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Abstract

The essence of open programming is the ability to import code at runtime, in
order to allow applications to adapt their behaviour and functionality dynam-
ically. However, when code is acquired from untrusted sources - e.g. some
remote Internet domain - security concerns arise. Untrusted code should not
be given unrestricted access to local resources. A well-known solution is to
run untrusted code in a sandbox, a software environment which dynamically
checks all critical operations performed by the code according to some con-
figurable security policy. Java is the most popular language employing this
approach.

In this thesis, we develop a model based on an idealised subset of the ML
programming language to describe the sandboxing approach. After gaining
an understanding of the underlying principles of a sandbox, we show how to
apply these to get a working implementation for the Alice ML programming
language. Alice ML is a dialect of Standard ML that has been specifically
designed to support type-safe open programming. It provides a generic and
strongly-typed import/export facility (pickling), which allows processes to
exchange or make persistent almost arbitrary language-level data structures
and code. For security reasons, resources are precluded from pickling. In-
stead, it is left to the target site to supply them explicitly to imported code. A
flexible notion of component allows respective abstractions to be programmed
conveniently. We show how these particular characteristics of Alice ML can
be used to create a simple, yet powerful, sandbox design with an emphasis
on modularity and extensibility.
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1 Introduction

1.1 Motivation

In the last decade, no technological change had a greater impact on the development
of programming languages than the advent of the internet. Modern languages are ex-
pected to embrace interconnectivity and deal with the complex issues created by an open
environment, even while providing a maximum amount of security. The last point in
particular has received a steadily rising amount of attention, since any security leak in
a networked environment is a leak to any and all participating computers. In the (not
entirely unlikely) case that the machine is connected to the internet, surely a disastrous
event.

But even for stand-alone machines, security concerns of a new kind arise in the dynamic
contexts created by modern languages: Alice ML [15] for example permits dynamic link-
ing of components to provide new functionality for a program at runtime [16]. What if
malicious code downloaded from the internet is accidentally linked against a dangerous
system operation? Imagine, for a moment, an insecure browser application that granted
applets from any visited site full access to the local file system. The inevitable conse-
quence would be instant abuse: File deletion, acquisition of sensitive data, planting of
viruses or trojans... a whole realm of security nightmares. Clearly, there is a need for
systems preventing this and other undesirable scenarios from occuring.

1.2 Sandboxes

Spearheaded by Java, the solution that most languages have adopted to address this issue
is the so-called sandbox.1 The sandbox model aims to provide a “safe environment” for
untrusted code that manages and potentially restricts access to critical system functions,
according to some policy guidelines [5, 3].

In that model, the basic idea is to regard applications as heterogeneous compositions
of modules, where modules can be seen as self-contained chunks of code. Some “main”
module serves as a host for the other modules, and provides a “sandboxed” environment
for their safe execution. The heterogeneity enters with the actions the different modules
can take: While the main module has virtually unlimited power, the hosted modules
may be severely restricted in the operations they may perform. As an example, take
the browser/applet paradigm popularized by Java. The browser application (the main
module) may execute native system code, while the applets (the hosted modules) are
restricted to the use of a few selected operations (e.g. drawing an image or performing
arithmetic). In this scenario, the system that enforces these restrictions is called the
sandbox, and the choice of (dis-)allowing a certain operation is made by accordingly
defined policy rules.

1Besides Java, systems such as Perl 6 [2] and Microsoft .NET choose a sandbox paradigm to ensure
safe code execution. Microsoft calls this “Code Access Security” [10], but the underlying model is
the same.
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1.3 Alice ML

Alice ML [15, 1] is a functional programming language that has been designed to specif-
ically support typed open programming. Building on top of Standard ML [12, 14], it
incorporates features such as concurrency with data flow synchronisation, higher order
modularity and dynamic modules, as well as type-safe pickling. Given its strong incli-
nation towards open programming, it seems vital to also include a facility for the safe
management of dynamic components. Indeed, that’s the goal of this thesis: To design
and implement such a system for Alice ML, in the form of a sandbox.

1.4 Outline

This thesis is organised as follows: First, we try to clarify some ideas about what we
are trying to achieve. To this end, we introduce the concepts integral to this thesis in
an intuitive way, before going over them again in a more concrete manner. This second
chapter is meant to give the reader some context, in order to facilitate understanding for
the choices made in subsequent chapters. The third chapter makes these concepts precise
in a coherent way, using an untyped pseudo-language based on ML as a modelling tool.
In the fourth chapter, we show how to transfer that model to a real-life implementation
of the design. We conclude in the fifth chapter by drawing some analogies between our
model, our own implementation, and other designs and implementations dealing with
the same topics. Finally, chapter six gives a summary of the work done, as well as some
ideas for future work.
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2 Important Concepts

Our foremost goal is of course to achieve some measure of security for our language of
choice. Hence, we have to define what we take this to mean. As stated before, security is
achieved by the language’s ability to limit the set of operations a module can perform. In
that sense, it can be argued that by security we mean the guaranteed absence of unsafe
operations from the pool of operations the module has access to. Consequently, we will
also need to take a look at some significant features of Alice ML and try to identify the
unsafe ones, as well as potential ways to make them safe again. We’ll go about this in
a bottom-up fashion, starting with the elementary concepts.

2.1 Resources

One of the most fundamental concepts in this paper is the notion of a resource. Simply
put, a resource is any part of a computational device that can be used by a program over
the course of its operation. This includes hardware entities local to one machine such as
mass storage and random access memory, abstractions over the same (e.g. computation
capacity provided by the CPU), as well as media with non-local implications, such as
the bandwidth provisions granted by a networking device. In fact, most resources are
abstractions (or virtual resources), such as file handles, sockets or thread ids. The com-
mon factor among these is that each can be abused by malicious programs if unlimited
access to the resource is given2. Hence, we can narrow our definition of safety: A module
is unsafe exactly when it can exert unrestricted access to system resources. On the other
hand, if all resource access methods of the module are controlled by its environment, we
say that the module is safe.

2.2 Modules and Components

If programs can be seen as compositions of modules, as we claimed in the introduction,
then Alice ML must possess a notion of what exactly a “module” is. This is indeed
the case: A module in Alice is in fact nothing more than a datatype that can be used
to group a set of values (including submodules) and types into one logical entity. One
possible reason to do this may be that the values belong to a common operational
theme, as in the case of the Http module that groups together some high-level socket
functions; however, most of the time, the module will define an implementation of some
abstract type together with its basic operations (like Set and Set.union, or List and
List.filter, List.map, List.exists, etc.).

While modules provide logical separation, components are Alice ML’s means for phys-
ical separation. Intuitively, they allow partitioning of programs into self-contained units
of code (think “files”), which can be compiled on their own and then of course be re-
composed to build complex programs – hence, their name. All components are built
according to a certain principal structure: First, there is a set of import requests for
other components, which are dealt with by the component manager. And second, a

2A very nice definition of resources, which sadly extends beyond the scope of this thesis, is given in [6].
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listing of one (or possibly more) module definitions that make up the main part of the
component. Hence, modules are contained by components. In case a component con-
tains exactly one module (an important special case), this component can be thought of
as the compiled representation of that module.

Components can also be created dynamically, by “wrapping” modules at run time.
Components created this way are called computed components3.

2.3 System Components

In Alice ML, resources and components have a special relationship. Resources are always
encapsulated in a particular kind of component, the so-called system component. System
components provide access methods specific to the resource (for instance, many I/O
components have a write method or some equivalent thereof), which programs have to
use in order to work with that resource.

While system components already stand out as the sole means for resource acquisition,
they are special for another reason as well: Since they contain references to media local
to one machine (or site), they are also referred to as sited components. The implication
of this is that system components can never be “exported” to other machines, as would
be possible with regular components4. Obviously, a resource cannot be fabricated out
of thin air, so another fact to note is that a program can never dynamically “create”
system components. Instead, to obtain a system component, one must always import it
using the language facility provided for this purpose – the so-called component manager
(see below). Hence, it is evident that system components provide a solid abstraction to
reason about resources. We rely on this fact in the creation of our security infrastructure.

By importing a system component, any process can gain access to potentially unsafe
operations. In general, if a reference to such an operation is obtained, it is called a
capability [4], in that the process is then capable of using it.

2.4 Component Manager

For the extraction of modules from a component, one needs a facility for managing the
import part of the component (that is to say, the “first” part). In Alice ML, this facility
is called the component manager. It performs dynamic linking of these imports, which
may just mean the loading of a few definitions into local scope – in the case of a regular
component – or additionally the acquisition of local resources, in the case of a system
component. As we have already seen, controlling access over these system components
gives us a handle to control access over potentially unsafe operations, so component
managers might be the appropriate tool for this goal.

However, programs are free to create their own component managers by calling the
MkManager functor (which is basically a function that creates modules) provided by the

3Of course strictly speaking, every component has to be computed at some point in time, regardless if
by interpreter or compiler.

4In Alice ML, this operation is called pickling. Other common terms with similar connotations are
marshalling and serialisation.
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standard library. Does this mean that component managers do not support the degree of
access control required by a sandbox, since they can be circumvented so easily? Thank-
fully not, as component managers have the desirable property of restriction inheritance
(even along link chains5), which is to say that once a restriction is in place in a compo-
nent manager, it can never be relaxed by a component manager created inside the more
restrictive parent manager. Of course, it can always be made even stricter, but this does
not imply any safety concerns.

2.5 Access Control

So far, we have seen that programs are unsafe only if they get unrestricted access to
system resources. Resources are always encapsulated by system components, so the ac-
cess restriction problem for resources can be reduced to one for components. Alice ML
natively supports access restriction for components by its component manager system.
Thus, we arrive at the conclusion that to meet our original goal of creating a security
architecture for Alice ML, all we really have to do is provide a suitably modelled com-
ponent manager. In this context, such a component manager is a sandbox. In the next
two chapters, we are aiming to model and implement it.

