
Entailment of Atomic Set Constraints is PSPACE-Complete

Joachim Niehren and Martin Müller Jean-Marc Talbot
Universität des Saarlandes Max-Planck Institut Informatik

Saarbrücken, Germany Saarbrücken, Germany

Abstract

The complexity of set constraints has been extensively
studied over the last years and was often found quite
high. At the lower end of expressiveness, there are
atomic set constraints which are conjunctions of inclu-
sionst1�t2 between first-order terms without set oper-
ators. It is well-known that satisfiability of atomic set
constraints can be tested in cubic time. Also, entail-
ment of atomic set constraints has been claimed decid-
able in polynomial time. We refute this claim. We show
that entailment between atomic set constraints can ex-
press validity of quantified boolean formulas and is thus
PSPACE hard. For infinite signatures, we also present
a PSPACE-algorithm for solving atomic set constraints
with negation. This proves that entailment of atomic
set constraints is PSPACE-complete for infinite signa-
tures. In case of finite signatures, this problem is even
DEXPTIME-hard.

1 Introduction

Set constraints are logical formulas describing relations
between sets of trees [2, 5, 6, 13, 16]. Set constraints
have received much attention in constraint-based type
inference and program analysis for different program-
ming languages [3, 12, 15, 17, 21, 28]. Other applica-
tions of set constraints include order-sorted unification
[29] and constraint logic programming [20].

Expressiveness and Complexity. Expressiveness and
complexity have been widely studied for various class-
es of set constraint [1, 2, 7, 9, 11, 14, 27]. The com-
plexity of their satisfiability problem was often found
to be very high (e.g., NEXPTIME-complete [1, 27] and
DEXPTIME-complete [9, 11]). At the lower end of the
expressiveness scale, there are atomic set constraints
[16] which are conjunctions of inclusionst1�t2 be-
tween first-order termst1; t2 without set operators, i.e.

terms built from variablesx and function symbolsf
of a given signature�. Atomic set constraints are in-
terpreted in the structure of sets of finite trees over�
(often called ground terms). It is well-known that the
satisfiability of an atomic set constraint can be tested
in cubic time (see the complete version of [22] for in-
stance).

Entailment. Beyond satisfiability, entailment (the va-
lidity of implications' j= '0) has raised much interest
for various classes of constraints [4, 18, 26]. Entailment
is useful for constraint simplification [24], closely re-
lated to the treatment of negation (see below), and fun-
damental for models of concurrent constraint program-
ming [25].

Entailment of atomic set constraints is subsumed by
satisfiability of atomic set constraints with negation
which is known decidable in NEXPTIME [6, 14]. The
precise complexity of entailment of set constraints was
first investigated by Charatonik and Podelski. They
showed in [9] that entailment of set constraints with
intersection (which subsume atomic set constraints) is
DEXPTIME-complete for an infinite signature. Beside
this, they noted in the same paper with reference to [8]
that entailment of atomic set constraints is decidable in
polynomial time – again for an infinite signature. We
refute this claim and determine the correct complexity.

The reductions in this paper that prove lower complex-
ity bounds are inspired by work of Rehof and Hen-
glein’s on entailment of subtype constraints [18]. Fol-
lowing their idea, one can indeed express satisfiability
of Boolean formulas in conjunctive normal form by en-
tailment of atomic set constraints (for any non-trivial
signature). Since this problem is coNP-complete, en-
tailment of atomic set constraints is coNP-hard – in
contrast to the claim of Charatonik and Podelski.

For a finite signature�, the situation is even worse: En-
tailment of atomic set constraints is DEXPTIME-hard
since it can express universality of tree automata which
is DEXPTIME-complete. The reduction is very simple.
Its idea is to consider the set of transition rules of a tree
automaton as an atomic set constraint. For instance, the
transitions of the automatonA below corresponds to
the atomic set constraint'A:A : f(x; z)! x; f(z; x)! x; f(z; x)! z'A : f(x; z) � x ^ f(z; x) � x ^ f(z; x) � z
If x is the only final state ofA thenA is universal if-
f 'A ^ T��y j= y�x holds in the structure of sets
of finite trees over�. The formulaT��y can be ex-
pressed by

Vf2� f(y; : : : ; y)�y which is an atomic set
constraint but only if� is finite.

For an infinite signature, we have argued so far that
the complexity of entailment of atomic set constraints
is between coNP and DEXPTIME. We show in this
paper that this problem is indeed PSPACE-complete.
We prove PSPACE-hardness by expressing validity of
quantified Boolean formula which is PSPACE com-
plete. The idea is to extend the coNP-hardness proof
(which follows [18]) by encoding quantifier prefixes in
addition. Note that the PSPACE hardness result of [19]
does not carry over to atomic set constraints.

Independence and Negation. Entailment can be used
for treating negation since j= Wni=1 i holds if and
only if ^ Vni=1 : i is unsatisfiable. A constraint lan-
guage has the independence property [10] if the unsat-
isfiability of ^ Vni=1 : i is equivalent to that j= j
holds for some1 � j � n. Thus, under the assump-
tion of independence, deciding entailment is equivalent
to solving conjunctions of positive and negative con-
straints.

