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Abstra
tNemhauser and Tri
k presented the problem of �nding a timetable for the 1997/98Atlanti
 Coast Conferen
e (ACC) in basketball. Their solution, found with a 
om-bination of integer programming and exhaustive enumeration, was a

epted by theACC.Finite-domain 
onstraint programming is another programming te
hnique that 
anbe used for solving 
ombinatorial sear
h problems su
h as sports tournament s
hedul-ing. This paper presents a solution of round robin tournament planning based on�nite-domain 
onstraint programming. The approa
h yields a dramati
 performan
eimprovement, whi
h makes an integrated intera
tive software solution feasible.
1 Introdu
tion
Round robin tournaments are popular in many sports dis
iplines. They 
onsist of su
-
essions of dates in whi
h ea
h team plays ea
h other team a �xed number of times(twi
e in a double round robin). Su
h tournaments be
ome 
omputationally interesting,if 
onstraints prevent the reuse of well-known timetables. Su
h a 
ase is presented byNemhauser and Tri
k (1998) where a host of 
riteria 
oming from teams, fans and mediamust be satis�ed. They show how the 
riteria are exploited in three phases of a solutionpro
ess, implemented using integer programming and expli
it enumeration, and report a\turn-around-time" of 24 hours, whi
h means it takes one day of 
omputing time from1



spe
ifying/modifying the 
riteria using feedba
k from the ACC organizers to proposingnew solutions.An alternative approa
h to solving su
h a 
ombinatorial sear
h problem is �nite-domain 
onstraint programming. This paper shows how 
onstraint programming 
anbe used for solving all three phases of the pro
ess and redu
ing the turn-around-time tobelow one minute on a 
omputer with similar performan
e as the one used by Nemhauserand Tri
k. This speedup makes it pra
ti
al to en
orporate the approa
h in an intera
tivetool for round robin s
heduling.Finite-domain 
onstraint programming is introdu
ed in the next se
tion. The ACC1997/98 tournament s
heduling problem is given in Se
tion 3. Se
tion 4 explains thede
omposition into three phases. Se
tions 5, 6 and 7 des
ribe the modeling and imple-mentation of these phases using �nite-domain 
onstraint programming.
2 Constraint Programming
Finite-domain 
onstraint programming is a te
hnique designed for solving 
ombinatorialsear
h problems. It evolved from resear
h in 
onstraint logi
 programming languages|des
ribed by Ja�ar and Maher (1994)|and led to the development of 
onstraint pro-gramming languages su
h as CHIP des
ribed by Din
bas et al. (1988), and Oz des
ribedby Smolka (1995), and the 
onstraint programming library ILOG Solver des
ribed byPuget (1994). Stu
key and Marriott (1998) explain the approa
h in detail and Wal-la
e (1996) presents an overview of appli
ations of �nite-domain 
onstraint programming.Every variable of the model is represented by a �nite-domain variable. A 
onstraintstore stores information on su
h a variable in the form of the set of possible values thatthe variable 
an take; this set is 
alled the 
urrent domain of the variable. More formally,the 
onstraint store is a 
onjun
tion of 
onstraints of the form x 2 S, where S is a setof integers. Computation starts with an initial domain for ea
h variable as given in themodel. Some 
onstraints 
an be dire
tly entered in the 
onstraint store. For example, the
onstraint x 6= 5 
an be expressed in the 
onstraint store by removing 5 from the domainof x.
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Other more 
omplex 
onstraints are translated by the programmer into 
omputationalagents 
alled propagators. Ea
h propagator observes the variables given by the 
orre-sponding 
onstraint in the problem. Whenever possible, it strengthens the 
onstraintstore with respe
t to these variables by ex
luding values from their domain a

ording tothe 
orresponding 
onstraint. For example, a propagator for the 
onstraint x � y observesthe upper and lower bounds of the domains of x and y. A possible strengthening 
onsistsof removing all values from the domain of x that are greater than the upper bound ofthe domain of y. Apart from arithmeti
 