5That is, when several component managers link each other successively.
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3 The Sandbox Model

Now that we have gained an intuitive understanding of what we are trying to achieve,
we shall make things a little more precise. We develop a model for sandboxes in an
idealised subset of ML, which will be easier to understand than the full-blown version of
Alice ML used for the implementation. In particular, we choose to work in an untyped
context, since, as we shall see, types are irrelevant for our intended course of action (as
we must rely on dynamic checks rather than use the static type system). However, we
shall sometimes talk about the types of certain constructs in our system. We mean by
these the intended types, i.e., the types those constructs would have in a typed context,
and hope to evoke a better understanding for what we are trying to achieve by indicating
them. However, first things first: Let’s iterate over the concepts we already know and
see how they can be modelled.

3.1 Resources

Resources are important, as they are the basic building blocks in our access control
scheme – basically, a resource is the smallest unit for which one can sensibly define some
kind of access control. However, we want to abstract away from differences between
individual resources (e.g. file handles vs. sockets), so a sophisticated representation of
the various resources would not be of merit. We take the opposite route and define a
resource to be just a constant of our model language. That is, for every resource we
want to control, we introduce a constant denoting its representation, bearing names like
e.g. stdIO or readSocket. This approach has the advantage that we do not need to
care about the different properties of resources, but can focus on how to control their use
in a unified manner. Together, the individual constants make up the set of all possible
resources, which we call Res. Very importantly, we do not allow modules to just “write
down” the denotation of a resource and use it like this – this would defy the whole
concept of a sandbox such as we are trying to create. Instead, resources must always be
acquired by importing the system components that contain them. This reflects the real
situation as witnessed in Alice ML.

3.2 Modules

Complex as they may appear at first glance, modules are really nothing more than
named collections of types, functions and values. Functions are first-class values in our
language, so this further reduces to a named collection of types and values6. How-
ever, as we are working in an untyped context, we can just drop the types. Accord-
ingly, modules are modelled as tuples of values, e.g. (val1, val2, ..., valn). We require
that no value may occur more than once in a module tuple, so we can introduce the
shorthand notation M.f. This means the (now uniquely identifiable) element f of the
module tuple M (thereby matching the syntax of Alice ML). For example, if we had

6In a slight aberration from reality, we include modules in our definition of values, which is not the
exact truth in Alice ML. However, modules can now contain submodules, which is in fact accurate.
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a module TextIO = (stdIO, read, write), we could use it in the following way:
TextIO.write (TextIO.stdIO, "Hello world!"). However, there is a slight twist.
In order for stdIO to be part of TextIO, we must extend the definition for module tu-
ples so they can contain resource designators as well as “real” values. The designators
are instantiated with “real” resources provided by the local system during the import
phase of linking a component (which we have seen in chapter 2.2, cf. chapter 4.1 for a
more detailed discussion). This means that TextIO could not have been created by the
program itself, but must have been imported by a component manager at some time
during its execution. We will largely ignore this issue after mentioning it here in order
to ease readability of subsequent chapters, but keep in mind that resources do not just
“come for free”.

3.3 Components

As explained in the previous chapter, components carry at least one module, or possibly
more. For our model, we assume that the latter is never the case, i.e. we are confining
ourselves to the special case mentioned before that a component is just the compiled
representation of exactly one module. Still, every component needs to be evaluated by
some component manager (which is also the one it will subsequently use to load other
components itself, if the need arises). Hence, components are modelled as functions that
take a component manager as input and return their enclosed module. For example (if
we assume that component managers are functions that return modules):

fun TextIOComp (componentManager) =
let

UnsafeIO = componentManager (x-alice, "/lib/system/UnsafeIO")
in

(UnsafeIO.stdIO, UnsafeIO.textRead, UnsafeIO.textWrite)
end

Figure 1: The TextIO component

The let part symbolises the import requests mentioned in the introduction, while the
return value is simply a module that repackages the relevant parts of UnsafeIO for this
component. Incidentally, this is exactly the aforementioned “import” part where the
process of linking happens – and thus, resource acquisition by the component manager7.
The import part uses the URL denotation of the location of UnsafeIO, which we will
understand in a second.

7The astute reader may have noticed that for one import, the whole transitive closure over all component
imports is computed. However, Alice does this lazily [13], so the overhead is not as substantial as
might be expected.
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3.4 URLs

For our purposes, it suffices to regard URLs as a structure of two concatenated string
parts: The first part designates the URL scheme (e.g. “http”), the second part the
location of the resource (e.g. “www.ps.uni-sb.de”, “/lib/system/TextIO”8). Then, URLs
are just tuples of (scheme × location), where scheme is one of three constants as defined
below, and location is just a string. URLs can be used in a program to denote files,
system components or web sites – it just depends on the scheme that is used.

These are the three different kinds of schemes we allow, which correspond to the
alternatives supported by Alice ML:

file Using the “file” scheme implies that the location part gives a filename in relative
or absolute notation, e.g. “../HashTree.alc” or “C:/Alice/lib/data/Stack.alc”.

x-alice This scheme is used for library components already provided by the Alice sys-
tem. It is of special importance, since this is the only possibility for a program to acquire
system components (i.e., library components are the only source of potentially unsafe
operations).

http The well-known hypertext transfer protocol used to transmit web pages across a
network. It will play a very subordinate role in this thesis, as we mainly use the x-alice
scheme, but will be useful for some examples. Still, it should be mentioned that in
principle, non-system components can be retrieved over HTTP just as easily as via the
x-alice scheme.

3.5 Component Manager

Component managers present a difficulty in that they can be modified at runtime, though
only to be more restrictive. This means that they cannot be modelled as constants, but
rather have to be some kind of dynamically computed value. As the main purpose of a
component manager is to link components (i.e., given some kind of input locating the
component, it should return the linked component as output), the proper way to model it
is as functional value. This way, it can take a URL as argument and return the respective
component located at that URL. But this is still a little more complex than what we
really need. Our restriction that components always carry exactly one module allows us
to turn the returned value directly into this module. Since “turning a component into a
module” for this model amounts to applying the component to any component manager,
we use the very component manager in whose context we are operating to do this. This is
a bit reminiscent of recursive functions, since the component manager passes itself as an
argument in the course of its definition. If we view it that way, the base case is reached
whenever an imported component does not need to import any additional components
(either because it is self-contained, or all necessary imports have been loaded previously
and can be provided from cache).

8A local file path.
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We assume that there always exists a constant function of the component manager type
(Url → Module), which we call the root manager. The root manager plays a special
role, as it is needed for bootstrapping. It is used whenever no other manager has been
instantiated, but a component must be linked. Hence, it stands at the top of any
component manager inheritance scheme.

A very simple component manager could look like this (assuming SocketComponent
and HttpComponent are definitions of the according components):

fun componentManager (inputUrl) =
if inputUrl = (x-alice, "/lib/system/Socket")
then SocketComponent componentManager
else

if inputUrl = (x-alice, "/lib/system/Http")
then HttpComponent componentManager
else raise "inputUrl not found!"

Real-world component managers load their components from file rather than hard-coding
their definition (besides doing lots of other things in a different way, obviously – for
example, caching).

Programs We are now ready to understand program execution as well: It is a mere
application of the root manager to the location of some component. This component can
be thought of as the root component or, maybe slightly more familiar to some readers,
the main component of the application (as in the main() function of C/C++ and Java).

3.6 Design Space

The basic concepts are now in place, so we can begin to think about how a sandbox
might fit into this design. As we have already seen, it is sufficient to implement our own
component manager, but how should its semantics look like? Let us first explore several
possibilities, to get a feel for the dimensions we have to balance.

Degree of Control Remember that the stated purpose of our sandbox is to restrict ac-
cess to certain resources. But which resources are considered safe, which dangerous? As
this might vary from one program’s context to another’s, that information is considered
subject to change, and it is the user’s9 task to supply it. The manner in which he can
do this, however, is not at all clear: Should he be able to control every single resource
access by itself? Such a fine degree of control might get very tedious to handle in larger
applications. Or should he only be able to control access to one component at a time?
Then it is likely that he will encounter situations in which this proves too inflexible. At
any rate, a compromise between these two extremes will have to be found.

9In this case, that’s the designer of the application hosting the sandbox.
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Restriction Behaviour What do we want to happen when access is requested to a re-
source considered “unsafe”? The process requesting access could be terminated instantly,
or we could be content with going on after warning the user that something bad might
be happening. This may be another case where the application designer is in a better
position to judge the proper reaction to some security error, so another alternative to
consider is transferring control to the main application.

Static vs. Dynamic Checks Readers familiar with the ML family of languages know
about the advantages provided by a strong static type system. It might be interesting to
think for a minute about whether this system can be employed to construct a sandbox
mechanism such as we have in mind, which restricts access to certain operations called in
a specific context. Indeed, Alice ML could be made to support such a system, so we have
to decide if this is the way to go, or if the ramifications of such an approach would make
it impractical for real-life use. The alternative of course is inserting dynamic run-time
checks at the proper locations, which is known to work, but of course more expensive
than the static approach in terms of computation time.

3.7 Policy Rules

As we have seen, a method must be provided that enables users of the sandbox mech-
anism to define rules which govern access to all potentially unsafe operations. We call
these rules policy rules. In the trade-off between fine-grained control and simplicity of
use, we tend towards maximum flexibility - i.e., policy rules operate on the most primi-
tive elements of our setup, on plain resources. Let’s assume for a moment that for any
resource, only a simple yes/no decision can be made with regard to access, independent
of the intended usage of the resource. Then, it suffices to have one simple policy rule
that performs this decision for all resources that can be accessed. We can model it as a
function Res → Bool, that returns for each resource the outcome of that decision. The
user merely has to specify his decisions, which the function can then adopt. With this
model, it is easy to construct a simple sandbox which shall serve to illustrate the basic
idea of its inner workings.

3.8 Fundamental Sandbox Design

Choosing to utilize such a function for our sandboxing system entails the consequence
of having to resort to dynamic policy checks instead of using the static type system.
This means that we can disregard the latter approach; for our system, we just use
dynamic checking. In particular, every method call requiring access to potentially unsafe
resources will entail one or more calls to the policy rule function, giving as arguments
these resources. If any of these calls should return false, the operation is aborted and
control given to the hosting application.