The independence property does not hold for atomic set
constraints since a variable may denote the empty set;.
For instance, let be the atomic set constraintx�a ^y�a which requires thatx andy denote the empty set;
or the singletonfag. Hence, j= x�y _ y�x is valid
but neither j= x�y nor j= y�x hold.

As observed by Charatonik and Podelski [8, 9]1, the in-
dependence property does hold for Ines constraint [22]

1The independence property for Ines constraints (even with in-
tersections) is proved in [9]. The earlier proof given in [8]is based

– in case of an infinite signature. Ines constraints have
the same syntax as atomic set constraints but are inter-
preted overnon-empty setsof trees (rather than arbi-
trary sets).

In this paper, we prove that the following 4 problems
are PSPACE-complete for an infinite signature:

1. Entailment of Ines constraints.

2. Satisfiability of Ines constraints with negation.

3. Satisfiability of atomic set constraints with nega-
tion.

4. Entailment of atomic set constraints.

Problems (1) and (2) are equivalent since Ines con-
straints have the independence property. Problem (3)
can be reduced to problem (2) in NP (and thus in
PSPACE) since we can guess for all variablex whetherx � ; or x 6� ;. Obviously, problem (4) can be re-
duced to (3). All together, we see that problem (4) is
easier than (1) modulo PSPACE reductions.

The easiest problem (4) is PSPACE hard as we argued
above. In order to show PSPACE completeness for all
problems it remains to show that the hardest problem
(1) can be solved in PSPACE.

Deciding Entailment. In this paper, we present an
PSPACE algorithm that decides entailment of Ines con-
straint for an infinite signature. Given a judgment j= x�y, this algorithm checks the existence of a term
that is both an upper bound ofx in and a lower bound
of y in . We illustrate reasoning with lower and upper
bounds for proving the validity of the following judg-
ment: 1 ^ 2 ^ 3 j= x�y
in the structure of non-empty sets of trees, where: 1 = x�f(x1; x1) ^ x1�f(a; z) ^ x1�z 2 = x�f(z; f(z; a)) 3 = f(y1; z)�y ^ f(z; y1)�y ^ f(a; a)�y1
First note that 1 j= x�f(z; f(a; z)) holds, i.e. the
term f(z; f(a; z)) is an upper bound ofx in 1. The
reader may notice that there are many more upper
bounds forx in 1, for instancef(x1; z), f(z; x1),
on an incomplete algorithm for entailment and thus wrong. A
counter example can be found in the paper.

f(z; z), f(f(a; z); x1), f(f(a; z); z). The number of
upper bounds may grow exponentially in the size of the
constraint. In particular, multiple upper bounds can be
combined by “deep shuffle”; as for instance:x�f(z; f(a; z))^ x�f(z; f(z; a)) j= x�f(z; f(a; a))
This shows thatf(z; f(a; a)) is an upper bound ofx in 1 ^ 2. Furthermore, 3 j= f(z; f(a; a))�y holds,
i.e. f(z; f(a; a)) is a lower bound ofy in 3. Thus,
with respect to 1 ^ 2 ^ 3 there exists a term that
is both an upper bound ofx and a lower bound ofy;
this proves the validity of 1 ^ 2 ^ 3 j= x�y.
Our example illustrates an incompleteness of the algo-
rithm from [8] which does not take “deep shuffle” into
account.

Plan of the Paper. In Sections 2 and 3 we start with
preliminaries and recall results on Ines constraint. In
Section 4 we prove the PSPACE hardness for entail-
ment of atomic set constraints. In Sections 5 and 6 we
present a PSPACE algorithm for entailment of Ines con-
straints. Section 7 discusses the independence property
of Ines constraints. For lack of space, many proofs are
omitted. They can be found in [23].

2 Preliminaries

We assume a setV of variablesranged over byx; y; z
and a signature� that defines an infinite set offunction
symbolsf; g and their respective arityn � 0. Con-
stants, i.e., function symbols of arity0, are denoted
with a, b. We assume that� contains at least one con-
stant and one function symbol of arity� 2.

A first-order termt is a variablex or an expressionf(t1; : : : ; tn) wheren is the arity off . A ground term
(a finite tree) � is a first-order term without variables.
The set of all finite trees over� is denoted byT�. Gi-
ven a setS, the powerset ofS is denoted byP(S) and
the set of all non-empty subsets ofS by P+(S). We
freely consider the setsP(T�) andP+(T�) as mod-
el theoretic structures where a function symbolf of �
is interpreted as an element-wise tree constructor,i.e.,
for some sets of finite trees�1; : : : ; �n, f(�1; : : : ; �n)= ff(�1; : : : ; �n) j �i 2 �i for all 1 � i � ng, and the
relation symbol� as the subset relation.

