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Abstract

DML is an experimental language that has emerged from the developement of the
Oz dialect Alice. DML is dynamically typed, functional, and concurrent. It supports
transients and provides a distributed programming model.

Subject of this work is the implementation of a compiler backend that translates DML
programs to Java Virtual Machine code. Code-optimizing techniques and possibilities
for the treatment of tail calls are described.

Finally, the implemented compiler and the runtime environment of DML are com-
pared to similar projects.
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Chapter 1

Introduction

The subject of this work is the implementation of DML, an experimental, functional, concurrent,
distributed, dynamically typed language with support for transients and first class threads. In
the following we present a compiler backend and a runtime environment for translating DML
programs to Java Virtual Machine code.

The goal of our work is a simple and secure implementation of DML for the JVM. We want
further to investigate the question of efficiency. We try to estimate the influence of dynamic typing
on the speed of the implementation by comparing our results with related projects. We elaborate
what support the JVM gives us for our implementation and what features we are missing.

The compiler is written in Standard ML; the implementation follows general well-known com-
piler construction techniques as described, e.g., in [ASU86, WM92]. The runtime environment
consists of Java classes that provide the basic functionality for the execution of DML programs on
the Java Virtual Machine; parts of the Standard ML basis library are implemented directly in Java
to improve efficiency.

This chapter gives an overview about the various programming languages relevant for this
work. We describe the key features of Standard ML, Oz, and Java. Further, an overview of the
important features of DML is given.

1.1 Standard ML

Standard ML is a functional language commonly used in teaching and research. ML is type safe,
i.e.,, a program accepted by the compiler cannot go wrong at runtime because of type errors.
The compile-time type checks result in faster execution and can help in the development process
to avoid common mistakes. The type inference system of ML makes programs easier to write
because the compiler tries to derive the type of expressions from the context.

SML supports polymorphism for functions and data types. Data-type polymorphism allows
to describe lists of ints, lists of strings, lists of lists of reals, etc. with a single type declaration.
Function polymorphism avoids needless duplication of code by permitting a single function dec-
laration to work on polymorphic types. SML functions are higher order values; functions are
dynamically created closures that encapsulate the environment in which they are defined. Func-
tions can be returned as results of functions, they can be stored in data structures and passed to
functions as arguments. Function calls in SML are call-by-value, i.e., the arguments of a function
are evaluated before the body of the function is evaluated.

In SML, most variables and data structures are immutable, i.e., once created they can never be
changed or updated. This leads to guarantees on data structures when different parts of a pro-
gram operate on common data. Such unchangable data fits well into a functional context, where
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one tends to create new structures instead of modifying old ones. The automatic garbage collec-
tion of SML supports the functional style of programs and makes code simpler, cleaner, and more
reliable. However, SML also has updatable reference types to support imperative programming.

SML comes with an exception-handling mechanism that provides dynamic nesting of handlers
and provides — similar to other languages like C++, Java, Ada, etc. — the possibility to separate
error handling from the rest of the code. The Standard ML language supports modules (called
structures) and interfaces (called signatures). The signatures of modules specify the components
and types from the module that are visible from outside.

The language and its module system are defined formally in [MTHM97]. A consequence of
having the language definition in a formal notation is that one can prove important properties of
the language, such as deterministic evaluation or soundness of type checking. There are several
efficient implementations of Standard ML available: Moscow ML, SML/N]J, and others. Moscow
ML is a light weight implementation; SML/N] has more developer tools such as a compilation
manager and provides a concurrent extension CML.

1.2 Oz

Since 1991 the programming language Oz has been developed at the Programming Systems Lab
under the direction of Gert Smolka. Oz combines concepts of logic, functional, and object oriented
programming. It features concurrent programming and logical constraint-based inference. The
first implementation of Oz was officially released in 1995 as DFKI Oz 1.0 [Oz95]. Two years later
the release of Oz 2.0 [0z97] was completed. In January 1999, the successor of Oz 2.0, Mozart, was
announced to the public. The current development of Mozart is a collaboration with the Swedish
Institute of Computer Science (SICS) and the Université catholique de Louvain in Belgium.

The Mozart system [Mo0z99] provides distributed computing over a transparent network. The
computation is extended across multiple sites and automatically supported by efficient protocols.
Mozart further provides automatic local and distributed garbage collection.

Many features of Oz are inherited by DML and thus are explained in detail in the correspond-
ing section. Among the features not shared with DML are constraints, encapsulated search, and
objects.

Similar to Java, Oz is compiled to byte code that can be run on several platforms. Unlike
Java, Mozart provides true network transparency without the need of changing the distribution
structure of applications. Further, Oz is a data-flow language, i.e., computations are driven by
availability of data. Finally, Mozart provides low-cost threads. Thus, it is possible to create thou-
sands of threads within a process.

1.3 DML

The Amadeus project now develops a dialect of Oz, Alice, with its implementation called Stock-
hausen. DML is an experimental language that has emerged from the development process of
Alice. The roots of DML are described in [MSS98, Smo098a, Smo98b].

DML stands for ‘Dynamic ML’; the syntax is derived from Standard ML. Like Oz, DML is
dynamically typed. Further, DML supports transients and concurrency with first class threads.

The transient model of DML is a mixture of Mozart’s transient model and the Alice model. In
DML, there are three different kinds of transients: logic variables, futures and by-need futures. In our
context, logic variables are single assignment variables and futures are read-only views of logic
variables. A by-need future is a future that has a reference to a nullary function. The function’s
application is delayed until the value of the by-need future is requested and then the by-need
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future is replaced by the function’s return value. All transients become transparent after they
have been bound.

Transients can be obtained by the operations
I var Sounit ->
future : "a ->"a
byNeed : ( unit ->'a ) ->"a

a

The operation
bind: ("a* 'a) ->"a
assigns a value to a logic variable. The operation

future : "a ->"a
returns a future if the argument is a logic variable or otherwise it returns the argument as is.

Requesting transients is always implicit.

Threads can be created by
spawn : (unit ->"a) -> unit
and can be synchronized by using transients. DML allows recursive values, e.g.,

1:: X

(x,y,2)

{a=y, b=z}

ref baz

ref foo

#[ f 0o, baz, vec]

val rec X
and y
and
and
and
and vec

N

U —
Qv O
N O
I

is valid in DML. Similar to Oz, exceptions and exception handling are more liberal than in SML:
17 + ((raise 5) handle _ => 2)

evaluates to 19.

DML has a component system that is implemented by pickling. The component system is illus-
trated in Section 2.3.1; pickling is explained in detail in Chapter 6. Also a high level distributed
programming model adopted from Mozart is implemented (cf. Chapter 7) that makes the network
completely transparent.

Like Java and Oz, DML is platform-independent. A DML pickle can be used on any Java
capable platform.

1.4 Java

Java was originally called ‘Oak” and has been developed by James Gosling et al. of Sun Microsys-
tems. Oak was designed for embedded consumer-electronic systems. After some years of expe-
rience with Oak, the language was retargeted for the Internet and renamed to ‘Java’. The Java
programming system was officially released in 1995. The design principles of Java are defined in
the Sun white papers [GM96].
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Java is a general-purpose, concurrent, class-based, object-oriented language. It is related to C
and C++, but has a different organization. A number of aspects of C and C++ are omitted and
some ideas from other languages are adopted. Java is meant to be a production language, so new
and untested features are excluded from the design.

Java is strongly typed and it is specified what errors may occur at runtime and what errors
must be detected at compile time. Java programs are compiled into a machine-independent byte-
code representation ( write once, run everywhere). However, the details of the machine represen-
tation are not available through the language. Java includes automatic storage management to
avoid the unsafeties of explicit memory deallocation. Java has distributed programming facilities
and supports networking with the special aspect of Internet programming. A security model for
execution of untrusted code [Gon98] is supplied.

The Java programming system consists of the object oriented programming language, the class
libraries of the Java API, a compiler for the language, and the Java Virtual Machine. The Java
language is defined in [G]JS96]; the Java Virtual Machine is specified in [LY97]. The program-
mer’s interface is documented in [GYT96a, GYT96b]. Java also comes with a documentation tool
(j avadoc), and a generated documentation of the API classes is available in HTML. The Java
platform provides a robust and secure basis for object oriented and multi-threaded distributed
programming.

Since 1995, Java has spread widely and the language has changed its former target architecture
from embedded systems to other subjects. People implement applications in Java that are not
restricted to run on a limited hardware (e.g., hand-held devices), but run as user interfaces for
business applications. Java is also used for scientific computing, cf. [Phi98, PJK98].

One of the less common kind of project in Java is to implement other programming languages
for the Java Virtual Machine (see [Tol99]): There are a lot of implementations for various Lisp
dialects available; BASIC variants have been ported; there are Java variants of logic programming
languages; other object oriented languages (Ada, COBOL, SmallTalk) can be translated to Java or
JVM byte code. There are some efforts to extend Java with generic classes, higher order functions
and pattern matching and transparent distribution [OW97, PZ97].

1.5 Organisation of the Paper

This is how this document is organized:

e Chapter 1 (this chapter) gives an introduction into the programming languages of interest
and a general overview of the work and its goals.

e Chapter 2 states a naive compilation scheme for DML. The features of the Java Virtual Ma-
chine and the DML runtime environment are described. An overview of the intermediate
representation of the Stockhausen compiler and backend independent transformations on
this representation is also given.

e Chapter 3 describes platform-dependent optimizations of the compiler backend.

e Chapter 4 specifies implementation details of the compiler backend and transformations on
the generated JVM instructions.

e Chapter 5 introduces the Java classes that make up the core of the runtime implementation.
First, the basic idea is presented and then we show how this can be improved in terms of
running time and memory usage.

e Chapter 6 explains the idea of pickling, i.e., making a persistent copy of stateless entities. The
implementation in Java is presented and how the current DML system makes use of it.
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e Chapter 7 shows how the DML language can easily be extended for distributed program-
ming issues.

e Chapter 8 summarizes related projects and compares the achievements of others with the
DML system.

e Chapter 9 is about benchmarking issues. The execution speed of DML is compared to others.
We compare implementations of related languages.

e Chapter 10 draws a conclusion, gives a lookout into future dos and don’ts, advantages and
disadvantages of Java/object orientation resp. DML /functional programming.
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Chapter 2

Compilation Scheme

This chapter describes a simple, unoptimized compilation scheme for DML. The first sections
outline the basic knowledge of the JVM, the intermediate representation, and the DML runtime
environment that are needed to understand the compilation scheme.

The DML frontend performs some transformations on the intermediate representation that
are useful for most compiler backends: Pattern matching is represented as test graphs in order to
avoid redundant tests. Function abstractions with tuple or record patterns are annotated accord-
ingly, so the compiler backend can easily generate different methods for such parts of functions.
The intermediate representation is described in Sections 2.3.1-2.3.3, the transformations on this
representation can be found in Sections 2.3.4-2.3.6.

