
Saarland University
Faculty of Natural Sciences and Technology I
Department of Computer Science
Master’s Program in Computer Science

Master’s thesis

Permutation semantics of separation logic

submitted by
Murat Baktiev

on December 1, 2006

Supervisor
Prof. Dr. Gert Smolka

Advisor
Dr. Jan Schwinghammer

Reviewers
Prof. Dr. Gert Smolka

Prof. Dr. Holger Hermanns

Statement

Hereby I confirm that thesis is my own work and that I have documented all sources used

Saarbruecken, December 01, 2006

Declaration of Consent
Hereby I agree that my thesis will be made available through the library of the Computer Sci-
ence Department.

Saarbruecken, December 01, 2006

Abstract

Separation logic is a recent extension of Hoare logic, developed by O’Hearn, Reynolds
and others, where the separation conjunction p ∗ q describes a disjoint partition of the
heap. With this connective, a frame rule can be stated that facilitates local reasoning
about programs using shared mutable data structures in the heap.

Originally, soundness of the logic was proved with respect to a non-deterministic
memory allocation model. However, in some contexts, this ”artificial” non-determinism
interferes with other language features. I develop an alternative semantics of separa-
tion logic, based on deterministic memory allocation.

Contents

Abstract iii

Acknowledgments ix

1 Introduction 1
1.1 Separation Logic . 1
1.2 Description of the Problem . 2
1.3 Permutation semantics . 2

2 Language and Semantics 5
2.1 Language Syntax . 5
2.2 Domains . 6
2.3 Language Semantics . 6

3 Permutation 9
3.1 Definition . 9
3.2 Permutation Theorem . 10

4 Logic 17
4.1 Assertions . 17
4.2 Partial Correctness . 18
4.3 Inference rules . 19

5 Soundness 23

6 Conclusion and Future Work 29
6.1 Conclusion . 29
6.2 Future Work . 29

Bibliography 31

List of Tables

2.1 Language syntax . 5
2.2 Language semantics: Booleans . 6
2.3 Language semantics: Expressions . 7
2.4 Language semantics: While Commands 7
2.5 Language semantics: Heap Commands 8

4.1 Assertions . 17
4.2 Inference rules . 19

Acknowledgments

Thanks to: Gert Smolka, Jan Schwinghammer, Holger Hermanns, my family, Hristofor
Boev.

Chapter 1

Introduction

1.1 Separation Logic

In the end of the 60-s Hoare developed a logic for reasoning about the correctness of
the programs written in a simple imperative while-language[4]. Since then the logic has
been applied by many researchers to various more complex languages, like: machine
code[6], object-oriented, [2], [14], procedural [10] languages. Central point in this logic
is a notion of Hoare triple, {p}c{q}, which describes the state change induced by a piece
of a program - running a command c in a state, where assertion p is true, results in a
state, where assertion q holds. Command c is of while-language and it changes (unless
it is skip) the state of the program, represented by Store,which is a mapping of variables
to values, and described by assertions.

Separation logic is an extension of Hoare logic for reasoning about programs that
use shared mutable data structures, usually called pointer programs. It was developed
by joint efforts of John Reynolds[12], Peter O’Hearn, Hongseok Yang[8] and others in
the first years of this century based on early ideas of Burstall [3] and Pym and O’Hearn’s
logic of Bunched Implications, [7]. Program state in programming language with heap
operations is represented now not only by Store but by pair Store x Heap, and new
commands and assertions were added to reflect these changes. Most importantly - sep-
arating conjunction: ∗, which asserts that its subformulas hold for disjoint parts of the
heap. This connective solves the problem with aliasing -when a memory cell is pointed
from different parts of a program, and its alteration affects all of them- appearing for
example in a rule of constancy, replacing it with Frame rule. This rule is vital for local
reasoning - possibility to concentrate only on those parts of the memory which are actu-
ally accessed by the procedure, as O’Hearn/Yang named it-the footprint [17], being sure
that the rest part of the memory will remain unmodified.

2 Introduction

The relatively young logic has already been successfully used by many researchers
in practice: Yang’s proof of the Schorr-Waite algorithm[16], Torp-Smith’s proof of Ch-
eney algorithm[13], various extensions of this logic by different authors for concur-
rency, higher-order languages, e.g. see [9], [5].

1.2 Description of the Problem

Having all these advantages nevertheless the usual semantics of the separation logic
is not always suitable for extensions of the logic and in some cases shows to be in-
convenient. One particular problem which we will try to solve in this work is about
non-deterministic behaviour of memory allocation. Besides the requirement for the
cells to be previously inactive and consequtive, the choice of locations is indeterminate.
This problem was mentioned by several researchers:

”Previous work on modularity, simulation and refinement in separation logic has
run into some technical difficulties associated with the non-deterministic treatment
of allocation...”

Nick Benton[1]

”...in the presence of higher-order store where we have to solve recursive domain
equations we found the use of (countable) non-determinism quite challenging (for
instance, programs would no longer denote ω-continuous functions).”

