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AbstratNemhauser and Trik presented the problem of �nding a timetable for the 1997/98Atlanti Coast Conferene (ACC) in basketball. Their solution, found with a om-bination of integer programming and exhaustive enumeration, was aepted by theACC.Finite-domain onstraint programming is another programming tehnique that anbe used for solving ombinatorial searh problems suh as sports tournament shedul-ing. This paper presents a solution of round robin tournament planning based on�nite-domain onstraint programming. The approah yields a dramati performaneimprovement, whih makes an integrated interative software solution feasible.
1 Introdution
Round robin tournaments are popular in many sports disiplines. They onsist of su-essions of dates in whih eah team plays eah other team a �xed number of times(twie in a double round robin). Suh tournaments beome omputationally interesting,if onstraints prevent the reuse of well-known timetables. Suh a ase is presented byNemhauser and Trik (1998) where a host of riteria oming from teams, fans and mediamust be satis�ed. They show how the riteria are exploited in three phases of a solutionproess, implemented using integer programming and expliit enumeration, and report a\turn-around-time" of 24 hours, whih means it takes one day of omputing time from1



speifying/modifying the riteria using feedbak from the ACC organizers to proposingnew solutions.An alternative approah to solving suh a ombinatorial searh problem is �nite-domain onstraint programming. This paper shows how onstraint programming anbe used for solving all three phases of the proess and reduing the turn-around-time tobelow one minute on a omputer with similar performane as the one used by Nemhauserand Trik. This speedup makes it pratial to enorporate the approah in an interativetool for round robin sheduling.Finite-domain onstraint programming is introdued in the next setion. The ACC1997/98 tournament sheduling problem is given in Setion 3. Setion 4 explains thedeomposition into three phases. Setions 5, 6 and 7 desribe the modeling and imple-mentation of these phases using �nite-domain onstraint programming.
2 Constraint Programming
Finite-domain onstraint programming is a tehnique designed for solving ombinatorialsearh problems. It evolved from researh in onstraint logi programming languages|desribed by Ja�ar and Maher (1994)|and led to the development of onstraint pro-gramming languages suh as CHIP desribed by Dinbas et al. (1988), and Oz desribedby Smolka (1995), and the onstraint programming library ILOG Solver desribed byPuget (1994). Stukey and Marriott (1998) explain the approah in detail and Wal-lae (1996) presents an overview of appliations of �nite-domain onstraint programming.Every variable of the model is represented by a �nite-domain variable. A onstraintstore stores information on suh a variable in the form of the set of possible values thatthe variable an take; this set is alled the urrent domain of the variable. More formally,the onstraint store is a onjuntion of onstraints of the form x 2 S, where S is a setof integers. Computation starts with an initial domain for eah variable as given in themodel. Some onstraints an be diretly entered in the onstraint store. For example, theonstraint x 6= 5 an be expressed in the onstraint store by removing 5 from the domainof x.
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Other more omplex onstraints are translated by the programmer into omputationalagents alled propagators. Eah propagator observes the variables given by the orre-sponding onstraint in the problem. Whenever possible, it strengthens the onstraintstore with respet to these variables by exluding values from their domain aording tothe orresponding onstraint. For example, a propagator for the onstraint x � y observesthe upper and lower bounds of the domains of x and y. A possible strengthening onsistsof removing all values from the domain of x that are greater than the upper bound ofthe domain of y. Apart from arithmeti onstraints, propagators an express omplexsymboli relationships between variables, suh as the onstraint that the values of givenvariables should be distint integers.The proess of propagation ontinues until no propagator an further strengthen theonstraint store. The onstraint store is said to be stable. At this point, many problemvariables typially have still non-singleton domains. Thus the onstraint store does notrepresent a solution, and searh beomes neessary.Searh for solutions is implemented by hoie points. A hoie point generates aonstraint . From the urrent stable onstraint store s, two new onstraint stores arereated by adding  and :, respetively, to s. It is quite possible that the new onstraintstores are not stable, in other words  or : trigger some propagators in the respetive newstore. After stability is reahed, this branhing proess is ontinued reursively on bothsides until every leaf of the resulting searh tree is either inonsistent or every variablehas a unique value. The hoie of the onstraint  at eah branhing determines the shapeand size of the searh tree and thus is a ruial fator for performane of the searh.A mehanism to systematially generate these onstraints is alled a searh strategy. Aommon searh strategy is based on variable enumeration, i.e. the onstraints  have theform x = v for some variable x and some value v from its domain.A onstraint programming system takes are of ativating propagators, reahing sta-bility and performing the searh. The programmer an onentrate on translating the on-straints into appropriate propagators and speifying the searh strategy. Finite-domainonstraint programming systems support this task through libraries of propagators and
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searh strategies.