The remaining sections describe the compilation scheme properly. Similar to [OW97], a new
class is created for each abstraction and closures are represented by instances of their class. The
free variables of a function are stored in fields of the corresponding class. Functions have a virtual
appl y method that is invoked on function applications. Applications of primitive operations are
mostly inlined or invoked by calls to static methods. This is possible because primitive operations
usually have no free variables.

Record arities are statically known. They are computed at compilation time and stored in
static fields. When records are used in pattern matching, pointer comparison on the arity suffices
to decide whether a pattern matches or not. Pattern matching is also the only place where the
compiler backend has to explicitly check for the presence of transients. Exception handling is
mapped to the exception handling of Java.

2.1 The Java Virtual Machine

To understand the code generation of a compiler it is necessary to know the target platform.
Our target platform is the Java Virtual Machine, JVM, which is described in detail in [LY97]. We
decided to compile to JVM rather than Java for the following reasons:

e This enables us to store the line numbers of the DML source code into the generated class
files.

e Machine code is easier to generate than Java programs.

e Shared code can be compiled more easily. There is a got 0 instruction in JVM code, but not
in Java.

e After bootstrapping, a DML interpreter could be easily implemented using an ‘eval” func-
tion that dynamically creates classes.
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e No files need to be written, so the compiler could be run as an applet after bootstrapping.

e DML programmers don’t need the Java development tools. Java runtime environment is
enough.

However, there are also some disadvantages of generating byte code directly:

e The javac compiler performs peephole-optimizations and liveness analysis which we have
to do manually now.

e Many programmers know the Java language, but few know the JVM instructions. Java
programs would probably be easier to read for most programmers who want to understand
how their DML programs are compiled.

This section is intended to give an overview about the concepts and specific features of the
JVM, assuming basic knowledge of Java.

2.1.1 The Machine

The JVM is a stack machine with registers. There are two important stacks: The operand stack on
which all operations compute and the call stack which stores all registers of the current method
when another method is invoked. Because the JVM was developed as target platform for Java,
the machine is object-oriented and supports multi-threading. The JVM is able to load and execute
class files, which represent compiled Java class definitions. When a class file is loaded, the byte
code verifier checks whether the code satisfies some security properties to ensure a well-defined
execution. For example, registers (in Java terms ‘local variables” of a method) must be initialized
before they can be used.

Java and the JVM are quite similar. Most Java constructs can be expressed in a few JVM instruc-
tions. Nevertheless, there are some marginal differences that might confuse Java programmers.
In Java it is possible to omit the package name when accessing a class of the current package or
of an imported one. JVM expects all package names to be explicitly stored in the class file. As
package separator slash ('/ ’) is used instead of the Java package separator dot (‘. ’). Constructors
are no longer implicitly created. Java implicitly initializes unused (local) variables to a default
value (0, 0.0 or nul I, depending on the type), JVM does not. Within non-static methods, register
0 always contains a ‘t hi s’ pointer to the current object. The n parameters of a method are passed
in registers 1 to n (or 0 to n — 1 for static methods). All other registers have no special meaning.

2.1.2 Class Files

Each compiled Java class or interface definition is stored in a class file that contains both defini-
tions of methods and fields and the JVM code of the (non-abstract) methods. For every method,
there is an exception handle table with the code ranges where exceptions should be handled, the
class of exceptions to handle and the code position of the handler routine. A method may further
have a line number table where source code line numbers are stored for debugging reasons. Each
class file has a constant pool where JVM constants such as strings, integers and float values are
stored as well as method names, field names and type descriptors.

With the description in [LY97], it is possible to directly generate class files. We decided to let
Jasmin, a Java byte code assembler that is documented in [Mey97], do this. Jasmin performs no
optimizations on the generated code, but it compiles (easy-to-read) ASCII code into Java class files
and manages the exception table, line number table and the constant pool for us. There are other
Java assemblers such as the KSM of the KOPI project that can be obtained from [GT99]. KSM
performs some dead code analysis and branch optimization which we also do. It would have
been easier to use the KSM instead of Jasmin for generating class files, but the first alpha version
was released in May 1999, so it wasn’t available when we started our project.
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2.2 Typography for the Compilation Scheme

In this chapter, we use the following typography and abbreviation conventions:

Description Example Comment

JVM instructions i nvokespeci al

DML source code val x=5

Class names Functi on Class names are expanded to de/ uni -

sb/ ps/dm /runti me/ Functi on if no
package name is explicitly stated. To dis-
tinguish between classes and interfaces in
this chapter, interfaces always start with a
capital | like | Val ue.

Method names

apply or <init>

Field names

val s

Abbreviations  for
methods or field
names of the DML
runtime  environ-
ment

<MGetBuiltin>

<MGetBuiltin> refers to the method
Builtin/getBuiltin.

Signatures of Java
methods

(int)—lVal ue

The example refers to a method that takes
a (JVM) integer as parameter and returns
an | Val ue.

Labels retry We use labels to make it easier to read this
compilation scheme. In class files, the la-
bels are removed and branches to labels
are replaced by relative jumps (e.g., got 0)
or absolute addresses (e.g., in the excep-
tion handle table).

Variables stamp

Functions of the | expCode The example translates expressions from

compiler backend the intermediate language to JVM code.

Constructors of the | ConExp.

intermediate repre-

sentation

Definitions constructed value

2.3 Intermediate Language

This section describes the intermediate representation which we use.

2.3.1 Components and Pickles

The DML compiler backend as described in this chapter translates DML components, our units of
separate compilation, into pickle files. Pickles are persistent higher-order values. Generally speak-
ing, components are lists of statements, usually declarations. We distinguish between the com-
ponent body and function definitions. The component body contains all statements of a program
not contained in a function or functor definition. We don’t specially treat functors here because
functors are just functions that return a new structure. The frontend transforms structures into
records and functors into functions. Each function definition creates a new class. Function clo-
sures are instances of this class. Those function classes have an appl y method which is called
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whenever this function is applied. The free variables of a function are stored in corresponding
fields of the object.

The pickle file of a DML component contains the definitions of all exported functions and the
evaluated component body. This corresponds to evaluated components in Alice. The saving and
loading of pickle files is described in Chapter 6. If a component has a top level mai n function, the
generated pickle can be executed via the dm command.

2.3.2 Statements

Any DML program consists of a list of statements, most of which are declarations. The interme-
diate grammar declares the following statement constructors:

dat atype stm =
Val Dec of stanp * exp
| RecDec of (stanp * exp) list
| Eval Stm of exp
| RaiseStm of stanp
(* the follow ng nust always be | ast *)
| Handl eStmof stmlist * stanmp * stmlist * stmlist * shared
| EndHandl eSt m of shared
| TestStmof stanp * test * stmlist * stmlist
| SharedStm of stmlist * shared
| ReturnStm of exp
| I'ndirectStmof stmlist option ref
| ExportStm of exp

The intermediate representation has a node Val Dec for each non-recursive declaration. It is
possible that multiple Val Decs for the same stamp occur in the graph but for a given path, each
referred stamp is declared exactly once. Mutually recursive declarations are pooled in a RecDec
node. It is necessary to distinguish between recursive and non-recursive declarations as we will
see in Section 2.7.2. A special case of Val Dec is Eval St mwhen the result can be discarded.

Rai seSt m Handl eSt mand EndHandl eSt mnodes are used to represent exception raising
and exception handling in DML. The declaration lists of the Rai seSt mrepresent:

e The catch body within which exceptions should be handled — if an exception is raised, it is
bound to the given stamp,

e the handler routine for exceptions, and

e the continuation that is executed in any case after both the catch body and handler routine
have finished executing. This ‘finish’ is stated explicitly by an EndHandl eSt mwith the
same reference as the Handl eSt m

Function returns are represented explicitly as a Ret ur nSt m which is useful for most backends
that generate code for imperative platforms. The intermediate representation has an Export St m
node which lists the identifiers that are visible in the top level scope. Those are the values that
should be stored in the pickle file. Whenever it is obvious that the same subgraph occurs at
two different positions of the intermediate representation, a Shar edSt mis created instead where
shar ed is a reference that the backend uses for storage of the label where the code is located.
Shar edSt ns are helpful for creating compact code when it comes to the compilation of pattern
matching (see Section 2.3.4) and loops.
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2.3.3 Expressions

The intermediate representation defines the following constructors for expressions.

dat at ype exp =
LitExp of lit
| PrinmExp of string
| NeweExp of string option * hasArgs
| VarExp of stanp
| ConExp of stanp * hasArgs
| RefExp
| TupExp of stanp list
| RecExp of (lab * stanmp) I|ist
(* sorted, all labels distinct, no tuple *)
| Sel Exp of |ab
| VecExp of stanp Ilist
| FunExp of stanp * (stanmp args * stmlist) list
(* all arities distinct; always contains a single OneArg *)
| AppExp of stanp * stanp args
| Sel AppExp of lab * stanp
| ConAppExp of stanp * stanp args
| Ref AppExp of stanp args
| PrimAppExp of string * stanmp |ist
| Adj Exp of stanp * stanp

Literals are represented by a Li t Exp. For each occurance of a primitive value, a Pri mExp
node is created. The creation of a new (constructor) name or constructor is denoted by a NewExp
node. The boolean argument is used to distinguish between constructor names and constructors.
Referring occurances of constructors and names are represented by ConExp. References have
their own constructor Ref Exp. For referring occurances of variables, Var Exp nodes are created.

Tuples are denoted by a TupEXp, records by a RecExp. The record labels are sorted and
distinct. Whenever a record turns out to be a tuple, e.g., for { 1=x, 2=y}, a TupEXp is created
instead. Vectors have their own constructor VecExp. The select function for tuple and record
entries is represented by a constructor Sel Exp.

Functions are represented by a FUNEXp constructor. The st anp is used for identification of
the function. Applications are denoted by an AppEXp constructor. Section 2.3.5 describes the
arguments and their treatment. Primitive functions and values that can be applied, have a spe-
cial application constructor to make it easier for the backends to generate optimized code. These
constructors are ConAppExp for constructed values, Ref AppExp for creating reference cells, Se-
| AppExp for accessing entries of records or tuples and Pri mAppExp for applying builtin func-
tions of the runtime.