A path� is a word of natural numbers. Theempty path

is denoted by" and the free-monoid concatenation of
paths� and�0 as��0. We have"� = �" = �. A path�0 is called aprefix of� if � = �0�00 for some path�00. A tree domainis a non-empty prefix closed set of
paths. We define the arity of a variable to be0. A first-
order termt can be characterized by a pair(Dt; Lt)
consisting of a tree domainDt and a (total) labeling
functionLt : Dt ! � [V such that for all� 2 Dt it
holds that�i 2 Dt iff 1 � i � n, wheren is the arity
of Lt(�).
Logical Notation. We consider several first-order lan-
guagesL over our signature� of function symbols
extended with some relation symbols. For a formula� 2 L, we denote the set offree variablesin � withV(�) and the set of function symbols in� with �(�).
Given a model theoretic structureA over the signature� of L, asolutionof � 2 L overA is a variable assign-
ment� : V ! A which renders�(�) true. A formula� 2 L is satisfiableoverA if there exists a solution of� overA; it is valid overA if all variable assignments� : V ! A are solutions of�. We say that� en-
tails�0 if the implication� ! �0 is valid overA, and
write � j=A �0 in this case, or simply� j= �0 if the
structure of interest is fixed by the context. Thesatisfi-
ability problem ofL relative to some structureA is the
problem whether a formula� 2 L is satisfiable overA.
Theentailment problem ofL relative toA is the prob-
lem whether an entailment judgement� j=A �0 holds
for two given formulas�;�0 2 L. The satisfiability
problem ofL with negationrelative toA is whether a
conjunction

Vni=1 �i ^Vmj=1 :�0j of positive and nega-
tive formula inL is satisfiable overA. It is well known
that the entailment problem ofL overA is less gen-
eral than its satisfiability problem with negation, since� j=A �0 if and only if�^:�0 is unsatisfiable overA.

3 Ines and Atomic Set Constraints

An inclusion constraint is a conjunction of inclusions
between first-order terms: ::= t1�t2 j ^ 0
Thesizeof an inclusion constraint is the number of its
symbols (variables and function symbols).

An atomic set constraint[16] is an inclusion constraint
interpreted in the structure of sets of finite treesP(T�).

An Ines constraint[22] is an inclusion constraint in-
terpreted in the structureP+(T�) of non-empty sets of
finite trees. In this paper, we do not consider the case
of infinite trees.

In the formal parts of this paper, we use a flat syntax
for inclusion constraints which restricts the nesting of
terms. Aflat inclusion constraint' is defined by the
following abstract syntax wheren is the arity off :' ::= x=f(y1; : : : ; yn) j x�y j ' ^ '0
Proposition 3.1 For both modelsP+(T�) andP(T�)
it is linearly equivalent to decide judgements of the
form	 j= 	0 or ' j= x�y.

Satisfiability. We now recall a result on satisfiability
of Ines constraints given in [22]. The analogue result
holds for satisfiability of atomic set constraints but this
is not needed for the purpose of this paper.

Proposition 3.2 The satisfiability problem of Ines con-
straint can be decided in cubic time.

Without loss of generality we can assume that a flat
constraint' is closed under reflexivity, transitivity, and
decomposition in that it satisfies the properties B1-B3
below (we writex andy for sequences of variables andx�y for a conjunction of inclusions):

B1 x�x 2 ' if x 2 V(')
B2 x�z 2 ' if x�y ^ y�z 2 '
B3 x�y 2 ' if z=f(x) ^ z�z0 ^ z0=f(y) 2 '

From a B1-B3 closed constraint one can read of its con-
sequences more easily by syntactic reasoning.

Path Constraints. Given a tree� and a path� we
write as� [�℄ the subtree of� at path� if it exists. Gi-
ven a set� of trees and a path�, we define�[�℄ as the�-projection of�:�[�℄ = f� [�℄ j � 2 � and� [�℄ existsg
Note that�[�℄ is always defined but possibly empty.
We need a new class of formulas that we callpath con-
straints. These are of the formx[�℄�y andx[�℄�f for

paths�, variablesx; y and constructorsf . A variable
assignment� solvesx[�℄�y iff �(x)[�℄ � �(y). It
solvesx[�℄�f if �(x)[�℄ � f(T�; : : : ;T�).
We also need a notion ofsyntactic supportfor path con-
straints. We define' ` x[�℄�y and' ` x[�℄�f as
follows.' ` x["℄�y if x�y 2 '' ` x[k℄�yk if x = f(y1; : : : ; yk; : : : ; yn) 2 '' ` x[��0℄�y if existsz : ' ` x[�℄�z

and' ` z[�0℄�y' ` x[�℄�f if exist y1; : : : ; yn; z : ' ` x[�℄�z
andz = f(y1; : : : ; yn) 2 '

This definition of syntactic support is correct for both
structuresP(T�) andP+(T�). If ' ` x[�℄�y then' j= x[�℄�y and if' ` x[�℄�f then' j= x[�℄ � f .

4 Entailment is PSPACE-hard

We now show that the entailment of atomic set con-
straints is PSPACE hard since it can express validity of
quantified Boolean formulas.

We denote the Booleans withF and T and assume
an infinite set of Boolean variables ranged over byu.
A literal is either a variableu or a negated variable:u. A CB-formulaC is a finite set of literals that we
write as a conjunction. The empty conjunctive formu-
la is denoted bytrue. A DB-formulaD is a finite set
of conjunctive formulas that we write as a disjunctionC1 _ : : : _ Cm. The empty DB-formula is denoted byfalse. Letu1; : : : ; un be a sequence of pairwise distinct
variables and for all1 � i � n let Qi be one of the
quantifiers9ui or 8ui. A QB-formulais a closed for-
mula of the following form withm;n � 0:Q1 : : : Qn (C1 _ : : : _ Cm)
We callm;n and the sequenceu1; : : : ; un theparame-
ters of the above QB-formula. We denote a quantifier
prefixes likeQ1 : : : Qn with P .