3 The ACC 1997/98 Tournament Sheduling Problem
The double round robin sheme determines that every team i plays against every otherteam exatly twie during the ompetition, one at the plae of team i (a home mathfor i) and one at the other team's plae (an away math for i). The �rst of the twomathes is alled the �rst leg, the seond is the return math.A temporally dense double round robin (DDRR) for n teams distributes the n(n� 1)mathes over a minimal number of dates suh that every team plays at most one mathper date. If n is even, the number of dates is 2(n� 1). A DDRR with an odd number ofteams onsists of 2n dates in eah of whih n� 1 teams play and one team does not. Thisteam is said to have a bye.The ACC 1997/98 shedule in male basketball desribed by Nemhauser and Trik(1998) was a DDRR onsisting of nine teams: Clemson (abbreviation Clem; team 1),Duke (Duke; 2), Florida State (FSU; 3), Georgia Teh (GT; 4), Maryland (UMD; 5), NorthCarolina (UNC; 6), North Carolina State (NCSt; 7), Virginia (UVA; 8), and Wake Forest(Wake; 9). The problem was to �nd a DDRR timetable whose 18 dates are distributedover the period of nine weeks starting Deember 31 1997 (date 1, a Wednesday) andending Marh 1 1998 (date 18, a Sunday) suh that there is one weekday date and oneweekend date per week, subjet to a number of riteria. For the purpose of omparison,only the riteria that are employed by Nemhauser and Trik (1998) and Trik (1998) areonsidered here.

1. Mirroring. The dates are grouped into pairs (r1; r2), suh that eah team willget to play against the same team in dates r1 and r2. Suh a grouping is alled amirroring sheme. Nemhauser and Trik �x the mirroring sheme to
m = f(1; 8); (2; 9); (3; 12); (4; 13); (5; 14); (6; 15); (7; 16); (10; 17); (11; 18)g

to ater for one of the idiosynrati riteria (see Criteria 9 below). To ease theomparison with their work, this mirroring is used throughout this paper.4



2. Initial and Final Homes and Aways. Every team must play home on at leastone of the �rst three dates. Every team must play home on at least one of the lastthree dates. No team an play away on both last dates.
3. Home/Away/Bye Pattern Criteria. No team may have more than two awaymathes in a row. No team may have more than two home mathes in a row. Noteam may have more than three away mathes or byes in a row. No team may havemore than four home mathes or byes in a row.
4. Weekend Pattern. Of the weekends, eah team plays four at home, four away,and one bye.
5. First Weekends. Eah team must have home mathes or byes at least on two ofthe �rst �ve weekends.
6. Rival Mathes. Every team exept FSU has a traditional rival. The rival pairs areClem-GT, Duke-UNC, UMD-UVA, and NCSt-Wake. In the last date, every teamexept FSU plays against its rival, unless it plays against FSU or has a bye.
7. Popular Mathes in February. The following pairings must our at least onein dates 11 to 18: Duke-GT, Duke-Wake, GT-UNC, UNC-Wake.
8. Opponent Sequene Criteria. No team plays in two onseutive dates awayagainst Duke and UNC. No team plays in three onseutive dates against Duke,UNC and Wake (independent of home/away).
9. Idiosynrati Criteria. UNC plays its rival Duke in the last date and in date 11.UNC plays Clem in the seond date. Duke has a bye in date 16. Wake does not playhome in date 17. Wake has a bye in the �rst date. Clem, Duke, UMD and Wakedo not play away in the last date. Clem, FSU, GT and Wake do not play away inthe �rst date. Neither FSU nor NCSt have a bye in last date. UNC does not havea bye in the �rst date.