Now we understand the underlying idea for our sandbox component manager: In-
stead of giving any application unlimited access to all operations, it substitutes unsafe
functions by functionally equivalent functions which, prior to committing any actions,

12



check if the necessary privileges are available. If they lack any of these, the functions im-
mediately return without accessing the respective resources. In a sense, our substitute
function transparently wraps the capability of the unsafe function call inside its own
function, which can no longer be regarded as a capability since it does not necessarily
grant access to unsafe features. The basic shape of a substitute function looks something
like this:

fun safeWriteIO (text) =
let UnsafeIO = componentManager (x-alice, "/lib/UnsafeIO")

Policies = componentManager (x-alice, "Policies")
in

if Policies.policyCheck writeIO
then UnsafeIO.writeIO text
else ABORT

end

(ABORT would likely be implemented by throwing some kind of exception.) In this case,
we wrap the unsafe function UnsafeIO.writeIO inside a function named safeWriteIO.
We could use this function to write a new component, SafeTextIO. Assuming that this
component included the necessary checks for its other constituents as well, it would be
used by a sandboxing manager in the following way:

fun sandboxComponentManager (inputUrl) =
if inputUrl = (x-alice, "/lib/system/TextIO") then

SafeTextIO regularComponentManager
else

regularComponentManager (inputUrl)
end

This illustrates two important concepts. First, rewriting : the sandboxing manager re-
interprets the request for TextIO as a request for SafeTextIO, and serves it accordingly.
We will use this technique throughout the course of our design. And second, delegation:
when the sandbox manager does not have to deal with a request in a special kind of
way, it just forwards this request to an ordinary component manager. Also note how
SafeTextIO is passed the regular component manager as a delegate manager to use for
its own imports, so it is able to load the unsafe component it needs to work correctly. It
is important to understand exactly how this works, so refer back to figure 1 if necessary,
to check how it uses the component manager given as argument to load all its imports
(in the case of figure 1, that’s just UnsafeIO).

Indirection Since rewriting is such an important concept, let’s spend a little time look-
ing at that mechanism in some more detail (Figure 2). We start at the application
requesting access to some kind of unsafe feature. The request goes to the sandboxing
component manager, which interprets it as a request for a safe component and loads this
instead. The safe component in turn requests access to its unsafe equivalent from the
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Figure 2: Indirection in component managers

root manager. That manager then loads and returns the unsafe component, which is
used to build the safe component. After completion, it is forwarded by the sandboxing
manager to the client application.

To be sure, the safe components can use any kind of unsafe feature (as they must,
otherwise they would not be of any use) – it is just by the checks we insert that they
become “safe”. So, these components are trusted by default. It is the use of indirec-
tion10 that enables us to nevertheless guarantee safety by using them: Inside the “safe
environment” in which the client application is placed, there is no way to get access to
a resource other than using a safe component, but from outside, the safe components
are inaccessible. Thus, they cannot be corrupted in any way by a malicious user. This
means that our trust in these components is justified, since they only access resources
in a way we intended them to.

10The acquisition of unsafe components by way of the safe components, and not by the direct route.
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Returning to our previous discussion, we can combine the two concepts of rewriting
and delegation to make our sandbox manager even simpler:

fun sandboxComponentManager (inputUrl) =
if inputUrl = (x-alice, "/lib/system/TextIO") then

regularComponentManager (file, "SafeTextIO")
else

regularComponentManager (inputUrl)
end

Now, the definition of SafeTextIO component does not have to occur in the scope of
sandboxComponentManager any longer – we just save it to a file and use the capability
of any normal component manager to load it. This means that our concept figure must be
updated as well: Figure 3 gives the new version. The main difference is that the rewritten
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Figure 3: Indirection in component managers, with delegation

requests are passed to the delegate manager (in this case, the root manager), as we have
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just seen in code. The substitute component is depicted inside the safe environment to
stress that as part of the security infrastructure, it is still trustworthy. In particular,
even though it is now implemented completely independent of the sandboxing manager,
it remains a library component that can never be substituted by malicious code11.

Note that using a “regular” delegate manager instead of the sandboxing manager for
imports this substitute component performs becomes an absolute necessity, since there
could be no import of unsafe system components otherwise. Stated differently: De-
coupling the implementations of sandboxing manager and safe components to enable
modular, “static” creation of substitute components as self-contained functional units
requires usage of an unrestricted component manager for the allocation of unsafe com-
ponents.

3.9 Flexible Policy Checking

So far, we have just seen a very simple kind of policy rule. Now imagine the following
use case: In a browser application designed for a large corporation, the users should
only be allowed to surf to work-related sites. If a user tries to access a website that was
not cleared for access, he should be redirected to an internal error page that displays
a warning. We might try to use a sandbox to implement this behaviour, but probably
realize pretty quickly that we will not get farther than this:

fun safeLoadUrl (url) =
if Policies.policyCheck loadUrl
then loadUrl url
else loadUrl (file, "warning.html")

Of course, this does not work, as our policy check can not know which URL is being
requested. What we would like to do is incorporate handling of resource access dependent
on its intended usage into policy checking – our assumption that this would not be
necessary proves unsustainable. Let’s accomodate this fact by writing a modified version
of policyCheck that is used like this:

fun safeLoadUrl (url) =
if Policies.policyCheck (loadUrl, url)
then loadUrl url
else loadUrl (file, "warning.html")

This looks much better already. Here, loadUrl is the resource we want to use, and url
its argument, signifying the caller’s intended usage of the resource. This allows us to
parameterise resource policies with regard to the context they are used in. Since we
are working with an untyped language, we can accomodate any kind of argument the
respective resource might be accessed with, including of course the “empty” case. This
achieves the necessary decoupling of resources and their respective usage.

Still, working with this version of the sandbox, we find that the implementation of
safeLoadUrl is unwieldier than what we would normally expect: Since both branches of
11Assuming a trustworthy runtime evironment.

16



the if-clause perform a loadUrl call (the only difference being its argument), we would
like to unify this functionality. The result might look like this:

fun safeLoadUrl (url) =
let

url’ = Policies.rewrite (loadUrl, url)
in

loadUrl url’
end

Here, Policies.rewrite would leave the url unchanged if it was whitelisted for usage
with loadUrl, but would return the error page in any other case. This mechanism
would be useful in other scenarios as well, for example to route HTTP requests through
dedicated ports or to perform character escaping in user-submitted text passages.

In fact, there is no downside to this change – ABORTs can still be thrown in the rewrite
function, so there’s a strict gain of functionality compared to the previous version of our
sandbox. Really, all we have to do is define the policyCheck function of our previous
sandbox to perform the work Policies.rewrite does at the moment, and we end up
with an updated version that’s strictly more powerful than the last. The intended type
of policyCheck is then (Res×α) → α: For each request, the proper value is returned12.
All that’s left to do then is to adopt the according shape for our substitute functions as
well.

Using such a function as the standard mechanism for policy checks implies another
subtle advantage as well: Doing failure handling inside the policy rule (instead of in the
definition of the safe substitute function) means greater flexibility for the rule designer
(as the restriction to binary decisions ceases to apply), as well as a cutback on boilerplate
code in the substitute function.

3.10 Policy Rules Revisited

Let us take a look at the definition of policyCheck one more time. After our latest
refinement, it is now a function that for each input tuple somehow computes the proper
output value. This principle will not be changed anymore for later revisions of the
sandbox, however, it needs to be made a bit more specific. In particular, we still need
to explain how the computation part works.

Modular Policy Rules In order to understand how policyCheck arrives at a compu-
tation result for some input value, it is useful to imagine it as a kind of meta-function
that for each resource just coordinates a set of subordinate functions which do the real
work. Each of these auxiliary functions can be further split into two parts: one which
performs matching, and another which performs the decision whether to accept or reject
a matched value, and also if some kind of transformation (or rewriting) should be applied

12Permitting a value now is tantamount to having policyCheck be the id function for that value.
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in case of acceptance. Matching in this context means a check to see if the subordinate
function may not even be applicable.

Let’s see a (nonsensical but succinct) example of how these auxiliary functions can be
used:

fun increasePositiveInts (n) =
if n > 0
then (n+1)
else NOMATCH

fun decreaseNegativeInts (n) =
if n < 0
then (n-1)
else NOMATCH

fun acceptZero (n) =
if n = 0
then n
else NOMATCH

The three of these functions can be plugged together into one ruleset, which can be fed
any integer number. If it is a positive number, it comes out increased; if it is a negative
number, it is decreased. The number 0 passes unchanged. In a working environment,
many of these rules may cooperate, but since each rule deals (more or less) only with a
special case, no unpleasant interactions occur.

As a result, a very modular system is created, in which policies are checked as follows:

1. policyCheck is called with some (resource, input) value as argument.

2. From the set of available policy functions belonging to resource, policyCheck
chooses the freshest entry (unless already tested, see step 4).

3. The first part of the chosen function is applied to input to check for a matching.
Either of two things can happen:

a) A successful match is found, i.e., the chosen function is responsible for dealing
with this value. Then, the second part of the function is consulted. Again,
either of two things can happen:

i. The input value is accepted. If a transformation should be needed,
it is applied at this point. The resulting output value is returned to
policyCheck.

ii. The value is rejected. Then, the function immediately aborts by returning
a special value signalling rejection to policyCheck.

b) The match is not successful. This means that the function is not responsible
for dealing with this kind of value. Then, it aborts without returning any
value.
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4. If the policy function call yielded a proper value, policyCheck returns this value in
turn. However, if it signalled rejection, policyCheck uses some implementation of
ABORT to prevent the calling function from accessing the respective resource (i.e.,
the respective function call would fail). If it did not yield any value, policyCheck
returns to the second step and tries another policy function.

5. If none of the user-installed policy functions matches, policyCheck uses a default
policy to deal with the value. This default is of course to reject (using ABORT), but
it may be overridden by the user using a function we call setDefaultPolicy.

Now we can explain what is meant by matching an argument in a little more detail:
Let for any type α the extended type αpolicy = α ·∪ {reject, nomatch} (where reject
and nomatch are the types of the respective [identically named] values with the intuitive
meaning). We call a function a matching function, if for any argument of type α it
returns a value of type αpolicy, i.e., either a proper value of the same type, or either
of two special values signalling rejection or non-applicability of the match, respectively.
Matching functions have exactly the type expected by policyCheck from elements of
one of the rule sets for some policy13, so to fill these sets, we just have to create the
respective matching functions.