2.3.4 Pattern Matching

The compiler frontend supplies a pattern matching compiler that transforms pattern matching
into a test graph. This is useful when testing many patterns because some tests may implicitly
provide the information that a later test always fails or succeeds. These information yield in the
test graph, as the following example demonstrates. Have a look at those patterns:

case x of
(1, a) =1
| (1,a,b) => 2
| (a,b) = 3
I =>4

The illustration shows the naive and the optimized test graph:
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TupTest 2 TupTest 2

TupTest 3

(D [TupTest3 O ©®

@ @

e TupTest 2

In case that the test expression is a 2-tuple, but its first value is not 1, pattern 2 never matches
(because it is a 3-tuple), but pattern 3 always does. There are two nodes in the right graph where
the code for expression 4 is expected. To avoid redundant code, Shar edSt s are used there. The
test nodes in the above graph each represent a single Test St m so complex patterns don’t increase
the stack depth of the resulting code. Further, the frontend performs a linearization of the code.
Instructions that follow a pattern are moved into the Test St mof each match as a Shar edSt m

2.3.5 Function Arguments

DML functions take exactly one function argument. When more function arguments are needed,
tuples or currying can be used. Because most destination platforms support multiple function
arguments and because creating tuples and using higher order functions is comparatively ex-
pensive, the frontend splits different tuple and record patterns of a DML function into pairs of
arguments and corresponding code.

datatype 'a args =
OneArg of "a
| TupArgs of "a list
| RecArgs of (lab * "a) Iist
(* sorted, all labels distinct, no tuple *)

e TupAr gs are used when a pattern performs a test on tuples, i.e., the function can take a tuple
as argument. TUPAr gs provide a list of the stamps that are bound if the pattern matches.

e RecAr gs are used when a function takes a record as argument. It has a list of labels and
stamps. In case this pattern matches, the record’s value at a label is bound to the corre-
sponding stamp.



2.4 A Short Description of the Runtime 13

e OneAr g is used when the pattern is neither a record nor a tuple. Functions always have
exactly one OneAr g section. The OneAr g constructor has a stamp to which the value of the
argument is bound.

Whenever a function is applied, the above argument constructors are also used. TupAr gs
and RecAr gs are created whenever a function is applied directly to a tuple or record. The stamp
of a OneAr g constructor might also designate a tuple or record, e.g., if it is the result of another
function application.

2.3.6 Constant Propagation

Future releases of the compiler frontend will propagate constants. Because this is not yet imple-
mented, the compiler backend does a primitive form of constant propagation by now. A hash
table maps stamps that are bound by Val Dec and RecDec to expressions. Hereby, chains of dec-
larations are resolved. This is needed for inlining the code of short and commonly used functions
as described in Section 3.2.4.

2.4 A Short Description of the Runtime

This section gives a short description of the runtime from the compiler’s point of view. For more
detailed information about the runtime see Daniel Simon’s Diplomarbeit.

2.4.1 Values

DML is dynamically typed, but the JVM is statically typed. Therefore we need a common interface
for values, | Val ue. All other values are represented by implementing classes of this interface. For
example, an integer value is represented by a wrapper | nt eger implementing | Val ue. As far
as the compiler is concerned, the following values are of special interest.

Functions

In DML each function is represented by a corresponding class. All these classes inherit from a su-
per class Funct i on and have a method appl y which implements the abstraction body. In DML
as well as in SML an abstraction generates a closure. Variables that occur free in the function body
can be replaced by their value at the time when the closure is built. Subclasses of Funct i on have
a field for each variable that occurs free in the abstraction body. Whenever a function definition is
executed, i.e., its class is instantiated, the fields of the new instance are stored.

Variables bound within the function, such as parameters and local variables, can have different
values each time the function is applied. We don’t create fields for those variables but store them
in the registers of the JVM.

Constructors

SML distinguishes unary and nullary constructors which have very little in common. To make
clear which one we are talking about, we use the following terminology: (Constructor) names are
equivalent to nullary constructors in SML. The unary SML constructors we call constructors and
the value resulting from the application of a constructor and a value we call constructed value.
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Records

The Recor d class contains a label array and a value array. Label arrays are sorted by the com-
piler and are represented by unique instances at runtime, so pattern matching on records can be
realized as a pointer comparison of label arrays.

Exceptions

In DML it is possible to raise any value as an Exception. JVM only allows us to throw objects of
type Thr owabl e. The DML runtime environment provides a class Except i onW apper which
contains an | Val ue and extends Thr owabl e.

2.5 Helper Functions

For the compilation scheme in this chapter, there are some things we need really often. Therefore,
we use the following helper functions.

2.5.1 Loading Values of Stamps onto the Stack

As described in section 2.4.1, free variables are stored in fields whilst variables that are bound in
the current scope are stored in JVM registers. We often have to access a variable and don’t want
to distinguish where it has been bound. Sometimes we access builtins such as ni | or t r ue which
are part of the runtime environment and are accessed via the get st at i ¢ command.

stampCode abstracts about the fetching of values:

stampCode (stamp) (* when stamp is that of a builtin value *)
(* such as Match, false, true, nil, cons or Bind *)

getstatic <Bwatch>

We use a table of builtins which maps builtin stamps to static fields of the runtime environment.
Sometimes we access the current function itself, e.g., in

fun f (x::rest) =f rest

Since the appl y method is an instance method of the function closure, we can get the current
function closure via al oad_0 which returns the current object.

stampCode (stamp) (* when stamp is the current function *)

al oad 0

Variables that are bound in the current scope are stored in registers and can be accessed via
al oad. The frontend makes sure that stamps are unique. We use the value of this stamp as the
number of the register for now and do the actual register allocation later.

stampCode (stamp) (* when stamp has been defined within the current *)
(* function closure or stamp is the parameter of the current function *)

al oad stamp

All other variables are stored in fields of the current function closure and can be accessed via
getfield:
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stampCode (stamp) (* for all other cases *)

al oad 0
getfield curClass/ fi el dstamp | Val ue

where curClass is the name of the class created for the current function closure.

Storing Stamps

In some (rare) cases, e.g., after a Tr ansi ent has been requested, we store it (since we don’t want
to request it again). In general, we distinguish the same cases as for stampCode , but we don't
need to care about builtins or the current function:

storeCode (stamp) (* when stamp has been defined within the current *)
(* function closure or stamp is the argument of the current function *)

astore stamp

stampCode (stamp) (* for all other cases *)

al oad 0O
swap
putfield curClass/ fi el dstamp | Val ue

2.6 Compilation of Expressions

The evaluation of an expression leaves the resulting | Val ue on top of the stack. Note that the
JVM provides some instructions such as i const _i, with =1 <4 < 5, bi push and si push for
integers and f const _j for floats, with 0 < j < 2, to access some constants faster than via | dc. To
keep this description brief, we always use | dc in this document. However, in the implementation
of the compiler backend, the specialized instructions are used when possible.

2.6.1 Constructors and Constructor Names

New constructors or names are generated by instantiating the corresponding class:

expCode (NewEXp (hasArgs))

new classname

dup

i nvokespeci al classnamel <i nit> () —void

where classname is Const r uct or if hasArgs is true and Nane, if not. We don’t need to distinguish
between occurances of constructor names and occurances of constructors when accessing them.
The value is loaded from a JVM register or a field, depending on whether the constructor occurs
free or bound.

expCode (ConExp stamp)
stampCode (stamp)
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2.6.2 Primitive Operations

Primitive operations are managed by the runtime. The function <MGetBuiltin> returns a primive
function.

expCode (Pr i mExp name)

[ dc * name’
i nvokestatic <MzetBuiltin> (javal/lang/String)—lVal ue

We chose to use a runtime function rather than a table in the compiler backend so that adding
new functions doesn’t entail changes in both runtime and backend. Usually, the function <MGet-
Builtin>> is called during the last compilation phase before the pickle is written, so we don’t lose
runtime performance.

2.6.3 Applications

Whenever a value is applied to another one, the first one should be a function or constructor. We
needn’t check this here, because every | Val ue has an apply method which raises a runtime error
if necessary.

expCode (AppEXp(stamp, stamp,))

stampCode (stamp)
stampCode (stamp )
i nvokei nterface |Val ue/apply (IVal ue)—lVal ue

Applications of Primitive Operations
When we know that we are about to apply a primitive operation, we can do one of the following:

e inline the code,
e make a static call to the function, or

e get the primitive operation via <MGetBuiltin> as usual and make a virtual call.

Inlining usually results in faster, but larger code. Therefore, we inline some important and small
primitive operations only.

Invoking static calls is possible, because primitive operations usually don’t have free variables,
so we don’t need an instance in this case. Static calls are way faster than virtual ones, so this is the
normal thing we do when primitive operations are called.

expCode (Pr i mAppExp(name, stampy, ..., stamp,,_1))

stampCode (stampy)

stampCode (stamp,,_1)
i nvokest ati ¢ classnamel sapply (1Value ...)—lVal ue

The obvious disadvantage of using static calls is that adding primitive operations entails
changes on both runtime and compiler, because the compiler needs to know the classname that
corresponds to name. If the compiler doesn’t know a primitive operation, we use <MGetBuiltin>.
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expCode (Pr i mAppEXxp(name, stamp))

| dc ‘ name’

i nvokestatic <MzetBuiltin> (javal/lang/String)—lVal ue
stampCode (stamp)

i nvokei nterface |Val ue/ apply (I Val ue) —1 Val ue

In case there is more than one argument, we store all arguments into a single Tupl e and pass this
tuple to the appl y method.

2.6.4 Abstraction

When compiling an abstraction, we create a new subclass of Funct i on with an appl y method
that contains the body of the abstraction. Then we instantiate this new class and copy all variables
that occur free in the function body into this instance:

expCode (FUNEXp(funstamp,body))

new classname

dup

i nvokespeci al classnamel <i nit> () —void
(* populate the closure now. *)

dup

stampCode (fvg)

putfield classnamel fv, | Val ue

dup
stampCode (fv,—1)
putfield classnamel fv,,_; | Val ue

stampCode (fvy,)
putfield classnamel fv,, | Val ue

foo ...fo, are the variables that occur free within the function body. Furthermore, we need a
bijective projection className which maps the function’s funstamp to classname.

2.6.5 Literals

DML literals are int, real, word, char and string. The generated code for these looks quite similar:
A new wrapper is constructed which contains the value of the literal.

expCode(Li t Exp(lit))

new cls

dup

ldc v

i nvokespeci al cls/ <init> (type) —void

where v, cls and type depend on lit as follows:

varlit cls type

CharLit v Char c

IntLit o I nteger i

Real Lit v Real f

StringLito | String javal/lang/String
WordLit o Word [
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2.6.6 Records

Record labels cannot change at runtime and therefore may be created statically. Record labels are
always sorted. We load the label array from a static field, create an | Val ue array with the content
of the record and invoke the Java constructor:

expCode(Rec Exp[(laby,stampy),(laby stamp,),. . . (laby,stamp,,)])

new Record

dup

getstatic curClassFilel arity | Val uel[]
ldc n+1

anewarray | Val ue

dup

ldc 0

stampCode (stampg)
aastore

dup

ldc n

stampCode (stamp,,)
aastore

i nvokespeci al Record/<init> (javal/lang/ Qbject[] * |IValue[])—void

The static arity field must be created in the current class file curClassFile and is initialized when
creating the top level environment.