onstraints, propagators 
an express 
omplexsymboli
 relationships between variables, su
h as the 
onstraint that the values of givenvariables should be distin
t integers.The pro
ess of propagation 
ontinues until no propagator 
an further strengthen the
onstraint store. The 
onstraint store is said to be stable. At this point, many problemvariables typi
ally have still non-singleton domains. Thus the 
onstraint store does notrepresent a solution, and sear
h be
omes ne
essary.Sear
h for solutions is implemented by 
hoi
e points. A 
hoi
e point generates a
onstraint 
. From the 
urrent stable 
onstraint store 
s, two new 
onstraint stores are
reated by adding 
 and :
, respe
tively, to 
s. It is quite possible that the new 
onstraintstores are not stable, in other words 
 or :
 trigger some propagators in the respe
tive newstore. After stability is rea
hed, this bran
hing pro
ess is 
ontinued re
ursively on bothsides until every leaf of the resulting sear
h tree is either in
onsistent or every variablehas a unique value. The 
hoi
e of the 
onstraint 
 at ea
h bran
hing determines the shapeand size of the sear
h tree and thus is a 
ru
ial fa
tor for performan
e of the sear
h.A me
hanism to systemati
ally generate these 
onstraints is 
alled a sear
h strategy. A
ommon sear
h strategy is based on variable enumeration, i.e. the 
onstraints 
 have theform x = v for some variable x and some value v from its domain.A 
onstraint programming system takes 
are of a
tivating propagators, rea
hing sta-bility and performing the sear
h. The programmer 
an 
on
entrate on translating the 
on-straints into appropriate propagators and spe
ifying the sear
h strategy. Finite-domain
onstraint programming systems support this task through libraries of propagators and
3



sear
h strategies.
3 The ACC 1997/98 Tournament S
heduling Problem
The double round robin s
heme determines that every team i plays against every otherteam exa
tly twi
e during the 
ompetition, on
e at the pla
e of team i (a home mat
hfor i) and on
e at the other team's pla
e (an away mat
h for i). The �rst of the twomat
hes is 
alled the �rst leg, the se
ond is the return mat
h.A temporally dense double round robin (DDRR) for n teams distributes the n(n� 1)mat
hes over a minimal number of dates su
h that every team plays at most one mat
hper date. If n is even, the number of dates is 2(n� 1). A DDRR with an odd number ofteams 
onsists of 2n dates in ea
h of whi
h n� 1 teams play and one team does not. Thisteam is said to have a bye.The ACC 1997/98 s
hedule in male basketball des
ribed by Nemhauser and Tri
k(1998) was a DDRR 
onsisting of nine teams: Clemson (abbreviation Clem; team 1),Duke (Duke; 2), Florida State (FSU; 3), Georgia Te
h (GT; 4), Maryland (UMD; 5), NorthCarolina (UNC; 6), North Carolina State (NCSt; 7), Virginia (UVA; 8), and Wake Forest(Wake; 9). The problem was to �nd a DDRR timetable whose 18 dates are distributedover the period of nine weeks starting De
ember 31 1997 (date 1, a Wednesday) andending Mar
h 1 1998 (date 18, a Sunday) su
h that there is one weekday date and oneweekend date per week, subje
t to a number of 
riteria. For the purpose of 
omparison,only the 
riteria that are employed by Nemhauser and Tri
k (1998) and Tri
k (1998) are
onsidered here.