To summarize: policyCheck just iterates through the set of policy rules pertaining to
the resource in question, until one is found that matches the given argument. This rule
is then applied in order to either accept a (possibly modified) version of the argument, or
to reject it entirely. We can imagine the set of rules as stored in a list-like data structure,
in order to make it easy to check policy rules in reverse order of their insertion (Insertion
always happens at the front of the list). This means that newer rules are always checked
before older rules.

3.11 Dealing with Rejection

Until now, we have not said explicitly how we intend to handle ABORTs, i.e., explicit
rejection of the request to access some resource. In the style of the real implementation
in Alice ML, we’ll use an exception handling scheme to deal with this issue. Two new
language directives are needed for our model to use exceptions: First, a method for
raising exceptions, which we call raise – and second, a method the catch them again,
which we call handle. They are used like this:

fun fail () = raise (General, "This function call always fails!")
fail() handle (exType, info) => print info

Running this small fragment prints “This function call always fails!” to the screen, as
expected. The first component of the raised exception tuple indicates the kind of the
exception, the second component is a short informational message detailing the reason
for throwing the exception. We adopt standard exception semantics: Exceptions are
propagated upwards across contexts until they are caught by a handle directive.

13if we take nomatch to mean that no value was returned.
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For our sandboxing infrastructure, we introduce a novel global exception kind Security
which indicates violations of our security guidelines, i.e., a return value of reject by a
policy rule. Hence, the implementation of ABORT used by policyCheck is just something
along the lines of

raise (Security, "Function foo tried to access resource bar,
which is restricted.")

An exception of this kind can be dealt with on two different levels. A hypothetical third
possibility would be to handle them just after they were raised (i.e., in the safe substitute
function); a warning would be printed, but other than that, program execution would
resume as if nothing had happened. This is of course not what we had in mind for
our sandboxing infrastructure, as we wanted to actually restrict resource access, so we
choose to neglect this option: Substitute functions do not perform exception handling.
The first (and lowest) level where exception handling can occur is therefore in the client
application hosted by the sandbox, directly after requesting access to a potentially unsafe
resource (or after an according function call requested access). The various ways in which
the application can deal with such an exception include:

1. Retrying the request with a different argument that might be considered safe by
the sandbox.

2. Discarding the request as insubstantial and continuing with the normal course of
operation (for example, if a logfile could not be opened, the core application may
nevertheless work as intended). Note that the “normal course of operation” may
be slightly altered to accomodate the missing resource.

3. Terminating in an orderly way, for example after releasing some locks on global
semaphores or clearing up memory. This also affords the opportunity to inform
the application’s user about what went wrong.

However, if the client does not handle the exception at all (for example, if it did not
anticipate that it might be thrown), there is a second level on which the exception can
be handled: By the application hosting the sandbox. That is, if the the sandboxed client
is wrapped with an exception handler, it will catch any security exception thrown inside
the client application. Thus, a security exception need never go unhandled, which avoids
terminating the whole process. This is a good thing, since that case would be rather
bothersome for the user (just imagine if every browser crashed whenever some applet
tried loading a protected file from the system directory of the operating system!).

3.12 Efficient Component Substitution

The model as presented up until now already offers a good approximation of what
the final system will look like. However, if we really wrapped every component in a
safe counterpart, we would waste a lot of computation time just delegating component
import requests around, most of which could in fact be served much quicker. Instead, we
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introduce another mechanism enabling selective component substitution. As we already
discussed in chapter 3.6, it is important to allow the user to specify which components
should be wrapped, and which should be loaded directly in a faster way. To this end,
we define a function importPolicy which for every URL locating a component returns
one of three potential results:

1. A value indicating that the component only includes unobjectionable values, i.e.
that it is safe to load this component directly. We call this value accept.

2. A substitute URL locating a component that should be loaded instead of the
original component. In spirit, it is akin to the rewrite function we already saw in
the context of resource acquisition, but while that function performed modifications
on input arguments for some resource usage, this function only modifies URLs –
and in a rather limited way at that. The URLs it rewrites always locate library
components, we do not allow any other schemes in this context. Its work can be
(mostly) reduced to a simple syntactic transformation, like this:

fun rewrite (x-alice, "/lib/system/"^component) =
(x-alice, "/lib/safe/"^component)

This performs pattern matching in the function argument to reduce code clutter-
ing. The intended meaning should be obvious, if we reveal that ^ performs string
concatenation.

3. A value indicating that the component can never, under any circumstances, be
considered safe. This means that the whole import request should be rejected.
Hence, we call this value reject.

The sandbox creator can redefine or extend importPolicy at any time, for example to
accommodate the loading of self-defined resources. Thus, our architecture is extensible
and not restricted in any way to the predefined components/resources.

In addition, note that there are now two different layers on which policies can operate:
One that permits low-level intervention with regard to primitive resource access, and one
that enables higher-level decisions regarding component import. We call rules referring to
the lower level argument policies, since they always perform decisions based on the given
argument. Rules referring to the higher level are called import policies. Introduction of
this higher level allows us to reduce the overhead of tedious micromanagement of every
single resource hinted at in chapter 3.6.

This also seems like a good time to point out a little more clearly when exactly a sand-
boxed process behaves differently from a regular one. What exactly does change when a
sandboxing manager is used to link a component instead of, say, the root manager? We
can identify exactly two points where regular program execution is altered:

URL Resolution As seen above, the point where we perform the first alteration is during
the link phase of the component manager. With our approach, intervention comes at
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a surprisingly early point in time, namely during URL resolution. This is what we
refer to as rewriting : Instead of loading the specified (unsafe) component, the delegate
component manager loads another component entirely. This permits us to interfere as
little as possible with the intricate process of linking (described in a little more detail in
chapter 4.1), so our sandboxing infrastructre can be integrated into the existing system
with minimal overhead. Note that the signature of the substitute component, however,
must stay the same with regard to the expectations of the program that imported it14,
so all that changes is the semantics of the respective functions. In particular, linking
commences as usual, albeit with a URL different from the intended one.

Dynamic Checks The other alteration point is of course during any function call that
involves one of the functions where dynamic checks were inserted. The checks are truly
dynamic in the sense that they are performed anew each time the function is called,
which sadly cannot be avoided. On the other hand, this enables the switching of policies
at run-time, which (although not overtly supported by our system) could be achieved
by using side effects.

It is worth pointing out that these local changes are the only ones our system intro-
duces, so it is not hard to reason about if one has some understanding of how the regular
system (without the sandbox) works.

3.13 Default Policies

One important issue we have not dealt with explicitly up until now is the decision of
the default policies we want to install in our sandbox – i.e., what happens when an
application does something the user did not foresee. We are in the glorious position of
being able to define almost arbitrary return values for our rules, so the design space
must be vast. Or is it? In fact, for a “default policy”, trying to define a general return
value that is always fitting quickly becomes not only almost, but completely, arbitrary.
After some consideration, only two sensible values remain: Unconditional acceptance
of the parameter value, and rejection. It is not hard to see that the former is a bad
idea, as it completely subverts the sandbox’s intention. That is why we choose to be
restrictive by default: Whenever faced with the decision to be either user-friendly (with
less unexpected exceptions) or safe, we prefer the latter. This should not pose major
problems, since only security-conscious users who are likely to agree with this sentiment
would be bothering to use a sandbox in any case. Still, it is always possible to override
the default setting.

3.14 Putting it all together

The single parts of our sandbox are now in their respective final versions, but the big
picture may still be a little foggy. Let’s try to get an even better understanding of
the system by building one complete application using its single pieces. The target

14The Alice ML compiler provides automatic thinning of signatures, so only the types of values actually
used count in that regard.
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we are aiming for is the corporation-specific browser already mentioned – to restate
its purpose: We want to build a system for browsing websites that delegates requests
for “unproductive” websites15 to a page displaying a stern warning to lazy employees.
Let’s give the corporation the name AnyCorp and assume that its representation on the
WWW is located at http://www.anycorp.com.

We begin with an unsafe implementation. For the moment, we assume that employees
use the application by calling the Browser.load function.

fun Browser (compManager) =
let

Http = compManager (x-alice, "/lib/net/Http")
fun load url = print (Http.request (url, 80))

in
(load)

end

Browser is a component whose module contains just one value, which is the load func-
tion. Currently, it loads every URL that is requested. We are going to change this by
substituting the Http component it loads with a safe counterpart. To achieve this, we
must execute the unsafe browsing application in a sandbox environment:

fun SafeBrowser (compManager) =
let

safeCompManager = Sandbox.Manager
in

Browser (safeCompManager)
end

That is, we merely pass Browser a modified component manager taken from a Sandbox
module we have yet to write, where the definition of Browser is the one from above.
From now on, we assume that employees only have access to the SafeBrowser component
and thus can only access the SafeBrowser.load function.

How does the definition of Sandbox look like? First of all, let’s define its importPolicy
function. This should be easy, as we only need to care about the Http component:

fun importPolicy url = if url = (x-alice, "/lib/net/Http")
then (x-alice, "/lib/safe/net/Http")
else ACCESS

This immediately begs the question of how the /lib/safe/net/Http component should
be defined. The answer is this (assuming existence of the according resource constants):

fun Http (compManager) =
let

UnsafeHttp = compManager (x-alice, "lib/net/Http")

15Those that are not whitelisted by the corporation.
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fun request (url, port) =
let

url’ = policyCheck (urlRead, url)
port’ = policyCheck (portRead, port)

in
UnsafeHttp.request (url’, port’)

end
in

(request)
end

Now, we specify our policy regarding ports. Remember that we have to define the set
of policy rules responsible for dealing with accesses to the portRead resource. Since
we never have to rewrite ports (they are defined in the Browser component as the
constant 80), we leave this set intentionally empty, and just set the default rule to quiet
acceptance:

defaultPolicy(portRead, port) = port

In contrast, the default policy for URL loading is restrictive. We automatically redirect
to the aforementioned warning page hosted on the company’s webserver:

defaultPolicy(urlRead, url) = (http, "www.anycorp.com/warning.html")

With that, we just have to whitelist a few pages the employees are allowed to surf to.
First of all, the company’s own website is a rather obvious candidate:

fun corpMatcher (url) = if hasSuffix (Url.getAuthority url,
"anycorp.com")

then url
else NOMATCH

Let’s allow Wikipedia as well:

fun wikipediaMatcher (url) = if hasPrefix (url, "www.wikipedia.com")
then url
else NOMATCH

The one thing left to do is to insert these rules into the respective sets for the urlRead
resource. We have not said explicitly how this is done before, but let’s just assume that
a call to insertPolicyRule is sufficient. Then, we have:

Sandbox.insertPolicyRule(urlRead, corpMatcher)
Sandbox.insertPolicyRule(urlRead, wikipediaMatcher)

And with this operation complete, we are done! The request for Http in SafeBrowser
will now be rewritten into a request for our safe substitute, which will ask for permission
any time it tries to access some URL. If neither of the two whitelisted URLs is requested,
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the default policy will be evoked, which rewrites the request into one for the warning
page16.

