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Its meaning might be that the task A with duration 7 must precede task B or,alternatively, that task B with duration 7 must precede task A, i.e., A and Bmust not overlap in time. In the left alternative, A can only take the value 1, 2 or3, and B the value 8, 9 or 10, and vice versa for the right alternative. The rei�edapproach only checks if an alternative becomes inconsistent, in which case theother alternative is installed. Hence, no further pruning arises in our example.But one can do better. We can derive that neither A nor B will take the value4; 5; 6 or 7. This information is lifted by constructive disjunction resulting in(possibly dramatic) pruning of the search space.While there exist several papers on constructive disjunction [3, 8, 9, 17], thereis not much published experience about the usefulness of constructive disjunctionfor practical applications. But this experience is crucial for considering construc-tive disjunction worthwile for one's own applications. The given examples in theliterature are sometimes incorrect or misleading in that the problems could bebetter solved by other approaches or do not scale up expectedly. Some readersmight feel this view this to be too negative, but to state cases where construc-tive disjunction does not pay o� can prevent developers from getting stuck or towaste a lot of e�orts. This is especially important for new techniques.By comparing the di�erent concepts of modelling disjunctive constraints inSection 3 we extract useful applications for constructive disjunction but statealso cases (like scheduling) where more advanced constraint techniques are knownwhich beat it by orders of magnitude. There are also occasions where constructivedisjunction can be useful in principle (e.g. packing problems) but where exam-ples in literature are better tackled by rei�ed constraints. Experiences in [8] andour work on college timetabling [7] supports our thesis that constructive disjunc-tion is a powerful and 
exible means to improve search (speedup of an order ofmagnitude) in cases, where the problem is rather complex and one needs to �ndnew heuristics for guiding the search.As an experimental platform we use Oz [15, 16], which allows to evaluatethe di�erent concepts of modelling disjunctive constraints in a single system. Ozis a new language providing for concurrency and object-oriented programming,which makes it well-suited for applications in AI. But what makes Oz uniqueis its expressiveness and 
exibility for problem-solving. By means of a user-accessible search combinator, search strategies can be individually programmedand problem-solving can be guided by inventing and exploring various heuristics.Moreover, a rich set of constraints allows to prune the search space in an e�cientway.2 Computation in Oz2.1 Computation ModelThe central notion in Oz is a computation space [14]. A computation spaceconsists essentially of a constraint store and a set of associated tasks.Constraints residing in the constraint store are equations between variablesand/or values, as for instance atoms or integers, and constraints x 2 D where2



D is a �nite domain, i.e., a �nite set of nonnegative integers. Oz provides e�-cient algorithms to decide satis�ability and implication for the constraints in theconstraint store.Tasks inspect the constraint store and are reduced if thestore contains su�cient information. On reduction a taskmay impose further constraints on the store or spawn newtasks. The computation space a task is spawned in is called storetask � � � taskits host space. A typical task is a disjunction like
or X::3#6 X::4#10
[] Y::1000#1050
endwhich spawns local computation spaces, e.g. the local store of the �rst clauseholds the constraint X2 f3; : : : ; 6g \ f4; : : : ; 10g (juxtaposition is read as conjunc-tion and, e.g., X::3#6 denotes the constraint X2 f3; : : : ; 6g). If the store of thehost space implies for example Y2 f0; : : : ; 10g, the second clause fails and, thus,the constraint X2 f4; : : : ; 6g will be added to the host space. If one alternative isimplied, e.g. Y = 1020 holds, the disjunctive task simply ceases to exist.2.2 PropagatorsFor more expressive constraints, like x+ y = z, deciding their satis�ability is notcomputationally tractable. Such constraints are not contained in the constraintstore but are modelled by so-called propagators.A propagator P can be thought of as a long-lived task which ampli�es theconstraint store S. The propagator can tell the store a constraint C wheneverthe conjunction S ^ P implies the constraint C. A propagator must remainin a computation space until it is implied by the constraint store. For instance,assume a store containing X,Y,Z 2 f1; : : : ; 10g. The propagator X+Y<:Z ampli�esthe store to X,Y 2 f1; : : : ; 8g and Z 2 f3; : : : ; 10g (since the other values cannotsatisfy the constraint).3 Telling the constraint Z=5 causes the propagator tostrengthen the store to X,Y 2 f1; : : : ; 3g. Imposing X=3 makes the propagatortelling Y=1.2.3 Disjunctive ConstraintsIn this section we discuss several ways to express disjunctive constraints in Oz forthe example jX � 1j = Y with X 2 f1; : : : ; 5g and Y 2 f0; 1; 5g. The constraintis equivalent to the disjunction X � 1 = Y _ 1�X = Y and the Oz expressions
X::1#5 Y::0|1|5|nil.Disjunctive Tasks. The example can be formulated as3 An appended colon marks a �nite domain propagator.3



