
Well-Nested Drawings
as Models of Syntactic Structure?

Manuel Bodirsky1, Marco Kuhlmann2, and Mathias Möhl2

1 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
2 Programming Systems Lab, Saarland University, Saarbrücken, Germany

Abstract. This paper investigates drawings (totally ordered forests) as
models of syntactic structure. It offers a new model-based perspective on
lexicalised Tree Adjoining Grammar by characterising a class of drawings
structurally equivalent to tag derivations. The drawings in this class are
distinguished by a restricted form of non-projectivity (gap degree at most
one) and the absence of interleaving substructures (well-nestedness). We
demonstrate that well-nested drawings allow for efficient processing by
defining a simple constraint language for them and presenting an algo-
rithm that decides in polynomial time whether a formula in that con-
straint language is satisfiable on a well-nested drawing.

1 Introduction

There are two major approaches to formal accounts of the syntax of natural
language, the proof-theoretic and the model-theoretic approach. Both aim at
providing frameworks for answering the question whether a given natural lan-
guage expression is grammatical. Their methodology, however, is rather different:
In a proof-theoretic framework, one tries to set up a system of derivation rules
(such as the rules in a context-free grammar) so that each well-formed natural
language expression stands in correspondence with a derivation in that system.
In contrast, in a model-theoretic framework, one attempts to specify a class of
models for natural language expressions and a set of constraints on these models
such that an expression is well-formed iff it has a model satisfying all the con-
straints. The main contribution of this paper is the characterisation of a class
of structures that provides a new model-based perspective on Tree Adjoining
Grammar (tag; [2]), a well-known proof-theoretic syntactic framework.

Every syntactic framework needs to account for at least two dimensions of
syntactic structure: derivation structure and word order. The derivation struc-
ture captures linguistic notions such as dependency and constituency—the idea
that a natural language expression can be composed of smaller expressions.
Statements about word order are needed to account for the fact that not all

? This paper is the extended version of an article that appears in the proceedings of
the 10th Conference on Formal Grammar and the 9th Meeting on Mathematics of
Language, Edinburgh, Scotland, UK, 2005 [1].



permutations of the words of a grammatical sentence are neccessarily grammat-
ical themselves. One of the scales along which syntactic frameworks can vary is
the flexibility they permit in the relationship between derivation structure and
word order. Context-free grammars do not allow any flexibility at all; derivation
structure determines word order completely. In mildly context-sensitive gram-
mar formalisms like tag or Combinatory Categorial Grammar [3], certain forms
of discontinuous derivations are permitted (‘crossed-serial dependencies’). Other
frameworks, such as non-projective dependency grammar [4], allow for even more
flexibility to account for languages with free word order.

In this paper we introduce drawings, a simple class of structures for which
the relaxation of the relationship between derivation structure and word order
can be easily measured (§ 2). There is a natural way in which tag derivations
can be understood as drawings (§ 3). We show that the class of drawings induced
in this way can be identified by two structural properties: a restriction on the
degree of word order flexibility and a global property called well-nestedness,
which disallows interleaving subderivations. In combination, these two properties
capture the ‘structural essence’ of tag (§ 4). Finally, we demonstrate that this
class of structures allows for efficient processing by defining a simple constraint
language for it and presenting a polynomial satisfiability algorithm (§ 5). The
paper concludes with a discussion of the relevance of our results and an outlook
on future research (§ 6).

2 Drawings

We start by introducing some basic terminology. A relational structure is a tuple
whose first component is a non-empty, finite set V of nodes, and whose remaining
components are (in this paper) binary relations on V . The notation Ru stands
for the set of all nodes v such that (u, v) ∈ R. We use the standard notations for
the transitive (R+) and reflexive transitive (R∗) closure of binary relations.