1. Mirroring. The dates are grouped into pairs (r1; r2), su
h that ea
h team willget to play against the same team in dates r1 and r2. Su
h a grouping is 
alled amirroring s
heme. Nemhauser and Tri
k �x the mirroring s
heme to
m = f(1; 8); (2; 9); (3; 12); (4; 13); (5; 14); (6; 15); (7; 16); (10; 17); (11; 18)g

to 
ater for one of the idiosyn
rati
 
riteria (see Criteria 9 below). To ease the
omparison with their work, this mirroring is used throughout this paper.4



2. Initial and Final Homes and Aways. Every team must play home on at leastone of the �rst three dates. Every team must play home on at least one of the lastthree dates. No team 
an play away on both last dates.
3. Home/Away/Bye Pattern Criteria. No team may have more than two awaymat
hes in a row. No team may have more than two home mat
hes in a row. Noteam may have more than three away mat
hes or byes in a row. No team may havemore than four home mat
hes or byes in a row.
4. Weekend Pattern. Of the weekends, ea
h team plays four at home, four away,and one bye.
5. First Weekends. Ea
h team must have home mat
hes or byes at least on two ofthe �rst �ve weekends.
6. Rival Mat
hes. Every team ex
ept FSU has a traditional rival. The rival pairs areClem-GT, Duke-UNC, UMD-UVA, and NCSt-Wake. In the last date, every teamex
ept FSU plays against its rival, unless it plays against FSU or has a bye.
7. Popular Mat
hes in February. The following pairings must o

ur at least on
ein dates 11 to 18: Duke-GT, Duke-Wake, GT-UNC, UNC-Wake.
8. Opponent Sequen
e Criteria. No team plays in two 
onse
utive dates awayagainst Duke and UNC. No team plays in three 
onse
utive dates against Duke,UNC and Wake (independent of home/away).
9. Idiosyn
rati
 Criteria. UNC plays its rival Duke in the last date and in date 11.UNC plays Clem in the se
ond date. Duke has a bye in date 16. Wake does not playhome in date 17. Wake has a bye in the �rst date. Clem, Duke, UMD and Wakedo not play away in the last date. Clem, FSU, GT and Wake do not play away inthe �rst date. Neither FSU nor NCSt have a bye in last date. UNC does not havea bye in the �rst date.
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Among all solutions that ful�ll these 
riteria, Nemhauser and Tri
k 
hose those solu-tions that suitably satisfy a number of further preferen
es, for �nal sele
tion by the ACC.These preferen
es and the resulting postpro
essing is beyond the s
ope of this work.
4 Computing Round Robin Tournament S
hedules
Previous works on round robin s
heduling by Cain (1977), de Werra (1988), S
hreuder(1992), S
haerf (1996), and Nemhauser and Tri
k (1998) generally agree on a de
ompo-sition of the s
heduling pro
ess into three phases, namely pattern generation, pattern setgeneration and timetable generation. M
Aloon, Tretko� and Wetzel (1997) use 
onstraintprogramming to solve a related problem, in whi
h the 
on
ept of home and away games isrepla
ed by resour
es 
alled periods, and therefore this de
omposition is not appli
able.A pattern indi
ates the way in whi
h a team 
an play home, away and bye throughoutthe tournament. In the ACC 1997/98 
ase, patterns are subje
t to Criteria 1 through 5given in the previous se
tion. The following pattern meets these 
riteria; here, a homegame is represented by the symbol +, an away game by � and a bye by b.dates 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18pattern � + b � + + � + � � + b + � � + + �After generating all patterns that meet the given 
riteria, sets of n patterns are 
om-puted. The patterns in su
h a pattern set must have properties that enable the 
onstru
-tion of a timetable based on its patterns.From a given pattern set, timetables are 
onstru
ted by de
iding whi
h team playsa

ording to whi
h pattern and against whi
h opponent in ea
h round.
5 Patterns
A suitable 
onstraint programming model for pattern generation 
onsists of 0/1 variableshj ; aj and bj , 1 � j � 18. A team that plays a