Bernhard Reus, Jan Schwinghammer[11]

1.3 Permutation semantics

Yang/O’Hearn in their work ”Semantic basis for local reasoning” [17] pointed out the
reason for relying on a non-deterministic semantics and the way to solve this problem:

”Non-deterministic allocation is used to force a program proof not to depend on
details of how the allocator might work (In a language without address arith-
metic, we could use invariance under location renaming rather than non-
determinism in allocation to ensure this sort of independence)”

and here we will implement these ideas and prove the logic to be still sound.

Permutation semantics 3

We will check for O’Hearn’s instructions and first in a Chapter 2 we give a language
without address arithmetic, then in Chapter 3 exploit renaming of locations, in Chapter
4 we provide the logic for our language and in the next chapter prove the soundness of
this logic.

In order to restrict address arithmetic we step back to the earlier versions of separa-
tion logic, rather than use Reynolds’ version, and divide Values into classes of Integers,
Atoms and Locations.

We change non-deterministic memory allocation operator cons to deterministic op-
erator new, which will allocate the minimal inactive cell. The other commands will
remain unchanged.
Having such a language we define the operation of permutation, which is a bijective
function from Locations to Locations and prove a permutation theorem:

Running a consistently renamed program on a correspondingly renamed heap leads to the
same result, up to a renaming of locations in the final heap.

Permutation: π : Loc → Loc

〈c; σ〉 σ
′ ⇒ ∃π

′.〈c; π • σ〉 σ
′′ ∧ σ

′ = π
′ • σ

′′

Chapter 2

Language and Semantics

As it was said in the introduction, we will follow the direction pointed by O’Hearn, and
first of all we need a language without address arithmetic. For that reason we will step
back from Reynolds’ version of the separation logic[12] and treat Integers, Locations
and Atoms as distinct kinds of Values.

2.1 Language Syntax

Programming language we use is the version of simple imperative while language ex-
tended to reflect changes in the state model (heap commands).
There are three syntactic categories: booleans, expressions and commands: Table 2.1.
Commands are usual commands of while-language: skip - no operation, c0; c1 - se-
quencing, conditional, while loop and assignment; and the last four commands allow
operations on the heap.

x, y ∈ Variables [e] − contents of the heap at the location of e

b ::= false | e0 ≤ e1 | ¬b | b0 ∨ b1
e ::= x | n | e0 + e1 | e0 − e1 | e0 × e1

c ::= skip | c0; c1 | if b then c0 else c1 | while b do c | x := e

| x := new e allocation
| x := [y] lookup
| [x] := e′ mutation
| dispose e deallocation

Table 2.1: Language syntax

6 Language and Semantics

2.2 Domains

Values = Integers
⊎

Atoms
⊎

Locations
⊎

Booleans
Set of locations Loc isomorphic to Naturals

We make Loc isomorphic to Naturals because we will need an ordered set of loca-
tions with minimal element, to get our deterministic allocation.

Variables, countably infinite ranged over x, y...

Store is a function from variables to values. Heap is a function from finite set of
locations to values. State is a pair of Store and Heap.
Store = Variables → Values
Heap =

⋃

A
f in
⊆Locations

(A → Values)

State = Store × Heap.

2.3 Language Semantics

Denotional semantics of the booleans and expressions is the same as in Hoare logic, but
with arithmetic operations on non-integers (which are addresses) yielding undefined,
to limit address arithmetic: Table 2.2, Table 2.3.
JeKs is the evaluation of expression e in a state with store s. Expressions depend only
upon the Store.

JbK : Store → Booleans ∪ {undefined}
JfalseKs = f alse
Jb0 ∨ b1Ks = Jb0Ks ∨ Jb1Ks
J¬bKs = ¬JbKs

Je0 ≤ e1Ks =

{

Je0Ks ≤ Je1Ks, if both parts yield integer
undefined, otherwise

Table 2.2: Language semantics: Booleans

Operational semantics of the original commands of the while-language usually con-
sidered by Hoare logic is slightly changed, since State is extended to contain Heap:
Table 2.4. The triple 〈c, s, h〉, or pair 〈s, h〉 - where c is a command, s - store, h - heap, - is
called configuration. There is a transition relation - on configurations. Configurations
can be:

Language Semantics 7

JeK : Stores → Values ∪ {undefined}
JxKs = s(x)
JnKs = n

Je0 + e1Ks =

{

Je0Ks + Je1Ks, if both parts yield integer
undefined, otherwise

,same for ×,−

Table 2.3: Language semantics: Expressions

1. terminal, τ ≡ 〈s, h〉 or abort

2. non-terminal: 〈c, s, h〉

Thus 〈c, s, h〉 〈s′, h′〉 reads as: ”Running a command c from the state s, h terminates in the
state s′, h′”.

(f | x 7→ y) means that the function f is the same, but with x mapping to y.
Later we will use σ as an abbreviation of 〈s, h〉.

