for future research. First, tigimout this thesis, per-
formance has been studied in termstiafie to optimal solutiongnd quality of
solutions obtained in limited timeGenerally, both measures of an optimization
algorithm are derived from its underlying convergence b&raTo better under-
stand the tradeoffs between time and quality, an investigaif the convergence
behaviour would be necessary.

Second, the proposed integer local search proceduresitgstaeral compo-
nents and parameters, such as tabu search componeni®aienly rules, noise,
etc. Although some parameters have been investigated exfprerimental analy-
sis in individual case studies, a more rigorous study woelddguired to assess
which algorithmic components and parameters are inde&datrior the success
of integer local search and which parameter settings aienapt An alternative
strategy would be to strive for automatically adjustinggraeters.

The case studies have demonstrated that OIP models captuséticture of
many realistic problems via soft constraints, and thiscstme can be exploited
by integer local search. Additionally, it would be interagtto consider OIP en-
codings of standard benchmark problems, e. g. problems @&+ibrary [16].
Even though many such benchmarks are randomly generatetinaitet with
respect to their constraints, using such standard benéismauld allow to com-
pare domain-independent local search to domain-specifim@ation heuristics
from the literature, as a supplement to the comparison sisiahg general-purpose
frameworks.

8.2 AN ALTERNATIVE SCORING SCHEME

In all of the case studies, the score as defined in (3.6) hasdreeloyed, lead-
ing to a satisfactory operational performance oEAY(0IP). With exception

Chapter 8. Extensions 109

to production planning, most of the arising coefficients geped be limited to
{-1,0,1}. Preliminary experiments indicate that instances whiaftaia larger
coefficients may be more difficult for 8AT(0I1P). For instance, we notice that
the production planning problem requires manual weightregt Further, some
problems studied in the literature (e.g. [30]) contain ¢argoefficients and are
not satisfactorily solved. As will be shown, this limitatics at least partly due to
the applied standard score. Further, we will see that thedata score lacks mo-
tivation from a geometrical viewpoint. We will thereforeopose an alternative
scoring scheme next.
Let us recall the example from Section 3.4 (illustrated iguFre 3.6),

(A) 9 +5x, >45
(B) X1+X >6
(C) 8xp+5x2 <0 (soff
X1, X2 6{1,2,...,5}.

We observe that at point (0,0), the contribution of constrBito the score is
6 while A's contribution is 45. This is despite the fact thag geometric distance
of point (0,0) to A and B is almost identical, and the Manhat&tance of (0,0)
to Ais 5, i. e. eversmallerthan the distance to B of 6.

This observation motivates reconsidering the distancetiom, and using the
geometric Euclidean distance. From analytic geometry. (©4j), we know that
every inequality defines a half-space. In order to compeealistance of a point
p to a half-spacex > b (if p lies outside), we compute its distance to the corre-
sponding hyper-planax = b.

To compute the distance, note that a hyper-plane can besesiesl irHessian
normal form (1/|al)({a,x) — b) = 0, wherea is a normal vectorof the hyper-
plane,(x,y) defines thescalar producty; xyi, and|a := \/(a,a). The distance
of a pointp to the hyper-plane is then computed [96](&g|a|) |(a,p) — b|.

Hence, theeuclidean distancef a pointp from thehalf-spacedefined by the
constraintax > b can be computed as

Ib—ap]|

a (8.1)

I

where||.|| is defined as usual (OIP), and the resulting distance ip0i&s inside
the half-spacé.

Surprisingly, we observe that for constrait > b, (8.1) is exactly the orig-
inal score weighted by/la|. That is, Euclidean scoring amounts to a weighting
scheme that can be computed statically as a preprocessing cbnstraints.

INote thatap is the scalar product sin@eis a row vector.

Chapter 8. Extensions 110

To preserve equality between the score of a feasible salatid its objective
function value, we propose to leave the soft constraintseigiwted. Hence, the
Euclidean scordor an OIP((g;),b,C.d,D) shall be defined as follows

SCOréX) = Wharg - ||b — AX|[ye + [|Cx —d|, (8.2)

where the weight vecta® is defined as\’ = 1/|a] for constrainta;x > bj and
|||l is defined as usual (3.6). Additionally,qg is a weight on the hard con-
straints.

For confined OIPs, one geometrically motivated way to choggg is to base
it on the corresponding objective function: If the soft cioamt violation is||Cx —
d||1 and we write this as a classic objective functon-d := ||Cx —d||; (which is
possible as the OIP is confined), theg,y can be chosen as| in order to balance
the overall violation of hard and soft constraints.

Example. In example (3.12), the Euclidean score results in a weigtgaheme
of Wharg = V82 + 52 = 9.43 due to the soft constraint. Further, the weights are
A& =1/v9%+52 andA§ = 1/v/1+ 1. In the trajectory example, the same opti-
mal trajectory is obtained as illustrated in Figure 3. Aid)ich was obtained for a
simpler, manually generated weighting scheme.

Preliminary experiments. Two preliminary experiments can be reported with
Euclidean scoring. First, in the production planning caseys Euclidean scor-
ing automatically leads to a similar weighting scheme arglirtolar experimental
results as the scheme obtained in a tedious process of madjuatment.

Second, to probe the effectiveness of Euclidean scoringtested it on a
benchmark problem from generalized assignment (GAP) frdralibrary [16]
(GAP has been described in Section 6.2.2). We consideregroidem instance
from the set of ‘large-sized’ instances, referenced by 6a@D{ariables, 110 con-
straints) and described by Chu and Beasley [30].

In the experiment, we employed deterministic rounding &f finear relax-
ation to initialize the 0-1 variables. Using standard sogriWsAT(01P) could
not find a feasible solution to problem C-1. When applyingIEi@an scoring,
an integer solution (with cost 1934) was usually found withifew seconds by
WsAT(0IP), which is close to the optimal IP solution (1931) and to thedpti-
mum (1923.975).

It took significantly longer (many restarts) to find the IPiopim using this
technigue. We expect that the technique of dynamic seamtesgduction [9, 5]
(described in Section 3.3.3) will improve on this resultnsiolering that 341 out
of 500 binary variables can be pruned after a few secondgdbas the 1934-
solution. Moreover, the problem class would provide a gesd tase foleashed
local search(Section 3.3.2) since the percentage of non-integral isoisitof the

Chapter 8. Extensions 111

LP optimum is very small. We are looking forward to performextensive ex-
perimental study of integer local search for this probleassl

8.3 FUTURE RESEARCH

Within the endeavor to find general-purpose heuristicsdanttinatorial optimiza-
tion, this work has established a link between local searcpriopositional satisfi-
ability (SAT) and integer optimization. From this perspeetas SAT local search
strategies are continuously improved, the particulategsais insignificant com-
pared to the possibilities that arise due to the link, enaged by the empirical
results of this first generalization. SAT can be used as ebedto obtain better
core algorithms while integer encodings can leverage dppficability.
We discuss some of the future paths that appear most pranisioursue in

order to further improve and extend the proposed methods.

Incorporating Meta-heuristics and LearningA variety of meta-heuristic tech-
niques have been proposed for combinatorial optimizaéind sophisticated strate-
gies have been presented for particular problem classesriicular genetic algo-
rithms and tabu search [61] offer a variety of strategieswiauld be immediately
applicable in an integer local search framework, some otlvare very likely to
enhance the proposed strategies (e. g. tabu search intatisifiand more com-
plex diversification rules, or genetic crossover).

A route that we predict will lead to very powerful integer édsearch solvers
is the incorporation of learning strategies recently pegabfor local search. Can-
didate strategies include reactive search [15, 14] whicpgses a history-based
feedback scheme, orm&GE [23] which automatically learns evaluation (scoring)
functions for combinatorial optimization. Also, learnistyategies for constraint-
weights [131, 110, 28] or arc-weights [138] would be inté@resto integrate in
the WsAT(01P) framework for further performance improvements.