ording to the pattern represented bythese variables plays home (away, bye) at date j if and only if hj = 1 (aj = 1, bj = 1).The 
onstraints on these variables are given in Table 1.
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1. For all dates j: hj + aj + bj = 12. For all pairs of dates (j; j0) 2 m (m is given in Constraint 1 in Se
tion 3):hj = aj0 , aj = hj0 , bj = bj03. h1 + h2 + h3 � 1, h16 + h17 + h18 � 1, a17 + a18 < 24. For all j � 16: aj + aj+1 + aj+2 < 3, hj + hj+1 + hj+2 < 3,for all j � 15: aj + bj + aj+1 + bj+1 + aj+2 + bj+2 + aj+3 + bj+3 < 4,for all j � 14: hj+bj+hj+1+bj+1+hj+2+bj+2+hj+3+bj+3+hj+4+bj+4 < 55. (Pj2f2;4;:::;18g hj) = 4, (Pj2f2;4;:::;18g aj) = 4, (Pj2f2;4;:::;18g bj) = 16. (Pj2f2;4;6;8;10g hj + bj) � 27. b1 + a18 < 2, b1 + h17 < 2, b16 + a18 < 2Table 1: The Constraints for Patterns
The �rst 
onstraint expresses that a team plays either home, away or has a bye inea
h round. Constraints 2 through 6 
orrespond to the �rst �ve ACC 1997/98 
riteria inSe
tion 3. Constraints 7 stem from Criteria 9 in Se
tion 3, sin
e only one team 
an havea bye in a given date.Constraint programming systems provide propagators for all these arithmeti
 
on-straints. The most e�e
tive sear
h strategy in our 
ase seems to be to enumerate the h,a and b variables date-wise, i.e. in the order h1; a1; b1; h2; a2; b2; : : : ; b18.For ACC 1997/98, Nemhauser and Tri
k argue that expli
it enumeration (\generateand test") �nds all 38 patterns in reasonable time, but do not give runtimes. Using theabove model, a 
onstraint program performs all solution sear
h in 0.44 se
onds using117 
hoi
e points. This and all other runtimes given in this work were obtained by the
onstraint-based round robin tournament planning software Friar Tu
k developed by theauthor and given in Henz (1999), on a PC with a 233 MHz Pentium II pro
essor and 64MBytes of RAM. Friar Tu
k is implemented using the 
onstraint programming systemMozart, Mozart Consortium (1999).
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6 Pattern Sets
The next step is to generate suitable sets of 9 patterns. Graph-theoreti
al results 
over theexisten
e and generation of pattern sets with useful properties; see de Werra (1988) andS
hreuder (1992). In the presen
e of irregular 
onstraints on patterns su
h as Criteria 3 inSe
tion 3 the pattern set problem be
omes a 
ombinatorial sear
h problem. The followingmodel is suitable for a solution using 
onstraint programming.The 38 feasible patterns are represented by three 38 � 9 matri
es h, a, and b of 0/1values, where hi;j , (ai;j , bi;j) indi
ate whether pattern i �xes date j to a home game (awaygame, bye). For ea
h pattern i, a 0/1 variable xi indi
ates whether this pattern o

urs inthe resulting pattern set. The 
onstraints are1. Pi xi = 92. For all dates j: (Pi hi;jxi = 4); (Pi ai;jxi = 4); (Pi bi;jxi = 1)Following Tri
k (1998) we ex
lude pairs of patterns in whi
h there is no possible meetingdate for 
orresponding teams. More formally,