〈skip, s, h〉 s, h

〈c0, s, h〉 s′′, h′′ 〈c1, s′′, h′′〉 τ

〈c0; c1, s, h〉 τ

〈c0, s, h〉 abort
〈c0; c1, s, h〉 abort

JbKs = true 〈c0, s, h〉 τ

〈if b then c0 else c1, s, h〉 τ

JbKs = f alse 〈c1, s, h〉 τ

〈if b then c0 else c1, s, h〉 τ

JbKs = f alse
〈while b do c, s, h〉 s, h

JbKs = true 〈c, s, h〉 s′′, h′′ 〈while b do c, s′′, h′′〉 s′, h′

〈while b do c, s, h〉 s′, h′

〈x := e, s, h〉 s′, h , s′ = (s|x 7→ JeKs)

Table 2.4: Semantics of commands: While Commands

Semantics of the heap commands is given in the Table 2.5. Notation h · h ′ , means
the composition of two disjoint heaps h and h′.

Only one command of the while - allocation - is changed compared to Reynolds’
version. Now it allows to allocate and initialize a single cell, which will be minimal
inactive cell in the heap. Notice minimal, this makes the allocation deterministic. lookup

8 Language and Semantics

alloc 〈x := new e, s, h〉 s′, h′ , s′ = (s|x 7→ l), h′ = (h · [l 7→ JeKs])

and l = min(Loc − dom(h))

lookup
JeKs /∈ dom(h)

〈x := [e], s, h〉 abort

JeKs ∈ dom(h)

〈x := [e], s, h〉 s′, h
, s′ = (s|x 7→ h(JeKs))

mutate
JeKs /∈ dom(h)

〈[e] := e′, s, h〉 abort

JeKs ∈ dom(h)

〈[e] := e′, s, h〉 s, h′ , h′ = (h|JeKs 7→ Je′Ks)

dealloc
JeKs /∈ dom(h)

〈dispose e, σ〉 abort

JeKs ∈ dom(h)

〈dispose e, s, h〉 s, h′ , h = (h0 · [JeKs 7→ −]) and h′ = h0

Table 2.5: Semantics of commands: Heap Operations

reads the value at the location of e and writes it to x. mutate updates the location e with
value of e′. dispose deallocates location e from the heap.
All commands result in abort when trying to access inactive (not in the heap) location.
Additionally any command aborts if boolean or expression used is undefined.

Chapter 3

Permutation

Now that we have a language with deterministic memory allocation it is time to intro-
duce the location renaming. With allocation becoming deterministic we need another
method to ensure that a program proof does not depend on details of allocator’s work,
and location renaming is such a method. Location renaming is the result of applying a
permutation π, which is just a bijective function on Loc:

π : Loc → Loc

This function lifted to a value, store or a heap consistently renames all locations that
appear inside. Having such a function is not enough yet, we need to prove permutation
theorem, which says that ”running a consistently renamed program on a correspond-
ingly renamed heap leads to the same result, up to renaming of locations in the final
heap”. This means that it is always possible to find such a permutation, which when
applied to the state resulting from running a command in a renamed(by another per-
mutation) state would give us the original resulting state as if there was no permuta-
tion. This way we get the invariance under location renaming.

3.1 Definition

Permutation is a bijective function π : Loc → Loc. :
Since Values = Integers

⊎

Locations
⊎

Atoms
⊎

Boolean we can lift it to Values, Stores
and Heaps as follows:

• π
val : Values → Values

10 Permutation

π
val(v) =

v v ∈ Int
π(v) v ∈ Loc
v v ∈ Atom
v v ∈ Boolean

As expected permutation on values has effect only when the value is a location.

• lift to π
s : Stores → Stores where Stores : Var → Values

(π
s(s))(x) = (π

val(s(x))

• lift to π
h : Heaps → Heaps where Heaps : Loc ⇀ Values

(π
h(h))(l) = (π

val(h(π
−1 val(l)))

We then define the action π • σ of a permutation π on a configuration σ by:

π • σ = (π
s(s), π

h(h))

Later we will drop superscripts if clear from context or add them if needed.

3.2 Permutation Theorem

In this section we will prove permutation theorem, vital for having invariance under
location renaming:

Theorem 3.1 (Permutation) For all c, σ, σ
′ and π holds:

1. 〈c, σ〉 σ
′ ⇒ ∃π

′.〈c, π • σ〉 σ
′′ ∧ σ

′ = π
′ • σ

′′

2. 〈c, σ〉 abort ⇒ 〈c, π • σ〉 abort

Before proving this theorem we’ll prove some useful lemmas.

Lemma 3.1 ∀π, e, s. JeKs 6= undefined ⇒ JeK
π

s(s) = π
val(JeKs)

Proof: By structural induction on e we have:

1. e = n
JnK

π
s(s) = n = π

val(JnKs) by Def. of JnKs and π
val

2. e = x
JxK

π
s(s) = π

val(s(x)) = π
val(JxKs) by Def. of JxKs and π

s(s) and π
val

Permutation Theorem 11

3. e = e0 + e1 (cases for −,× analogously)
Je0 + e1Kπ

s(s) = Je0Kπ
s(s) + Je1Kπ

s(s) by Def. of +
= π

val(Je0Ks) + π
val(Je1Ks) = π

val(Je0 + e1Ks) by IH

�

Lemma 3.2

1. π
′ • (π • σ) = (π

′ ◦ π) • σ

2. id • σ = σ

Proof:

1.