Take special notice of the fact that we did not need to touch the original Browser
component at all, but merely had to load it inside a sandbox. This is important in
the dynamic context of the sandbox’s intended application domain, where the compo-
nent is linked dynamically, and its source code is of course unknown and unalterable.
Component substitution in that case is performed during linking.

This concludes our discussion of the sandbox model. In the next chapter, we’ll see
how to implement it in a real-world language (and notice that the differences between
model and implementation are smaller in nature than might be expected).

16Which we will assume is not accessible from outside the corporation’s network, since this could reflect
on AnyCorp’s image in a negative way.
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4 Implementing the Model

4.1 Component Managers

In the last chapter, we got a better understanding for the fact that component managers
lie at the heart of our efforts to build a secure sandboxing infrastructure for Alice ML.
Therefore, it is only fitting to begin this chapter with a discussion on how they are
actually implemented. Figure 5 gives an idealised representation of the inner workings
of a component manager [16]. As we can see, our introduction of component managers
in chapter 2.4 still managed to hide quite a bit of detail. However, this seems somehow
appropriate, since in truth, the purpose of component managers in Alice ML is to do
just that: Hide away the complex details of component import at runtime. This also
enables the programmer to control that process in a more intuitive way, since he can
just use the functions provided by the manager. The tasks the component manager has
to perform (in sequential order) are these:

1. URL resolution, so non-absolute import URLs are interpreted relative to the loca-
tion of the current component.

2. Acquisition, the actual loading of the requested component (e.g. from disk).

3. Evaluation, which of course must always be done for freshly loaded components.

4. Type checking of the expected signature against the actual exported signature
calculated during evaluation of the component.

Each of these can fail independently of the others, in case of which the exception
Component.Failure is raised. However, if all of the above steps succeed, the com-
ponent is entered – in its fully evaluated state – into an internal table, where it can be
looked up by its URL when needed again later on. This avoids unnecessary (and slow)
reloads of components.

The methods provided by the component manager to support control over component
import include:

• acquire, which performs URL resolution and component acquisition.

• eval, which evaluates components, but does not yet enter them into the internal
component table.

• enter, which enters an evaluated component into the internal table, if it is not
already listed. If it is, Conflict is raised.

• lookup, which performs a lookup of evaluated components in the internal table.

• link, which integrates the whole process of linking a component, i.e., all of the
above operations.
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Figure 4 gives an overview of the signature. The package type can be thought of as that
of an evaluated component17, in contrast to the component type, which indicates that it is
not yet evaluated. The interesting part of the implementation concerns the inheritance

signature COMPONENT_MANAGER =
sig

exception Conflict
val acquire : url -> component
val eval : component -> package
val enter : url * package -> unit
val lookup : url -> package option
val link : url -> package

end

Figure 4: The signature of a component manager

of restrictions imposed on a component loaded by a particular manager. How is it that
these cannot be circumvented, for example by importing a “fresh” ComponentManager
structure or by using the MkManager functor to a similar effect?

Certainly, it does not pose any problem to create new component managers – after all,
this is exactly why MkManager is provided. These custom managers could have their own
resolving strategies, or implement any number of functions differently from the standard
component manager, but the one thing they cannot do is to import resources. For this,
they have to rely on the system components provided by the Alice library, and there
simply is no way for a custom component manager to import these other than to delegate
this request to the parent manager. Of course, the parent manager is still bound by its
sandbox, so there is no chance for security leaks.

What about importing the ComponentManager structure, and using its respective link
function? True, if there was a way to import the original ComponentManager (which
is used for example to create the root manager), this approach would work, as this
manager must of course not be restricted by any sandbox. However, a small trick
ensures that this is not possible, either: Any import of ComponentManager is served by
dynamically repackaging the current component manager (which is the parent manager
of the component requesting the structure) into a new structure. In particular, all
of the potentially harmful functions are re-used (i.e., copied) from that manager, so
they cannot violate any restriction imposed on that manager. This means that newly
created component managers are always safe in the sense that they can never get past
security guidelines restricting their parent managers. The rest of the implementation
of ComponentManager is pretty straightforward. For a more in-depth discussion, the
interested reader is referred to [16].

17The real explanation is outside the scope of this thesis.
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exception Conflict
val table = ref [] : (url * package) list ref

fun import’ parent =
let

fun acquire url =
Component.load url handle e => raise Failure (url, e)

fun lookup "x-alice:/lib/system/ComponentManager" =
pack ( structure ComponentManager =
struct

exception Conflict = Conflict
val acquire = acquire
val lookup = lookup val enter = enter
val eval = eval’ "." val link = import’ "."

end
) : (structure ComponentManager : COMPONENT_MANAGER)

| lookup url =
List.find (fn (x, _) => x = url) (!table)

and enter (url, package) =
if isSome (lookup url) then raise Conflict
else table := (url, package) :: !table

and eval’ url component =
component (import’ url) handle e => raise Failure (url, e)

fun link url =
let val url’ = resolve (parent, url) in

case lookup url’ of
SOME package => package

| NONE =>
let val package = eval’ url’ (acquire url’) in

enter (url’, package); package
end

end
in

link
end

Figure 5: A canonical component manager
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4.2 Unsafe Resources

A significant part of the implementation design is the identification of resources that
might be abused in various ways. There are three concerns in particular that have to be
considered:

System Security The most obvious category, including for instance the capability to
execute unchecked native code or system calls, open network sockets or access the local
file system.

User Privacy This includes read access to the file system as well as to various variables
set during any run of an Alice program (such as command line parameters or system
variables).

General Concerns This category contains any resources that do not fit in either of the
other two categories. An example case is the deliberate circumvention of abstraction
principles in a program.

Here, then, are the resources from the current Alice ML library (which is based on
the Standard ML library [14]) deemed unsafe and thus restricted, grouped by the re-
spective contexts in which they are checked (i.e., the type of both argument and return
value of the respective check call for that resource). Resources marked with “*” are
considered especially dangerous, as they can be exploited to gain unlimited access rights
to any other resource.

URL Context

• componentLoad (Security). Refers to the capability of calling Component.load
with the respective URL.

• readUrl (Security). Used for checking if read access to some URL should be
granted.

String/File Context

In the current implementation of Alice ML, filenames are passed as strings, so these
contexts are grouped together.

• componentSave (Security). Checked before a component is saved to file (Component.save).
There exists no reasonable way of checking the semantic content of a component,
so this is the only capability that will be requested in that context18.

• getApplicationConfigDir (Privacy). If granted, the canonical directory path
where the Alice ML application of the given name can store its (user-specific)
configurations is accessible.

18Since it wouldn’t make sense to create another method to check components as well.
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• getEnv (Privacy). Given the designator for some environment variable, this rep-
resents the right to retrieve its content.

• readFile (Security/Privacy). The capability of reading a single file.

• writeFile* (Security). The capability of writing/deleting a single file.

• sysCall* (Security). The capability of executing the system call given as argu-
ment.

If file permissions are set incorrectly, writeFile may be used to overwrite the Alice ML
interpreter or compiler binary with a custom version, compromising integrity and thus
security.

With sysCall, one can go even farther and modify the file permissions for the binary
file manually before attempting to overwrite it. Extreme caution is advised in granting
either of these capabilities.

Int Context

• readPort (Security). The capability of opening a TCP port for incoming data, i.e.
a listen port.

• writePort (Security). The capability of opening a TCP port for the purpose of
sending data.

• terminate (Security). The ability to terminate the whole program thread, includ-
ing the application hosting the sandbox. The argument refers to the status code
returned after terminating.

Empty (Unit) Context

• MkManager (Security). If set, users may call Component.MkManager to create their
own component managers.

• commandLineName (Privacy). For retrieving the name of the application with which
the current Alice process was started.

• commandLineArgs (Privacy). For retrieving the command line arguments with
which the current Alice process was started.

• deepWait (General). Enables calling of Store.deepWait, which breaks abstraction
barriers19.

• getDir (Privacy). Grants the right to retrieve the pathname of the current working
directory.

19This function awaits all futures in the representation of some value, even if that value represents an
abstract type relying on the maintenance of some unevaluated futures as invariants.
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• getHomeDir (Privacy). Grants the right to retrieve the pathname of the user’s
home directory.

• processWait (Security). Enables waiting for a system process (Unix.wait).

• processReap (Security). Determines if a system process may be reaped (Unix.reap).

• readSocket (Security). Determines if sockets may be opened for receiving data.

• writeSocket (Security). Determines if sockets may be opened for sending data.

• stdIn (Security). Grants the right to access stdIn.

• stdOut (Security). Grants the right to access stdOut.

• stdErr (Security). Grants the right to access stdErr.

4.3 Design Aspects

In chapter 3, we have discussed the design approach taken for our sandboxing infras-
tructure. Now, we’ll take a look at how to actually implement it. The implementation
was realised during the course of creation of this thesis, and will be available as a part
of the Alice ML distribution [1].

4.3.1 General Architecture

By now, it should be a given that no sandbox can work without policy rules. However,
policy rules can be created and manipulated independently of sandboxes. For exam-
ple, two distinct sandboxes could conceivably use the exact same policy set, but host
different applications. At any rate, policy rules must always be defined and in place
before a sandbox can be deployed. That is why our infrastructure is split in two: On
the one hand, there is the component manager providing the actual implementation of
the delegation and indirection principles discussed in chapter 3.8. On the other hand,
there is a module dealing with the creation and management of policy rules, which is
kept separate from the first.