or X - 1 =: Y
[] 1 - X =: Y
endSince the global information on variables is visible in the local stores, the propa-gator in the �rst clause ampli�es the �rst local store to X 2 f1; 2g and Y 2 f0; 1g.The store of the second clause contains the constraints X=1 and Y=0. Imposing theconstraint X=2 makes the second clause fail. Thus, the remaining local compu-tation space is lifted. The added propagator X-1=:Y imposes now the constraint
Y=1.Choice-Points. Oz provides also for disjunctive tasks, which can be used aschoice-points (the keyword or is replaced by dis). The choice is delayed until noother computation (like constraint propagation) can take place, i.e., the compu-tation space is stable (for details see [13]). The dis-task additionally prunes thesearch space by adopting the operational semantics of the or-task (distinguishingit from the choice-points as in CHIP [5]).Rei�ed Constraints. Rei�ed constraints are propagators that re
ect the va-lidity of a constraint into a f0; 1g-valued variable. Because rei�ed constraintsavoid local computation spaces, they can be implemented more e�ciently thandisjunctive tasks.Assume we want to reify a propagatorP in a variableB (in Oz we write B=(P)).If B is constrained to 1 (resp. 0), then P (resp. its negation :P ) is installed. Viceversa, if P is valid (resp. unsatis�able), B is bound to 1 (resp. 0). Our examplebecomes:
R1 = (X - 1 =: Y)
R2 = (1 - X =: Y)
R1 + R2 >: 0Since no propagator nor its negation is implied, the store is not changed. Tellingthe constraint X=2 is inconsistent with the propagator 1-X=:Y, which causes R2to be constrained to 0. The inequality R1+R2>:0 ampli�es the store by R1=1which in turn causes the propagator X-1=:Y to be installed. This propagatortells immediately the constraint Y=1.While constructive disjunction strengthens the pruning power of constraints,rei�ed constraints add more expressivity to a system (like soft constraints orpreferences in cost functions of branch & bound optimization). The cardinalitycombinator of [6], which states that the number of true constraints of a given setmust be in a given interval of integers, can be modelled with rei�ed constraintsstraightforwardly.Constructive Disjunction. Assume a computation space containing a storeS. A disjunctive combinator with n clauses spawns n local computation spaces,which consist of tasks T1; : : : ; Tn and constraint stores S1; : : : ; Sn, respectively.For making the disjunction constructive we have to lift common information from4



the clauses. We merge each store Si with the store S and call S0i the resultingstore after computation has terminated. Let L be the smallest set of constraintssuch that all S0i imply L. We now lift L by adding it to S. For �nite domainsthis means to compute the union of the domains of the occurring variables. In[8, 17] a more general form of constructive disjunction is proposed where alsothe tasks Ti are merged with the tasks T of the host space. In [3] it was shownthat this general approach is very expensive but gains only a little compared tothe variant we provide. Our approach is also justi�ed by the performance resultsobtained in [10]).Oz syntactically supports constructive disjunction (called CD in the sequel)by the keywords condis and end. The clauses can contain arbitrary �nite domainpropagators. Picking up our example, we obtain
condis X - 1 =: Y
[] 1 - X =: Y
endBut in contrast to the previous versions of disjunctions, X and Y are immediatelyconstrained to X 2 f1; 2g and Y 2 f0; 1g. This is the result of lifting commoninformation from the clauses, i.e., X 2 f1; 2gfirst [ f1gsecond and
Y 2 f0; 1gfirst[f0gsecond. Telling X=2 fails the second clause and promotes the�rst clause, which results in telling Y=1.3 ApplicationsIn this section we point out what kinds of constraints and problem solving tech-niques bene�t from CD. Of course, we cannot examine all possible applications,but the chosen three problems allow to gain important insights for the use ofdi�erent models for disjunctive constraints.3.1 General RemarksDue to its de�nition, CD prunes the search space only for those variables occur-ring in all alternatives of the disjunction. It may tighten the bounds of variableslike Z in
condis X + XDur =<: Z
[] Y + YDur =<: Z
endwhere X,Y might denote start times of tasks and XDur, YDur their respectivedurations, i.e., the task Z must be delayed until X and Y are �nished.Assume the distance of X and Y to be 4, i.e., the constraint j X � Y j= 4,and the domains X;Y 2 f1; : : : ; 5g. CD leads to X;Y 2 f1; 5g, i.e., holes are cutin the domains. But for the sake of e�ciency many constraint languages reasonmainly on the bounds of domains (for instance in Oz, we approximate s=:t bys=<:t s>=:t). Thus, CD may prune the search space, but other constraints maynot pro�t from the occurring domain reduction. Only those constraints that5