3. For every pair i; i0 s.t. i 6= i0, 8j(hi;j = 0_ai0;j = 0) and 8j(ai;j = 0_hi0;j = 0):xi + xi0 � 1Nemhauser and Tri
k model pattern set generation as an optimization problem and useinteger programming to solve it. They report that all 17 pattern sets are found by solvinga sequen
e of 17 integer programs with an overall runtime under 1 minute on a SunSpar
station 20 with CPLEX version 4.0. In ea
h run, a 
onstraint was added to theprevious integer program that pre
ludes the previous solution.For 
onstraint programming, there is no need for introdu
ing an obje
tive fun
tion andtherefore the modeling and implementation is simpler than for the integer programmingapproa
h. A 
onstraint program for the above model performs all solution sear
h in 3.1se
onds with 176 
hoi
e points, using simple enumeration of the variables xi.
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7 Timetables
This step generates feasible timetables from a given pattern set. Two approa
hes fortimetable generation have been des
ribed. The �rst approa
h|proposed by S
hreuder(1992) and used by Nemhauser and Tri
k|generates timetables of \pla
eholder teams"�rst and then assigns teams to pla
eholders. This approa
h is also taken in previous workon using 
onstraint programming for DDRR s
heduling by S
haerf (1996). The disad-vantage of this approa
h for ACC 1997/98 is that the team-spe
i�
 Criteria 6 through 9
annot be exploited while generating timetables of pla
eholders. Nemhauser and Tri
kreport a runtime of 24 hours on a Sun Spar
station 20 to 
ompute all timetables based onthe 17 pattern sets for this approa
h using integer programming and expli
it enumeration.The se
ond approa
h|sket
hed by Cain (1977)|assigns teams to pattern sets, andthen opponent teams for ea
h team and date. This work re
asts Cain's approa
h in theframework of �nite-domain 
onstraint programming. The following model assumes thatthe pattern set is given in the form of 9 � 18 matri
es H, A and B of 0/1 values whoseentriesHi;j (Ai;j , Bi;j) indi
ate home mat
hes (away mat
hes, byes) for pattern i in date j.The target timetable is represented by a 9 � 18 matrix �, whose variables �i;j rangeover 0; : : : ; 9 and tell the opponent team against whi
h team i plays in date j (0 standsfor bye), and three 9� 18 matri
es H, A and B of 0/1 variables whose entries Hi;j (Ai;j ,Bi;j) tell if team i plays home (plays away, has a bye) in date j.The 
onstraints on �, H, A and B are given in Table 2. Here, distin
t is a 
onstraintthat for
es all its arguments to be distin
t integers. (x := y) stands for a 0/1 variablewhi
h is 1 if and only if x is equal to y; (x 2 s) stands for a 0/1 variable whi
h is 1 if andonly if x is an element of s. Su
h 
onstraints that re
e
t the validity of another 
onstraintin a 0/1 variable were introdu
ed in the 
ontext of 
onstraint programming by Older andBenhamou (1993). For su
h 
onstraints, the term rei�ed 
onstraint was 
oined by GertSmolka and appeared �rst in Henz and W�urtz (1995). Expressions formed by the logi
aloperations ), ^ and _ represent 
onstraints that operate on 0/1 variables. Constraints1 through 7 des
ribe general properties of DDRRs with an odd number of teams. Note
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1. For all dates j: distin
t(�1;j; : : : ; �9;j)2. For all teams i; i0, i 6= i0, and dates j: (�i;j := i0) = (�i0;j := i)3. For all teams i; i0, i 6= i0: (Pj2f1;:::;18g(�i;j := i0)) = 24. For all teams i and dates j: �i;j 6= i5. For all teams i and dates j: (�i;j := 0) = Bi;j6. For all teams i; i0, i 6= i0, and dates j: (�i;j := i0)) ((Hi;j^Ai0;j)_(Ai;j^Hi0;j))7. For all teams i and dates j: Hi;j +Ai;j + Bi;j = 18. For all pairs of teams (i; i0) 2 f(1; 4); (2; 6); (5; 8); (7; 9)g:(�i;18 := i0) _ (�i;18 := 3) _ (�i;18 := 0)9. For all pairs of teams (i; i0) 2 f(2; 4); (2; 9); (4; 6); (6; 9)g:(Pj2f11;:::;18g(�i;j := i0)) � 110. For all teams i and dates j 2 f1; : : : ; 17g:(�i;j 2 f2; 6g) +Ai;j + (�i;j+1 2 f2; 6g) +Ai;j+1 < 4,for all teams i and dates j 2 f1; : : : ; 16g:(�i;j 2 f2; 6; 9g) + (�i;j+1 2 f2; 6; 9g) + (�i;j+2 2 f2; 6; 9g) < 311. �6;11 = 2, �6;18 = 2, �6;2 = 1, B2;16 = 1, H9;17 = 0, B9;1 = 1, A1;18 = 0,A2;18 = 0, A5;18 = 0, A9;18 = 0, A1;1 = 0, A3;1 = 0, A4;1 = 0, A9;1 = 0,B3;18 = 0, B7;18 = 0, B6;1 = 0.Table 2: The Constraints for Timetables
that Constraints 4 are redundant due to Constraints 3. Adding redundant 
onstraintsto a
hieve earlier pruning of the sear
h tree is an important 
onstraint programmingte
hnique. Constraints 8 through 11 
orrespond to the ACC 1997/98 Criteria 6 through 9in Se
tion 3.To 
onne
t the given pattern set to the target timetable, nine �nite-domain variablespi, 1 � i � 9, ranging over 1; : : : ; 9 are introdu
ed. Ea
h team i plays a