π
′ • (π • σ) = π

′ • (π
s(s), π

h(h)) by De f . o f π • σ

= (π
′s(π

s(s)), π
′h(π

h(h))) by De f . o f π • σ

= ((π
′ ◦ π)s(s), (π

′ ◦ π)h)(h) Function composition
= (π

′ ◦ π) • σ by De f . o f π • σ

�

2. id is an identity function , therefore so are idval , ids, idh :
id • σ = (ids(s), idh(h)) = s, h = σ �

Lemma 3.3 dom(π
h(h)) = {π(l) | l ∈ dom(h)} = {l ′ | π

−1(l) ∈ dom(h)}

Proof:

dom(π
h(h)) = {l ∈ Loc | π(h(π

−1(l))) is defined} by De f .
= {l ∈ Loc | h(π

−1(l)) is defined } π total
= {l ∈ Loc | π

−1(l) ∈ dom(h)} by Def.
�

Now we have everything to prove the theorem. We prove it by structural induction
on derivations of 〈c, σ〉 σ

′, walking through each command. For the first part we
need to provide such a function π

′, that when it is applied to the permutated state its
result is the original state. In most cases such a function is simply inverse of original
permutation. But the case with allocation operator is more tricky, since it allocates the
minimal inactive cell in the heap and there is no guarantee that after permutation the
minimal cell will remain to be the minimal.
In this part we consider only the cases which do not abort.

12 Permutation

Part 1.
〈c, σ〉 σ

′ ⇒ ∃π
′.〈c, π • σ〉 σ

′′ ∧ σ
′ = π

′ • σ
′′

Proof:

1. skip:
〈skip, σ〉 σ

〈skip, π • σ〉 π • σ

Let π
′ := π

−1, then
π
′ • σ

′′ = π
′ • (π • σ) by de f . o f σ

′′

= (π
′ ◦ π) • σ by Lemma 2

= (π
−1 ◦ π) • σ by de f . o f π

′

= Id • σ by de f . o f Id
= σ by Lemma 2

�

2. new:
〈x := new e, s, h〉 (s|x 7→ l), (h ∗ [l 7→ JeKs])
〈x := new e, π

s(s), π
h(h)〉 (π

s(s)|x 7→ lπ), (π
h(h) ∗ [lπ 7→ JeK

π
s(s)])

σ
′ = (s|x 7→ l), (h ∗ [l 7→ JeKs])

Consider the original resulting heap looks as follows, with l(grey square) marking
the minimal available(white square) location:

And let’s suppose the heap after applying π is as follows, with lπ marking the
new minimal available location:

σ
′′ = (π

s(s)|x 7→ lπ), (π
h(h) ∗ [lπ 7→ JeK

π
s(s)])

σ
′ = π

′ • σ
′′

Let π be such that original l after applying π was mapped not to the minimal free
location, then if we just take π

′ = π
−1 and apply it to σ

′′ heap will be something
like this, with l being not minimal:

Permutation Theorem 13

which is surely wrong.
In that case we can repair π

′ by taking it to be π
′ = π

−1[lπ := l; π(l) := lπ]. That
is the same π

−1, but with cells mapped uncorrectly swapped to fix the problem:
lπ , the newly allocated cell, is mapped to l, the location which would be allocated
in original not renamed heap, and π(l), the location original would-be-allocated
cell is renamed to is mapped to lπ .

�

3. lookup:
〈x := [e], s, h〉 (s|x 7→ h(JeKs)), h
〈x := [e], π

s(s), π
h(h)〉 (π

s(s)|x 7→ π
h(h)(JeK

π
s (s))), π

h(h)

σ
′ = (s|x 7→ h(JeKs)), h

σ
′′ = (π

s(s)|x 7→ π
h(h)(JeK

π
s (s))), π

h(h)

Let π
′ := π

−1, then
π
′ • σ

′′ = π
′ • (π • σ) by de f . o f σ

′′

= (π
′ ◦ π) • σ by Lemma 2

= (π
−1 ◦ π•)σ by de f . o f π

′

= Id • σ by de f . o f Id
= σ by Lemma 2

�

4. mutation:
〈[e] := e′, s, h〉 s, (h|JeKs 7→ Je′Ks)

〈[e] := π • e′, π
s(s), π

h(h)〉 π
s(s), (π

h(h)|JeK
π

s (s) 7→ Je′K
π

s(s))

σ
′ = s, (h|JeKs 7→ Je′Ks)

σ
′′ = π

s(s), (π
h(h)|JeK

π
s (s) 7→ Je′K

π
s(s))

Let π
′ := π

−1, then
π
′ • σ

′′ = π
′ • (π • σ) by de f . o f σ

′′

= (π
′ ◦ π) • σ by Lemma 2

= (π
−1 ◦ π) • σ by de f . o f π

′

= Id • σ by de f . o f Id
= σ by Lemma 2

14 Permutation

�

5. dispose:
〈dispose e, s, h〉 s, h − JeKs

〈dispose e, π
s(s), π

h(h)〉 π
s(s), π

h(h) − JeK
π

s(s)

σ
′ = s, h − JeKs

σ
′′ = π

s(s), π
h(h) − JeK

π
s(s)