In this paper, we are concerned with two types of relational structures in
particular: forests and total orders. A relational structure (V ; /) is called a forest
iff / is acyclic and every node in V has at most one predecessor with respect to /.
Nodes in a forest with no /-predecessors are called roots. A tree is a forest that
has exactly one root. A total order is a relational structure (V ;≺) in which ≺
is transitive and for all v1, v2 ∈ V , exactly one of the following three conditions
holds: v1 ≺ v2, v1 = v2, or v2 ≺ v1. Given a total order, the interval between
two nodes v1 and v2 is the set of all v such that v1 � v � v2. The cover of a
set V ′ ⊆ V , C(V ′), is the smallest interval containing V ′. A set V ′ is convex iff
it is equal to its cover. A gap in a set V ′ is a maximal, non-empty interval in
C(V ′) − V ′. We call the number of gaps in a set the gap degree of that set and
write Gk(V ) for the k-th gap in V (counted, say, from left to right).

2.1 Drawings and gaps

Drawings are relational structures with two binary relations: a forest to model
derivation structure, and a total order to model word order.



Definition 1. A drawing is a relational structure (V ; /,≺) where (V ; /) forms
a forest, and (V ;≺) forms a total order. Drawings whose underlying forest is a
tree will be called arborescent.

Note that, in contrast to ordered forests (where order is defined on the direct
successors of each node), order in drawings is total. By identifying each node v in
a drawing with the set (/∗)v of nodes in the subtree rooted at v, we can lift the
notions of cover and gap as follows: C(v) := C((/∗)v), Gk(v) := Gk((/∗)v). The
gap degree of a drawing is the maximum among the gap degrees of its nodes.

a b c d fe

(a) gap 0

a b d e c f

(b) gap 1

Fig. 1: Two drawings

Fig. 1 shows two drawings of the same underlying tree. The circles and solid
arcs reflect the forest structure. The dotted lines mark the positions of the nodes
with respect to the total order. The labels attached to the dotted lines give names
to the nodes. Drawing 1a has gap degree zero, since C(v) = (/∗)v for all nodes v.
In contrast, drawing 1b has gap degree one, since the set

{d, e} = {b, d, e, c} − {b, c} = C(b)− (/∗)b

is a gap for node b, and no other node has a gap.

2.2 Related work

Our terminology can be seen as a model-based reconstruction of the terminology
developed for non-projective dependency trees [4], where gaps are defined with
respect to tree structures generated by a grammar. The notion of gap degree is
closely related to the notion of fan-out in work on (string-based) finite copying
parallel rewriting systems [5].

3 Drawings for TAG

Tree Adjoining Grammar (tag) [2] is a proof-theoretic syntactic framework
whose derivations manipulate tree structures. This section gives a brief overview
of the formalism and shows how drawings model derivations in lexicalised tags.



3.1 Tree Adjoining Grammar

The building blocks of a tag grammar are called elementary trees; they are
successor-ordered trees in which each node has one of three types: anchor (or
terminal node), non-terminal node, or foot node. Anchors and foot nodes must be
leaves; non-terminal nodes may be either leaves or inner nodes. Each elementary
tree can have at most one foot node. Elementary trees without a foot node are
called initial trees; non-initial trees are called auxiliary trees. A tag grammar is
strictly lexicalised, if each of its elementary trees contains exactly one anchor.

→
π

τ₁

τ₂

(a) substitution

π

τ₁

τ₂

→

(b) adjunction

Fig. 2: Combining tree structures in tag

Trees in tag can be combined using two operations (Fig. 2): Substitution
combines a tree structure τ1 with an initial tree τ2 by identifying a non-terminal
leaf node π of τ1 with the root node of τ2 (Fig. 2a). Adjunction identifies an
inner node π of a structure τ1 with the root node of an auxiliary tree τ2; the
subtree of τ1 rooted at π is excised from τ1 and inserted below the foot node
of τ2 (Fig. 2b; the star marks the foot node). Combing operations are disallowed
at root and foot nodes.

tag derivation trees record information about how tree structures were com-
bined during a derivation. Formally, they can be seen as unordered trees whose
nodes are labelled with elementary trees, and whose edges are labelled with the
nodes at which the combining operations took place. If v is a node in a deriva-
tion tree, we write `(v) for the label of v. An edge v1 −π→ v2 signifies that the
elementary tree `(v2) was substituted or adjoined into the tree `(v1) at node π.

tag derived trees represent results of derivations; we write drv(D) for the
derived tree corresponding to a derivation tree D. Derived trees are ordered trees
made up from the accumulated material of the elementary trees participating
in the derivation. In particular, each tag derivation induces a mapping ρ that
maps each node v in D to the root node of `(v) in drv(D). In strictly lexicalised
tags, a derivation also induces a mapping α that maps each node v in D to the
anchor of `(v) in drv(D).