Definition 4.1 QBF is the validity problem of QB-
formulas in the structure of Booleans.

We call a CB-formulaC normalizedif there is no vari-
able u such thatu 2 C and:u 2 C. Trivially, a
normalized CB-formula is satisfiable. We call a QB-
formula P C1 _ : : : _ Cm normalizedif m � 1 and

if all Ci’s are normalized. Note that a normalized DB-
formula is satisfiable since it contains at least one CB-
formula and all its CB-formulas are satisfiable.

The idea for encoding Boolean formulas stems from
[18]. It is based on the fact that a binary tree of depthn
allows to represent the set of solutions of a Boolean for-
mula withn variables, sayu1; : : : ; un. We identify the
BooleansF andT with the integers1 and2 respective-
ly. We identify a path� = b1 : : : bn 2 f1; 2gn with a
variable assignment into Booleans� : fu1; : : : ; ung !f1; 2g such that�(ui) = bi for all 1 � i � n. Now we
can represent every subset off1; 2gn by a binary tree
of depthn whose tree domain contains this subset. Forn = 2 for instance:f11; 21; 12g) 1 21 1 2
Rather than considering a set of paths as a tree, we
represent it by a set of trees. We fix a binary symbolf 2 � and a constanta 2 �. For all� 2 f1; 2gn and� 2 P(T�) we define a set of treess�� 2 P(T�):s�� = 8><>: a \ � if � = �f(s�0� ; �) \ � if � = 1�0f(�; s�0�) \ � if � = 2�0
The set for� = 21 and some� can be depicted by:s21� = f \ �� f \ �a \ � �
A set of paths� � f1; 2gn can be represented by a
binary predicateU� � PT� � PT� between sets of
trees. For all sets� � f1; 2gn let s�� = \�2�s��. The
predicateU�(�1; �2) holds iff �1 � s��2 . For instance,Uf11;21;12g(�1; �2) holds in the following situation:�1 � f ��2f ��2a ��2 � �2 f ��2a ��2 a ��2
We encode a BF-formulaD by expressing the predicateUf�j�j=Dg with atomic set constraints. This is done by

the formulaDBFx;z(D) in Figure 1 which satisfies for
all x; z:� j= DBFx;z(D) iff Uf�j�j=Dg(�(x); �(z))
For encoding a quantifier prefix in a QBF-formula,
we express another predicate which concerns lower
bounds. Giveni � 0 and sets of paths�1; : : : ;�i �f1; 2gn we defineLf�1;:::;�ig � PT� � PT� such thatLf�1;:::;�ig(�1; �2) holds if and only ifs�1�2 [: : :[s�i�2 ��1. For certain sets of sets, this predicate can be ex-
pressed by the formulaPrefy;z(P) with variabley; z in
Figure 1. For instance,� j= Prefy;z(8u1 : : : 8un) iffsf1;2gn�(z) ��(y), i.e., Lff1;2gng(�(y); �(z)).
We next define that a set of paths� � f1; 2gn supports
a quantifier prefixP noted� ` P : for existential quan-
tifier it holds that� ` 9uP if exists b 2 f1; 2g withf�jb� 2 �g ` P ; for universal quantifier� ` 8uP is
valid if for all b 2 f1; 2g it holds thatf�jb� 2 �g ` P ;
the empty quantifier prefix is supported byf�g, i.e.,f�g ` �. Given this definition it holds that:� j= Prefy;z(P) iff

(
exists� � f� j � ` Pg :L�(�(y); �(z))

The complete encoding of a normalized QBF-formulaPD with parametersn � 0, m � 1, andu1; : : : ; un
is given in Figure 1: it is the formulaQBFx;y;z(PD)
which conjoins DBFx;z(D) and Prefy;z(P). Be-
side of x; y; z the fresh variablesx11; : : : ; xmn+1 andy1; : : : ; yn+1 are used (but only of local interest).

Proposition 4.2 LetD be normalized. A QB-formulaPD is valid iff the judgmentQBFx;y;z(PD) j= x�y
for atomic set constraints holds wherex; y; z are fresh
variables.

The proof is given in the long version of the paper. We
next illustrate the encoding at an example. We consider
the QB-formulaPD with parametersn = 2, m = 2,
and sequenceu1; u2:C1 = :u2; D = C1 _ C2;C2 = u1 ^ u2; P = 9u18u2
It is not difficult to see thatPD is valid sinceD eva-
luates totrue if one choosesu1 = T andu2 arbitrarily.