Let π
′ := π

−1, then
π
′ • σ

′′ = π
′ • (π • σ) by de f . o f σ

′′

= (π
′ ◦ π) • σ by Lemma 2

= (π
−1 ◦ π) • σ by de f . o f π

′

= Id • σ by de f . o f Id
= σ by Lemma 2

�

6. assignment:
〈x := e, s, h〉 (s|x 7→ JeKs), h
〈x := e, π

s(s), π
h(h)〉 (π

s(s)|x 7→ JeK
π

s(s)), π
h(h)

σ
′ = (s|x 7→ JeKs), h

σ
′′ = (π

s(s)|x 7→ JeK
π

s(s)), π
h(h)

Let π
′ := π

−1, then
π
′ • σ

′′ = π
′ • (π • σ) by de f . o f σ

′′

= (π
′ ◦ π) • σ by Lemma 2

= (π
−1 ◦ π) • σ by de f . o f π

′

= Id • σ by de f . o f Id
= σ by Lemma 2

�

At this point we have proven all the base cases.

7. conditional:
〈if b then c0 else c1, s, h〉 s′, h′

〈if b then c0 else c1, π
s(s), π

h(h)〉 s′′, h′′

Permutation Theorem 15

σ
′ = s′, h′

σ
′′ = s′′, h′′

Depending on b, either c0 or c1 is executed:

• case b true
〈c0, s, h〉 s′, h′

〈c0, π
s(s), π

h(h)〉 s′′, h′′

By induction hypothesis we can conclude that π
′ exists.

• case b f alse
analogously.

�

while, sequencing are proved the same way.

Part2.
〈c, σ〉 abort ⇒ 〈c, π • σ〉 abort

8. abort cases:
abort arises when command tries to access inactive memory (JeKs /∈ dom(h)). To
show

(c, π
s(s), π

h(h)) abort

it suffices to show: JeK
π

s(s) /∈ dom(π
h(h)) whenever JeKs /∈ dom(h)

Suppose JeKs /∈ dom(h) and JeK
π

s(s) ∈ dom(π
h(h)), then

(a) JeK
π

s(s) = π(l), for some l ∈ dom(h), then by Lemma 3.3

(b) π
−1 val(JeK

π
s(s)) = π

−1 val(π
val(l)) = l by Lemma 3.1

l = JeKs. contradiction
Therefore JeK

π
s(s) /∈ dom(π

h(h))

�

Chapter 4

Logic

In this section we will provide the separation logic for our language with deterministic
semantics. We change almost nothing here compared to Reynolds. Separation logic
contains all of the boolean expressions, classical logic plus adds special assertions to
describe the heap. For the purposes of checking the type correctness we added another
two predicates, testing whether expression is boolean or is defined.
Hoare triples specifying the program will be interpreted according to the partial correct-
ness.

4.1 Assertions

Assertions of our logic are usual formulae of separation logic(without separating im-
plication):

p, q, r ::=b | p ⇒ q | ∀x.p

| emp empty heap
| e 7→ f singleton heap
| p ∗ q separating conjunction

| isbool(e) e is boolean
| isde f (e) e is defined

Table 4.1: Assertions

Meaning of an assertion depends on both store and heap. When an assertion p is true
in some state σ we say that the state satisfies the assertion and write:

σ |= p

18 Logic

Abbreviations are as usual: e0 = e1 : e0 ≤ e1 ∧ e1 ≤ e0; ∃x.p : ¬∀x.¬p; x 7→ − :
∃v.x 7→ v.
The meaning of heap assertions:

• isbool(e) is true only when e is boolean:

σ |= isbool(e) ⇔ JeKs ∈ boolean

• isde f (e) is true only when e is defined:

σ |= isde f (e) ⇔ JeKs 6= undefined

• emp is true only when the current heap is empty:

σ |= emp ⇔ dom(h) = �

• e 7→ f is true only when the current heap contains one element at the location e
with the value f :

σ |= e 7→ f ⇔ dom(h) = {JeKs} and h(JeKs) = Je′Ks

• p ∗ q is true only when the current heap can be split into two disjoint parts and
for each of them p and q hold respectively:

s, h |= p ∗ q ⇔ ∃h0, h1. h0 ⊥ h1 and h0 · h1 = h and
s, h0 |= p and s, h1 |= q

Two heaps are disjoint if they have disjoint domains:

dom(h0) ∩ dom(h1) = �

We write h0 ⊥ h1 to show that h0 is disjoint from h1, and h0 · h1 to denote the heap
combined from these disjoint parts.

4.2 Partial Correctness

Assertions and commands are combined into Hoare triples to reason about programs:

{p}c{q}

p is a precondition, q is a postcondition, c is a command. A triple describes how the
execution of a command changes the state of the program, from state satisfying the

Inference rules 19

precondition to the state satisfying the postcondition. In our work we are going to con-
sider partial correctness interpretation of Hoare triples, i.e. we don’t take into account
requirement for the command to necessarily terminate, which would give us a total cor-
rectness.
We say that the command is safe, if it does not abort: 〈c, σ〉 / abort, and that Hoare
triple is true |= {p}c{q}, iff in all states satisfying precondition executing command is
safe and the resulting state satisfies the postcondition:

|= {p}c{q} ⇔ ∀σ. σ |= p ⇒ 〈c, σ〉 is safe, and
〈c, σ〉 σ

′ ⇒ σ
′ |= q

4.3 Inference rules

Inference rules for Hoare triples are given in Table 4.2.