For derivation trees D in strictly lexicalised tags, we define

derived(v) := {α(u) | v /∗ u in D } and
yield(v) := {π | π is an anchor and ρ(v) /∗ π in drv(D) } .



The set derived(v) contains those anchors in drv(D) that are contributed by
the partial derivation starting at `(v); yield(v) contains those anchors that are
dominated by the root node of `(v). To give a concrete example: Fig. 3 shows
a tag derivation tree (3a) and its corresponding derived tree (3b). For this
derivation, we have

derived(like) = {what ,Dan, like} and yield(like) = derived(like) ∪ {does} .

3.2 TAG drawings

There is a natural relation between strictly lexicalised tags and drawings: given
a tag derivation, one obtains a drawing by ordering the nodes in the derivation
tree according to the left-to-right order on their corresponding anchors in the
derived tree.

Definition 2. Let D be a derivation tree for a strictly lexicalised tag. A draw-
ing (V ; /,≺) is a tag-drawing iff (a) V is the set of nodes in D; (b) v1 / v2 iff
for some π, there is an edge v1 −π→ v2 in D; (c) v1 ≺ v2 iff α(v1) precedes
α(v2) with respect to the leaf order in drv(D).

Fig. 3c shows the tag drawing induced by the derivation in Figs. 3a–b.

what Dandoes like

S

VBSE

doeswhat Dan

VBSE

NP1 NP2 like

S

VBSE

does

NP1

what

NP2

Dan

VBSE

NP1 NP2 like

VBSE

NP1 NP2

(a) (b)

(c)

Fig. 3: tag derivation trees (a), derived trees (b), and drawings (c)

4 The structural essence of TAG

Now that we have defined how tag derivations induce drawings, we can ask
whether all drawings (whose underlying forests are trees) are tag drawings.
The answer to this question is ‘no’: tag drawings form a proper subclass in



the class of all drawings. As the major technical result of this paper, we will
characterise the class of tag drawings by two structural properties: a restriction
on the gap degree and a property we call well-nestedness (Definition 3). The
relevance of this result is that it provides a characterisation of ‘tag-ness’ that
does not make reference to any specific grammar, but refers to purely structural
properties: well-nested drawings with gap degree at most one are ‘just the right’
models for tag in the sense that every tag derivation induces such a drawing,
and for any such drawing we can construct a tag grammar that allows for a
derivation inducing that drawing.

4.1 TAG drawings are gap one

Gaps in tag drawings correspond to adjunctions in tag derivations: each ad-
junction may introduce material into the yield of a node that was not derived
from that node. Since auxiliary trees have only one foot node, tag drawings can
have at most one gap.

Lemma 1. Let D be a tag derivation tree, and let v be a node in D. Then
(a) derived(v) ⊆ yield(v), (b) yield(v) − derived(v) is convex, and (c) derived(v)
contains at most one gap.

Proof. (a) Each a ∈ derived(v) either is the anchor of `(v), or has been derived
from `(v) in one or more steps. In both cases, a is dominated by the root node
of `(v) in the derived tree (Fig. 2). In particular, after each derivation step
v1 −π→ v2, the root node of `(v1) dominates all anchors derived from the root
node of `(v2) (Fig. 2a).

(b) Define G := yield(v) − derived(v) and let al and ar be the leftmost and
rightmost anchor in G, respectively (assuming that G is non-empty). The only
way by which an anchor can have entered G is by an adjunction of `(v) into
some other elementary tree (Fig. 2b). Now assume that G was not convex, i.e.,
there is an anchor a ∈ derived(v) such that al ≺ a ≺ ar. Since both al and ar are
dominated by the foot node of `(v), a is dominated by that node as well. This is
a contradiction: neither can an anchor be dominated by the foot node of its own
elementary tree (the foot node always is a leaf), nor can the foot node be the
starting node of a sub-derivation (substitution and adjunction are disallowed at
foot nodes). Thus, G is convex.