Extensions of Integer Local SearchAn interesting path to investigate is the
connection between iterative repair and mathematicalraroqning, which is a
largely unexplored area. There will be a need to addressaimbination of in-
teger local search with optimization strategies for camtims variables. Possibly,
integer local search might be combined with other heusdbc integer program-
ming to achieve this goal. Also, the formal incorporatiommdximization func-
tions into OIP will be a task to address.

With respect to the supply of constraints, we expect to haveerexpressive
constraints available soon to extend the current expiiggsgf OIP. In several
practically relevant cases, this can be done without thd teeehange the current
repair strategy. For instance, within ILP it is difficult tagFess in the constraint

Chapter 8. Extensions 112

minsedk, [X1,...,X)]) =, which requires that if one of the variabbgss assigned
tol, then it must be part of a subsequence of at lkeaatiables that are all assigned
tol. This constraint can naturally be handled by the currerdirapechanism.

Towards a Local Search Based Constraint Solv@rhe class of integer linear pro-
grams covers a wide range of practically important problantsprovides a good
starting point for general-purpose heuristics. Nevees®lsome problems exhibit
a more complex structure and need more expressive corisgpnesentations. In
contrast to integer programming frameworks that rely oadinrelaxations, local
search is not limited with respect to the underlying comstisystems. Hence, lo-
cal search strategies $41(.t') are likely to appear that can handle more complex
constraint system&’, or even constraints from very different domains.

The current two-stage control strategy is (i) select a camdtc for repair,
(ii) select a partial repair for constraiot We expect that this control strategy al-
lows for integrating a variety of more complex constraifist instance, symbolic
constraints from finite domain constraint programming (@llgdifferent) or con-
straints that address more complex structure (e. g. tragedhlesman tours) will
need to be integrated. Different constraints will requifeedent strategies of local
repair. The challenge ahixed constraint systemll be to extend the two-stage
control strategy into a mature architecture that integrditferent local neighbor-
hoods and effectively control execution.

In addition to handling problems that dezger or more constrainegthe chal-
lenge for local search will thus be to handle more complexlem structure
For instance, optimally planning the manufacturing preaafsa set of items by
sequencing a number of ordered tasks that allocate diffezeaurces, while min-
imizing lateness and inventory costs. We predict that thapdex structure of
such real-world scenarios will be an important measure efigxt generation of
local search architectures.

Chapter 9

Conclusions

“As fast as computers have become, they'd never be able to solve today’s
complex business problems without advances in algorithms ... The future,
in fact, will be full of algorithms. They are moving up the complexity chain
to make entire companies more efficient.”

[USA Today; December 31, 1997

In this thesis we have presented a new effective approachnaish-indepen-
dent integer optimization based on generalizing localcdefr propositional sat-
isfiability. The approach is applicable to a wide variety ofnbinatorial opti-
mization problems that arise in practical applicationspérates on an algebraic
representation similar to integer linear programs andus ftexible and can di-
rectly be applied to realistic problem encodings.

In this integer local searctiramework, a combinatorial optimization or con-
straint problem is stated by an encoding with hard and swoégli constraints over
finite domain variables, called awver-constrained integer progranThe struc-
ture of this representation lends itself well to iteratiepair approaches since it
encodes the optimization objectives by many competing@oistraints instead
using of a monolithic objective function. With respect tqeassivity, we have
shown that this representation is a special-case of integsar programs.

While the local search strategy that we have presented @ejnve have em-
pirically demonstrated its efficiency, scalability andustness in a variety of case
studies on realistic integer optimization problems. Thabpems either stem from
the recent literature, from operating applications, onfiadustrial cooperation.

We have experimentally evaluated the described methodsmparisons with
the literature and with general-purpose optimizationtsgies. The results show
that integer local search outperforms or competes witlkesigthe-art integer pro-
gramming (IP) branch-and-bound and constraint programr(@?P) approaches

113

Chapter 9. Conclusions 114

for the problems under consideration, in finding feasibleear-optimal solutions
in limited time. The presented method,9Af(01P), is arguably general-purpose
because neither integer programming branch-and-boundimte domain con-
straint programming can currently solve the range of proléhat have all been
solved with integer local search in our case studies.

A drawback of all current local search strategies is thaiompleteness, that
is their inability to prove infeasibility of an input probieor the quality of the
achieved solutions. To partially overcome this drawbaak have discussed sev-
eral effective combinations with linear programming fower bounding, initial-
ization by rounding, search space reduction and feagitbdgting.

We believe that the iterative repair strategy of integealsearch offers many
opportunities for improvements to the core strategy andiuidher generalization
to more expressive constraint systems, making it appkcéblstructurally yet
more complex problems in the future.

Concluding Remark. Given the practical need for general optimization methods
and the often-quoted effectiveness of special-purposadties, it is perhaps sur-
prising that only few efforts have been made to devise gépergpose heuristics
for optimization. Summarizing the effectiveness of intelpeal search, “the fu-
ture will be full of algorithms”, in fact. But hopes are up tliasearch on domain-
independent heuristics will lead to fewer algorithms indhé® be designed for
combinatorial optimization.

Appendix A

A Complete AMPL Model
for ACC97/98

The following AMPL model describes the full set of consttaifiL14, 139] of the
ACC 97/98 basketball scheduling problem which was investid in Section 5.2.

##

Atlantic Coast Competition Basketball 1997/98 (Sports scheduling)
(c) J.P.Walser, Programming Systems Lab, UdS, August 1998

##

Parameters

##

set Teams ordered { ’Clem’, ’Duke’, ’FSU’, ’GT’, ’UMD’,
PUNC’, ’NCSt’, ’UVA’, ’Wake’ };

Teams union { ’Bye’ };

{ 1..2xcard(Teams) };

{ 1..last(Rounds) by 2 };

{ 2..1last(Rounds) by 2 };

{ 11..18} ;

{ (1,8), (2,9, (3,12), (4,13), (5,14),
(6,15), (7,16), (10,17), (11,18) };

param Final := last(Rounds) ;

param GameQualityWeekend {Teams, Teams};

param GameQualityWeekday {Teams, Teams};

set Places ordered
set Rounds ordered
set Weekdays ordered
set Weekends ordered
set February ordered
set Mirror

Variables: Pairings
T[i,j,t]=1 iff team i plays at place j in round t

var T {Teams, Places, Rounds} binary;
#i

DDRR constraints

##

subject to OP {i in Teams, t in Rounds}:
sum { j in Places} TI[i,j,t] = 1;

115

Appendix A. A Complete AMPL Model for ACC97/98 116
subject to 0V {j in Teams, t in Rounds}:
sum {i in Teams: i<>j} TI[i,j,t] <= 1;
subject to CP {i in Teams, j in Teams, t in Rounds: i<>j}:
T[J sj st] - T[l,J st] >= 0;
subject to DRR {i in Teams, j in Teams: i<>j}:
sum {t in Rounds} T[i,j,t] = 1;
##
Redundant constraints
##
subject to TB {i in Teams}:
sum {t in Rounds} T[i,’Bye’,t] = 2;
subject to OB {t in Rounds}:
sum {i in Teams} T[i,’Bye’,t] = 1;
subject to HH {t in Rounds}:
sum {i in Teams} T[i,i,t] = floor(card(Teams)/2);
##
Sequence constraints (Rounds)
##
Treating Bye as Home, no more than 2 Away games in a row: [#(A)<=2]
subject to SEQ1 {i in Teams, t in Rounds : t <= prev(Final,Rounds,2)}:
sum {s in t .. next(t,Rounds,2), o in Teams: o<>i} T[i,o0,s] <= 2;
Treating Bye as Away, no more than 2 Home games in a row: [#(H)<=2]
subject to SEQ3 {i in Teams, t in Rounds : t <= prev(Final,Rounds,2)}:
sum {s in t .. next(t,Rounds,2)} T[i,i,s] <= 2;
Treating Bye as Away, no more than 3 Away games in a row: [#(BA)<=3]