QBFx;y;z(PD) � DBFx;z(D) ^ Prefy;z(P)
DBFx;z(C1 _ : : : _ Cm) � Vmi=1(x�xi1 ^ CFz(i; Ci) ^ xin+1=a ^ Vn+1j=2 xij�z)
Prefy;z(Q1 : : : Qn) � a�yn+1 ^ Vnj=1 Quz(Qj) ^ y1�y
CFz(i; C) � Vnj=1 Litz(i; C; uj)
Litz(i; C; uj) � 8><>: xij=f(z; xij+1) if uj in Cxij=f(xij+1; z) if :uj in Cxij=f(xij+1; xij+1) otherwise

Quz(Q) � (f(yj+1; yj+1)�yj if Q = 8ujf(yj+1; z)�yj ^ f(z; yj+1)�yj if Q = 9uj
Figure 1: Encoding a normalized QB-formula with parametersn � 0,m � 1, andu1; : : : ; un.

We fix variablesx; z; x11; : : : ; x23 andy; y1; y2; y3. The
encodingDBFx;z(D) is the following constraint which
up to some minor simplifications and variable renam-
ings was also considered in the introduction:

DBFx;z(D) = x�x11 ^ x�x21 ^ x13=a ^ x23=a ^x12�z ^ x22�z ^ x13�z ^ x23�z ^
CFz(1; C1) ^ CFz(2; C2)

CFz(1; C1) = x11=f(x12; x12) ^ x12=f(x13; z)
CFz(2; C2) = x21=f(z; x22) ^ x22=f(z; x23)

The set of all upper bounds forx in DBFx;z(D) can be
depicted by the following treeT . Each node ofT is
labeled by a set ofP(� [V) such that for allt; � if t
is an upper bound ofx at � then the label ofT at path� contains the root symbol oft, i.e., LT (�) is the setfLt(�) j DBFx;z(D) ` x[�℄�tg.f; x; x11; x21; zf; x12; z f; x12; x22; za; x13; z z a; x13; z a; x23; z
Notice that the set of path� satisfyingDBFx;z(D) `x[�℄�a is equal tof11; 21; 22g and thus corresponds
exactly to the set of solutions ofD. Next, we consider
the translation ofQBFx;y;z(PD):

QBFx;y;z(D) = DBFx;z(D) ^ Prefy;z(P)
Prefy;z(P) = f(y2; z)�y1 ^ f(z; y2)�y1 ^f(y3; y3)�y2 ^ a�y3 ^ y1�y

Hence, the subset of lower bounds ofy with variables
in DBFx;z(D) is the following set of trees:ff(z; f(a; a)); f(f(a; a); z)g

This reflects thatff11; 12g; f21; 22gg ` 9u18u2 and
proves thatQBFx;y;z(PD) entailsx�f(z; f(a; a))�y.

Theorem 4.3 For all signatures with a least one con-
stant and one binary function symbol, the entailment
problem of atomic set constraints is PSPACE hard.

This follows immediately from Proposition 4.2 since
the validity problem of quantified boolean formulas
(QBF) is PSPACE complete and the size of the encod-
ing is clearly polynomial with respect to the size of the
quantified Boolean formula.

5 Characterization of Entailment

We now give a syntactic characterization of entailment
for Ines constraints (see Proposition 5.5) on which our
decision procedure in Section 6 is based. We note that
the characterization is complete for satisfiable B1-B3
closed constraints only.

Singletons. Entailment can depend on the fact that
some term has to denote a singleton,i.e., a set with ex-
actly one element. For example, notice that the follow-
ing entailment is valid for Ines:x�f(a; v0) ^ x�f(u; u0) j=P+(T�) a�u (1)

For every solution� of the left hand side,�(u)\�(a) 6=; holds. And sincea denotes the singletonfag, it en-
tails a�u. Of course, there are other ways to constrain
a variable (or a term) to denote a singleton. Our gen-
eral idea for the recognition of singletons is to test for

ground upper bounds of variables. For completeness,
we must respect the “deep shuffling” of upper bounds,
as illustrated in the following example.x�f(g(a; v); v0)^ x�f(g(u; a); u0)^ x�f(w; a) j=P+(T�) x�f(g(a; a); a) (2)

We introduce a predicate symbolcom(V) of arity 0
for every finite non-empty setV of variables: a vari-
able assignment� solvescom(V) if

Tv2V �(v)6= ;,
i.e. if there exists a common tree in the denotations of
all variables inV .

Definition 5.1 Let' be a constraint andV � V(') be
a non-empty set of variables. Then' ` com(V) if

(
existsz 2 V(') and� such that
for all v 2 V : ' ` z[�℄�v

This definition is correct in that if' ` com(V), then' j=P+(T�) com(V).
Definition 5.2 (Ground Upper Bounds) Let ' be a
constraint andV � V('). If ' ` com(V) then we
define the setUgrd' (V) of ground upper bounds ofV in' to be the set of all trees� 2 D� such that there existsx 2 V with' ` x[�℄�L� (�).
Note thatL� (�) is a function symbol and not a variable
since� is a tree (which do not contain variables in con-
trast to terms). The definition ofUgrd' (V) is correct in
that if � 2 Ugrd' (V) then for all solution� of ' overP+(T�) it holds that

Tx2V �(x) � f�g. In particular,
for a singletonfxg, � 2 Ugrd' (fxg) implies the validity
of ' j=P+(T�) x�� . Hence, for every satisfiable const-
raint' and setV 6= ; with ' ` com(V) there exists at
most one ground upper bound forV in '.