(c) The third item follows from the preceding two and the observation that
yield(v) is convex.

Corollary 1. tag drawings have gap degree at most one.

4.2 TAG drawings are well-nested

The gap restriction alone is not sufficient to characterise tag drawings: there are
drawings with gap degree one that cannot be induced by a tag. Fig. 4 shows two
examples. To see why these drawings cannot be induced by a tag notice that in
both of them, the cover of two nodes overlap (C(b) and C(c) in the left drawing,



a b c d e a b c d e

Fig. 4: Two drawings that are not well-nested

C(a) and C(e) in the right one). Since each node in a drawing corresponds to a
sub-derivation on the tag side, this would require the overlap of two yields in the
derived tree, which is impossible. The present section will make this statement
precise.

Definition 3. Let T1, T2 be disjoint trees in a drawing. We say that T1 and T2

interleave iff there are nodes l1, r1 ∈ T1 and l2, r2 ∈ T2 such that l1 ≺ l2 ≺ r1 ≺
r2. A drawing is called well-nested iff it does not contain any interleaving trees.

Well-nestedness is a purely structural property: it does not make reference
to any particular grammar at all. In this respect, it is similar to the condition
of planarity [6]. In fact, one obtains planarity instead of well-nestedness from
Definition 3 if the disjointness condition is relaxed such that T2 may be a subtree
of T1, and l1, r1 are chosen from T1 − T2.

Lemma 2. tag drawings are well-nested.

Proof. Let D be a derivation tree. Imagine the tag drawing for D, and assume
that it contains two interleaving subtrees T1 and T2 with witnessing nodes l1, r1

and l2, r2. We will show that this leads to a contradiction. Let v1 and v2 be the
root nodes of T1 and T2, respectively. The witnessing nodes define two overlap-
ping intervals in the yield of drv(D): α(l1) · · ·α(r1) and α(l2) · · ·α(r2). Let π
be an anchor present in both of these intervals. Since π is dominated in drv(D)
by both ρ(v1) and ρ(v2), assume that ρ(v1) dominates ρ(v2) (the other case
is symmetric). In this case, yield(v1) ⊇ yield(v2). It follows that l2, r2 ∈ H :=
yield(v1)−derived(v1). Because of r1 ∈ derived(v1), r1 is not included in H; there-
fore, the premise l2 ≺ r1 ≺ r2 implies that H is not convex. This contradicts
Lemma 1(b).

4.3 Gap forests

Define a binary relation G on trees in a drawing such that (T1, T2) ∈ G iff nodes
from T1 contribute to a gap in T2. For well-nested drawings, this relation is
acyclic and leads to the notion of the gap forest : the gap forest for v represents
information about G for v and its successors.



Definition 4. Let (V ; /,≺) be a well-nested drawing and v ∈ V a node with g
gaps. The gap forest for v is defined as the ordered forest gf(v) = (S;A, <) where

S := {{v}, G1(v), . . . , Gg(v)} ∪ { /∗w | v / w }
A := transitive reduction of { (s1, s2) ∈ S × S | C(s1) ⊃ s2 }
< := { (s1, s2) ∈ S × S | ∀v1 ∈ s1 : ∀v2 ∈ s2 : v1 ≺ v2 }

The elements of S are called spans.

In a gap forest, sibling spans correspond to disjoint sets representing parts of
gaps in the yield of their parent span. Sibling spans belonging to the same gap
are called span groups. Since v has g gaps, each union of sibling spans has a gap
degree that is bounded by g − 1. Dpans corresponding to the gaps in the yield
of v (Gi(v)) and the singleton span {v} are leaves in gf(v).

4.4 Constructing a TAG grammar for a drawing

To complete our characterisation of tag drawings, we now present an algorithm
that takes a well-nested drawing with gap degree at most one and constructs a
tag grammar whose only derivation induces the original drawing. Correctness
of the algorithm establishes the following

Lemma 3. Each well-nested arborescent drawing that has gap degree at most
one is a tag drawing.