skip assign

{p}skip{p} {p[e/x]}x := e{p}

seq cond

{p}c0{t} {t}c1{q}
{p}c0 ; c1{q}

{p ∧ b}c0{q} {p ∧ ¬b}c1{q}
{p ∧ isbool(b)}if b then c0 else c1{q}

while weak

{p ∧ b}c{p}
{p}while ∧ isbool(b) b do c{¬b ∧ p}

p ⇒ s {s}c{t} t ⇒ q
{p}c{q}

alloc mutate

{emp ∧ isde f (e)}x := new e{x 7→ e} {e 7→ −}[e] := e′{e 7→ e′}

lookup dispose

{x = y ∧ (e 7→ z)}x := [e]{x = z ∧ (e[x := y] 7→ z)} {e 7→ −}dispose e{emp}

frame

{p}c{q}
{p ∗ r}c{q ∗ r}

, mod(c) ∩ f v(r) = {}

Table 4.2: Inference rules

20 Logic

Rules remain the same as in separation logic. Skip doesn’t change anything. The
assignment axiom states that after the assignment any predicate holds for the variable
that was previously true for the right-hand side of the assignment. p[e/x] denotes the
assertion p in which all free occurrences of the variable x have been replaced with the
expression e. As an example:

{y + 1 = 42 ∧ y = 5}x := y + 1{0 ≤ x}

Sequencing allows composing commands if the postcondition of the first one mathes
precondition of the second. Conditional allows executing one of two commands de-
pending on some condition. While loops a command depending on condition. Weaken-
ing strengthens the precondition and weakens the postcondition.

Allocation: starting in a state with empty heap execution ends in a state with sin-
gle cell allocated. Mutation: starting in a state where heap contains a single active cell
and store with a variable pointing to this memory cell changes the content of this cell.
Lookup: assigns to the variable x the content of the heap cell specified by expression e.
Dispose: starting in a state with single cell allocated and pointed to by variable, ends in
a state with an empty heap.

The most important is the Frame rule. It has as a side condition the requirement for
free variables of r, f v(r), not to be modified by c, mod(c) is the set of variables updated
by c. The rule is the key to local reasoning about the heap. Local reasoning reflects the
informal intuition of programmers who usually concentrate only on relevant resources
used by part of the program:

To understand how a program works, it should be possible for reasoning
and specification to be confined to the cells that the program actually ac-
cesses. The value of any other cell will automatically remain unchanged.[8]

Frame rule allows deriving global versions of the previously described rules, e.g.
from local mutation:

{x 7→ −}[x] := e{x 7→ e}

to global:

{(x 7→ −) ∗ r}[x] := e{(x 7→ e) ∗ r}

Lemma 4.1

∀p.∀s, s′, h. s(x) = s′(x) f or all f v(p) ⇒ ((s, h) |= p ⇒ (s′ , h) |= p)

Inference rules 21

Proof by induction on p.

Lemma 4.2

∀p.∀s, h, π. (s, h) |= p ⇒ (π
s(s), π

h(h)) |= p

Proof by induction on p.

Chapter 5

Soundness

Soundness of our logic is proved by rule induction. Proof will be split into three parts:
Hoare rules, Heap rules and the most important - frame rule.

1. Traditional Hoare rules

(a) skip
To show: |= {p}skip{p}

1)Assume σ |= p
2)By rule for skip: 〈skip, σ〉 σ

⇒|= {p}skip{p}

(b) assignment
To show: |= {p[e/x]}x := e{p}

1)Assume s, h |= p[e/x]
2)By rule for assignment: 〈x := e, s, h〉 s | x 7→ JeKs, h
3)Using lemma 6.9 from [15] s | x 7→ JeKs, h |= p

⇒ |= {p[e/x]}x := e{p}

(c) sequencing

To show:
|= {p}c0{t} |= {t}c1{q}

|= {p}c0 ; c1{q}

24 Soundness

1) Assume |= {p}c0{t}; |= {t}c1{q}
2) Suppose σ |= p
3) Then 〈c0, σ〉 σ

′ and from 1) σ
′ |= t

4) Then 〈c1, t〉 σ
′′ and from 1) ⇒ σ

′′ |= q

⇒
|= {p}c0{t} |= {t}c1{q}

|= {p}c0; c1{q}

(d) conditional

To show:
|= {p ∧ b}c0{q} |= {p ∧ ¬b}c1{q}

|= {p ∧ isbool(b)}if b then c0 else c1{q}

1) Assume |= {p ∧ b}c0{q}; |= {p ∧ ¬b}c1{q}
2) Suppose σ |= p ∧ isbool(b)
then 3) if σ |= b then 1) and 〈c0, σ〉 σ

′ |= q or
if σ |= ¬b then 1) and 〈c1, σ〉 σ

′′ |= q

⇒
|= {p ∧ b}c0{q} |= {p ∧ ¬b}c1{q}

|= {p}if b then c0 else c1{q}

(e) while-loop

To show:
|= {p ∧ b}c{p}

|= {p ∧ isbool(b)}while b do c{¬b ∧ p}

1) Assume |= {p ∧ b}c{p}
2) Suppose σ |= p
case σ |= ¬b :