Also note that the definition of ground upper bounds
can deal with “deep shuffling” for satisfiable B1-B3
closed constraints. For example in (2), the termf(g(a; a); a) is a ground upper bound of the setfxg in
a B1-B3 closure of a flattened version of the left hand
side of (2). For the following definitions we introduce
the auxiliary notation:D(V; �) = fw j existsv 2 V : ' ` v[�℄�wg

Definition 5.3 (Upper Bounds) Let ' be a constraint
andV � V('). If ' ` com(V) then we define the setU'(V) of upper bound ofV in ' to be the set of all
termst which satisfy for all� 2 Dt:

1. existsv 2 V with' ` v[�℄�Lt(�), or
2. existsZ � V(') such thatLt(�) 2 Z, ' `

com(Z), andUgrd' (Z) \ Ugrd' (D(V; �)) 6= ;.
The definition ofU'(V) is correct: for all termst 2U'(V) it holds that' j=P+(T�) Tv2V v�t. In par-
ticular, for a singletonfxg, t 2 U'(fxg) implies' j=P+(T�) x�t. Notice thatUgrd' (fxg) = U'(fxg) \T� holds for allx and'.

Also note that our notion of upper bounds respects deep
shuffle for satisfiable B1-B3 closed constraints. The
less straightforward part of definition 5.3 is case 2. Let
us illustrate this case on the constraint'3:'3 : z�g(z1) ^ z1�f(a; v1) ^z�g(z2) ^ z2�f(v2; a) ^y�h(x) ^y�h(x1) ^ x1�f(a;w1) ^y�h(x2) ^ x2�f(w2; a)
We next argue for'3 that g(x) is a an upper bound
for z, that isg(x) 2 U'3(fzg) and thus'3 j=P+(T�)z�g(x). We apply Definition 5.3 withV = fzg
and verify condition 2 for the path1. Note first thatD(fzg; 1) is equal tofz1; z2g and thatf(a; a) is a
ground upper bound forfz1; z2g and also forZ =fx; x1; x2g. Note also that'3 ` com(Z) holds.

Next, we define the set of lower bounds that a constraint' provides for a variablex. We use a kind of tree au-
tomaton that uses ground upper bounds in its complex
start condition.

Definition 5.4 (Lower Bounds) Given a constraint'
we define the setL'(x) of lower bounds of variablesx
in ' recursively as follows:� 2 L'(x) if existsX � V(') : x 2 X

andUgrd' (X) = f�gx 2 L'(x) if x 2 V(')t 2 L'(x) if y�x 2 '; andt 2 L'(y)f(�t) 2 L'(x) if x = f(�x) 2 ' and �t 2 L'(x)

In the last line, we denote by�t a sequence of termst1; : : : ; tn, by x a sequence of variablesx1; : : : ; xn,
and by�t 2 L'(x) the conditionst1 2 L'(x1), : : :,tn 2 L'(xn).
The definition ofL'(x) is correct in that for allt; x
if t 2 L'(x) then' j=P+(T�) t�x holds. The first
statement reflects the fact that ground upper bounds al-
so define lower bounds (sincex�� implies ��x). As
an illustration, for the previously given constraint'3,
we prove that'3 j=P+(T�) f(a; a)�x. We have al-
ready mentioned thatf(a; a) is a ground upper bound
for the setfx; x1; x2g. Hence, this allows us to con-
clude thatf(a; a) is a lower bound forx.

Proposition 5.5 (Characterization) If ' is satisfiable
and B1-B3 closed andx; y 2 V('), then' j=P+(T�)x�y iff U'(fxg) \ L'(y) 6= ;.
Proof. The direction from right to left follows trivi-
ally from the correctness of the definitions of upper and
lower bounds. The inverse direction is technically in-
volved and can be found in [23]. 2
6 Entailment is in PSPACE

Theorem 6.1 Given an infinite signature, the entail-
ment problem of Ines constraints is decidable in
PSPACE.

By the characterization described in Section 5, an en-
tailment judgement' j=P+(T�) x�y holds for a sat-
isfiable B1-B3 closed Ines constraint' if and only ifU'(fxg) \ L'(y) 6= ; holds. Slightly generalizing this
property forx; y we define a predicateA(V; x) for V; y.

Definition 6.2 ' ` A(V; y) holds forV; y; ' if and on-
ly if both ' ` com(V) andU'(V) \ L'(y) 6= ; are
valid.

Lemma 6.3 (Correctness)For all '; V; y such that' ` com(V) holds, the statement' ` A(V; y) is equi-
valent to the disjunction of the following three proper-
ties:

1. existsv 2 V such that' ` v[�℄�y

2. exists Y � V(') such that y 2 Y andUgrd' (D(V; ")) \ Ugrd' (Y) 6= ;
3. existsv 2 V , y0, f and y1; : : : ; yn such that' ` v[�℄�f , y0�y in ', y0=f(y1; : : : ; yn) in ',

and' ` A(D(V; i); yi) holds for all1 � i � n.

Proof. can be found in [23]. 2
Lemma 6.4 (Complexity) Let ' be a satisfiable B1-
B3 closed constraint,V be non-empty set of variables
such that' ` com(V) and y a variable. Deciding
whether' ` A(V; y) holds is in PSPACE.