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Among all solutions that ful�ll these riteria, Nemhauser and Trik hose those solu-tions that suitably satisfy a number of further preferenes, for �nal seletion by the ACC.These preferenes and the resulting postproessing is beyond the sope of this work.
4 Computing Round Robin Tournament Shedules
Previous works on round robin sheduling by Cain (1977), de Werra (1988), Shreuder(1992), Shaerf (1996), and Nemhauser and Trik (1998) generally agree on a deompo-sition of the sheduling proess into three phases, namely pattern generation, pattern setgeneration and timetable generation. MAloon, Tretko� and Wetzel (1997) use onstraintprogramming to solve a related problem, in whih the onept of home and away games isreplaed by resoures alled periods, and therefore this deomposition is not appliable.A pattern indiates the way in whih a team an play home, away and bye throughoutthe tournament. In the ACC 1997/98 ase, patterns are subjet to Criteria 1 through 5given in the previous setion. The following pattern meets these riteria; here, a homegame is represented by the symbol +, an away game by � and a bye by b.dates 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18pattern � + b � + + � + � � + b + � � + + �After generating all patterns that meet the given riteria, sets of n patterns are om-puted. The patterns in suh a pattern set must have properties that enable the onstru-tion of a timetable based on its patterns.From a given pattern set, timetables are onstruted by deiding whih team playsaording to whih pattern and against whih opponent in eah round.
5 Patterns
A suitable onstraint programming model for pattern generation onsists of 0/1 variableshj ; aj and bj , 1 � j � 18. A team that plays aording to the pattern represented bythese variables plays home (away, bye) at date j if and only if hj = 1 (aj = 1, bj = 1).The onstraints on these variables are given in Table 1.
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1. For all dates j: hj + aj + bj = 12. For all pairs of dates (j; j0) 2 m (m is given in Constraint 1 in Setion 3):hj = aj0 , aj = hj0 , bj = bj03. h1 + h2 + h3 � 1, h16 + h17 + h18 � 1, a17 + a18 < 24. For all j � 16: aj + aj+1 + aj+2 < 3, hj + hj+1 + hj+2 < 3,for all j � 15: aj + bj + aj+1 + bj+1 + aj+2 + bj+2 + aj+3 + bj+3 < 4,for all j � 14: hj+bj+hj+1+bj+1+hj+2+bj+2+hj+3+bj+3+hj+4+bj+4 < 55. (Pj2f2;4;:::;18g hj) = 4, (Pj2f2;4;:::;18g aj) = 4, (Pj2f2;4;:::;18g bj) = 16. (Pj2f2;4;6;8;10g hj + bj) � 27. b1 + a18 < 2, b1 + h17 < 2, b16 + a18 < 2Table 1: The Constraints for Patterns
The �rst onstraint expresses that a team plays either home, away or has a bye ineah round. Constraints 2 through 6 orrespond to the �rst �ve ACC 1997/98 riteria inSetion 3. Constraints 7 stem from Criteria 9 in Setion 3, sine only one team an havea bye in a given date.Constraint programming systems provide propagators for all these arithmeti on-straints. The most e�etive searh strategy in our ase seems to be to enumerate the h,a and b variables date-wise, i.e. in the order h1; a1; b1; h2; a2; b2; : : : ; b18.For ACC 1997/98, Nemhauser and Trik argue that expliit enumeration (\generateand test") �nds all 38 patterns in reasonable time, but do not give runtimes. Using theabove model, a onstraint program performs all solution searh in 0.44 seonds using117 hoie points. This and all other runtimes given in this work were obtained by theonstraint-based round robin tournament planning software Friar Tuk developed by theauthor and given in Henz (1999), on a PC with a 233 MHz Pentium II proessor and 64MBytes of RAM. Friar Tuk is implemented using the onstraint programming systemMozart, Mozart Consortium (1999).