2.6.7 Other Expressions

There are no new concepts introduced for the compilation of other expressions. However, the
complete schemes can be found in the appendix (see Section A.1).

2.7 Compilation of Statements

After a statement has been executed, the stack is in the same state as before.

2.7.1 Non-Recursive Declarations

With non-recursive declarations, an expression is evaluated and stored into a JVM register:

decCode (Val Dec (stamp, exp))

expCode (exp)
storeCode (stamp)
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2.7.2 Recursive Declarations

With recursive declarations, function definitions like the following are possible:

fun odd O fal se

| odd n even (n-1)
and even 0 = true

| even n = odd (n-1)

Now o0dd occurs free in even, so the closure of even needs a pointer to odd. But odd also
needs a pointer to even as even occurs free in odd. We solve this conflict by first creating empty
closures, i.e., closures with nul | pointers instead of free variables. When all closures of the recur-
sive declaration are constructed, we set the free variable fields.

decCode (Rec Dec|[(stampg,expo),(stamp1,expi),. .. (stamp,,expy)])

(* create enpty closures: *)
emptyClosure (expo)
astore stampg

emptyClosure (exp,)
astore stampy
(* fill the closures now *)
al oad stamp
fillClosure (expq)

al oad stamp,
fillClosure (exp,,)

To create an empty closure, the corresponding class is instantiated. Variables, constructors,
names and literals don’t have a closure and can be directely evaluated. When all objects of a
RecDec are created, the fields of functions, tuples, records, vectors, constructed values and refer-
ences are stored via put f i el d instructions. Some expressions, such as ApDpExp, are not admissi-
ble in recursive declarations. However, we don’t need to check admissibility here because illegal
code shouldn’t pass the frontend. The complete compilation scheme for these cases can be found
in Section A.2.

2.7.3 Pattern Matching

As described in Chapter 2.3, pattern matching is transformed into Test St s of the form Test -
St m(teststamp, test, match, notmatch) where teststamp is the identifier of the case statement, fest
the pattern to compare with, match the code that should be executed in case that test matches and
notmatch the code to be executed if not.

When compiling a Test St m we first check whether teststamp is an instance of the class corre-
sponding to fest. If so, we compare the content of feststamp to test and branch to match or notmatch.
Otherwise, if teststamp is an instance of Tr ansi ent, the test is rerun on the requested value of
teststamp. The r equest of a Transi ent always returns a non-transient value, so this loop is
executed at most twice. For performance reasons, it is possible to do the Tr ansi ent check only
once for chains of Test St s with the same teststamp.
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decCode (Test St m(teststamp, test, match, notmatch))

stampCode (teststamp)
retry.

testCode (test)

decListCode (match)

got o finished
wrongclass:

i nstanceof Transient
i feq elsecase

stampCode teststamp
checkcast Transi ent

i nvokei nterface <MRequest > (Transient) —Il Val ue
dup

storeCode (teststamp)

goto retry

popelsecase:

pop

elsecase:

decListCode (notmatch)
finished:

Depending on test, testCode may not only compare the content of stampcode to the test pattern

but also bind one or more variables:

e Literals

In our Java representation, wor d, i nt and char values are represented as wrapper classes
that contain integer values. We check whether the test value is of the correct type and if so,
we compare its content to the value of our pattern. The pattern matches if both are equal.

testCode (Li t Test (I nt Li t 0))
testCode (Li t Test (Wor dLi t v))
testCode (Li t Test (Char Li t v))

dup

i nst anceof classname

i feq wrongclass

checkcast classname

getfield classnamel val ue type
I dc o

i ficnpne elsecase

classname is Wor d, | nt eger or Char for wor d, i nt or char patterns. r eal and string
literals are compared exactly in the same way except that we use f cnpl , ifne elsecase
resp. i nvokevirtual <Mequal s>, ifeq elsecaseto do the comparison.

(Constructor) Names

Because both the DML compiler and DML runtime guarantee that (constructor) name in-
stances are unique, pointer comparison suffices here:

testCode (ConTest (stamp))

stampCode (stamp)
i facnpne elsecase
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e Constructors

The comparison succeeds when the teststamp of the Test St m which lies on top of the stack,
is a constructed value and its constructor is equal to the conststamp of the ConTest . If this
is the case, the content of the teststamp is stored into the contentstamp of the ConTest .

testCode (ConTest (conststamp, contentstamp))

dup

i nst anceof | ConVa

i feq wrongclass

checkcast | ConVal

i nvokei nterface | ConVal / get Constructor () —Constructor
stampCode (conststamp)

i facnmpne elsecase

stampCode (teststamp)

checkcast | ConVal

i nvokei nterface | ConVal / get Content () —I Val ue
astore contentstamp

e References

Although, from the DML programmer’s view, references are just special constructors with
the extra feature of mutability, the generated code is somewhat different:

The type of a ‘constructed value” of a r ef is no | ConVal , but a special class Ref er ence,
so the constructor comparison is realized as an i nst anceof :

testCode (Ref Test (contentstamp))

dup

i nstanceof Reference

i feq wrongclass

checkcast Reference

i nvokevi rtual Reference/getContent () —lVal ue
astore contentstamp

e Records, Tuples and Vectors

Records have a statically built arity that contains the sorted labels. Two records are equal
if their record arities are equal in terms of pointer comparison. When the teststamp turns
out to be a Recor d, we invoke a runtime function which compares the arities and returns
an | Val ue array that contains the content of the record if the arities match or nul | if they
don't.

Pattern matching on Tuples and Vectors works exactly in the same way with the difference
that the arity is an integer value that equals the size of the value array of the Tupl e or
Vector.
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testCode (RecTest [(namey, stampy), ..., namey,, stamp,])
testCode (TupTest [stampy, ..., stampy])
testCode (VecTest [stampy, ..., stampy])

dup

i nst anceof classname
i feq wrongclass
checkcast classname
cmpArity ()

(* Now bind the values: *)
dup

[dc 0

aal oad

astore stampg

dup

ldc n—1

aal oad

astore stamp,_1

| dc n
aal oad
astore stampy,

classname is Recor d, Tupl e or Vect or . The arity comparison is compiled as follows:

cmpArity (* for Records *)

getstatic curClassFile/ arity j ava. |l ang. String[]

i nvokevirtual Record/checkArity (java.lang.String[])—I Value[]
dup

i fnul | popelsecase

The static arity field must be created in the current class file curClassFile and is initialized
when creating the top level environment. See Section 2.3.1 for details.

cmpArity (* for Tuples and Vectors *)

getfield classnamel val s () —I Val ue[]
dup

arrayl ength

ldc n+1

i ficnpne popelsecase

The field val s of a Tupl e or Vect or contains an array with its content.

e Labels

To match a single label of a Vect or, Tupl e or Recor d, we invoke a runtime method of
| Tupl e, get, which returns the value that belongs to a label or nul | if there is no such
label in this | Tupl e. If get returns nul |, the pattern fails and we branch to the next one.
Otherwise, the pattern matches and the value is bound.
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testCode (LabTest (lab, stamp))

dup

i nstanceof | Tuple

i f eq wrongclasscase

checkcast | Tuple

I dc lab

i nvokei nterface | Tupl e/ get (java.lang. String)—lVal ue
dup

i fnul | popelselabel

astore stamp

2.7.4 Shared Code

Shar edSt ms contain statements that are referred to at different places of the intermediate repre-
sentation. The code for each set of Shar edSt ns is only created once and branched to from the
other positions. The branch can be done by the JVM instruction got o because

e equal Shar edSt ms never occur within different functions, so their code is always generated
in the same method of the same class.

e JVM stack size is equal for all of the Shar edSt ns. (Indeed, the stack is always 0 before and
after any statement)

e Shar edSt ns are always constructed to be the last statement in a list, so we don’t have to
return to the place where we branched.

decCode (Shar edSt mbody, shared)) (* if shared = 0 *)

shared : = new | abel
shared:
decListCode (body)

decCode (Shar edSt m(body, shared)) (* if shared # 0 *)
got 0 shared

2.7.5 Exceptions

To raise an exception, a new Except i onW apper which contains the value is built and raised.

decCode (Rai seSt m(stamp))

new Excepti onW apper

dup

stampCode (stamp)

i nvokespeci al ExceptionWapper/<init> (I Val ue)—void
at hr ow

When compiling a Handl eSt m we create a new label in front of the contbody and set shared to
this value. For each EndHand| eSt m this label is branched to.
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decCode (Handl eSt m(trybody, stamp, catchbody, contbody, shared))

shared : = cont
try:

decListCode (trybody)
to:

i nvokevi rtual Excepti onW apper/getVal ue () —l Val ue
astore stamp

decListCode (catchbody)

cont:

decListCode (contbody)

decCode (EndHand| e St m(shared))
got o shared

To indicate to the JVM to call the catchbody when an Except i onW apper is raised, we create
an entry in the exception index table of the class file. Within this exception index table, order is
important. Whenever an exception occurs, the JVM uses the first entry that handles the correct
exception (which is, for DML, always Except i onW apper ). Therefore, with nested exception
handles it is important that the inner one comes first in the exception handle table. We create an
entry like

catch (ExceptionW apper, try, to, to)

after generating the instructions above which maintains the correct order. The catch entry
means that any occurance of an Except i onW apper between try and to is handled by the code
at to.

2.7.6 Evaluation Statement

Evaluation statements are expressions whose value doesn’t matter but must be evaluated because
they may have side effects. Think of the first expression of a sequentialization, for example. We
generate the code for the included expression, then pop the result:

decCode (Eval St miexp))

expCode (exp)
pop

2.7.7 Returning from Functions

DML is a functional programming language, so functions always have a return value of the type
I Val ue. We therefore always return from a function via ar et ur n.

decCode (Ret ur nSt mexp))

expCode (exp)
areturn
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2.7.8 Exports

Values are pickled by the runtime method <MPickle>.

decCode (Expor t St mexp))
expCode (exp)

I dc picklename

i nvokestatic <MPickle>
pop

where picklename is the name of the file that should be created. We use the basename of the source
file with the extension “.pickle’.

2.8 Summary

This chapter described the unoptimized compilation of DML to JVM code. A relatively simple
scheme emerged and helped to identify the concepts for which the translation is less straightfor-
ward since they cannot directly be mapped to JVM constructs: Special care has to be taken for
first-class functions, records, pattern matching, and recursive value bindings.
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Chapter 3
Optimizations

Starting from inefficiencies uncovered in the naive compilation scheme from the preceeding chap-
ter, we devise optimizations to improve performance of the generated code: The creation of literal
objects is performed at compilation time. At runtime, literals are loaded from static fields. As far
as possible, we avoid creating wrapper objects at all and use unboxed representation whenever
possible.