〈while b do c, σ〉 σ

σ |= p ∧ ¬b

case σ |= b :

〈c, σ〉 σ3; 〈while b do c, σ3〉 σ2

3) 1)⇒ σ3 |= p
4)By induction σ2 |= p ∧ ¬b

⇒
|= {p ∧ b}c{p}

|= {p}while b do c{¬b ∧ p}

25

(f) weakening

To show:
|= p ⇒ s |= {s}c{t} |= t ⇒ q

|= {p}c{q}

1) Assume |= p ⇒ s; |= {s}c{t}; |= t ⇒ q
2) Suppose σ |= p
3) From 1) and 2): σ |= s
4) From 1) and 3): ⇒ 〈c, σ〉 σ

′ |= t
5) From 1): ⇒ σ

′ |= q

⇒
|= p ⇒ s |= {s}c{t} |= t ⇒ q

|= {p}c{q}

2. Heap rules

(a) allocation
To show: |= {emp ∧ isde f (e)}x := new e{x 7→ e}

Suppose s, h |= emp ∧ isdef(e)
then 〈x := new e, s, h〉 〈s | x : l, l → JeKs〉 and

〈s | x : l, l → JeKs〉 |= x 7→ e

(b) mutation
To show: |= {x 7→ − ∧ isde f (e)}[x] := e{x 7→ e}

Suppose s, h |= x 7→ − ∧ isde f (e)
then 〈[x] := e, s, h〉 〈s, JxKs → JeKs〉 and

〈s, JxKs → JeKs〉 |= x 7→ e

(c) lookup
To show:|= {x = y ∧ (e 7→ z) ∧ isde f (e)}x := [e]{x = z ∧ (e ′ 7→ z)}, e′ =
e[x := y]

Lemma 5.1 Je[x := y]Ks = JeKs[x:=s(y)]

Suppose s, h |= x = y ∧ (e 7→ z)
then 〈x := [e], s, h〉 〈s|x → h(JeKs), h〉 and

〈s|x → h(JeKs), h〉 |= x = z ∧ (e′ 7→ z) by Lemma 5.1

26 Soundness

(d) deallocation
To show:|= {e 7→ −}dispose e{emp}

Suppose s, h |= e 7→ −
then 〈dispose e, s, h〉 (s, emp) and

(s, emp) |= emp

3. Frame rule

To show:
|= {p}c{q}

|= {p ∗ r}c{q ∗ r}
, mod(c) ∩ f v(r) = {}

Extension of permutation theorem

In order to prove the frame rule we will rephrase semantic property of safety
monotonicity and the Frame property from[17] according to permutation theo-
rem.

Lemma 5.2 (Safety monotonicity)

• If 〈c, s, h〉 safe, and π- renaming and (π
h(h)) ⊥ h′,

then 〈c, π
s(s), π

h(h) · h′〉 is safe

Proof: Safety monotonicity
Proof is similar to Part 2 of permutation theorem.
Suppose 〈c, s, h〉 safe and 〈c, π

s(s), π
h(h) · h′〉 isn’t. Then JeK

π
s(s) /∈ dom(π

h(h) ∪

dom(h′)), and therefore also JeK
π

s(s) /∈ dom(π
h(h)).

(a) JeK
π

s(s) = π(l), for some l ∈ dom(h), then by Lemma 3.3

(b) π
−1 val(JeK

π
s(s)) = π

−1 val(π
val(l)) = l by Lemma 3.1

l = JeKs. contradiction

Contradiction. �

27

Lemma 5.3 (Frame property) .

c is safe for σ = (s, h0) and 〈c, s, h0 · h1〉 (s′, h′) ⇒

∃π, h′
0. 〈c, s, h0〉 (s′′, h′0) and h′ = (π

h(h′0)) · h1, s′ = π
s(s′′)

Proof by structural induction:

(a) allocation
〈x := new e, s, h0〉 〈(s | x 7→ l0), (h0 · l0 7→ JeKs))〉, l0 - minimal

〈x := new e, s, h0 · h′〉 〈(s | x 7→ l ′0), (h0 · h1 · l′0 7→ JeKs))〉, l ′0 - minimal

π = id | l0 7→ l′0, h′0 = h0 · l′0 7→ JeKs �

(b) mutation:
〈[x] := e, s, h0〉 〈s, (h0 | JxKs 7→ JeKs)〉
〈[x] := e, s, h0 · h1〉 〈s, (h0 · h1 | JxKs 7→ JeKs)〉

π = id, h′
0 = h0 | JxKs 7→ JeKs

�

(c) lookup:
〈x := [e], s, h0〉 〈(s | x 7→ h(JeKs)), h0〉
〈x := [e], s, h0 · h1〉 〈(s | x 7→ h(JeKs)), h0 · h1〉

π = id, h′
0 = h0

�

(d) dispose:
〈dispose e, s, h0 · JeKs 7→ −〉 〈s, h0〉
〈dispose e, s, h0 · JeKs 7→ − · h1〉 〈s, h0 · h1〉

π = id, h′
0 = h0

28 Soundness

Cases for skip, and assignment are similar to the last two rules, since they
don’t modify the heap.
� Base cases are proven. Cases for conditional, while and sequencing are by
induction.