The sandboxing manager is provided by this functor:

Sandbox.MkManager (Policy : POLICY)

For the reasons just mentioned, it must receive a fixed set of policy rules at creation
time. These are created by the MkPolicy functor, which does not need any input, but is
implemented as a functor nevertheless for reasons of generativity (i.e. every policy set
is generated “fresh” from the default settings). The generated policy set should then be
customised with appropriate policy rules.

31



4.3.2 Sandbox Interface

The interface for accessing the sandbox (Figure 6) is very straightforward: The already
mentioned Security exception is provided, which is raised whenever a policy rule is
violated. MkManager is of course the functor for creating the sandboxing component
manager. After creation, such a manager is used simply by calling its link function on
URLs locating those components that should be controlled by the sandbox.

signature SANDBOX =
sig

exception Security of string
functor MkManager (Policy : POLICY) : COMPONENT_MANAGER

end

Figure 6: The signature of a sandbox

4.3.3 Policy Interface

As there are a number of ways for implementing policy rules, the interface for doing
so (Figure 7) is a little more complex than the sandbox interface. Yet, it is easier
to understand than it might appear at first glance. Keep in mind that there are two
different kinds of policy rules: Argument policies and import policies. We’ll start with
the latter, as that concept is not nearly as complex as the former.

Import Policies Instead of the importPolicy function used in the model (chapter 3.12),
we employ the import policy datatype together with the setImportPolicy function
to define the policies for component imports. The first argument for this function is
the URL of the component that should be imported, the second the intended treatment
expressed by an import policy value. These values mirror exactly the possible result
values of the importPolicy function. If no action is specified for the component, its
import is rejected. The Policy structure provides reasonable defaults for all system
components. Custom components must of course still be entered manually, if they are
not to be rejected. As with system components, they must either be substituted by a
safe counterpart (⇒ SUBSTITUTE counterpart) or marked as harmless by an ACCEPT.

Handler Type The handler type is the internal representation of policy rules inside a
sandbox. Its definition can be extended with new types of any kind, so even user-defined
types can be accomodated in a policy rule.

This type represents the main difference between our model and the implementation:
Since we are now working in a typed context, we have to indicate to the type system
the context of each policy rule. This is the purpose of the handler type, to integrate
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signature POLICY =
sig

type handler

datatype import_policy =
ACCEPT

| REJECT
| SUBSTITUTE of Url.t

val setImportPolicy : Url.t * import_policy -> unit
val secureComponent : Url.t -> Url.t option

signature ARG_TYPE =
sig type t

val setDefaultPolicy : string * bool -> unit
val accept : t -> handler
val reject : t -> handler
val acceptCustom : (t -> t option) -> handler
val rejectCustom : (t -> bool) -> handler
val check : string * string * t -> t

end

functor MkArgType (type t) : ARG_TYPE

structure Unit : ARG_TYPE
structure Int : ARG_TYPE
structure String :
sig include ARG_TYPE

val acceptPrefix : string -> handler
val rejectPrefix : string -> handler
val acceptSubstring : string -> handler
val rejectSubstring : string -> handler

end
structure Url : ARG_TYPE

val addRule : string * handler -> unit
end

Figure 7: The POLICY signature
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the “handling” of rules while preserving information about the individual types. That
way, the sandbox does not have to care about the context a policy rule works on, but
types are respected nevertheless. This is done automatically when using the methods
provided by the corresponding ARG TYPE (see below), which in fact affords the only
means for handler creation. Hence, if the policy rules for some resource perform string
rewriting, its default must be installed using the Policy.String.setDefaultPolicy
function (where Policy.String is one of the predefined ARG TYPE instantiations), and
similarly for the other types. Otherwise, return values could not be properly typed in
the case of an accept ing default policy!

Similarly, during the creation of policy rules, the respective resource context has to be
kept in mind, in order to choose the correct function. However, once a type-dependent
handler has been created, it can always be installed using the addRule function (which
does not have to behave differently across types, since that functionality is now encap-
sulated in the handler). This function takes a resource descriptor in form of a string and
a handler, and installs that handler in the policy rule set for that resource.

ARG TYPE The ARG TYPE signature collects all elementary operations for working
on argument policies (as opposed to component policies), and the MkArgType functor
provides a convenient method for creating instances of this type. The predefined struc-
tures that implement the ARG TYPE signature are listed in the lower part of figure 7.
Specifically, each instantiation implements three distinct functionalities:

1. Setting a default policy for a resource via setDefaultPolicy. The resource in
question can be one of the predefined resources (cf. 4.2), or a custom resource.
There is no special syntax for the definition of these, adding rules or default policies
“just works” out of the box. The bool argument refers to the two possible defaults,
acceptance and rejection of the access request (cf. 3.13) – True and False,
respectively.

2. Creating handlers for argument policies. These are discussed below.

3. A check function that can be called from safe substitute components. This method
takes as arguments the resource designator that should be checked, the name of
the function that requested access to the resource, and a value of type t that is
then rewritten using the policy rules for the specified resource.

The signature offers four methods to create handlers. Remember that in case a handler
matches, there always remains the decision of whether to accept the value in question,
or whether to reject it – and in case it is accepted, whether it should be modified. Thus,
an accepting handler must always specify the value it accepts, while a rejection handler
does not. Hence, we use different methods to create accepting and rejecting handlers.

Accepting handlers are set up via accept and acceptCustom, where accept is used
for identity matching (i.e. when given x and y, accept returns x without modification iff
x = y, nomatch otherwise). To return custom values, acceptCustom is used, for which
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a return value of the argument function of None is equivalent to nomatch, and a value
of Some x’ equivalent to acceptance of x’.

Conversely, reject rejects the input if it is identical to the given argument, while
rejectCustom uses a boolean function to test its input. If it returns True, that input
is rejected, if it returns False, the function returns nomatch.

Note that in our model, there is no way to access handlers directly. After creating them,
they have to be entered into the policy rule list for some resource via addRule, after
which they are accessible for checking (i.e., calling the check method on that resource).

URL rewriting Based on the policies thus defined, the function secureComponent per-
forms the actual work of deciding the proper treatment for each input URL. In the
normal course of sandbox operation, it is only expected to be used by the internal com-
ponent manager during its resolving phase, but its exposure may nevertheless be useful
for debugging purposes.

4.4 Sandbox Usage

After having seen the interface, let’s try working with it! We’ll revisit our AnyCorp
browsing application, but this time, we’ll end up with an implementation we could
actually use. Again, we begin by writing the unsafe browsing application:

(*) /AnyCorp/unsafe/Browser
import structure HttpClient from "x-alice:/lib/system/HttpClient"
structure Browser =
struct

fun load url = print (#body (HttpClient.get url))
end

Yes, that is all we really need if we focus on the essence of the browser and ignore error
handling and so on (“(*)” defines line comments, here we indicate file location). After
all, what could possibly go wrong in loading some site from the internet?

Moving on, we’ll load this module inside a sandboxing component manager. To make
things more realistic, let’s assume that we do not actually know the module definition,
but only receive a precompiled component we have to use inside our host application.
We begin by creating a fresh Policy module that will contain our custom policies:

(*) Main File
import structure MkPolicy from "x-alice:/lib/system/MkPolicy"
import structure Sandbox from "x-alice:/lib/system/Sandbox"
structure Policy = MkPolicy()

Before we can create our sandbox, we have to finish policy design. From our previous
discussion of the browser, we know what we have to do, which is to substitute the
HttpClient by a safe counterpart:
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Policy.setImportPolicy (Url.fromString
"x-alice:/lib/system/HttpClient",

Policy.SUBSTITUTE (Url.fromString
"file:/AnyCorp/safe/HttpClient"))

We have now set the import policy for HttpClient so that it is substituted by the file
/AnyCorp/safe/HttpClient. Let’s write that file:

(*) /AnyCorp/safe/HttpClient
import structure Policy from "x-alice:/lib/system/Policy"
import structure HttpClient from "x-alice:/lib/system/HttpClient"
structure HttpClient =
struct

type document = HttpClient.document
exception Authority = HttpClient.Authority
val request = HttpClient.request
val post = HttpClient.post
fun get url =

let val url’ =
Policy.Url.check ("readUrl", "HttpClient.get", url)

in HttpClient.get url’
end

end

Naturally, in a real implementation, we would run more extensive checks and substitute
the other unsafe functions as well20. We neglect checking of port 80, since we would
need to create our own HTTP request upon receiving a rewritten value, and could not
use HttpClient.get any longer. The principle, however, should be clear.

Next, we install the default policy for redirecting users to our warning page:

fun redirectUrl ( _ : Url.t) =
SOME (Url.fromString "http://www.anycorp.com/warning.html")

val urlHandler = Policy.acceptUrlCustom redirectUrl
do Policy.addRule ("readUrl", urlHandler)

Note that setDefaultPolicy does not suffice for our purposes, since it can only accept
or reject according to some boolean value. However, such a behaviour is necessary
to guarantee that the default rule always matches, since a handler (instead of a bool)
might also return nomatch. Hence, we instead rely upon the fact that the first rule that
is inserted has a de facto default status, in that it is of course called whenever no other
rule matches. We ensure that this rule always matches by throwing away the argument
and replacing it with the warning URL.

20See our real implementation of the substitute component for HttpClient for further details.
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Now we can insert the rules allowing access to certain sites:

fun urlPrefix (prefix, url) =
String.isPrefix (prefix, Url.toString url)

fun acceptInternal url =
if urlPrefix ("http://www.anycorp.com", url)
then SOME url
else NONE

fun acceptWiki url =
if urlPrefix ("http://www.wikipedia.com", url)
then SOME url
else NONE

val internalHandler = Policy.Url.acceptCustom acceptInternal
val wikiHandler = Policy.Url.acceptCustom acceptWiki
val LtUHandler = Policy.Url.accept

(Url.fromString "http://lambda-the-ultimate.org")

do Policy.addRule ("readUrl", wikiHandler)
do Policy.addRule ("readUrl", googleHandler)
do Policy.addRule ("readUrl", internalHandler)

We added “Lambda the Ultimate” to the set of allowed sites to demonstrate that not
every handler requires custom creation. Indeed, the basic policy functions should be
sufficient for almost all regular use cases. Notice in the previous example the order of
addRule calls, which is inverse to the expected match probability (i.e. unlikely matches
are inserted first, so they are checked later than others – think of it as a stack).