The algorithm (see Algorithm 1) works as follows: It is called with the root
node of the drawing and the start symbol of the resulting tag grammar. It
then performs a pre-order traversal of the tree structure underlying the draw-
ing and generates one elementary tree for each of its nodes v. This elementary
tree must offer adjunction and substitution sites for the elementary trees of the
children of v in the order and gap inclusion relation specified by the drawing.
These requirements are satisfied by the gap forest of v; therefore, the algorithm
first computes gf(v) (line 1), adds a new node representing the cover of v, and
transforms the resulting tree into a tag elementary tree (lines 2–3). During this
transformation, both tree structure and order remain untouched; only the nodes
are renamed: the anchor is named v, the gap is replaced by the foot node ?, and
all other nodes obtain nonterminal labels that match the labels at the roots of
the elementary trees generated in the recursive calls of the algorithm (line 5).

The combination of Lemmata 1, 2 and 3 implies

Theorem 1. An arborescent drawing is a tag drawing iff it is well-nested and
has gap degree at most one.

5 An efficient constraint solver

The previous section has shown that well-nestedness is an essential structural
property of tag drawings. We now define a simple constraint language for well-



Algorithm 1 ElementaryTree(v, n)

1: compute gf(v) and build a tree gtv by adding a root node >
2: nt := {{v} 7→ v,> 7→ n, G1(v) 7→ ?} ∪ { /∗w 7→ m | v / w, m fresh non-terminal }
3: rename each node u of gtv into nt(u)

4: add gtv to the lexicon

5: for each w such that v / w do ElementaryTree(w, nt(w)) done

nested drawings, and describe an algorithm that decides the satisfiability prob-
lem for this language in polynomial time. This algorithm can be used as a con-
straint propagation algorithm that enforces the ‘tag-ness’ of a derivation. We
also describe how to use the algorithm to efficiently list the set of all drawings
on n vertices in a failure-free search.

5.1 Constraint language

A constraint set C consists of a set of variables V = {x1, . . . , xn}, a total order ≺
on V , and a set C of constraints that are either of the form x /+ y (dominance
constraint), or of the form x⊥y (disjointness constraint), for x, y ∈ V . A solution
for a constraint set C is a well-nested drawing (V ; /,≺) defined on the variables
of C, such that xi/

+xj holds in the drawing if the dominance constraint xi/
+xj is

in C, and where xi and xj lie in disjoint subtrees of the drawing if the disjointness
constraint xi ⊥ xj is in C. A constraint set with a solution is called satisfiable.
The most fundamental computational problem for this constraint language is to
determine whether a given constraint set is satisfiable. The main topic in the
remainder of this section is an efficient algorithm for this task.

The set of dominance constraints can be seen as a directed graph (V ; /+). It
is obvious that if this graph contains a directed cycle, there cannot be a solution
for the corresponding constraint set. If the graph is acyclic and does not contain
disjointness constraints, we can easily find a linear extension of /+ such that the
corresponding drawing satisfies all the constraints, and is well-nested. Consider
for example the constraint a /+ c, d /+ b on the variables a, b, c, d with the linear
order a ≺ b ≺ c ≺ d. The constraint set has a well-nested solution; e.g. there is a
drawing with a/+ c /+ e /+ b /+ d. However, if we add the disjointness constraint
b⊥ c to C, the resulting constraint set becomes unsatisfiable.

5.2 Listing all drawings

We would like to enumerate all drawings on n vertices. To achieve this, one can
use a search procedure that divides the set of such drawings in disjoint parts and
branches, i.e., enumerates these parts recursively. Ideally, such a search procedure
should not produce failures, i.e., all branches lead to at least one drawing. An
efficient algorithm for checking consistency of a given constraint set can be used
to obtain a failure-free search procedure for well-nested drawings.