Testing whether' ` A(V; y) holds can done by recur-
sively checking the properties of Lemma 6.3.

Property 1 is equivalent to thaty 2 D(V; �) holds
and this can be checked (by computingD(V; �)) in
polynomial time in the size of'. Property 2 is equi-
valent to that for all path� for which there exist a
variable v in D(V; ") and a variablev0 such ' `v[�℄�v0, there existf and w 2 D(Y; ") such that' ` v[�℄�f and' ` w[�℄�f . Clearly, for a fixedY this property is in coNP. Thus for variableY the
property is in�P2, thus in PSPACE. For testing Prop-
erty 3 one chooses non-deterministically a constrainty0=f(y1; : : : ; yn) in ' such thaty0�y in ' and then
test recursively that' ` A(D(V; i); yi) holds for all1 � i � n.

The complete computation for testing' ` A(V; y)
(whereV [fyg � V(')) can be described by an and-
or-tree whose root is labeled withA(V; y). Up to a re-
ordering of edges the tree for' ` A(V; y) is uniquely
determined by', V andy.

The and-or tree for testing' ` A(W;x) has the fol-
lowing form: there are three kinds of nodes, or-nodes,
and-nodes and leaves. The root of the tree is an or-
node labeled byA(W;x). Its leaves are either labeled
with T or F. An or-node is labeled with a term of
the formA(V; y) for someV and y. We now define
the set of sons of an or-nodeN with label A(V; y):
if Properties 1 or 2 hold fory and V thenN has a
unique son, a leaf labeled byT. Otherwise, we con-
sider the setM which contains all terms of the formV�f(y1; : : : ; yn) such thatn � 1 and there existsy0 satisfyingy0=f(y1; : : : ; yn) in ' andy0�y in '. If

A(fxg; y)fxg�f(y2; z)A(fx12; zg; y2) A(fx12; x22g; z)fx12; x22g�f(y3; y3) FA(fx13g; y3) A(fzg; y3)
T F

fxg�f(z; y2)A(fx12; zg; z) A(fx12; x22g; y2)
F fx12; x22g�f(y3; y3)A(fx13; zg; y3) A(fx23; zg; y3)

T T

Figure 2: The And-Or Tree proving'e ` A(fxg; y)x�x11 ^ x11=f(x12; x12) ^^ x12=f(x13; z) ^ x13=a ^x�x21 ^ x21=f(z; x22) ^^ x22=f(z; x23) ^ x23=a ^ ^ y01=f(y2; z) ^ y01�y ^^ y001=f(z; y2) ^ y001�y ^y02=f(y3; y3) ^ y02�y2 ^y3=a ^ x11�z ^ x12�z ^ x13�z ^x21�z ^ x22�z ^ x23�z
Figure 3: The Constraint'eM = ; then the unique son ofN is a leaf labeled by

F. If M 6= ; then the set of sons ofN is the set of
and-nodes built from the labels inM . The sons of an
and-node with labelV�f(y1; : : : ; yn) are the or-nodes
built from the labelsA(D(V; i); yi) where1 � i � n.

To illustrate this construction, we consider the const-
raint 'e given in Figure 3 which up to flattening is
essentially the same as considered in Section 4. The
constraint'e is B1-B3 closed up to trivial constraints
that do not matter here. The computation tree for'e ` A(fxg; y) is given in Figure 2.

Since ' is satisfiable, it guarantees for all pairs of
or-nodes on the same branch with labelsA(V; y) andA(V 0; y0) thatV \ V 0 = ; holds. So, the length of a
branch in the and-or-tree is lineary bounded in the size
of '.

As usual, an and-or-tree can be evaluated to a Boolean
value. For a satisfiable B1-B3 closed constraints'
and V; z the tree for' ` A(V; z) evaluates toT if
and only if' ` A(V; z) holds. Note that the tree for'e ` A(fxg; y) evaluates toT since its right subtree
does.

For constructing and evaluating a computation tree on
the fly, it is sufficient to memorize the information a-
long a single branch only. Hence, it follows that entail-
ment of Ines constraints is in PSPACE.

7 Ines versus Atomic Set Constraints

It may seem difficult to show that the entailment prob-
lems of atomic set constraints and of Ines constraints
are of the same complexity. Under the assumption of an
infinite signature, however, the problem can be settled
due to the independence property of Ines constraints2.

Theorem 7.1 (Independence)Ines constraints have
the independence property in case of an infinite signa-
ture. For all', '1, : : :, 'n:' j=P+(T�) n_i=1'i iff 91 � j � n : ' j=P+(T�) 'j
Corollary 7.2 For an infinite signature, the following
4 problems are PSPACE complete: 1) Entailment of In-
es constraints. 2) Satisfiability of Ines constraints with
negation. 3) Satisfiability of atomic set constraints with
negation. 4) Entailment of atomic set constraints.

Proof. From Theorems 4.3, 6.1, and 7.1 2
Acknowledgments The authors would like to thank Phillipe

Devienne, Sophie Tison, Marc Tommasi, and Ralf Treinen for in-

spiring discussions and comments on all our attemps to solvethe

2This theorem has been first claimed in [8] but the proof given
there is wrong. A correct proof is given in [9] and in the long ver-
sion of the present paper [23].

problem. This research has been supported by the Esprit Working

Group CCL II (EP 22457) and the SFB 378 at the Universität des

Saarlandes.