ording to thepattern in row pi of H, A and B. The following relationship links the given pattern setwith the target timetable, using the variables pi as indi
es.

For all teams i and dates j: Hpi;j = Hi;j ; Api;j = Ai;j ; Bpi;j = Bi;j
This relationship is expressible with the so-
alled element 
onstraint des
ribed by
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Din
bas, Simonis and Van Hentenry
k (1988). The element 
onstraint takes as argumentsa �nite-domain variable k, a ve
tor of integers v and a �nite-domain variable w.
el(k; v; w)

The semanti
s is vk = w. A 
orresponding propagator 
an restri
t the possible values fork, if a value in v is eliminated from w, and it 
an eliminate a number x from w, if thelast index that pointed to an x in v is eliminated from k. Both propagation dire
tionsare essential here. The following Constraints 12 des
ribe the desired relationship; here Hj(Aj , Bj) stands for the jth 
olumn of the matrix H (A, B).
12. For all teams i and dates j: el(pi;Hj ;Hi;j), el(pi; Aj ;Ai;j), el(pi; Bj;Bi;j).All major 
onstraint programming systems provide propagators for all 
onstraints re-quired, in
luding el, distin
t, logi
al and rei�ed 
onstraints.The sear
h strategy of Cain's method �rst assigns patterns to teams by enumeratingthe variables in p. In this pro
ess, the matri
es H, A and B are gradually being deter-mined. The propagators for the element 
onstraints, together with the propagators forthe 
onstraints 8 through 11 in Table 2, a
hieve a dramati
 pruning of the sear
h tree inthis pro
ess.Next, the variables in � are enumerated. Here, the propagators 
orresponding tothe 
onstraints in Table 2 a
hieve further pruning. Apparently, the best strategy is toenumerate date-wise, i.e. in the order �1;1; �2;1; : : : ; �n;1; �1;2; : : : ; �n;d. A 
onstraintprogram for this approa
h performs all solution sear
h su

essively on all 17 pattern setsin 53.7 se
onds using 476 
hoi
e points, leading to 179 solutions.

8 Con
lusion
Modeling and solving sports tournament s
heduling problems with �nite-domain 
on-straint programming 
an lead to eÆ
ient 
omputation of timetables. All 179 solutionsto the ACC 1997/98 tournament s
heduling problem presented by Nemhauser and Tri
k(1998) are found in less than one minute using 
onstraint programming, whereas Nem-
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hauser and Tri
k report an overall runtime of about 24 hours (both on 
omputers withsimilar performan
e) using exhaustive enumeration and integer programming.Nemhauser and Tri
k report that problems of this kind require multiple 
y
les ofproblem re�nement in 
ollaboration with the tournament organizers to obtain a timetablethat satis�es all parties involved. In su
h a s
enario, the advantage of an intera
tive andeÆ
ient software be
omes even more obvious. The results reported in this paper showthat �nite-domain 
onstraint programming 
an provide the base for su
h a software, asrealized in the round robin s
heduler Friar Tu
k, Henz (1999).
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