Functions with tuple pattern get special appl y methods, so creating and matching tuples
can be avoided in many cases. We make two approaches for the treatment of tail calls: A CPS-
like version which is a variant of the ideas in [App92] decreases performance but operates on
a constant stack height for all kinds of tail calls and another solution that merges tail recursive
functions into a single method, which makes tail recursion even faster but doesn’t cope with
higher order functions.

Finally, sequences of pattern matching on integer values are sped up by using dedicated switch
instructions of the JVM.

3.1 The Constant Pool

Due to the fact that DML is dynamically typed, the Java representation of DML literals is rather
expensive and slow because a new object is created for each literal. We speed up the access to
constants by creating the objects at compilation time and storing them into static fields of the class
in which the constant is used. Now the sequence

new | nt eger

dup

aconst _1

i nvokespecial Integer/<init> (int)—void

which creates a new integer constant 1 can be replaced by a simple
getstatic currentclass/ 1itn |nteger

where currentclass is the name of the current class and n a number which identifies the literal
in this class. This optimization results in a performance gain of about 30 percent on arithmetic
benchmarks, such as computing Fibonacci numbers (on Linux with Blackdown JDK. This result
should be similar on other systems).
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3.2 Functions and Methods

As DML is a functional programming language, a typical DML program has many function ap-
plications. Applications are compiled into virtual method invocations which are, because of late
binding of JVM methods, rather expensive. Fortunately, function applications have high potential
for code optimizations.

3.2.1 n-ary Functions

DML functions have exactly one argument. When more arguments are needed, functions can
be curried and/or take a tuple as argument. Both techniques are quite common in functional
programming languages, but not in imperative or object-oriented languages and therefore rather
expensive on the JVM. On the other hand, JVM functions can have multiple arguments.

Tuple Arguments

All functions are instances of subclasses of Funct i on which implements | Val ue. When a func-
tion is applied, generally | Val ue/apply (I Val ue) —I Val ue is invoked and the JVM chooses
at runtime the appl y of the corresponding function class. It often occurs that tuples are created
just to apply a function, where the tuple is split by pattern matching immediately afterwards. As
with any object, creating Tupl es is both time and memory consuming.

The DML compiler and runtime support special apply methods for the common cases of func-
tions with an arity of less than 5. Those appl y0, appl y2, appl y3 and appl y4 functions take
2, 3 and 4 arguments, so we save the time of creating tuples and pattern matching. Because ev-
ery function has those appl yn methods, this optimization can be used even with higher order
function applications, when the function is not known at compilation time (e.g., if the function
is loaded from a pickle file or is distributed over the network). The default implementation of
appl yn creates an n-ary tuple and invokes appl y. This is necessary in case of polymorphic
functions which don’t expect a tuple as argument, but can cope with one (e.g., fn x => x). For
non-polymorphic functions that don’t expect tuples, appl yn can raise <BMatch>.

Currying

For the compiler backend, there is little that can be done to optimize curried function calls. How-
ever, if the function that was created by currying is applied immediately, the frontend can convert
such curried applies into Cartesian ones, i.e., use tuples (which can be treated as shown above).
For instance,

fun add x = fny => x+y
can be replaced by
fun add (x, y) = x+y

if the result of add is always applied immediately and add is not exported into a pickle file. Of
course, all corresponding applications have also to be changed from

add a b
to
add (a, b)
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3.2.2 Tail Recursion

Tail recursion is one of the fundamental concepts of functional programming languages. The
only functional way to implement a (possibly infinite) loop is to use one or more functions that
recursively call itself/each other. Whenever a function application is in fail position, i.e., it is the
last instruction within a function, the result of this function is the result of the application and
therefore a return to the current function is not necessary. Like most functional languages, DML
supports tail recursion. This is necessary because otherwise, loops would have a linear need of
stack (instead of a constant one) and thus many programs would crash with a stack overflow
exception after a certain number of recursions. The simplest form, self tail calls, can be easily
compiled into a got o statement to the beginning of the method. But got o0 cannot leave the scope
of one method, so we have to find another solution for mutually recursive functions and for tail
calls to higher order functions.

[App92] describes a way to compile applications of functional programming languages into
machine code without using a call stack at all. The trick is to transform the programs into continu-
ation passing style (CPS) which means that all functions f take a function c as an extra parameter
where the program continues after f has been executed. In case that f again contains an applica-
tion a, a new function is created that contains a sequence s of the part of f after the application
and a call of c. Now we can jump to ¢ with continuation s without having to return afterwards.
Of course, it is quite inefficient to create so many functions. Appel describes lots of optimizations
that make CPS rather fast as the (native) SML/N]J compiler shows. [TAL90] describes a compiler
for ML programs into C code that also uses CPS.

The restrictions of the JVM don’t allow us the use of CPS in its original form because programs
can neither directly modify the call stack nor call another method without creating a new stack-
frame on top of its own one. On the other hand, we don’t need the full functionality of CPS. We can
use JVM'’s call stack for applications which are not in tail position and do something CPS-like for
tail calls: For each tail call, the Funct i on that should be applied is stored into a (static) class field
conti nuation, e.g., of the runtime environment and the value on which that function should
be applied is returned. All other applications are compiled into the usual i nvokevi rt ual , but
afterwards set cont i nuat i on tonul | and apply the old value of cont i nuat i on on the return
value until cont i nuat i on is nul | after returning from the function. Now all tail calls have a
constant call stack need. This approach slows down all applications by a get st at i ¢ instruction
and a conditional branch and tail calls additionally by a put st at i ¢ to store the continuation and
some stack-modifying instructions like dup and swap, but compared to the i nvokevi rt ual in-
struction which we use for applications anyway, these instructions can be executed relatively fast.
Let’s have a look at the recursive definition of odd again:

fun odd 0 = fal se

| odd n = even (n-1)
and even 0 = true
| even n = odd (n-1)

With these changes, the tail call to odd is compiled like follows.

stampCode (odd)

put st ati c wherever /conti nuati on

stampCode (<BMinus>)

stampCode (n)

ldc 1

i nvokei nterfacel Val ue/apply (1 Val ue) —I Val ue
areturn

All Non-tail calls now take care of the continuation field as an application of odd n demon-
strates:
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stampCode (odd)

stampCode (1)

loop:

i nvokei nterfacel Val ue/apply (I Val ue)—Il Val ue
get stati c wherever /conti nuation
dup

i f_null cont

swap

aconst _nul |

put stati c wherever /conti nuati on
got o loop

cont:

But alas! Because DML is multi-threaded, we have to take care that each thread has its own
conti nuat i on field. This can be achieved by storing the cont i nuat i onin a (non-static) field of
the current thread. To read or write the cont i nuat i on now we determine the current thread via
static call of j ava/ | ang/ Thr ead/current Thr ead. Depending on the JVM implementation,
applications now take about twice as long, but we have a constant stack size when using tail
calls. As this is not very satisfying, the DML compiler uses the following procedure instead. The
code for functions that call each other recursively are stored in the same method r ecappl y. This
method takes 5 arguments: 4 | Val ues, so it can ingest the special appl yn methods as described
in Section 3.2 and an i nt value that identifies the function. Now tail calls can be translated
into got o0 statements which are fast and don’t create a new stackframe. Nevertheless, we need a
separate class for each function in case it is used higher order or it is exported into a pickle file. The
apply functions for these classes invoke r ecappl y with the corresponding function identifier.

This practice is a lot faster than the previous one and even faster than doing no special treat-
ment for tail calls at all, but it is less general than the CPS-like variant. The calls are computed at
compilation time, so higher order functions in tail position are not handled. We chose to use this
design because it is way faster than the alternative and because it can cope with most kinds of tail
calls. As a matter of fact, tail calls could be optimized more efficiently and probably a lot easier
by the JVM.

3.2.3 Using Tableswitches and Lookupswitches

For the common case that several integer tests occur after each other on the same variable, the
JVM provides the tableswitch and lookupswitch commands. We use these instructions whenever
possible, thus saving repeated load of the same variable and restoring its integer value of the
wrapper class. This results in both more compact and faster code.

3.2.4 Code Inlining

One of the slowest JVM instructions is the i nvokevi rt ual command. Therefore, we gain a good
performance increase by inlining often used and short runtime functions. Longer functions are
not inlined to keep class files and methods compact (The actual JVM specification [LY97] demands
that the byte code of each method is less than 64KB).

3.2.5 Unboxed Representation

The main performance loss we have due to the boxing of primitive values which is necessary
because DML is intended to be dynamically typed and the source of values may be a pickle file or
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network connection. The pickle as well as the network connection even might not yet exist when a
DML file is compiled, so we can make no assumptions about the type in those cases. Furthermore,
the current version of the DML frontend doesn’t supply any type information to the backend at
all.

To get an idea about the potential of an unboxed representation, we have implemented a naive
constant propagation and use this information to omit the | Val ue wrapper when builtin func-
tions of a known type are invoked. For example, the following function that computes Fibonacci
numbers gains a performance boost by about 35% if only the wrapper for the 3 first constant
literals are omitted and the +, - and < functions are inlined.

fun fib(n) =
if (1<n)
then fib(n-2) + fib(n-1)
else 1

If the type of f i b were known to be (i nt) —i nt, the wrappers for n and the result of fi b
wouldn’t have to be created. By editing the code accordingly by hand, we gain a performance
boost by almost 90% compared to the version with only the described optimizations.

3.3 Summary

The optimizations as described in this chapter cause significant performance increases. Creating
literal objects at compilation time speeds up arithmetic computations by about 30%. Omitting
wrapper objects for inlined code results in another performance gain of circa 35% after all other
optimizations are done. Manually editing the generated code shows us that the use of static type
information could further improve performance by about 90%.
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Chapter 4

Implementation

The DML compiler backend operates on the intermediate representation which is computed by
the Stockhausen implementation for the Alice programming language. Stockhausen performs
some platform-independant transformations that are useful for other compiler backends, too. The
following figure shows the structure of the compilation process. The intermediate representation
as described in Section 2.3 is marked as ‘Intermediate-2’. After all classes are created, a Java
process is executed on the main class to create a single pickle file that contains the evaluated
component.

—_——— e e ——_

e —— —— =

e

e —— —— -

|Program pi ckl e|

This chapter gives an overview of the implementation of the compiler backend. Before the
class files are written, some optimizations are performed on the generated byte code: Sequences
of al oad and ast or e are omitted whenever possible. A liveness analysis is done and dead code
is eliminated.

4.1 The Modules

The compiler backend is split into the following modules.
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Abbrev. sn

This file defines a structure with abbreviations for the classes, methods and fields that are used in
the backend. This avoids typos in the generated code.

Conmmon. sni

defines a few functions, constants and structures that are used in most of the other parts of the
backend.