(Bye+Away=not (Home))

subject to SEQ2 {i in Teams, t in Rounds : t <= prev(Final,Rounds,3)}:

sum {s in t .. next(t,Rounds,3)} (1-T[i,i,s]) <= 3;

Treating Bye as Home, no more than 4 Home games in a row: #(BH)<=4]
subject to SEQ4 {i in Teams, t in Rounds : t <= prev(Final,Rounds,4)}:

sum {s in t .. next(t,Rounds,4)} (T[i,i,s] + T[i,’Bye’,s]) <= 4;

##
Sequence constraints (Weekends)
##

Treating Bye as Home, no more than 2 Away games in a row:
subject to SEQlw {i in Teams, t in Weekends :
t <= prev(last(Weekends),Weekends,2)}:

sum {s in t .. next(t,Weekends,2), o in Teams: s in Weekends

and o<>i} T[i,o0,s] <= 2;

[#(A)<=2]

Appendix A. A Complete AMPL Model for ACC97/98 117

Treating Bye as Away, no more than 2 Home games in a row: [#(H)<=2]
subject to SEQ3w {i in Teams, t in Weekends :
t <= prev(last(Weekends),Weekends,2)}:
sum {s in t .. next(t,Weekends,2): s in Weekends} T[i,i,s] <= 2;

Treating Bye as Away, no more than 3 Away games in a row: [#(BA)<=3]
(Bye+Away=not (Home))
subject to SEQ2w {i in Teams, t in Weekends :
t <= prev(last(Weekends),Weekends,3)}:
sum {s in t .. next(t,Weekends,3): s in Weekends}
(1—T[i,i,s]) <= 3;

Treating Bye as Home, no more than 4 Home games in a row: #(BH)<=4]
subject to SEQ4w {i in Teams, t in Weekends :
t <= prev(last(Weekends),Weekends,3)}:
sum {s in t .. next(t,Weekends,3): s in Weekends}
(Tli,i,s] + T[i,’Bye’,s]) <= 3;

##
Mirror constraints
##t

subject to MIR1 {i in Teams, j in Teams, (s,t) in Mirror: i<>j}:
(1-T[i,j,s]) + T[j,i,t] >= 1;

subject to MIR2 {i in Teams, (s,t) in Mirror}:
(1-T[i,’Bye’,s]) + T[i,’Bye’,t] >= 1;

##
ACC Specific Constraints
##

No team finishes AA

subject to FAA {i in Teams}:
sum {t in prev(Final,Rounds)..Final}
(Tli,i,t] + T[i,’Bye’,t]) >= 1;

0f 9 weekend Rounds, each team plays 4 home, 4 on the road
and one bye
subject to SAT1 {i in Teams}:
sum {t in Weekends} T[i,i,t] = 4;
subject to SAT2 {i in Teams}:
sum {t in Weekends} T[i,’Bye’,t] = 1;

Home or bye at least on two of first five weekends
subject to FIF {i in Teams}:
sum {t in Weekends: ord(t) <= 5}
(Tli,i,t] + T[i,’Bye’,t]) >= 2;

##
ACC/season specific constraints
##

subject to RIV: # Rival matches
T[’Duke’,’UNC’, Final] + T[’UNC’, ’Duke’,Final] +
T[’Clem’,’GT’, Final] + T[’GT’, ’Clem’,Final] +

Appendix A. A Complete AMPL Model for ACC97/98 118

T[’NCSt’,’Wake’,Final] + T[’Wake’,’NCSt’,Final] +
T[’UMD’, °UVA’, Final] + T[’UVA’ ,’UMD’, Final] >= 3;

Popular matches in Feb
subject to FEB {(i,j) in {(’Wake’,’UNC’),(’Wake’,’Duke’),
(’GT’,’UNC’),(’GT’,’Duke’) }}:
sum {t in February} (T[i,j,t] + T[j,i,t]) >= 1;

Opponent ordering constraints
subject to OPO0a {i in Teams, t in Rounds: i<>’Duke’ and i<>’UNC’
and t <= prev(Final,Rounds)} :
sum {s in t..next(t,Rounds)}
(T[i,’Duke’,s] + T[i,’UNC’,s]) <= 1;

subject to OPOb {i in Teams, t in Rounds: i<>’Duke’ and i<>’UNC’
and i<>’Wake’ and t <= prev(Final,Rounds,2)}:
sum {s in t..next(t,Rounds,2), o in {’Duke’,’UNC’,’Wake’}}
(Tli,o0,s] + Tlo,i,s]) <= 2;

##
Other idiosyncratic constraints
##

set FixGames dimen 4 within {Teams, Places, Rounds, 0..1};
subject to FIX {k in 0..1, (i,j,t,k) in FixGames}: T[i,j,t] = k;

data;
set FixGames :=
UNC plays Duke instantiated

Duke UNC 11 1
UNC Duke 18 1
Duke Bye 16 1
Wake Wake 17 0

as Wake is bye in Slot 1 the other must be home

Wake Bye 1 1

Clem Clem 1 1

FSU FSU 1 1

GT GT 1 1

duke cannot be bye here either
Duke Duke 18 1

rest

FSU Bye 18 0

NCSt Bye 18 0

UNC Bye 1 0

additions [from Trick’s revisions of May 8, 1998]
Wake has a bye in slot 1 and must end AH

Wake Wake 18 1

Wake Bye 17 0

model;

Appendix A. A Complete AMPL Model for ACC97/98 119

subject to IDI2: T[’UNC’,’Clem’,2]+T[’Clem’,’UNC’,2] = 1;

subject to IDI3: T[’Clem’,’Clem’,Final]+T[’Clem’,’Bye’,Final] = 1;
subject to IDI5: T[’UMD’,’UMD’,Final]l+T[’UMD’,’Bye’,Final] = 1;
subject to IDI6: T[’Wake’,’Wake’,Final]l+T[’Wake’,’Bye’,Final] = 1;
##

From Trick’s revisions of May 9, 1998

#i

every team must have an H in the first three slots
subject to FTH {i in Teams}:
sum {t in 1..3} T[i,i,t] >= 1;

every team must have an H in the last three slots
subject to LTH {i in Teams}:
sum {t in prev(Final,Rounds,2)..Final} T[i,i,t] >= 1;

##
Optimization Criteria
##

Criterion 1
Avoid opening AA (not more than 1 team)
use the complement: sum over teams home or bye >= card(Teams)-1

subject to 0AA:
sum {i in Teams}
(Tli,i,1]1+T[i,’Bye’,1] + T[i,i,2]+T[i,’Bye’,2]) >= card(Teams)-1;

Criterion 2

Game qualities: A/B/bad Rounds

##

Variables: Slot-Quality

FEach slot is either an A,B, or bad slot

var Q {February, 0..2} binary;
subject to SLOTQ {t in Februaryl}: sum {q in 0..2} Q[t,q]l = 1;

data;

GameQualityWeekday[H,A]=2 means if team H plays
home and A visits it is a 2 match (quality A)

A-match: 2, B-match: 1

param GameQualityWeekday :
Clem Duke FSU GT UMD UNC NCSt UVA Wake :=

[y

Clem
Duke
FSU
GT
UMD
UNC
NCSt
UVA
Wake

OO0, OOOOO
H R R, NNRPROOO
[cNoNeoNoNoNoNoNoNo]
H OO, P, OORFrO
OO O O, ONO
O, ONNOO

H OOOOOOOOo
OO OO OO O
O, P OO, OO

Appendix A. A Complete AMPL Model for ACC97/98

param GameQualityWeekend :