Now we have to create a sandbox which uses our newly-defined policies, and use it to
link the unsafe browser:

structure SandboxManager = Sandbox.MkManager (structure Policy = Policy)
val safeBrowser = SandboxManager.link

(Url.fromString "file:/AnyCorp/unsafe/Browser")

And again, we are done. We can now use safeBrowser by unpacking it and using it
for surfing the web – AnyCorp style! The question of how desirable this is is left as an
exercise for the reader.

4.5 Sandbox Implementation

Safe Substitute Components Although it may be stating the obvious, we neverthe-
less begin this chapter by mentioning that as a matter of course, the actual sandbox
implementation includes safe substitutes for all system components. These mirror the
structure of the standard library [14], both in terms of structural hierarchy among the
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different components as well as in the layout of single components. In particular, all un-
safe functions accessible via the interface of a system component are wrapped in a safe
substitute function. The manager provided in the Sandbox component always resolves
to these safe components per default, which is done by a syntactic transformation of
input URLs made possible by the strong correspondence between the structure of the
standard library and that of the safe components.

Resolving Policies Not quite so obvious is one difficulty encountered in the implemen-
tation of the crucial indirection feature for the Sandbox component. We have seen how
indirection enables us to wrap unsafe system components with relatively little effort
inside a safe counterpart – now, we will see that this method also has its drawbacks.
The crux of the matter lies in importing the Policy structure in the safe substitute
component, which (as we know) is created dynamically by calling the MkPolicy functor
and specifying the policies we want to use. However, we also know that we definitely
have to import Policy inside the safe substitute component – otherwise, how could we
implement our calls to the proper check method?

The situation is like this: The Policy structure is created inside some application and
dynamically wrapped into a component, so at first it is only visible under “local” scope,
i.e., only within the bounds of that application. To make it visible “globally”, the struc-
ture would need to be entered into a component manager table – then, other structures
linked with that component manager could import it. Fortunately, component man-
agers offer the enter method to deal exactly with this problem: Using it, one can enter
dynamically created components under some arbitrary URL into the internal table of the
manager. A näıve approach would therefore consist of importing the current component
manager and entering Policy in its table. The “current component manager” in this
context is always the one used to link the application hosting the sandbox.

Doing this would give a first approximation for a solution, as sandboxed components
are now able to import Policy, which we wanted to achieve. Does this mean that the
problem is solved? Unfortunately not, as we have introduced a new difficulty by en-
tering Policy into the component manager responsible for the whole host application.
You could say that our efforts to move Policy from local scope into global scope were
“too effective”: The one Policy component we entered into the manager is now always
returned whenever this structure is imported by a sandboxed component. In particular,
if we wanted to host two different sandboxes with different policies, it would not be
possible to install the second Policy component. A conflict would be raised at the point
of entering the new Policy component under the same URL as the old – but using a
different URL is not a valid option either, since this would entail writing multiple sub-
stitute components that only differ in the URL they import.

So we see that we must enter the Policy component somewhere further down the link
hierarchy of component managers. The approach that comes to mind almost instantly is
of course to enter it inside the sandboxing manager – after all, this would eliminate the
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problem of trying to host different sandboxes, as it would preserve the strong correlation
between sandbox and policy. Regrettably, this assumption is misguided: Assume for a
minute that we actually entered Policy into this manager. Now, when we link a com-
ponent using that sandbox, it immediately delegates this request to its parent manager
(possibly after rewriting the URL to point to some substitute component). This means
that at the time the actual substitute component is linked, any information contained in
the table of the sandboxing manager is completely irrelevant for the imports the substi-
tute component may request – in particular, this is true for the Policy import request as
well. So it is evident that this cannot be the way to go, either. The solution to our prob-

Root Manager

Policy-Delegating 
Manager

Safe ComponentApplication

<returns
safe

component>

Sandboxing 
Manager

Virtual 
SandboxPolicies
<loads>

<requests unsafe
component>

<delegates
rewritten
request>

<requests
policies,
unsafe

components>

<returns
policies,
unsafe

components>

Unsafe 
Component

Unsafe 
Components

<may use>
<loads>

<returns
unsafe

components><delegates
request>

<returns
safe

component>

Figure 8: The virtual sandbox

lem, however, is indicated by this last try: If requests are just delegated “up one level”
starting at the sandboxing manager, all we have to do is insert a new manager exactly
at that point, which will deal with Policy import requests. Stated in a different way, we
just transparently add another layer of indirection (Figure 8). Rather than modifying
the sandboxing manager or passing the current component manager as delegate manager
to the safe component, we create a second internal manager inside Sandbox, enter the
Policy there, and delegate import requests from the sandboxed component always to
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this manager first. The result is what we refer to in figure 8 as the virtual sandbox,
which in fact encompasses the Policy module as well as two component managers, but
which appears to the user just as the one sandboxing manager. That way, when a safe
substitute component tries to import Policy, it is resolved by the internal manager. Any
other requests are delegated to the parent component manager as before, so there’s no
change concerning inheritance aspects, and implementation of the new internal manager
is straightforward.

Security Violation Component The other interesting aspect in our implementation
concerns the default value that is returned when an entire component is outrightly
rejected. We do not raise an exception immediately, but use the delegation feature once
again to forward the client a dummy component, which raises the exception in our stead.
This ensures that program execution is halted only when the client really tries to use
the unsafe component, not if it merely imports it but does not use it for some reason
(for example, if it is only needed in a conditional branch). The dummy component is
depicted in figure 9.

It resides at a location accessible under some URL, which the sandboxing manager
delegates to its parent manager. It is linked and returned as the requested component,
but as with all components, evaluation is suspended until it is triggered explicitly. This
way, the program may still perform useful work before it is interrupted by a security
error, or it may even terminate successfully.

import structure Sandbox from "Sandbox"
do raise Component.Failure (Url.fromString ".",

Sandbox.Security "Security Failure")

Figure 9: The security violation component
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5 Related Work

5.1 Java

The idea of using a sandbox to lock dynamically linked components in a safe space is of
course not so new. Of all the languages that use it, Java in particular stands out, since
this was the language that introduced and popularised the concept in the mainstream.
Let’s compare how things work in Java and in our system:

5.1.1 Resources

When we introduced resources, we briefly mentioned that references to functions that
access unsafe resources can be considered capabilities. Java makes use of this fact in
the definition of permissions, which represent access to system resources [18]. There
are lots of classes defining various subtypes of permissions, e.g. FilePermission and
NetPermission, with Permission as the common superclass. Custom permissions can
be created as well, likewise by subclassing Permission.

A crucial difference between our concept and the Java approach is the parameterisa-
tion: In Java, new permissions are created for each instance of an anticipated usage (e.g.
java.io.FilePermission("/tmp/abc", "read")), whereas in our system, the resource
is defined once, and then equipped with various parametric rules. Java allows instan-
tiation of permissions with predefined wildcards (e.g. for FilePermission: [optionally
recursive] matching of subdirectories, and a value for matching all files). These wildcards
are always specific to one resource and cannot be extended. In our case, this (and more
complex functionality) can be easily achieved by defining custom policy functions.

5.1.2 Policies

In our system, each rule defines whether it accepts a given value or not, and if this
value should be modified in the process. In Java, each permission just defines whether it
accepts a value. As in our system, various permissions pertaining to one resource have
to be tried before any assertion can be made about access rejection. They are collected
in instances of class implementing the Policy interface, which define the security policy
for any one application. At any time, only one instance of this class can be active;
this active instance can be obtained via the getPolicy method provided by every class
object.

Java has a flexibility advantage in that permissions must always implement the implies
method, which basically states that if a permission A implies B, then when A is granted,
B must be granted as well. For example, general rules like wildcards always imply their
specific instances.

How policy configurations can be set in Java is up to the implementation of the Policy
interface. The reference implementation reads data from configuration files formatted
according to a syntax specified in the Java API documentation [18].
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5.1.3 Component Manager

In Java, the system most closely corresponding to the component manager is the class
loader (accordingly, the root component manager is called primordial class loader). Class
loaders always work lazily [8]. The meaning of this term in Java encompasses that classes
as well as member methods and values are loaded “as late as possible”, i.e. on demand.

Each class loader defines its own namespace, so if one class is loaded by two different
class loaders, they will be type-incompatible. In Alice, the types will be compatible,
although a type sharing constraint may be needed in some cases for the static type
system. A discussion of the relative merits of the two approaches is outside the scope of
this thesis.

Delegation between class loaders works similarly to the equivalent Alice concept, i.e.,
class loaders can delegate requests to their parents (or directly to the primordial class
loader). However, there is no direct restriction inheritance, as Java employs a different
system of policy checking than Alice ML. Instead, the security context provided by the
AccessController class is inherited across processes.

5.1.4 Access Control

The AccessController class introduced in version 2 of the Java API is disassociated
from the class loader and is used to check for permissions. A sample call may look like
this:

FilePermission perm = new FilePermission("path/file", "read");
AccessController.checkPermission(perm);

That is, AccessController is globally accessible and just checks whether the permission
is directly or implicitly granted. Thus, the process of policy checking in Java looks
something like this:

1. The client application makes a call to some potentially unsafe system function
using the Java API.

2. In the API function, various checkPermission calls are inserted that check for
whatever permissions the function may need.

3. If some permission checked by such a call is not granted, the call raises a secu-
rity exception called AccessControlException. This exception is a subclass of
java.lang.SecurityException. Otherwise, it returns quietly. The API function
then proceeds with its regular operations.

Similarities to our approach lie in the fundamental way the permissions are checked,
namely dynamically at call time of the API function, and the way rejection is dealt
with: raising a security exception in the respective handler code.

One main difference besides parameterisation (as discussed above) is that API func-
tions include hardcoded policy checks – i.e., there are no substitute functions, but every
low-level API function always carries the overhead for policy checking. Our approach
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allows acceptance or rejection also at component level, so the basic system functions can
be written without regard to such concerns, and are substituted only when needed.