References
[1] A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The

Complexity of Set Constraints.7th Conf. on CSL, vol-
ume 832 ofLNCS, pages 1–17, 1993.

[2] A. Aiken, D. Kozen, and E. Wimmers. Decidability
of systems of set constraints with negative constraints.
Information and Computation, 122(1):30–44, 1995.

[3] A. Aiken and E. Wimmers. Type inclusion constraints
and type inference. In6th ACM Conf. on Functional
Programming and Computer Architecture, pages 31–
41, 1993.

[4] H. Aı̈t-Kaci, A. Podelski, and G. Smolka. A feature-
based constraint system for logic programming with
entailment.TCS, 122(1–2):263–283. 1994.

[5] L. Bachmair, H. Ganzinger, and U. Waldmann. Set
constraints are the monadic class. In8th LICS, pages
75–83. 1993.

[6] W. Charatonik and L. Pacholski. Negative set con-
straints with equality. In9th LICS, 128–136. 1994.

[7] W. Charatonik and L. Pacholski. Set constraints with
projections are in NEXPTIME. In35th Symp. on
Found. of Computer Sc., pages 642–653. 1994.

[8] W. Charatonik and A. Podelski. The independence
property of a class of set constraints. In2nd Int. Con-
f. on Principles and Practice of Constraint Progr., vol-
ume 1118 ofLNCS, pages 76–90. 1996.

[9] W. Charatonik and A. Podelski. Set constraints with
intersection. In12th LICS, pages 352–361, 1997.

[10] A. Colmerauer. Equations and inequations on finite and
infinite trees. In2nd Int. Conf. on Fifth Generation
Computer Systems, pages 85–99, 1984.

[11] P. Devienne, J.-M. Talbot, and S. Tison. Solving classes
of set constraints with tree automata. In3rd Int. Con-
f. on Principles and Practice of Constraint Progr., vol-
ume 1330 ofLNCS, pages 62–76. 1997.

[12] T. Frühwirth, E. Shapiro, M. Vardi, and E. Yardeni.
Logic programs as types for logic programs. In6th
LICS, pages 300–309. 1991.

[13] R. Gilleron, S. Tison, and M. Tommasi. Solving sys-
tems of set constraints using tree automata. In10th
Symp. on Theoretical Aspects of Computer Software,
volume 665 ofLNCS, pages 505–514. 1993.

[14] R. Gilleron, S. Tison, and M. Tommasi. Solving sys-
tems of set constraints with negated subset relation-
ships. In34th Symp. on Found. of Computer Sc., pages
372–380. 1993.

[15] N. Heintze.Set Based Program Analysis. PhD thesis,
Carnegie Mellon University, Oct. 1992.

[16] N. Heintze and J. Jaffar. A decision procedure for a
class of set constraints. In5th LICS. 1990.

[17] N. Heintze and J. Jaffar. A finite presentation theorem
for approximating logic programs. In17th ACM S. on
Princ. of Programming Languages, 197–209. 1990.

[18] F. Henglein and J. Rehof. The complexity of subtype
entailment for simple types. In12th LICS, pages 362–
372, 1997.

[19] F. Henglein and J. Rehof. Constraint automata and the
complexity of recursive subtype entailment. In25th
Int. Conf. on Automata, Languages, and Programming,
LNCS, 1998.

[20] D. Kozen. Set constraints and logic programming.In-
formation and Computation, 142(1):2–25, 1998.

[21] M. Müller. Set-based Failure Diagnosis for Concurrent
Constraint Programming. Dissertation. Universität des
Saarlandes, Saarbrcken, Jan. 1998.

[22] M. Müller, J. Niehren, and A. Podelski. Inclusion con-
straints over non-empty sets of trees. InTheory and
Practice of Software Development., volume 1214 ofL-
NCS, pages 345–356, 1997.

[23] M. Müller, J. Niehren, and J.-M. Talbot. Entailment of
atomic set constraints is PSpace-complete, 1999. long
version atwww.ps.uni-sb.de/Papers.

[24] F. Pottier. Simplifying subtyping constraints. In
ACM SIGPLAN Int. Conf. on Functional Program-
ming, pages 122–133. 1996.

[25] V. A. Saraswat, M. Rinard, and P. Panangaden. Seman-
tic foundations of concurrent constraint programming.
In ACM POPL, pages 333–352. 1991.

[26] G. Smolka and R. Treinen. Records for logic program-
ming. Journal of Logic Programming, 18(3):229–258,
Apr. 1994.

[27] K. Stefansson. Systems of set constraints with nega-
tive constraints are NEXPTIME-complete. In9th LIC-
S, pages 137–141. 1994.

[28] J.-M. Talbot.Contraintes Ensemblistes Définies et Co-
définies : Extensions et Applications. PhD thesis, Uni-
versité de Lille, July, 1998.

[29] T. E. Uribe. Sorted Unification Using Set Constraints.
In Conf. on Autom. Deduction, pages 163–177, 1992.