Clem Duke FSU GT UMD UNC NCSt UVA Wake :

N

Clem
Duke
FSU
GT
UMD
UNC
NCSt
UVA
Wake
model;

[oNeoNoNoNoNoNoNo Nl
PP, OOOOO0OO0o
[oNeoNoNoNoNoNoNo Nl
HOOR,rOOOFRO
OO0, O, ONO
PO, OOOON

HOOOOOOOOo
[oNeoNoNoNoNoNoN el
OO, OO, OO

link T and Q variables: If a slot is A, there

least one A or at least two B games
subject to LTQ1 {t in February: t in Weekends}:
2*Q[t,2] <= sum {v in Teams, h in Teams:
GameQualityWeekend[h,v]

subject to LTQ2 {t in February: t in Weekdays}:
2%Q[t,2] <= sum {v in Teams, h in Teams:
GameQualityWeekday [h,v]

if a slot is B, there is at least one B game
subject to LTQ3 {t in February: t in Weekends}:
1%Q[t,1] <= sum {v in Teams, h in Teams:
GameQualityWeekend[h,v]

subject to LTQ4 {t in February: t in Weekdays}:
1*%Q[t,1] <= sum {v in Teams, h in Teams:
GameQualityWeekday [h,v]

Require 3 A Rounds in February
subject to MAXARounds: sum {t in February} Q[t,2

Require <= 2 bad Rounds in February
subject to MINBADRounds: sum {t in Februaryl} Q[t

Criterion 3
Home/Away/Bye pattern criteria
set RoundsM3 ordered := ..last (Rounds)-2 };
set RoundsM3We ordered :

Variables expressing optimization criteria
e.g. for each team i and round t,

HB3[i,t]=1 if a sequence of at least 3
home games starts for team t in round
NOTE: "X=1 if Y" reads "Y -> X" (not iff)

var HB3 {Teams, RoundsM3} binary;
var AB3 {Teams, RoundsM3} binary;
var HB3We {Teams, RoundsM3We} binary;
var AB3We {Teams, RoundsM3We} binary;

is at

v<>h}
* T[v,h,t];

v<>h}
* T[v,h,t];

v<>h}
* T[v,h,t];

v<>h}
* T[v,h,t];

1 >=3;

,0] <= 2;

{1
{ 2..last(Rounds)-2%2 by 2 };

i

120

Appendix A. A Complete AMPL Model for ACC97/98 121

HB3=1 if, treating Bye as Home, 3 Home games occur in a row:
subject to HB3L {i in Teams, t in RoundsM3}:
sum {s in t .. next(t,Rounds,2)}
(T[i,i,s] + T[i,’Bye’,s]) <= 2+HB3[i,t];

AB3=1 if, treating Bye as Away, 3 Away games occur in a row:
subject to AB3L {i in Teams, t in RoundsM3}:
sum {s in t .. next(t,Rounds,2)}
(1-T[i,i,s]) <= 2+AB3[i,t];

Similarly for weekends:
HB3=1 if, treating Bye as Home, 3 Home games occur in a row:
subject to HB3LWe {i in Teams, t in RoundsM3We}:
sum {s in t .. next(t,Weekends,2): s in Weekends}
(T[i,i,s] + T[i,’Bye’,s]) <= 2+HB3Wel[i,t];

AB3=1 if, treating Bye as Away, 3 Away games occur in a row:
subject to AB3LWe {i in Teams, t in RoundsM3We}:
sum {s in t .. next(t,Weekends,2): s in Weekends}
(1-T[i,i,s]) <= 2+AB3Wel[i,t];

Formulate constraints on optimization criteria

subject to HB3LE4: sum {i in Teams, t in RoundsM3} HB3[i,t] <= 4;
subject to AB3LE3: sum {i in Teams, t in RoundsM3} AB3[i,t] <= 3;
subject to HB3WeLE5: sum {i in Teams, t in RoundsM3We} HB3We[i,t] <= 5;
subject to AB3WeLE4: sum {i in Teams, t in RoundsM3We} AB3We[i,t] <= 4;

Bibliography

[1] AARTS, E., AND LENSTRA, J. K., Eds. Local Search in Combinatorial
Optimization Wiley-Interscience Series in Discrete Mathematics and Op
timization, 1997.

[2] AARTS, E. H., KORST, J. H., AND VAN LAARHOVEN, P. J. Simulated
annealing. InLocal Search in Combinatorial Optimizatip&. Aarts and
J. K. Lenstra, Eds. Wiley, 1997, pp. 91-120.

[3] ABoubl, R., AND JORNSTEN K. Tabu search for general zero-one inte-
ger programs using the pivot and complement heuri€iRSA Journal on
Computing 61 (1994), 82—-93.

[4] ABRAMSON, D., DANG, H., AND KRISHNAMOORTHY, M. A comparison
of two methods for solving 0—1 integer programs using a gerirpose
simulated annealing algorithmnnals of Operations Research G396),
129-150.

[5] ABRAMSON, D., AND RANDALL, M. A simulated annealing code for
general integer linear program&nnals of Operations Resear1998). To
appeatr.

[6] AGGOUN, A., CHAN, D., DUFRESNE P., RALVEY, E., GRANT, H.,
HEROLD, A., MACARTNEY, G., MEIER, M., MILLER, D., MUDAMBI,
S., FEREZ B., VAN RossuMm, E., SCHIMPF, J., TSAHAGEAS, P. A.,AND
DE VILLENEUVE, D. H. ECLPS 3.5. User manual, European Computer
Industry Research Centre (ECRC), Munich, Germany, Dec5199

[7] ANDERSON E. J., GAss, C. A., AND PoTTs, C. N. Machine schedul-
ing. In Local Search in Combinatorial Optimizatipi. Aarts and J. K.
Lenstra, Eds. Wiley, 1997, pp. 361-414.

[8] APPLEGATE, D., AND CoOK, W. A computational study of the job-shop
scheduling problemORSA Journal on Computing 3 (1991), 149-156.

122

BIBLIOGRAPHY 123

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BALAS, E., AND MARTIN, C. Pivot and complement — a heuristic for
zero-one programmindvlanagement Science 26980), 86—96.

BAPTISTE, P., RRPE, C. L., AND NUIJTEN, W. Incorporating efficient
operations research algorithms in constraint-based stihgd In Proceed-
ings of the first international joint workshop on Artificiaitelligence and
Operations Researdf1995). Timberline Lodge, Oregon.

BARR, R. S., ®LDEN, B. L., KELLY, J. P., ESENDE M. G., AND
WILLIAM R. STEWART, J. Designing and reporting on computational ex-
periments with heuristic method3ournal of Heuristics 11995), 9-32.

BARTH, P. Linear 0-1 inequalities and extended clauses. Tech. Rep
MPI-1-94-216, Max-Planck Institut fur Informatik, Im Siawald, 66123
Saarbriicken, Germany, 1994.

BARTH, P., AND BOCKMAYR, A. Modelling mixed-integer optimisa-
tion problems in constraint logic programming. ResearcpdreMPI-

[-95-2-011, Max-Planck-Institut fur Informatik, Im Stawdhld, D-66123
Saarbriicken, Germany, November 1995.

BATTITI, R. Reactive search: Toward self-tuning heurisitcs Miodern
Heuristic Search Methodd/. Rayward-Smith, I. Osman, C. Reeves, and
G. Smith, Eds. Wiley, 1996, ch. 4.

BATTITI, R., AND PROTASI, M. Reactive search, a history-sensitive
heuristic for max-satACM Journal of Experimental Algorithmi¢4997).