reason on the whole domain bene�t from these holes. As an example considerthe constraint that at least one of X and Y must be 3. This constraint fails withthe distance-constraint j X � Y j= 4, if X;Y 2 f1; : : : ; 5g holds.Because constraint propagation is usually incomplete, choices must be madeto assign values to variables (called labelling). Labelling strategies, which reasonon the size of the domains, like �rst-fail (choose the variable with the smallestdomain �rst), may bene�t from CD's domain pruning: More information onvariables is made available.But in any case, one has to be aware that CD is computationally moreexpensive than rei�ed constraints (see also the following sections). Hence, if thee�ects of CD cannot be exploited, it may slow down an application.3.2 Square PackingThe problem is to pack a given set of squares into a master-rectangle such thatall squares are used and no squares overlap [17]. The constraint that two squaresat (XA;YA) and (XB;YB) with sizes SA and SB must not overlap (note thatthe coordinates are �nite domains) employs CD:
condis XA + SA =<: XB % X-clause
[] XB + SB =<: XA % X-clause
[] YA + SA =<: YB % Y-clause
[] YB + SB =<: YA % Y-clause
endThe X-clauses (resp. Y -clauses) express that squares do not overlap horizontally(resp. vertically). As soon as only the two X- or the two Y -clauses are left(because the others are failed), the domains may be reduced by CD. For exampleXA+ 8 � XB _ XB + 8 � XA with XA;XB 2 f1; : : : ; 10g leads to pruning XAand XB to f1; 2; 9; 10g. As an additional constraint we have that for each X-(and Y -) coordinate P the sum of the square sizes Si intersecting this coordinatemust be less than the respective length L of the rectangle: PBi*Si=<:L, where
Bi=(Xi::P-Si+1#P). The occurring holes by CD propagation can only fail therei�ed constraint, i.e., Bi=0. Thus, CD does not lead to further pruning for thisproblem.In [3] disjunctive constraints are modelled by CD and rei�ed constraints.The authors claim that the constructive approach solves the problem with lesschoice-points for �rst-fail labelling, i.e., the occurring holes lead the search toa solution earlier. But this result is incorrect4; for one reported example bothCD and rei�ed constraints lead to the same number of choice-points, while forthe other example, the rei�ed approach needs half of the choice-points as needed4 We assume that this is due to a compiler error since replacing the suspicious codewith semantical equivalent code allows us to reproduce in Agents [3] the same resultsas in Oz. For the �rst example we have rectangle length L=10 and the sizes are [6
4 4 4 2 2 2 2], and for the second we have L=20 and [9 8 8 7 5 4 4 4 4
4 3 3 3 2 2 1 1] for the sizes. 6



by the constructive approach. If one uses naive labelling, the number of choice-points is the same for both approaches and examples. For this application, CDis not a good choice.If one uses a special labelling strategy [17] (since �rst-fail does not scale upfor larger problems), the number of choice-points are the same for all approaches.The following table gives the runtimes taken on a Sparc10 for two examples.CD Rei�ed or CD/Rei CD/orExpl. 1 780ms 670ms 770ms 1.16 1.01Expl. 2 2190ms 1640ms 2970ms 1.34 0.74While CD does not pay o� for this application, more complex packing prob-lems may bene�t from it (e.g. if a minimum stock must be guaranteed, likeP
Bi*Si>:L; see also 3.4).3.3 SchedulingThe constraint that two tasks X and Y with durations XDur and YDur, respec-tively, must not overlap in time if they require the same resource, occurs oftenin scheduling:

condis X + XDur =<: Y
[] Y + YDur =<: X
endAs seen above, this constraint may cut holes in domains. In [8, 3], the bridge-problem is used as an example. The problem is to �nd the optimal schedule forbuilding a bridge with limited resources and some additional time constraints.In [3] choice-points without active pruning, rei�ed constraints and CD are com-pared for �nding the �rst solution by �rst-fail labelling. The number of labellingsteps grows from CD via choice-points to rei�ed constraints. But this exam-ple is misleading because the optimal solution (in which one is interested forthis problem) cannot be found after more than 10 million choices also with theCD-approach.By the choice-point approach the optimal solution can be found, but reorder-ing the choices leads to runtimes which are several magnitudes worse. Hence, thisapproach is not robust against di�erent formulations of the problemTherefore, in [8] the choice-points are extended by constraint lifting, accord-ing to CD. They obtain the optimal solution and the proof of optimality in 881backtracking steps selecting the next choice-point by a strategy considering theinvolved variable domains in the disjunctions (being robust against reordering).But modeling the disjunctive constraints by CD is too weak to solve reallyhard scheduling problems. There are constraint techniques inspired from Opera-tions Research, which allow to solve hard scheduling problems [4, 2] (for examplethe proof of optimality for the notorious MT10 problem (see [11]) needs about2000 choices in Oz). These techniques exploit domain speci�c knowledge. Whilefor hard problems techniques like task intervals [4] or cumulative constraints [1]are used, the bridge problem can be solved by a rather naive labelling strategy7



and rei�ed constraints needing only 176 backtracking steps. We choose the mostdemanded resource �rst and schedule it completely. For this resource we �nd thetasks which can be �rst on it, choose the one with the smallest possible starttime and state constraints that the remaining tasks are scheduled after the cho-sen one. The disjunctions are modelled by rei�ed constraints while the choicesare made by the dis-task of Oz, i.e., we combine di�erent ways of modellingdisjunctive constraints.53.4 Real-world ApplicationsIn [8] a more complex aircraft sequencing application is reported, where CDresults in a speedup by a factor of 6.At DFKI we have solved a real-life college timetabling problem [7] with sev-eral complex constraints (like a limited number of rooms or that teachers mustteach at most three days a week). A frequently occuring constraint is that lec-tures must not overlap in time. This constraint was already seen above and CD isworthwile to be considered here. Further we need to express that a certain num-ber of lectures may overlap. Therefore non-overlapping is rei�ed in the variable
B :
condis B=:1 X+XDur>:Y Y+YDur>:X
[] B=:0 X+XDur=<:Y
[] B=:0 Y+YDur=<:X
endIf B=0 is known, CD pays o� because the disjunction results in a simple non-overlapping constraint. Modelling these disjunctions constructively leads to strongerpruning because there occur rei�ed constraints B=(X::D). Ocurring holes mayconstrain B to 0. Because the B's essentially occur in equations PBi=:L (likethat the lectures of a teacher must be on L days), CD pays o� for propagation.As a labelling strategy we use a modi�ed �rst-fail to select the variables,which bene�ts also from the more pruned domains. In comparison to rei�edconstraints, the resulting speedup by using CD is about an order of magnitude(see also [7]). For this example we have a combination of more pruning andbene�tting labelling heuristics.4 ConclusionWe have compared constructive disjunction with other ways to model disjunctiveconstraints and have shown that constructive disjunction does not pay o� forproblems like scheduling where domain speci�c knowledge can be used in aconstraint setting. But it is very useful for applications which are rather complex,where a special purpose strategy is unknown but 
exibility is required. Here itcan prune the search space and, thus, allows for better heuristics by providing5 If we model the disjunctions by CD and or-tasks,respectively, we obtain the runtimerelations CD/Rei�ed=1.8 and CD/or=0.6.8
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