The other difference is of course the use of return values in our system, which can be
modified according to the user-specified policy rules. Java simply does not implement
anything which could emulate this kind of behaviour.

Another feature of Alice ML to which no equivalent exists in Java is lazy evaluation,
which was already mentioned earlier on. As indicated, it enables some very elegant
techniques that would have to be reformulated in a manual, ad-hoc approach for use in
Java, if at all possible. Consider this fragment taken from the substitute component for
TextIO (figure 10):

val stdIn =
lazy let

do Policy.Unit.check ("stdIn", "TextIO.stdIn")
in

TextIO.stdIn
end

Figure 10: TextIO substitute value for stdIn

The use of lazy allows us to wrap values with policy checks! This check will be performed
once, at the time when TextIO.stdIn is first requested (i.e., used in a computation where
its value is required to be known). If it fails, the security exception is thrown as usual,
otherwise the regular stdIn value is put in place of the “placeholder” value. For the
semantics of lazy evaluation, see [13].

It is not clear at all how a similar behaviour could be implemented in Java.

5.1.5 Certificates

Java implements a system of trust, which is to say that it enables signing of code with
certificates by trusted parties. Signed code can thus gain security privileges denied to
unsigned code, which basically means that this provides a facility to bypass the security
infrastructure – not unsafe per se, but dangerous if any malicious party can gain access to
certificates by (potentially illegal) means. Past experiences have shown that this worry
is not unfounded.

Alice ML does not provide a system of any such kind, although it might be desirable
e.g. in the context of foreign function interfaces.

5.2 The E Programming Language

E [11] is a vocal proponent of the principle of least authority (POLA), which states that
programs should run with the least amount of rights they absolutely need to work. For
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example, in current systems, most applications inherit all the privileges of the particular
user running the application. If this user happens to have administrative rights (which
is the standard case for a very popular, yet unsafe, desktop OS), the application is prac-
tically unbounded with respect to the operations it may perform. No word processing
application needs write access to the directory where the OS resides, but usually, this is
granted nevertheless – the result is that viruses embedded in “rich” text documents can
do considerable damage extending far beyond the environment provided by the word
processor [7]. This is just one example of unnecessary dangers that could be avoided by
applying the POLA concept.

E has an even stricter focus on capabilities than Java does. While the basic con-
cept is the same, E goes to great lengths to try to ensure that its programs are safe.
Examples include the (by now standardly done) exclusion of pointer arithmetic and of
static mutable state (citing as reason examples like Java’s System.out variable that
could be replaced in early incarnations of the language due to mutable state) from the
language, and a carefully designed API that prevents the “leaking of capabilities” – or
at least, that’s the claim. This capability leakage concerns authority that is granted
to a special object (e.g. a library component which is known to be safe), but that can
be derived from that object for general usage with other objects as well. An example
given in [17] concerns the Java InputStream, which supposedly could be downcast to
a FileInputStream, which would hold a reference to File. This way, control over the
entire directory system could be gained.

E does not have an explicit notion of sandbox such as presented in this paper. This
is because every E program can be said to be sandboxed anyway, since authority grant-
ing is always explicit, instead of implicitly assuming full trust under regular (i.e., non-
sandboxed) execution as in the other paradigms. In E, security thus becomes a matter
of architecture, since the challenge does not lie in the implementation or usage of a sand-
boxing infrastructure, but rather in designing the application in such a way that the set
of minimal authority it needs to work is kept as small as possible. In [17], a range of
design patterns is offered that help to support that goal. A discussion of these, however,
is outside the scope of this thesis.

5.3 Perl 6

Since Perl 6 is still in its conceptual phase (albeit a very sophisticated one), not very much
can be said about its sandboxing mechanism. The intention documented in the relevant
RFC [2] is to use a tainting mechanism familiar from previous versions. This mechanism
treats specific data as tainted, i.e., potentially unsafe, and forbids most operations on it.
The data primarily concerned in previous versions was user-input, but version 6 extends
the concept to other data as well, like file content from the local file system and data
gained from socket interaction. In this respect, it is not unlike our resource system – a
rough characterisation would be to say that usage of resources results in tainted data.

Tainted data must be explicitly untainted by the programmer before the restriction
on the operations a program may perform on this data are lifted. Hence, the operations
that are allowed concern checks and alterations the programmer may perform to satisfy
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himself that the data is secure (in the sense relating to the application domain of his
program) before untainting it. Of course, this is a rather general mechanism, and as such
it is both much more complex to use than our system, and also much more potent. For
example, alteration of data is no issue at all (it is just done), and the dynamic run-time
checks that Perl uses to make up for its lack of a static type system are of course less
prohibitive than our ML-based system (and, needless to mention, more error-prone).

The Perl approach differs significantly from other approaches in one main aspect: The
context in which code is assumed to be executed. Most languages presented here assume
that unsafe code is loaded dynamically inside some host application, which must restrict
access to certain unsafe language features. In Perl, this is somehow muddled by the
notion that the program can always lift taint restrictions on its own, instead of being
granted capabilities by some “greater power”. The source of this lies in the fact that
Perl programs are assumed to need sandboxing primarily in a CGI context, i.e. when
the Perl program is hosted and executed by a web server accessible to the public. Hence,
the sandboxing feature helps the programmer recognise and deal with dangers resulting
from resource use that would not be relevant in a non-public context. That is, the source
of mistrust is shifted away from the code and the programmer (which is known to behave
benignly), and towards interactions of the program with sensitive resources that might
be exposed to the public (and thus, potentially malicious users) inadvertently.

It is interesting to note that the RFC proposes to inherit restriction contexts to eval()
calls as well, such that these calls cannot perform operations more powerful than their
enclosing block allows. In Alice ML, this functionality comes for free due to the nature
of our implementation.

5.4 Microsoft .NET CAS

The Code Access Security ([9, 10]) technology employed in Microsoft’s .NET framework
adopts the same view as E (chapter 5.2), namely that the POLA principle should be
applied to code. Sandboxes are understood as a set of policies that apply to code of a
special identity. This identity is made up of the application context the code appears in
(for example, whether it was loaded from some site on the internet, or whether it is a
plugin for some application provided by the distributor of that application), and certifi-
cates that determine who wrote the code, and who signed it. In a significant deviation
from the path chosen by both Alice ML and Java, code thus does not automatically run
with all the privileges of the user that executed the respective application, but with the
rights granted to its own identity. That is, security is not based on user identy, but on
code identity. Two qualifications have to be made to this statement, however: The first
objection is that user rights still provide an upper bound for rights that can be obtained
by an application, which is of course quite sensible. The other qualification is that if the
code does not have a specific identity as assigned by the application, it is still run under
full trust, i.e. user rights.

As in Java, resources in CAS come in the guise of permissions, such as the ever present
FileIOPermission. Again, as in Java, these are parameterised by predefined operations
and arguments relating to these, for example PathDiscovery and C:\Test. There is no
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option for altering values, but new permissions can be created as easily as in Java.
Microsoft encourages the introduction of declarative permission requests into client

applications that are expected to run in a sandboxed environment. They are extracted at
compile-time and integrated in the assembly code, to be parsed by the host application
when the assembly is loaded. The requested permissions should symbolise the set of
minimal authorities the application needs to work correctly. This way, applications
which would not be allowed to execute properly anyway can be rejected before they
are actually run. Of course, this approach is directly opposed to ours, which is to let
applications run as long as possible before they have to be terminated.

The difference in these approaches is probably due to the more conservative context
in which CAS is applied, and it can indeed be argued that in a production setting,
immediate rejection is the appropriate behaviour. In Alice, this could be implemented
by dummy calls to the respective API functions, and checks to see if these go through.
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6 Conclusion

The dynamic nature of modern applications, supported by the open programming style
offered by many languages, has led to new risks and concerns. These are placated by the
rise of appropriate techniques to counter many of those risks, with sandboxing as one
such technique to guarantee safety by encapsulating dangerous processes in a controlled
environment. Sandboxes work by enforcing a set of configuration rules called “policies”,
which can be specified by the creator of the sandbox. Policies govern the use of so-called
resources, which designate critical parts of a computing system. Unrestricted, these
resources could be used for malicious purposes such as deletion of files, acquisition or
publication of private data, installation of viruses, abuse of computation power or net
bandwidth, and many more.

In this thesis, we have presented a model describing sandboxes and policy rules on
basis of an untyped, ML-like programming language. We have shown how delegation
and rewriting suffice to define a modular sandboxing infrastructure, if a component
system similar to the one used in Alice ML is available. We have given a working
implementation of this model in Alice ML, and discussed certain pitfalls and how to
avoid them. The resulting system is modular and extensible, and just as powerful as
sandboxes provided by popular languages like Java or the Microsoft .NET framework.
In our system, policy rules can return and modify values, a characteristic not found
in any other implementation. Use of advanced Alice ML features like laziness enables
us to express certain idioms succinctly and efficiently, that would otherwise be hard to
implement.

There are some ideas for future work: For example, it would be desirable to integrate
a system for the grouping of certain related policy rules into higher-level structures,
so it would be possible to reason about sets of policies instead of just single policies.
Some predefined sets would be distributed with releases of Alice ML, to provide users
with a reasonable basic rule set to extend or modifiy as they see fit. Possible sets that
come to mind for this purpose would be browser applet, intra-corporation application or
server-side application, which could define some sensible default policies alongside more
specific rules. In fact, this is one extension we are currently working on.

Another point would be to create a declarative-style syntax for the definition of policies
in configuration files, and the implementation of a parser to read those files and generate
appropriate Policy structures, as done in Java. This would facilitate use of widely
applicable policies provided for multiple users, which could be distributed over some
kind of intranet.

Lastly, a fascinating technique not properly explored in this thesis is signature thin-
ning : Here, not the component itself is altered, but its signature is modified in such a
way that only safe function calls are possible. For example, a general I/O component
could be reduced to just performing reading operations. However, it is unclear how to
communicate signature alterations to programs expecting a particular version of the sys-
tem API. This problem would have to be solved, and a language facility would have to
be created to allow the dynamic building of component signatures, analogous to functors
which dynamically create components.
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