BEASLEY, J. Or-library: distributing test problems by electroni@im
Journal of the Operational Research Society #1 (1990), 1069-1072.

BEASLEY, J. E. Lagrangean relaxation. Modern Heuristic Tech-
nigues for Combinatorial Problem€. R. Reeves, Ed. Halsted Press, 1993,
pp. 70-150.

BisscHOR J.,AND MEERAUS, A. On the development of a general alge-
braic modeling system in a strategic planning environmdfdathematical
Study 20(1982), 1-29.

BITRAN, G., AND YANASSE, H. Computational complexity of the capac-
itated lot size problemManagement Science 28982), 1174-1186.

Bock, F. An algorithm for solving ‘travelling-salesman’ andatdd net-
work optimization problems. Manuscript associated witlk fresented

BIBLIOGRAPHY 124

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

at the Fourteenth National Meeting of the Operations Reke@ociety of
America, 897, 1958.

BOCKMAYR, A., AND KASPER T. Branch-and-infer: A unifying frame-
work for integer and finite domain constraint programmihtgFORMS J.
Computing(1998). To appear.

BORNING, A., FREEMAN-BENSON, B., AND WILSON, M. Constraint
hierarchies. IOver-constrained Systemd. B. Jampel, E. Freuder, and
M. Maher, Eds. Springer, 1996.

BovaN, J. A., AND MOORE, A. W. Learning evaluation functions for
global optimization and boolean satisfiability.Pnoceedings Fifteenth Na-
tional Conference on Atrtificial Intelligence (AAAI-98)998), pp. 3—10.

BRAND, P., HARIDI, S.,AND OLSSON, O. Some radar surveillance prob-
lems. Tech. rep., Swedish Institute of Computer Sciend@sSS1997. To
appear.

CaIN, W. The computer-assisted heuristic approach used to sthgd
the major league baseball clubs.Optimal Strategies in SportS. Ladany
and R. Machol, Eds., no. 5 in Studies in Management Sciert&gstems.
North-Holland Publishing Co., 1977, pp. 32-41.

CARLIER, J., AND PINSON, E. An algorithm for solving the job-shop
problem.Management Science 35(1989), 164—-176.

CATRYSSE, D., AND WASSENHOVE, L. A survey of algorithms for the
generalized assignment probleniEuropean Journal of Operational Re-
search(1992), 260-272.

CHA, B., AND IWAMA, K. Adding new clauses for faster local search.
In Proceedings Thirteenth National Conference on Artificiakelligence
(AAAI-96)(1996).

CHA, B., lwamA, K., KAMBAYASHI, Y., AND MIYAzAKI, S. Local
search algorithms for partial maxsat. Pnoceedings AAAI-971997).

CHu, P.,AND BEASLEY, J. A genetic algorithm for the generalised assign-
ment problem Computers & Operations Research, 24(1997), 17-23.

CHVATAL, V. Linear ProgrammingW.H. Freeman, 1983.

CODOGNET, P.,AND DiAz, D. Compiling constraints inlp(FD). Journal
of Logic Programming 2,73 (June 1996), 185-226.

BIBLIOGRAPHY 125

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

CoNNoLLY, D. General purpose simulated annealidgurnal of the Op-
erational Research Society 48992), 495-505.

CRAWFORD, J., AND AUTON, L. Experimental results on the crossover
point in Random 3SATArtificial Intelligence(1996). To appear.

CRAWFORD, J.,AND BAKER, A. Experimental results on the application
of satisfiability algorithms to scheduling problems. Rroceedings AAAI-
94 (1994), pp. 1092-1097.

CRAWFORD, J. M., DaLAL, M., AND WALSER, J. P. Abstract local
search. InProceedings of the AIPS-98 Workshop on Planning as Com-
binatorial Search(1998). In conjunction with The Fourth International
Conference on Artificial Intelligence Planning Systems?8498.

CROES G. A method for solving traveling salesman proble@perations
Research §1958), 791-812.

DAVENPORT, A., TSANG, E., WANG, C., AND ZHU, K. GENET: A
connectionist architecture for solving constraint sattibn problems by
iterative improvement. liProceedings AAAI-941994).

DAVENPORT, A. J. Extensions and Evaluation of GENET in Constraint
Satisfaction PhD thesis, Department of Computer Science, University of
Essex, 1997.

Davis, M., LOGEMANN, G., AND LOVELAND, D. A machine program
for theorem-provingJournal of the ACM §1962), 394-397.

DiaBy, M., BAHL, H., KARWAN, M., AND ZIONTS, S. A Lagrangean re-
laxation approach for very-large-scale capacitatedilohg. Management
Science 389 (1992), 1329-1340.

DINCBAS, M., HENTENRYCK, P. V., SMONIS, H., AGGOUN, A., AND
GRAF, T. The constraint logic programming language CHIP. Plim-
ceedings International Conference on Fifth Generation Gotar Systems
(1988), Y. Kodratoff, Ed., Springer-Verlag, pp. 693-702.

DREXL, A., AND KimMs, A. Lot sizing and scheduling — survey and
extensions. European Journal of Operational Research @®97), 221—-
235.

DuURBIN, R., AND WiLLSHAW, D. An analogue approach to the travlling
salesman problem using an elastic net methdture 326(1987), 689—
691.

BIBLIOGRAPHY 126

[45] FERLAND, J.,AND FLEURENT, C. Computer aided scheduling for a sports
league.INFOR 21(1991), 47-65.

[46] FOURER R. A simplex algorithm for piecewise-linear programmirig i
Computational analysis and applicatioddathematical Programming 53
(1992), 213-235.

[47] FOURER R.,AND GAY, D. M. Large scale optimization: State of the art.
In Experience with a Primal Presolve AlgorithiW. Hager, D. Hearn, and
P. Pardalos, Eds. Kluwer Academic Publishers, 1994, pp-134.

[48] FOURER R., GAy, D. M., AND KERNIGHAN, B. W. A modeling lan-
guage for mathematical programminggement Science 38990), 519-
554,

[49] FOURER R., Gay, D. M., AND KERNIGHAN, B. W. AMPL, A Model-
ing Language for Mathematical ProgramminBoyd & Fraser publishing
Company, 1993.

[50] GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability: A
Guide to the Theory of NP-completenes#.H. Freeman and Company,
1979.

[51] GENT, I., MACINTYRE, E., PROSSER P., AND WALSH, T. The con-
strainedness of search. Rroceedings AAAI-961996).

[52] GENT, I., AND WALSH, T. An empirical analysis of search in GSAT.
Journal of Artificial Intelligence Research($eptember 1993), 47-59.

[53] GENT, I., AND WALSH, T. Towards an understanding of hill-climbing
procedures for SAT. IiRProceedings AAAI-981993), pp. 28-33.

[54] GENT, I., AND WALSH, T. Unsatisfied variables in local search Hgbrid
Problems, Hybrid Solutions (Proceedings of AISBA®95), I0S Press.

[55] GINSBERG, M., AND MCALLESTER, D. GSAT and dynamic backtrack-
ing. In PPCP’94: Second Workshop on Principles and Practice of Con-
straint ProgrammindSeattle, May 1994), A. Borning, Ed.

[56] GLOVER, F. Future paths for integer programming and links to ardifio-
telligence. INComputer and Operations Resea(d®86), vol. 13, pp. 533—
549.

[57] GLOVER, F. Tabu seaerch — part | & IDRSA Journal on Computing 1/2
3/1 (1989), 190-260/4-32.

BIBLIOGRAPHY 127

[58] GLOVER, F., AND LAGUNA, M. Tabu search. IModern Heuristic Tech-
niques for Combinatorial Problem€. R. Reeves, Ed. Halsted Press, 1993,
pp. 70-150.

[59] GLOVER, F., AND LAGUNA, M. General purpose heuristics for integer
programming—part IJournal of Heuristics 24 (1997), 343—-358.