CodeCGen. sni

The main part of the compiler backend. This part transforms the intermediate representation into
a list of JVM instructions which is written into Jasmin files by ToJasmni n. s afterwards. This is
done by the following steps:

Constant Propagation

A hash table is used to map stamps to their value.

Computation of Target Classes

Generally, each function is stored in a separate class. As described in 3.2.2, we gain performance
by merging functions that recursively call each other into one r ecappl y method of a single class.
When computing ‘free variables’, we are not really interested in the function where a variable
occurs free, but in the method. A hash table maps pairs of function stamps and the number of
arguments of that function to pairs of target classes and a label within this function. If that target
class differs from the function stamp, the code of this function will be stored in the r ecappl y
method of the target class at the position of this label.

Computation of Free Variables

Remember that variables that are bound in the current method are stored in registers whereas free
variables are stored in fields of the class.

Generate the Instruction List

This can be implemented straight forward as described in Chapter 2. In this compilation phase,
we don’t bother about register allocation. We operate on stamps instead of registers and postpone
register allocation to liveness analysis in ToJasmin.sml. Sometimes we want to access some of the
special registers 0 (the ‘this’ pointer), or 1 (the first argument of a method). We define some
dummy stamps for these registers.

The optimizations as described in Chapter 3 demand the following changes:

e To realize the constant pool of DML literals, a hash table maps pairs of classes and constants
to a number that uniquely identifies the literal in this class. A function inserts a literal into
the hash table if necessary and returns the name of the static field associated with this literal
in either case. Those static fields are created by a fold over this hash table. The initialization
is done in the <cl i ni t > method and is also created by a fold. The <cl i ni t > method is
executed by the JVM immediately after the Class Loader loaded this class, i.e., the class is
used for the first time.
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e Each generated function class file must have appl yn methods with n arguments, where
n=1...4. Those appl yn methods create a Tupl e out of their arguments and invoke appl y
by default. If a function has an explicit pattern matching for an n-tuple, i.e., a TUpAr gs
constructors occurs in the FUNExp, the appl yn is generated like any other appl y method.

e The merged r ecappl y methods of mutually tail recursive functions differ slightly from
ordinary appl y functions. The number of | Val ue arguments of such a r ecappl y is that
of the function with the most arguments in this block, but not greater than 4. Apart from
that, r ecappl y takes an integer argument that identifies the function that should be called.
The code for all of these functions is merged into one method which is introduced by a
tableswitch instruction that branches to the correct function. For accessing registers 2, 3, 4
and 5, we need special stamps again.

Now applications are compiled like this:

— Tail call applications with the same target class as the calling method are compiled into
a got o instruction to the beginning of the function in this method. The arguments are
passed via register 1-4 (or 1-5 in case of r ecappl y).

— Any application of a function that resides in a r ecappl y is done by invocation of this
method.

— Other applications, i.e., non-tail call applications or tail call applications to an unknown
or another that the current method, are compiled into ordinary invocations of the ap-
ply or appl yn method, depending on the number of parameters.

e Many functional programs operate on lists. Our compilation so far is relatively inefficient
when using lists, because for pattern matching the constructor name of the constructed
value in question has to be loaded on the stack to compare it to the predefined “::". The
runtime defines a special class Cons for cons cells, so a simple i nst anceof instruction
suffices to tell whether a value has been constructed by a ‘" or not. This optimization is
possible for any predefined constructor name, but not for user-defined ones. We could de-
fine a new class for the constructed values of each user-defined constructor names. But in
the case of distributed programming when using names that were defined in an imported
component, we cannot know the class name of the corresponding constructed values. For

the same reason we cannot use integer values instead of constructors and constructor names.
e The runtime supplies special tuple classes Tupl en where 2 < n < 4. The content fields
of the tuples can be accessed via get fi el d commands. This is faster and less memory

consuming than the normal get Cont ent method we use for other tuples. See Section 5.3.1
for a description of this optimization.

When the code lists for all methods of a class are constructed, they are passed to the last
module of the compiler backend, ToJasmi n. sni .

ToJdasm n. sni

This module does the register allocation for the stamps, computes the stack size required within
each method and performs the following optimizations before the Jasmin files are generated.

Register Allocation.

The register allocation is done in 2 steps:
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1. Fuse al oad/ast or e sequences. A stamp is defined only once and is never bound to an-
other value afterwards. The intermediate representation often binds one stamp to the value
of another one. If this happens, a code sequence like al oad I ast ore s is created. From
now on, the stamps [ and s contain the same value, so this code sequence can be omitted
if further references to s are mapped to /. A hash table is used to map those stamps. This
optimization can only be done for unconditional assignments. If more than one ast or e is
performed on the same stamp within this method, those stamps must not be fused.

2. Perform a liveness analysis. We decided to do a simple but fast liveness analysis. Two
hash tables map each stamp to its first defining and last using code position. Branches may
influence the lifetime of a stamp as follows. When branching from within the (old) lifetime
to a position before the first defining position of this stamp, the new defining position is set
to the target of the branch. When branching from behind the (old) last usage to within the
lifetime, the last using position is set to the origin of the branch. When all branches are taken
into account, each stamp is assigned to the first register that is available within its lifetime.

Dead code elimination.

The code after unconditional branches to the next reachable label is omitted. If the first instruction
after a (reachable) label is got 0, all branches to this label are redirected to the target of this got o.
If the first instruction after a label is an at hr owor some kind of r et ur n, unconditional branches
to this label are replaced by this command.
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Related Work

In this chapter we briefly describe projects that share some properties with our work. We sketch
what other systems do and give references to these works. As mentioned in Chapter 1, there are
already many programming languages that are translated to the Java VM. An always changing
and useful list can be found at [Tol99].

8.1 Kawa

Kawa [Bot98] is a compiler for the LISP dialect Scheme to the JVM. It provides a higher-level
programming interface with support for scripting and interactive read-eval-print loops. It gives
a full integration between Java and Scheme. The author, Per Bothner, describes a possibility for
generally treating tail calls in a CPS-like style. Just like our proposal in Section 3.2.2, this slows
down all applications but operates on a constant call stack.

8.2 MLj

MLj is meant to be a complete system for compilation of Standard ML to Java byte code. It has a
static type system with extensions for classes and objects. MLj provides a Java API interface with
additional syntax. MLj performs whole program optimization and gains much speed because of
that: Polymorphism is reduced to monomorphism by duplicating methods. Functions are de-
curried and boxing can be avoided rather efficiently. So far, only simple tail recursion is handled.
See also [BKR99].

8.3 Bertelsen

In his Master Thesis Peter Bertelsen describes a new compiler backend for Moscow ML that com-
piles Standard ML to Java. In contrast to MLj, no API interface is given. There is no tail call
handling implemented. Bertelsen performs no optimizations that go beyond MLjj. See [Ber98] for
details.

8.4 Java related software

For the Java programming language several software projects are concerned with issues we ad-
dressed in Chapters 5-7. For one, the serialization routines have been reimplemented to provide
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faster (and more compact) algorithms, cf. [HP99]. In correspondence, the Java RMI facilities have
been improved. Java RMI uses Java serialization so it is useful to enhance both in conjunction. The
reimplementation provides a much faster RMI, designed to work on high speed network connec-
tions rather than insecure and unstable Internet connections. This work is described in [NPH99].

Java’s RMI needs much care to be used by a programmer such as exception handling etc. Java-
Party [PZ97] gives transparent remote objects and further improvements to facilitate the usage of
distributed programming in Java.
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Benchmarks

In this chapter we present some benchmarks and show how we use them to analyze the perfor-
mance of the DML system. We compare the execution time of programs with SML/N]J and MLj
to figure out the pros and conts of the way we implemented DML. The benchmark programs and
the evaluation follows the evalutation of the Oz VM [Sch98].

To what other system should we compare DML? Of course, MLj and SML/N]J are good can-
didates for comparison. DML is dynamically typed and therefore needs many runtime type tests
while SML/NJ and MLj don’t; so we can hope to figure out the cost of dynamic typing. While both
MLj and DML are interpreted by the Java Virtual Machine, SML/N] is compiled to native code.
DML supports transients and has the possibilty to dynamically read higher order values; the for-
mer induces further runtime type tests, and the latter prohibits some optimizations. Neither MLj
nor SML/NJ have similar features.

Due to dynamic typing, we expect DML to be slower than MLj or SML/N]. Further, because
DML provides transients, pattern matching and primitive operations of the language are more
expensive. If we compare DML to MLj, we can analyze the cost of our dynamic properties and
the support for transients. The costs of concurrency and distribution cannot be compared because
MLj does not provide similar features. By comparing DML to SML/N], we try to determine how
much overhead is introduced by using a virtual machine to interpret the code instead of using
native code. Again the costs of concurrency and the omitted static type information have to be
considered. SML/N]J provides concurrency as a module and we will have a look at the costs of
threads. The distributed programming facility of DML have no counterpart in SML/NJ.

Another system we compare DML with is Kawa. Similar to DML, Kawa programs are inter-
preted by the JVM. Kawa is dynamically typed and in this respect more similar to DML than MLj
and SML/NJ. But because the source language differs from DML considering the translation of
closures, the benchmark results are not so significant.

9.1 How We Measure

The time is measured with GNU Time v1.7. Let X denote the benchmark to be executed. In the
case of DML, the execution time of

dm X
is measured. For ML}, the execution of the command

java -classpath X zip X
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is used. For both DML and MLj we start the JVM with identical runtime options. SML/N] pro-
grams are started by

sm  @M.I| oad=X

The execution of Java byte code can be accellerated by using so called Just In Time (JIT) compil-
ers. For Linux, there are several JIT compilers available; we only consider ‘tyal.5” [Kle99] and the
default ‘sunwijit’ that comes with Blackdown’s JDK [dSR"99]. The usage of JIT compilers is only
for the profit of DML and MLj with respect to SML/N]J as SML/N] has no such way of speeding
up.

First we call each benchmark program without arguments and measure the time it takes to ex-
ecute the dummy call. By doing this, we can get a good estimation of how much time is consumed
before the actual benchmark is started; the startup time will be subtracted from the overall run-
time. If we use a JIT compiler we have to take into account the time that is needed to JIT-compile
the class code. In practice, this time span was infinitesimal with respect to the total time of the
execution, so that we can simply neglect this aspect. Each benchmark program then is executed
25 times, the time listed in the result table is the arithmetic average of the overall time minus the
startup time. The standard deviation was also computed in order to show that the results of the
benchmarks don’t vary too much. We do not show the values of the deviation here, we usually
gained results where we had o < 5%.