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6 Pattern Sets
The next step is to generate suitable sets of 9 patterns. Graph-theoretial results over theexistene and generation of pattern sets with useful properties; see de Werra (1988) andShreuder (1992). In the presene of irregular onstraints on patterns suh as Criteria 3 inSetion 3 the pattern set problem beomes a ombinatorial searh problem. The followingmodel is suitable for a solution using onstraint programming.The 38 feasible patterns are represented by three 38 � 9 matries h, a, and b of 0/1values, where hi;j , (ai;j , bi;j) indiate whether pattern i �xes date j to a home game (awaygame, bye). For eah pattern i, a 0/1 variable xi indiates whether this pattern ours inthe resulting pattern set. The onstraints are1. Pi xi = 92. For all dates j: (Pi hi;jxi = 4); (Pi ai;jxi = 4); (Pi bi;jxi = 1)Following Trik (1998) we exlude pairs of patterns in whih there is no possible meetingdate for orresponding teams. More formally,

3. For every pair i; i0 s.t. i 6= i0, 8j(hi;j = 0_ai0;j = 0) and 8j(ai;j = 0_hi0;j = 0):xi + xi0 � 1Nemhauser and Trik model pattern set generation as an optimization problem and useinteger programming to solve it. They report that all 17 pattern sets are found by solvinga sequene of 17 integer programs with an overall runtime under 1 minute on a SunSparstation 20 with CPLEX version 4.0. In eah run, a onstraint was added to theprevious integer program that preludes the previous solution.For onstraint programming, there is no need for introduing an objetive funtion andtherefore the modeling and implementation is simpler than for the integer programmingapproah. A onstraint program for the above model performs all solution searh in 3.1seonds with 176 hoie points, using simple enumeration of the variables xi.
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7 Timetables
This step generates feasible timetables from a given pattern set. Two approahes fortimetable generation have been desribed. The �rst approah|proposed by Shreuder(1992) and used by Nemhauser and Trik|generates timetables of \plaeholder teams"�rst and then assigns teams to plaeholders. This approah is also taken in previous workon using onstraint programming for DDRR sheduling by Shaerf (1996). The disad-vantage of this approah for ACC 1997/98 is that the team-spei� Criteria 6 through 9annot be exploited while generating timetables of plaeholders. Nemhauser and Trikreport a runtime of 24 hours on a Sun Sparstation 20 to ompute all timetables based onthe 17 pattern sets for this approah using integer programming and expliit enumeration.The seond approah|skethed by Cain (1977)|assigns teams to pattern sets, andthen opponent teams for eah team and date. This work reasts Cain's approah in theframework of �nite-domain onstraint programming. The following model assumes thatthe pattern set is given in the form of 9 � 18 matries H, A and B of 0/1 values whoseentriesHi;j (Ai;j , Bi;j) indiate home mathes (away mathes, byes) for pattern i in date j.The target timetable is represented by a 9 � 18 matrix �, whose variables �i;j rangeover 0; : : : ; 9 and tell the opponent team against whih team i plays in date j (0 standsfor bye), and three 9� 18 matries H, A and B of 0/1 variables whose entries Hi;j (Ai;j ,Bi;j) tell if team i plays home (plays away, has a bye) in date j.The onstraints on �, H, A and B are given in Table 2. Here, distint is a onstraintthat fores all its arguments to be distint integers. (x := y) stands for a 0/1 variablewhih is 1 if and only if x is equal to y; (x 2 s) stands for a 0/1 variable whih is 1 if andonly if x is an element of s. Suh onstraints that reet the validity of another onstraintin a 0/1 variable were introdued in the ontext of onstraint programming by Older andBenhamou (1993). For suh onstraints, the term rei�ed onstraint was oined by GertSmolka and appeared �rst in Henz and W�urtz (1995). Expressions formed by the logialoperations ), ^ and _ represent onstraints that operate on 0/1 variables. Constraints1 through 7 desribe general properties of DDRRs with an odd number of teams. Note