[60] GLOVER, F., AND LAGUNA, M. General purpose heuristics for integer
programming—part IlJournal of Heuristics 32 (1997), 161-179.

[61] GLOVER, F.,AND LAGUNA, M. Tabu SearchKluwer Academic Publish-
ers, 1997.

[62] GOLDBERG, D. E. Genetic Algorithms in Search, Optimization and Ma-
chine Learning Addison-Wesley, 1989.

[63] GoMES, C., SELMAN, B., AND KAuTZ, H. Boosting combinatorial
search through randomization. Rroceedings Fifteenth National Confer-
ence on Artificial Intelligence (AAAI-98)1998).

[64] Gu, J. Efficient local search for very large-scale satisfigibiiiroblems.
SIGART Bulletin 31 (1992), 8-12.

[65] HALMOS, P. R. How to write mathematicE’Enseignement Ma#éimatique
16 (1970), 123-152.

[66] HAMMER, P., AND RUDEANU, S. Boolean Methods in Operations Re-
search and Related AreaSpringer, 1968.

[67] HANSEN, P.,AND JAUMARD, B. Algorithms for the maximum satisfiabil-
ity problem. Computing 441990), 279-303.

[68] HAO, J.-K., AND DORNE, R. Empirical studies of heuristic local search
for constraint solving. IrProceedings of the Second International Con-
ference on Principles and Practice of Constraint Programgni CP-96
(1996), pp. 194-208.

[69] HENz, M. Scheduling a major college basketball conference—sitad.
Draft. Submitted(1998).

[70] HENZ, M., SMOLKA, G.,AND WURTZ, J. Oz—a programming language
for multi-agent systems. Ih3th International Joint Conference on Atrtifi-
cial Intelligence(Chambéry, France, 30 August—-3 September 1993), R. Ba-
jesy, Ed., vol. 1, Morgan Kaufmann Publishers, pp. 404—-409.

BIBLIOGRAPHY 128

[71] HiINDI, K. Solving a CLSP by a tabu search heuristidournal of the
Operational Research Society 417996), 151-161.

[72] HocHBAUM, D. S., Ed.Approximation Algorithms for NP-hard Problems
PWS Publishing Company, 1995.

[73] HoLLAND, J. Adaptation in Natural and Artificial Systemeniversity of
Michigan Press, Ann Arbor, 1975.

[74] HOOKER, J. Needed: An empirical science of algorithm@perations
Research 421994), 201-212.

[75] HOOKER, J.,AND OsORIO, M. Mixed logical/linear programmingDis-
crete Applied Mathematiqd997). To appear.

[76] Hoos, H. H. Solving hard combinatorial problems with GSAT — a case
study. InProceedings of the 20th annual german conference on adifici
intelligence (KI1-96)X1996).

[77] HOPFIELD, J.,AND TANK, D. ‘Neural’ computation of decisions in opti-
mization problemsBiological Cybernetics 521985), 141-152.

[78] ILOG. ILOG SOLVER 3.2, User Manualhttp://www.ilog.com, 1996.

[79] ILoG, CPLEX DIVISION. Using the CPLEX Callable Library and Base
System, Version 5.0997.

[80] JAFFAR, J.,AND LASSEZ J.-L. Constraint logic programming. Frin-
ciples of Programming Languagés987), pp. 111-119.

[81] JAFFAR, J.,AND MAHER, M. Constraint logic programming—a survey.
Journal of Logic Programming 19/2(1994), 503-582.

[82] JaIN, R. The Art of computer Systems Performance Analykiin Wiley
and Sons, 1991.

[83] JAMPEL, M. B., FREUDER, E.,AND MAHER, M., Eds.Over-Constrained
Systemgsvol. 1106 ofLNCS Springer, 1996.

[84] JANG, Y., KAUTZ, H., AND SELMAN, B. Solving problems with hard
and soft constraints using a stochastic algorithm for MAXFS In Pro-
ceedings of the First International Joint Workshop on Acigfi Intelligence
and Operations Resear¢h995).

BIBLIOGRAPHY 129

[85] JoHNSON, D. S. Atheoretician’s guide to the experimental analy$el-o
gorithmshttp://www.research.att.com/~dsj/papers/. Preliminary
draft.

[86] JoHNSON, D. S. A catalog of complecity classes. Handbook of The-
oretical Computer Science, Vol, A. Van Leeuwen, Ed. Elsevier, 1990,
pp. 67-161.

[87] JoHNsON, D. S. Experimental analysis of algorithms: The good, the ba
and the ugly. Invited talk at AAAI-96., 1996.

[88] JoHNSON, D. S.,AND MCGEOCH, L. A. The travelling salesman prob-
lem: A case study. Ihocal Search in Combinatorial OptimizatipB. Aarts
and J. K. Lenstra, Eds. Wiley, 1997, pp. 215-310.

[89] JoHNSON, D. S.,AND TRICK, M. A., Eds.Cliques, coloring, and satisfi-
ability: 2nd DIMACS implementation challenge: DIMACS wairkp 1993
(Providence, RI, 1996), vol. 26 &IMACS series in discrete mathematics
and theoretical computer scieno&merican Mathematical Society.

[90] KAMATH, A., KARMARKAR, N., RAMAKRISHNAN, K., AND RESENDE,
M. An interior point approach to Boolean vector function thesis. In
36th MSCA{1993), pp. 185-189.

[91] KARMARKAR, N. A new polynomial time algorithm for linear program-
ming. Combinatorica 41984), 375-395.

[92] KAuTZ, H., AND SELMAN, B. Pushing the envelope: Planning, propo-
sitional logic, and stochastic search. MRroceedings AAAI-9§1996),
pp. 1194-1201.

[93] KAUTZ, H., AND SELMAN, B. The role of domain-specific knowledge in
the planning as satisfiability framework. Broceedings AAAI-981998).

[94] KIRCA, O., AND KOKTEN, M. A new heuristic approach for the multi-
item dynamic lot sizing problemEuropean Journal of Operational Re-
search 751994), 332-341.

[95] KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. Optimization
by simulated annealingScience, Number 4598, 13 May 1983 220, 4598
(1983), 671-680.

[96] KOECHER M. Lineare Algebra und Analytische Geometri&pringer-
Verlag, 1983.

BIBLIOGRAPHY 130

[97] KUMAR, V. Algorithms for constraint-satisfaction problems: Agey. Al
Magazin 13(1990), 32—-44.

[98] LEE, J. H.,FUNG LEUNG, H., AND WING WON, H. Extending e-genet for
non-binary csps. IfProceedings of the seventh International Conference
on Tools with Atrtificial Intelligenc€1995), pp. 338-343.

[99] LEE, J. H., FUNG LEUNG, H., AND WING WON, H. Towards a more
efficient stochastic constraint solver.Pnoceedings of the Second Interna-
tional Conference on Principles and Practice of Constr&nigramming,
CP-96(1996).

[100] LI, W., Bal, S., GQJ, J., SLMAN, B., CRAWFORD, J., AND WANG,
D. international competition and symposium on satisfigbitesting.
http://www.cirl.uoregon.edu/jc/beijing, March 1996.

[101] LIN, S. Computer solutions of the traveling salesman probksH.System
Technical Journal 441965), 2245-2269.

[102] L@KKETANGEN, A., AND GLOVER, F. Tabu search for zero-one mixed in-
teger programming with advanced level strategies andilegrintl. Jour-
nal of Operations and Quantitative Managemen211995), 89-108.

[103] LOKKETANGEN, A., JORNSTEN K., AND STOR@Y, S. Tabu search
within a pivot and complement frameworknt. Transactions on Opera-
tions Research,13 (1994), 305-316.