1 25

= (2—5 : ;time cmd;) — startup

The standard deviation is computed as follows:

25

Z (time cmd; — pu)?

i=0

1
25

g =

Since the running time measured in seconds is not so interesting as the ratio we give the results
in the form ‘SML/NJ : MLj : DML’ resp. ‘MLj : DML’ normalized with respect to SML/N]J resp.
MLj, ie.,

L s pouey/fsme/ws © Mowe/ Msur /s
resp.

1: MDML/MMLJ‘

The benchmarks on the JVM are run with ‘green” threads. For Linux running on a single
processor machine the choice of green threads results in a better running time; native threads are
heavy weight. Note that Linux limits the number of threads per user to 256 by default; each Java
native thread counts as one system thread. A normal user therefore is not able to create more than
the system limit; some programs will not be able to run as expected. For green threads there is no
such limit.

9.2 The Test Platform

The benchmarks programs are executed by using the following hardware and software:
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Architecture

x86

Processor

Intel Celeron (Mendocino), 466 MHz

Main Memory

128 MB

oS

(Red Hat 6.1) Linux 2.2.12

Java

Blackdown JDK1.2.2-RC2

T

TYAL.5

JIT

sunwjit (included in JDK1.2.2-RC2)

ML

Persimmon IT. MLj 0.2

Kawa

Kawa 1.6.62

SML

SMLofN]J Version 110.0.3

Time

GNU Time v1.7

9.3 Benchmark Programs

We perform and analyze the following benchmarks:

e Fib/Tak — The Fibonacci numbers are computed in order to measure how good function
application and integer arithmetic works. The Takeushi function serves the same purpose
with a different ratio of function calls and arithmetics.

e Deriv — This program computes symbolic derivations to show the costs of using construc-

tors and pattern matching.

e NRev — By using naive reverse of lists, we want to find out the costs of transients and
allocation of lists on the heap (see below)

e Concfib — Concfib measures the cost of thread creation and synchronization with transients

in DML resp. channels in CML (the concurrent extension to SML/NJ).

The code of the benchmarks can be found in Appendix B.

9.4 Analysis

Fibonacci and Takeushi

The Fibonacci benchmark computes f i b 31 and thereby induces circa 2.1 million recursive calls.
In each call of the function, one comparison on integers, one addition and one subtraction has

to be performed. The Takeushi benchmarks computes t ak(24, 16, 8) which causes about
2.5 million function calls. In this case, less arithmetic functions have to be performed.

The benchmark results for Fibonacci are the following;:

1

1

04

:0.6 :26.5

:40 (no JIT)

1 1.5 :25.5  (tya)

(sunwjit)

There are two things one notices at once: MLj code that is accelerated by a JIT compiler beats

SML/NJ and DML falls back by the factor of about 10-12. One can image that the native code of

SML/N] is way faster than the interpreted byte code of Java, but this contradicts the fact that MLj
is as fast as SML/NJ. So this can’t be the reason why the DML code is so slow. What else could
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cause that breakdown? The analysis of the runtime behavior of the DML Fibonacci program
shows that about 90% of the time is spent for arithmetics, particularly the creation of integer
wrapper objects. To confirm that the missing type information (or better: statically unused type
information) causes the high costs we try the following: we add and use type information ‘by
hand’. If we then use the enhanced Fibonacci we indeed gain about 95% of run time and are
almost as fast as MLj. The benchmark ratio then is

1 :06 :0.7 (sunwjit)

The conclusion is that object creation makes the computation expensive; the high costs emerge
from wrapping and unwrapping integers.

The Takeushi benchmark confirm these assumptions. As there are less arithmetic operations
to perform the ratio looks slightly better for DML:

1 :3 122 (no JIT)
1 :1.2 115 (tya)
1 :04 115 (sunwjit)

If static type information could be used, we could again be as fast as MLj.

Deriv

Computing symbolic derivations does not use arithmetic. So we can hope to have nicer results
with that benchmark. Indeed the ratio is

1 :25 :6.5 (no JIT)
1 1.7 :4.3 (tya)
1 :34 :4.3 (sunwjit)
Considering the case of sunwj i t, we are almost as fast as MLj, the ratio MLj: DML is 1: 1.2.

The loss of efficiency can be put down to the presence of transients and DML'’s dynamic properties
that prohibit the optimizations MLj may perform.

NRev

Naive reverse depends mainly on the append function; languages that support transients can
write append in a tail recursive manner and should have some advantage over the others. So we
have to compare the following functions to one another:

fun append’ (nil, ys, p) = bind (p, ys)
| append’ (x::xr, ys, p) =

| et
val p° = lvar ()
val x* =x::p’
in
bind (p, x');

append’ (xr, ys, p')
end
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versus
fun append (nil, ys) =ys
| append (x::xs, ys) = x :: (append (Xxs,ys))

Using append’ results in

1 :15 :13.000 (noJIT)
1 :11  :14.000 (tya)
1 :10 :24.000 (sunwjit)

The disastrous result comes from the creation of logic variables. These objects are very ex-
pensive to create because they inherit from Uni cast Renot eCbj ect (for distribution). A way of
speeding up is therefore to provide different transients for non-distributed programming. Indeed
this speeds up the DML execution

1 :13.5 :91 (no JIT)
1 11 : 86 (tya)
1 :10 : 98 (sunwjit)

The append’ function creates twice as much objects as the corresponding function used with
MLj. But since in Java object creation is more expensive than method invocation, we still are much
slower than SML/N]J or MLj though the append can only be written with simple recursion. For
ML this has the consequence that the limit on the length of the lists is tighter than that of DML,
because the stack depth is greater. As SML/N]J doesn’t use a call stack there are no consequences
for them.

If we compare the run times using the append function that is not tail recursive, the following
ratio is achieved:

1 :135 :20  (noJIT)

The ratio is similar if we use JIT compilers.

As a consequence we propose the implementation of two transient variants — one that can
supports distribution and one that can only be used on one site. Further it seems that the cost for
object creation exceeds the benefits of saving a method invocation by far.

Concfib

Concfib repeatedly computes the value of fi b 12. Each recursive invocation creates two fresh
threads that compute the sub value. Results are given back via transients resp. channels.

ML has no special feature for concurrency so we only compare DML to SML/N]. The SML/N]J
version of Concf i b uses the CML facilities. The communication between threads is implemented
by the use of channels. The Java-Linux Porting Team considers ‘the usage of hundreds or even
thousands of threads is bad design’. This point of view is reflected in the costs for threads as the
ratio shows

1 :124 (no JIT, green threads)
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1 :116 (t ya, green threads)

1 :105 (sunwj i t, green threads)

For the native threads implementation we have

1 :273 (no JIT)
1 :281 (tya)
1 :275 (sunwjit)

In this benchmark, we have used the cheaper versions of transients. By using the expensive
versions, we obtain a result that is worse (due to the costs of creating transients that can be used
distributedly).

Code Size

Besides the run time of the programs the size of the compiled code is worth a look. The size is
given in bytes.

SML/NJ | MLj | DML
Fibonacci 385960 | 5941 | 2866
Takeushi 384936 | 6004 | 2922
Derivate 388008 | 8448 | 6239
NRev 385960 | 6426 | 3709
Concfib 647432 - | 4638

We do not consider the runtime systems here, i.e., for SML/N] the size of the Linux heap image
is listed; the heap image was produced by expor t Fn and can be executed via r un. x86- 1 i nux.
The Java runtime is used to execute MLj’s output. MLj stores the generated class code in zip files.
DML compiles the programs into pickles and additionally has runtime libraries. Note that the
pickles are compressed using gzip output streams and are therefore somewhat reduced in size.

As one can see, the size of the files interpreted by the JVM are more compact by up to two
orders of magnitude. This aspect becomes important if we consider distributed programming —
the more data transferred, the slower the transmission and the slower the execution of distributed
programs.

9.5 Dynamic Contest

Kawa is the only competitor that translates a dynamically typed language to the JVM. If we want
to compare our implementation with Kawa, we have to rewrite the benchmarks in the Scheme
language. We measured for all of the benchmarks that DML is faster than Kawa by a factor of
about 3-4. This factor is achieved with each benchmark no matter which JIT is used. So we can
conclude that we have the fastest implementation of a functional dynamically typed language
executed on the JVM.
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9.6 Summary

As expected, DML is usually slower than SML/N] and MLj. The main performance loss comes
from the boxing and unboxing of literals. If we avoid boxing (as done in the manually optimized
Fibonacci benchmark), we achieve significantly better results. If we take advantage of type in-
formation, the Fibonacci benchmark runs even faster on the JVM than the native compilation of
SML/NJ.

The transients of DML introduce only little overhead for pattern matching and primitive oper-
ations if they are not used. In the case of NRev, the cost for creating transients exceeds the benefits
of constant call-stack size of tail recursive append. Transients that can be used in a distributed
environment are very expensive to create; it is recommended to provide a further variant of tran-
sients that can only be used locally. Threads in DML cannot be used in the way Mozart or CML
propagate the use of threads. It is not possible to create zillions of threads on a JVM because Java
threads are valuable resources that are not suitable for short live cycles.

The component system and distribution facilities of DML prohibit whole program optimiza-
tion. MLj can perform such optimizations at the expense of modularity and separate compilation.
According to Benton, Kennedy, and Russell [BKR99] this is the most important step to achieve a
reasonable performance.

DML is faster than Kawa in any benchmark we have tested. This is the result of Scheme’s
environment model that provides less possibilities for optimization.

The influence of JIT compilers for the JVM depends on the program executed; there are pro-
grams that cannot be run with a special JIT compiler, some run faster, some are slower. In general,
the JIT compilers achieved better performance enhancements for MLj programs than for the DML
counterparts.
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Chapter 10

Conclusion

We have built a compiler and a runtime environment for translating a dynamically typed high-
level language to the Java Virtual Machine.

The compiler produces pickle files that contain evaluated components. Pickle files can be exe-
cuted on any Java capable platform in combination with the DML runtime that provides the value
representation and the primitives of the language. The goal of a simple and secure implementa-
tion of DML for the JVM has been achieved.

The naive implementation of the DML system is straightforward and compact. We take advan-
tage of many Java features. DML'’s concurrency is based on Java threads, the pickling mechanism
reuses Java Object Serialization, and the distribution model adopts the Java RMI infrastructure.
The data-flow synchronization of threads by transients is implemented using Java synchroniza-
tion primitives. Exceptions can directly use the corresponding JVM exceptions.

The implementation is enhanced by refining the representation of tuples and constructed val-
ues. Further, function closures have special support for tuple arguments. One of the problems of
Java as a target platform for a dynamically typed source language is that the typed byte-code en-
forces the usage of expensive wrappers. The DML compiler omits boxing and unboxing of literals
whenever possible. The representation of constant values is built at compilation time to avoid the
creation of objects at runtime. Mutually recursive functions are merged into a single function to
enable tail call optimization. The compiler performs code inlining for primitive functions.