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1. For all dates j: distint(�1;j; : : : ; �9;j)2. For all teams i; i0, i 6= i0, and dates j: (�i;j := i0) = (�i0;j := i)3. For all teams i; i0, i 6= i0: (Pj2f1;:::;18g(�i;j := i0)) = 24. For all teams i and dates j: �i;j 6= i5. For all teams i and dates j: (�i;j := 0) = Bi;j6. For all teams i; i0, i 6= i0, and dates j: (�i;j := i0)) ((Hi;j^Ai0;j)_(Ai;j^Hi0;j))7. For all teams i and dates j: Hi;j +Ai;j + Bi;j = 18. For all pairs of teams (i; i0) 2 f(1; 4); (2; 6); (5; 8); (7; 9)g:(�i;18 := i0) _ (�i;18 := 3) _ (�i;18 := 0)9. For all pairs of teams (i; i0) 2 f(2; 4); (2; 9); (4; 6); (6; 9)g:(Pj2f11;:::;18g(�i;j := i0)) � 110. For all teams i and dates j 2 f1; : : : ; 17g:(�i;j 2 f2; 6g) +Ai;j + (�i;j+1 2 f2; 6g) +Ai;j+1 < 4,for all teams i and dates j 2 f1; : : : ; 16g:(�i;j 2 f2; 6; 9g) + (�i;j+1 2 f2; 6; 9g) + (�i;j+2 2 f2; 6; 9g) < 311. �6;11 = 2, �6;18 = 2, �6;2 = 1, B2;16 = 1, H9;17 = 0, B9;1 = 1, A1;18 = 0,A2;18 = 0, A5;18 = 0, A9;18 = 0, A1;1 = 0, A3;1 = 0, A4;1 = 0, A9;1 = 0,B3;18 = 0, B7;18 = 0, B6;1 = 0.Table 2: The Constraints for Timetables
that Constraints 4 are redundant due to Constraints 3. Adding redundant onstraintsto ahieve earlier pruning of the searh tree is an important onstraint programmingtehnique. Constraints 8 through 11 orrespond to the ACC 1997/98 Criteria 6 through 9in Setion 3.To onnet the given pattern set to the target timetable, nine �nite-domain variablespi, 1 � i � 9, ranging over 1; : : : ; 9 are introdued. Eah team i plays aording to thepattern in row pi of H, A and B. The following relationship links the given pattern setwith the target timetable, using the variables pi as indies.

For all teams i and dates j: Hpi;j = Hi;j ; Api;j = Ai;j ; Bpi;j = Bi;j
This relationship is expressible with the so-alled element onstraint desribed by
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Dinbas, Simonis and Van Hentenryk (1988). The element onstraint takes as argumentsa �nite-domain variable k, a vetor of integers v and a �nite-domain variable w.
el(k; v; w)

The semantis is vk = w. A orresponding propagator an restrit the possible values fork, if a value in v is eliminated from w, and it an eliminate a number x from w, if thelast index that pointed to an x in v is eliminated from k. Both propagation diretionsare essential here. The following Constraints 12 desribe the desired relationship; here Hj(Aj , Bj) stands for the jth olumn of the matrix H (A, B).
12. For all teams i and dates j: el(pi;Hj ;Hi;j), el(pi; Aj ;Ai;j), el(pi; Bj;Bi;j).All major onstraint programming systems provide propagators for all onstraints re-quired, inluding el, distint, logial and rei�ed onstraints.The searh strategy of Cain's method �rst assigns patterns to teams by enumeratingthe variables in p. In this proess, the matries H, A and B are gradually being deter-mined. The propagators for the element onstraints, together with the propagators forthe onstraints 8 through 11 in Table 2, ahieve a dramati pruning of the searh tree inthis proess.Next, the variables in � are enumerated. Here, the propagators orresponding tothe onstraints in Table 2 ahieve further pruning. Apparently, the best strategy is toenumerate date-wise, i.e. in the order �1;1; �2;1; : : : ; �n;1; �1;2; : : : ; �n;d. A onstraintprogram for this approah performs all solution searh suessively on all 17 pattern setsin 53.7 seonds using 476 hoie points, leading to 179 solutions.

8 Conlusion
Modeling and solving sports tournament sheduling problems with �nite-domain on-straint programming an lead to eÆient omputation of timetables. All 179 solutionsto the ACC 1997/98 tournament sheduling problem presented by Nemhauser and Trik(1998) are found in less than one minute using onstraint programming, whereas Nem-
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hauser and Trik report an overall runtime of about 24 hours (both on omputers withsimilar performane) using exhaustive enumeration and integer programming.Nemhauser and Trik report that problems of this kind require multiple yles ofproblem re�nement in ollaboration with the tournament organizers to obtain a timetablethat satis�es all parties involved. In suh a senario, the advantage of an interative andeÆient software beomes even more obvious. The results reported in this paper showthat �nite-domain onstraint programming an provide the base for suh a software, asrealized in the round robin sheduler Friar Tuk, Henz (1999).
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