[104] MATHIAS, E., AND WHITLEY, L. Transforming the search space with
gray coding. InIEEE Conference on Evolutionary Computatii994),
vol. 1, pp. 513-518.

[105] MCALLESTER, D., SELMAN, B., AND KAuTZ, H. Evidence for invari-
ants in local search. IRroceedings Fourteenth National Conference on
Artificial Intelligence (AAAI-97)1997).

[106] MICHEL, L., AND HENTENRYCK, P. V. Localizer, a modeling language
for local search. InProceedings of the Third International Conference
on Principles and Practice of Constraint Programming, CP-a4997),
Springer LNCS.

[107] MINTON, S., DHNSTON, M. D., PHILIPS, A. B., AND LAIRD, P. Solv-
ing large-scale constraint satisfaction and scheduliraplpms using a
heuristic repair method. IRroceedings Eighth National Conference on
Artificial Intelligence (AAAI-90)1990), pp. 17-24.

BIBLIOGRAPHY 131

[108] MINTON, S., DHNSTON, M. D., PHILIPS, A. B., AND LAIRD, P. Min-
imizing conflicts: a heuristic repair method for constraatisfaction and
scheduling problemdArtificial Intelligence 581992), 161-205.

[109] MITCHELL, D., SELMAN, B., AND LEVESQUE H. Hard and easy distri-
butions of SAT problems. IRroceedings AAAI-921992), pp. 459-465.

[110] MoORRIS, P. The breakout method for escaping from local minim& o
ceedings Eleventh National Conference on Artificial Ingethce (AAAI-93)
(1993).

[111] MOTWANI, R., AND RAGHAVAN, P. Randomized Algorithm&ambridge
University Press, 1995.

[112] MUHLENBEIN, H. Genetic algorithms. Ihocal Search in Combinatorial
Optimization E. Aarts and J. K. Lenstra, Eds. Wiley, 1997, pp. 137-172.

[113] NEMHAUSER, G., AND WOLSEY, L. Integer and Combinatorial Op-
timization Series in Discrete Mathematics and Optimization. Wiley-
Intersience, 1988.

[114] NEMHAUSER, G. L., AND TRICK, M. A. Scheduling a major college
basketball conference. Proceedings of the 2nd International Conference
on the Practice And Theory of Automated Timetab(t@Q7).

[115] NONOBE, K., AND IBARAKI, T. A tabu search approach to the constraint
satisfaction problem as a general problem solvEuropean Journal of
Operational Research 10&-3 (April 1998).

[116] PaPADIMITRIOU, C. H., AND STEIGLITZ, K. Combinatorial Optimiza-
tion: Algorithms and ComplexityPrentice-Hall, New York, 1982.

[117] PARKES, A., AND WALSER, J. Tuning local search for satisfiability test-
ing. In Proceedings AAAI-961996), pp. 356—-362.

[118] PETERSON C., AND B.SODERBERG A new method for mapping opti-
mization problems onto neural networkisiternational Journal of Neural
Systems {1989), 3-22.

[119] PUGET, J. A C++ implementation of CLP. IRroceedings Second Singa-
pore International Conference on Intelligent Systét®94). Singapore.

[120] PUGET, J.-F. A fast algorithm for the bound consistency of alldifin-
straints. InProceedings Fifteenth National Conference on Artificiaélh-
gence (AAAI-981998), pp. 359-366.

BIBLIOGRAPHY 132

[121] RAGHAVAN, P.,AND THOMPSON C. Randomized roundingCombintor-
ica 7(1987), 365-374.

[122] RAYWARD-SMITH, V., OSMAN, |., AND REeVES, C., Eds. Modern
Heuristic Search Methoddiley, 1996.

[123] ReEeVES C. R. Evaluation of heuristic performance.Nodern Heuristic
Techniques for Combinatorial Problents. R. Reeves, Ed. Halsted Press,
1993, ch. 3, pp. 304-315.

[124] ReEeVES, C. R. Genetic algorithms. INlodern Heuristic Techniques for
Combinatorial ProblemsC. R. Reeves, Ed. Halsted Press, 1993, ch. 3,
pp. 304-315.

[125] REEVES, C. R., Ed. Modern Heuristic Techniques for Combinatorial
Problems Halsted Press, 1993.

[126] REGIN, J.-C. A filtering algorithm for constraints of differengedsps. In
Proceedings Twelfth National Conference on Atrtificial ligence (AAAI-
94) (1994), pp. 362—-367.

[127] RESENDE M., AND FEO, T. A GRASP for satisfiability. InThe Second
DIMACS Implementation Chelleng®. Trick, Ed., DIMACS Series on
Discrete Mathematics and Theoretical Computer Scienc®5.19

[128] SARASWAT, V., AND RINARD, M. Concurrent constraint programming.
In Proceedings of the 7th Annual ACM Symposium on Principlézof
gramming LanguageSSan Francisco, CA, January 1990), pp. 232-245.

[129] ScHREUDER J. Combinatorial apsects of construction of competition
dutch professional footbal leageusDiscrete applied mathematics 35
(1992), 301-312.

[130] ScHULTE, C. Programming constraint inference enginesPloceedings
of the Third International Conference on Principles and &tee of Con-
straint Programming Schlo3 Hagenberg, Austria, Oct. 1997), G. Smolka,
Ed., vol. 1330 ofLecture Notes in Computer Sciencepringer-Verlag,
pp. 519-533.

[131] SELMAN, B., AND KAUTZ, H. Domain-independent extensions to GSAT:
Solving large structured satisfiability problemsRroceedings of IJCAI-93
(1993).

[132] SELMAN, B., AND KAUTZ, H. An empirical study of greedy local search
for satisfiability testing. IfProceedings of IJCAI-981993).

BIBLIOGRAPHY 133

[133] SELMAN, B., KAuTZ, H., AND COHEN, B. Noise strategies for improving
local search. IfProceedings AAAI-941994), pp. 337-343.

[134] SELMAN, B., LEVESQUE H., AND MITCHELL, D. A new method
for solving hard satisfiability problems. IAroceedings AAAI-921992),
pp. 440-446.

[135] SMITH, B., BRAILSFORD, S., HUBBARD, P., AND WILLIAMS, H. The
progressive party problem: Integer linear programming@ortstraint pro-
gramming comparedConstraints 1(1996), 119-138.

[136] SvoLKA, G. The Oz programming model. @omputer Science Today
Lecture Notes in Computer Science, vol. 1000. SpringelagerBerlin,
1995, pp. 324-343.

[137] SMOLKA, G., SHULTE, C., AND WURTZ, J. Finite Domain Con-
straint Programming in Oz, A TutorialProgramming Systems Lab, Ger-
man Research Center for Artificial Intelligence, Stuhlsatmusweg 3, D-
66123 Saarbricken, Germany, 1998. DFKI Oz 2.0 Documemt&eries,
http://www.ps.uni-sb.de/oz/.

[138] THORNTON, J.,AND SATTAR, A. Using arc weights to improve iterative
repair. InProceedings Fifteenth National Conference on Artificiaklh-
gence (AAAI-98§1998).

[139] TrRICK, M. Modifications to the problem description of “schedulamga-
jor college basketball conference”. http://mat.gsia.@du/acanod.html,
Mai 1998.

[140] TsANG, E. Foundations of Constraint SatisfactioAcademic Press, Lon-
don, 1993.

[141] TscHicHOLD, J. Ausgevithlte Auféitze lber Fragen der Gestalt des
Buches und der TypographiBirkhauser, 1975.

[142] vaN HENTENRYCK, P., AND DEVILLE, U. Operational semantics of
constraint logic programming over finite domains. Rrogramming lan-
guage implementation and logic programming, PLILP{@991), vol. 528
of Springer, LNCS

[143] WALLACE, M. Practical applications of constraint programmingon-
straints 1(1996), 139-168.