It is interesting to look at the optimizations MLj performs on programs. MLj can avoid box-
ing and unboxing completely due to whole program optimization. Polymorphic functions are
replaced by separate versions for each type instance for which they are used. The problem with
this approach is that the code size can grow exponentially. Because MLj operates on the com-
plete source code, it can limit the blowup by only generating the monomorphic functions that are
actually used. In contrast, DML’s component system prohibits that approach.

General tail-call optimization cannot be implemented reasonably without support of the JVM.
Solutions that use CPS-like approaches are too slow. Without special treatment, tail recursion
requires linear call-stack size and leads to stack overflow exceptions of the JVM. The current ver-
sions of MLj and Kawa have no special treatment for mutually tail recursive functions. This
limitation may cease to exist in future versions of the JVM. The Java Virtual Machine specification
limits the amount of code per method to 65535 bytes. This limit is no problem for most pro-
grams, yet the generated code of the DML parser exceeds that size and cannot be compiled. As a
consequence, the compiler cannot be bootstrapped.

As the benchmark results show, future versions of DML should use static type information to
further reduce boxing and runtime type checks. The current RMI model and implementation rec-
ommends the support for variants of transients: One version that is capable of being distributed
and another one that is faster but can only be used locally. A good implementation of transients
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takes advantage of VM support. E.g., the Oz VM provides transient support at the level of the
bytecode interpreter and can replace transients by their value as soon as they are bound. The
DML implementation has to keep the wrapper objects instead.



Appendix A

Compilation Scheme

A.1 Compilation of Expressions

Section 2.6 describes how most expressions are compiled for the JVM. The compilation of refer-
ences, constructed values, variables, tuples and vectors introduces no new concepts. For the sake
of completeness they are described here.

A.1.1 References

A reference is a special constructor, but the contents of its constructed values are mutable. Con-
structors are equal if pointer comparison succeeds, so there must be only one reference construc-
tor, which can be found in a static field of the runtime.

expCode (Ref Exp)
getstatic <BRef>

Applications of Constructors

When applied to a value, a constructor results in a constructed value. The ConVal class has a
(Java) constructor which takes a constructor and content value as parameter.

expCode (ConAppExp(constamp, stamp))

new ConVal

dup

stampCode (constamp)

stampCode (stamp)

i nvokespeci al ConVal /<init> (IValue, |Value)—void

Applications of References

The Ref er ence class has a (Java) constructor with an | Val ue as its argument. The constructor
of references is always r ef ; we don’t have to explicitly store it.
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expCode (Ref AppEXp(stamp))

dup

new Ref erence

stampCode (stamp)
i nvokespeci al

Ref erence/ <init> (I Val ue) —»void

A.1.2 Variables

Variables are loaded from either a JVM register or a field depending on whether it occurs bound

or free in the current function:

A.1.3 Tuples and Vectors

expCode(Var Exp(stamp))

stampCode (stamp)

In DML, Tuples are records with labels [1,2,...,n]. Tuples are constructed just like records, but

have no label array.

Vectors are treated similar to tuples. They supply some special functions and are constructed

in the same way:

expCode(TupExp[stampg,stamp;,. .. ,stamp,,])
expCode(VecExp[stampg,stampy,. .. stamp,,])

dup
dc n+1

dup

[dc 0
aastore
dup

ldc n

aastore

new classname

anewarray | Val ue

stampCode (stampg)

stampCode (stampy,)

i nvokespeci al

classnamel <i ni t> (1Val ue[]) —»void

classname is either Tupl e or Vect or .

A.2 Recursive Declarations

General information about the compilation of recursive declarations can be found in Section 2.7.2.
For the sake of completeness, a description about creating and filling closures follows here.

The empty instances of Functions, Tuples, Vectors, Constructor Applications and Reference
Applications are constructed as follows. Regardless of the body or content of the expression, a
new instance of the corresponding class is created:
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emptyClosure (FUNEXp(funstamp,exp))
emptyClosure (TUPEXp(content))
emptyClosure (Vec Exp(content))
emptyClosure (ConAppEX p(content))
emptyClosure (Ref AppEXxp(content))

new classname
dup
i nvokespeci al classname () —void

where classname is the classname of the funstamp, or Tupl e, Vect or, ConVal or Ref er ence, in
case the expression is TupExp, VecExp, ConAppExp or Ref AppEXxp.

Recor ds are constructed just like Tupl es, but get an arity as parameter:

emptyClosure (Rec Exp(content))

new classname

dup

getstatic curClassFilel arity | Val ue[]

i nvokespeci al Record (IValue[])—void

Var Exp, ConExp and Li t Exp don’t have a ‘closure’, so they can be directly evaluated.

emptyClosure (exp)

expCode (exp)

Some expressions, such as AppEXp, are not admissible in recursive declarations. However, we
don’t need to check admissibility here because illegal code shouldn’t pass the frontend.

The empty closures are filled as follows:

e Functions

To fill the empty closure of a function, we load it on top of the stack, then store the values of
the free variables into the closure:

fillClosure (FunExp(funstamp, exp))

dup
stampCode (fvg)
put field classnamel fv, | Val ue

dup
stampCode (fo;—1)
put field classnamel fv,_; | Val ue

stampCode (fv;)
putfield classnamel fv; | Val ue

where fvy to fv; are the free variables of funstamp and classname is the name of the class
corresponding to funstamp.

e Tuples, Records, Vectors

Tuples, records and vectors are filled by creating an array of values and storing it into class-
name/val s where classname is Tupl e, Recor d or Vect or .
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fillClosure (TupEXp[stampg,stampy,. . . stamp;])

fillClosure (Rec Exp[(labg,stampy),(laby ,stampy), ... (lab; stamp;)])
fillClosure (VecExp[stampg,stamp,. . . stamp;])

ldc i+1

anewarray | Val ue

dup

ldc 0

stampCode (stampg)
aastore

dup

I dc i

stampCode (stamp;)
aastore

putfield classnane/vals | Val ue[]

e Constructor Applications and ref Applications

ConVal s and Ref er ences have one single content field. This field is now assigned.

fillClosure (ConAppEXp(constamp,stamp))
fillClosure (Ref AppExp(stamp))

stampCode (stamp)

putfield classnane/ content | Val ue




Appendix B

The Code of the Benchmarks

This Chapter lists the code for the benchmarks performed in Chapter 9. We present the code for
SML/N]J, MLj, and DML where is it identical, the differences are listed seperately.

B.1 Differences

SML/N]J wants the programmer to do the following to make a program ‘executable”:

fun foon = ...
fun callfoo (_, [Xx]) =
| et
val arg = Int.fronString Xx;
in

case arg of
NONE => 1
| SOME n => (foo n; 0)
end
| callfib _ =2
val _ = SM.of NJ. export Fn (" Foo", callfoo0)

To fetch the command line arguments, MLj programs have to look as follows:

structure Foo :
sig
val main : string option array option -> unit
end

struct
fun do_foo = ...
fun main (env: string option array option) =
case env of
NONE => ()
| SOVE env’ =>
if Array.length env’ = 0 then ()

el se
case Array.sub(env’, 0) of
NONE => ()
| SOME str =>
case Int.frontring str of
NONE => ()

| SOVE n => (do_foo n; ())
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end

In DML we have the following situation
fun foon = ...
fun main [x] =

| et

val n = val O (fronBtring x)

in
foo n
end
| main _ = ()

B.2 Common Parts

Fibonacci
fun fib n =
if (1 <n)
then fib(n-2) + fib(n-1)
else 1
Takeushi

fun tak(x,y,z) = if y<x

then tak(tak(x-1,vy,z),
tak( y-1,z,x),
tak( z-1,x,y))

el se z

Derivations

dat atype expr = Plus of expr * expr
M nus of expr * expr

Var of int

Const of int

Ti mes of expr * expr

Di v of expr * expr

Exp of expr * int

Um nus of expr

Log of expr;

dotimes(0,p) =0

—
c

deriv(Var (u), x)
| deriv(Const(u), x)
| deriv(Plus(u,v),Xx)
| deriv(Mnus(u,vVv),Xx)
| deriv(Times(u,v),Xx)
| deriv(Div(u,vV),Xx)

n

| dotinmes(n,p) = (p(); dotimes(n-1,p))

n if u=x then Const(1l) el se Const(0)

Const (0)

Pl us(deriv(u,x),deriv(v,x))

M nus(deriv(u,x),deriv(v,X))

Pl us(Ti nes(deriv(u,x),v), Tinmes(u,deriv(v,x)))
Di v(M nus(Ti mes(deriv(u,x), V),

Ti mes(u, deriv(v,x))),

Exp(v, 2))

| deriv(Exp(u,n), x)
| deriv(Um nus(u), x)

Ti mes( Ti nes(deriv(u,x), Const(n)), Exp(u, n-1))
Um nus(deriv(u, X))
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| deriv(Log(u), x) = Div(deriv(u,x),u)
fun nthderiv(0, exp, X) exp
| nthderiv(n, exp, x) nt hderi v(n-1, deriv(exp, x), X)
fun goderiv n =
dotinmes(n, fn () => nthderiv(6, Exp(Di v(Const(1),Var(1)),3),1));

Naive Reverse

fun append (nil, ys) =ys
| append (x::xs, ys) = x :: (append (Xxs,ys))
fun nrev(nil) = nil
| nrev(a::bs) = append(nrev(bs), a::nil);

fun append” (nil, ys, p) = fulfill (p, ys)
| append’ (x::xr, ys, p) =

| et
val p° = lvar ()
val x’ = x::p’
in
bind (p, x');
append’ (xr, ys, p’)
end
fun append (xs, ys) =
| et
val p = lvar ()
in
append’ (xs, ys, p); p
end
fun rev nil = nil
| rev (x::xr) = append (rev xr, X :: nil)

Concfib

Concfib is implemented using CML; threads communicate through channels:

open CML
fun fib 0 =1
| fib1=1
| fibn =
| et
fun fib’ n =
| et
val res = channel ()
in
spawn (fn () => send (res, fib n));
recv res
end
in
fib” (n-1) + fib (n-2)
end
fun loop 1 = (fib 12; ())
| Toop n = (fib 12; loop (n-1))

fun loopit (_, [x]) =
| et
val b = Int.fronfString x
in
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case b of
NONE => 1
| SOVE i =>
(RunCML. doit ((fn ()
print "Done.\n";
0)
end
loopit _ =2

=> loop i),

NONE) ;

In DML, Concfib uses transients. The threads communicate by binding logic variables:

fun fib O

fib 1
fibn
| et

fun

in
fib
end

fun loop 1

| oop n

’

1
1
fib> n =
| et
val res = lvar ()
in
spawn (fn () => bind (res,
future res
end
(n- 1) +fib (n - 2)
fib 12
(fib 12 ; (loop (n - 1)))

fibn)):
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