�

Now back to the Frame rule:

Need to prove:
|= {p}c{q}

|= {p ∗ r}c{q ∗ r}
, mod(c) ∩ f v(r) = {}

Suppose s, h |= p ∗ r, i.e.:

(s, h0) |= p and (s, h1) |= r
To show:

(a) 〈c, s, h〉 safe,

(b) 〈c, s, h〉 〈s′ , h′〉 ⇒ s′, h′ |= q ∗ r ,

Safety of 〈c, s, h〉 follows from safety monotonicity.

If 〈c, (s, h0 · h1)〉 (s′, h′), then ∃π, h′
0.〈c, (s, h0)〉 〈s′′, h′0〉

∧h′ = (π • h′
0) · h1, s′ = π • s′′ by Lemma 5.3

⇒ (s′, h′0) |= q by assumption |= {p}c{q}

⇒ (π • s′′, π • h′
0) |= q by Lemma 4.2

⇒ (π • s′, h′) |= q ∗ r by Lemma 4.1 and mod(c) ∩ f v(r) = {}

�

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work we have followed the direction stated by Yang/O’Hearn in [17] to walk
around the non-determinancy in allocation. We confirmed that allocation is not neces-
sarily should be non-deterministic, if we have a language without address arithmetic
and invariance under location renaming. The central contribution of this work is a
formal statement and proof of the permutation theorem. This proof with the given
deterministic semantics shows that running a program on a correspondingly renamed
heap leads to the same result, up to a renaming of locations in the final heap. We have
shown that it is always possible to find the needed permutation, and in most cases it
was simply the inverse of original permutation. The only problem was with allocation,
since renaming could map the original minimal location to arbitrary cell, not necessar-
ily being also minimal, and we have shown that suitable permutation is found in this
case by ”swapping” uncorrectly mapped locations. Next we gave the separation logic
for our language and proved its soundness.

6.2 Future Work

As usual there are a lot of open ends to explore. Traditionally allocation was treated
non-deterministically and so far most of works were done based on this approach. Now
it would be interesting to apply what is currently done to our approach, like extending
it to more expressive languages e.g. with procedures or shared-variable concurrency,
or proving completeness of this logic. We also thought about deterministic allocation
for more than one cell and found that it is still possible to find suitable permutation
function, but the problem is that permutation does not preserve consequetive memory
blocks, and this is left for future. Reynolds in [12] said that there is a hope to construct

30 Conclusion and Future Work

a garbage collector in a situation where addresses are disjoint from integers, which is
ours, although we didn’t think about this yet, since allocation always chooses a minimal
address we have an implicit memory reuse.

Bibliography

[1] Nick Benton, Noah Torp-Smith. Abstracting allocation: The new new thing.
SPACE, strony 108–110, 2006.

[2] Cees Pierik Frank S. de Boer. How to cook a complete hoare logic for your pet oo
language.

[3] Sidney L. Hantler, James C. King. An introduction to proving the correctness of
programs. ACM Comput. Surv., 8(3):331–353, 1976.

[4] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
26(1):53–56, 1983.

[5] Neel Krishnaswami. Separation logic for a higher-order typed language., 2006.

[6] Michael J.C. Gordon Magnus O. Myreen, Antony C. J. Fox. Hoare logic for arm
machine code, 2006.

[7] P. O’Hearn, D. Pym. The logic of bunched implications, 1999.

[8] Peter O’Hearn, John Reynolds, Hongseok Yang. Local reasoning about programs
that alter data structures. Lecture Notes in Computer Science, 2142:1–??, 2001.

[9] Peter W. O’Hearn. Resources, concurrency and local reasoning.

[10] Ernst-Rdiger Olderog. A characterization of hoare’s logic for programs with
pascal-like procedures, 1983.

[11] Bernhard Reus, Jan Schwinghammer. Separation logic for higher-order store. Com-
puter Science Logic (CSL’06), Lecture Notes in Computer Science. Springer, 2006.

[12] J. Reynolds. Separation logic: a logic for shared mutable data structures, 2002.

[13] Noah Torp-Smith. Proving correctness of a garbage collector via local reasoning
marking algorithm, 2003.

32 Bibliography

[14] David von Oheimb. Hoare logic for java in isabelle/HOL. Concurrency and Com-
putation: Practice and Experience, 13(13):1173–1214, 2001.

[15] Glynn Winskel. The formal semantics of programming languages: an introduction. MIT
Press, Cambridge, MA, USA, 1993.

[16] H. Yang. An example of local reasoning in bi pointer logic: the schorr-waite graph
marking algorithm, 2000.

[17] Hongseok Yang, Peter W. O’Hearn. A semantic basis for local reasoning. Founda-
tions of Software Science and Computation Structure, strony 402–416, 2002.

	Abstract
	Acknowledgments
	Introduction
	Separation Logic
	Description of the Problem
	Permutation semantics

	Language and Semantics
	Language Syntax
	Domains
	Language Semantics

	Permutation
	Definition
	Permutation Theorem

	Logic
	Assertions
	Partial Correctness
	Inference rules

	Soundness
	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