[144] WALLACE, R. J.,AND FREUDER E. C. Heuristic methods for over-
constrained constraint satisfaction problemsinl{83]. Springer, 1996.

BIBLIOGRAPHY 134

[145] WALSER, J. Retrospective analysis: Refinements of local searcdfiis-
fiability testing. Master’s thesis, University of Orego®95b.

[146] WALSER, J. Solving linear pseudo-boolean constraint problemis loital
search. IfProceedings AAAI-9T71997).

[147] WALSER, J., IYER, R., AND VENKATASUBRAMANYAN, N. An integer
local search method with application to capacitated prodnglanning.
In Proceedings AAAI-981998).

[148] WiLLIAMS, C.,AND HOGG, T. Exploiting the deep structure of constraint
problems Artificial Intelligence 70(1994), 73-117.

[149] WINSTON, W. L. Operations Research — Applications and Algorithms
Duxbury Press, 1994.

[150] WURTZ, J. Losen kombinatorischer Probleme mit Constraintprogram-
mierung in Oz PhD thesis, Universitat des Saarlandes, Fachbereich In-
formatik, Saarbriicken, Germany, Jan. 1998.

[151] YANAKAKIS, M. On the approximation of maximum satisfiabiliti2ro-
ceedings of the 3rd ACM-SIAM Symposium on Discrete Algos({h992),
1-9.

[152] ZweBEN, M. A framework for iterative improvement search algorithm
suited for constraint satisfaction problems. Tech. Rep\-&0-05-03-1,
NASA Ames Research Center, Al Research Branch, 1990.

List of Tables

3.1
3.2

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4

Parameters of WAT(0IP) with Standard Ranges.
Optimal Solutions for Configuration Subtask

Boat Specifications for the Progressive Party Problem
Experimental Results for the Progressive Party Problem . . .
Game Quality (Weekday/Weekend) for the ACC Problem
Experimental Results for ACC Problem

Experimental Results for Radar Surveillance Problems.
Performance Drop When Dropping Constraint-bounds
Parameters for the Course Assignment Problem
Course Assignment, Experimental Results

Parameters for the CLSP with Discrete Lot-sizes.

Sets and Decision Variables for the CLSP MILP Model.
Computational Results forthe CLSP
Solutions Based on a Fixed-capacity Labor Profile

135

... 37

40

89

.91

93

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.7
3.7

5.1
5.2
5.3

6.1

7.1
7.2

A Generic Local Search Procedure for SAT
The Walksat Variable Selection Strategy

Piecewise-linear Penalty Functions
Local Search and Walksat's Two-stage Control Strategy . . .
Manhattan Distanceto a Constraint
Main Loop of WBAT(OIP) o i
Move Selection Strategy of 8&T(0IP)
Graphical Interpretation of problem (3.12)
Search Trajectories of Different8%T(0IP) Strategies
(cont) Search Trajectories

(cont) Search Trajectories

Schreuder-timetable for R1-R10, O1-03, frorsAM0IP)

Minimal Distortion Mirroring
A Minimal Distortion Timetable From WaT(oiP)

Radar Map with Hexagonal Cells

Solutions for Various Labor Profiles
Performance Comparison on the Restricted Model

136

Index

Symbols

0-1 integer constraints........... 27

A
abstract local search 10
ACC Basketball 97/98 66
alternative scoring............. 108
annealing schedule 19
approximate method 4
Artificial Neural Networks. 19
aspiration...................... 37
aspiration criteria................ 8

B
benchmarkset.................. 57
Boolean 5
branch-and-bound 13
branching...................... 16
breakcount..................... 21

C
capacitated lot-sizing 97
capacitated production planning. .96
CISC localsearch 20
clause il 5
CLSP ... 97
CLSP lowerbounds 105
CNF. .. 5
combinatorial problem.......... 17
computationspace.............. 16
concurrentCP.................. 15
confinedness property........... 29
conjunctive normal form 5
consistency 23,24

constraint programming 15
constraint satisfaction problems. . 15
constraintstore................. 15
constraint-bound 32
constructive heuristics........... 17
costfunction................... 17
course assignment problem....... 90
(07017 3
CP o 15
criticalpath 20
CSPS..... 15
D
decisionproblem................ 5
diversification.................. 19
Double Round Robin 67
DRR ... 67
E
empirical comparisons 58
enumeration strategy............ 16
Euclidean distance............. 109
Euclideanscore 110
exactmethod.................... 4
F
feasible solution 2,6,29
finite domainCP 15
firstleg.............ooo it 68
flexibility................... 55, 57
flip. . 20
G
game mirroring.o..v.... 67
GAP...................... 94, 110

INDEX

Generalized Assignment Problem 94

generic SAT local search........ 20
Genetic Algorithms.............. 19
GSAT ... 20
H
hamming distance 41
Hessian normal form........... 109
heuristic..................... 4, 17
hexagonalcells................. 83
hill-climbing................... 33
hillcimbing..................... 4
history-based tie breaking 36
I
i2 Technologies 102
ILP. 2
ILPproblem.................... 2
instance. ..., 2
integer linear programming 2
integer local search........... 5,23
integer programming heuristics . . 49
integrality...................... 23
integralitygap.................. 39
intensification.................. 19
IP branch-and-bound............ 13
isocostline..................... 44
iterative improvement 17,18
iterativerepair 4,27
L
labor profile.................... 98
Lagrangean relaxation 101
leashed local search............. 41
linear programming 2,13
linear pseudo-Boolean constraints 26
linear relaxation................ 13
literalo o 5
local consistency 24
local gradient.................... 4
localmoves..................... 4

local neighborhood 17

localoptima.................... 18
localsearch.................. 4,17
locally optimal 18
LP . 13
LPrelaxation................... 13
M
machine learning.............. 111
Manhattan distance 35
MAXSAT ...l 22
meta-heuristics 18,111
MILP .. 13
min-conflicts heuristic 52
min-normal form............... 28
minimal distortion mirroring. 79
mixed-integer programming 13
model.......................... 3
modeling languages............. 22
N
neighborhood function........... 18
NOISE . ..o vt 18
normalvector................. 109
O
objective function................ 2
OIP ... 28
over-constrained integer program, 28
over-coverage 84
Oz .. 15
P
partial MAXSAT 22
patternsets..................... 75
patterns............. ... o 74
perfectly mirrored 67
piecewise-linear convex......... 31
pigeonhole problem............. 26
pivot&complement heuristic. 49
probleminstance 2
probleminstances.............. 17
production planning 96

INDEX
Progressive Party Problem....... 61
propagators.................... 15
propositional satisfiability problem 5
pseudo-Boolean local search. 33
R
radar surveillance covering 83
random 3-SAT 22
reducedcosts................... 42
redundant constraints 74
residual robustness 55, 57
returnmatch 68
RISC localsearch 20
robustness 55
S
SAT . 5
satisfiedclause 5
scalar product................. 109
scaling ...t 55
(Y 070] (< 33, 34
SCP . 3
search relaxations 23
sensitivity analysis.............. 42
Set-Covering Problem............ 3
Simulated Annealing............ 18
soft constraint violation 29
sports scheduling............... 66
standard parameters............. 59
stochastic local search........... 36
systematic method 4
T
Tabu Search.................... 19
temperature 50
tightrelaxation................. 14
timetables...................... 75
total assignment................ 33
totality 23,24
traveling salesman problem...... 19
treesearch.................. 14, 16

triggering...............oo..... 34

two-stage control strategy 33
\%

variableflip.................. 6, 34
wW

Walksat 5,20

Walksat-Principle............... 33

weighted MAXSAT 22

WSATOIP)cooiieeea 7,25

WSAT(OIP) parameters......... 37
Y

yachtingrally 61