Assuming that we have such an consistency algorithm (see § 5.3), we now de-
scribe this search procedure. First observe, that all different linear orders on the
vertices lead to different drawings, and for each linear order there are correspond-
ing drawings. Thus, our search initially branches over all different permutations
of the vertices. Permutations on n elements can be listed efficiently. In the follow-
ing we maintain a constraint set. In the beginning, this constraint set is empty.
If the constraint set contains one of the constraints a/+ b, b/+ a, or a⊥b for each
pair of vertices a, b ∈ V , then these constraints together with the linear order on
the variables fully determine the drawing on n vertices, and we can output it.

Otherwise, we find a pair of variables a, b without such a constraint. In every
solution to the constraint, exactly one of the cases a /+ b, b /+ a, or a⊥ b holds.
Hence, we distinguish between these three cases in our search. However, we
want to be sure that we perform a failure-free search, i.e., that all of the cases
considered in the search also contain a drawing. Therefore, we first add one of
those constraints, and check with the algorithm discussed earlier whether the
resulting larger constraint set still has a well-nested solution. If not, we do not
consider this case in our search.

5.3 Checking consistency

We present an algorithm that checks for a given constraint set whether there is
a well-nested drawing that satisfies all the constraints. For that we first adapt
the fruitful notion of freeness for tree description constraint languages [7, 8] to
drawings. Free variables can be used to decompose the constraint set into smaller
parts and to efficiently solve these parts recursively.

Definition 5. A variable x ∈ C is free iff C has a solution that is an arborescent
drawing whose root is x.

We now define the dominance graph of a constraint set C, which we use to
recursively decompose C. The dominance graph is undirected and defined on the
variables of C. It contains an (undirected) edge between two variables x and y if
either x /+ y is in C, or if there are variables u and v such that x ≺ v ≺ u ≺ y,
(x /+ u ∈ C ∨ u /+ x ∈ C), and (y /+ v ∈ C ∨ v /+ y ∈ C). We use standard
graph theoretic terminology for the dominance graph, such as connectivity and
connected components. We freely use these notions also for the constraint set;
e.g., we say that a constraint set is connected if its dominance graph is connected.

Lemma 4. Every solution of a connected constraint set is arborescent.

Proof. Let u be a root in a solution. All vertices on an undirected path in the
dominance graph starting in u have to be below u. Since every vertex is connected
to u via an undirected path, u dominates all vertices in the drawing.

This lemma and the definition of freeness imply that a connected constraint
set without a free variable does not have a solution. We finally state some obvious
necessary conditions for freeness. They can be checked efficiently and turn out
to be crucial for the algorithm.



Lemma 5. Let x be a free variable in a satisfiable constraint set. Then the
following two properties hold: (P1) – There is no y ∈ V such that y ⊥ x ∈ C.
(P2) – There is no y ∈ V such that y /+ x ∈ C.

The algorithm splits into two recursive procedures Solve and SolveCon
as follows. The underlying idea is to select a free variable, to decompose the
constraint graph without the free variable into components, to recursively solve
the parts, and to combine the partial solutions to a global one.

The following graph-theoretic notation will be convenient. If S is a subset of
the variables of a constraint set C, we denote with C[S] the restriction of C to
the variables from S, i.e., the subset of constraints that only involves variables
from S.

Algorithm 2 Solve(C)

1: compute the component S of the graph of C

containing the leftmost variable with respect to ≺
2: let U1 be the drawing SolveCon(C[S])

3: let U2 be the drawing Solve(C[V − S])

4: return the disjoint union of U1 and U2

Algorithm 3 SolveCon(C)

1: precondition: C contains a free variable

2: if no variable satisfying P1 or P2 exists then return ‘there is no solution’ else

choose such a variable x

3: add the roots of the drawing Solve(C[V − {x}]) as children below x

4: return the drawing rooted at x

Theorem 2. Procedure Solve outputs ‘there is no solution’ for a constraint
set C if and only if the constraint set has no solution.

Proof. The procedure Solve first computes the component S in the dominance
graph of the given constraint set C that contains the leftmost variable. Then it
invokes SolveCon for the constraint set C[S]. For the constraint set induced
by the remaining variables Solve is called. If both recursive calls produced a
solution, their disjoint union is a solution for C: The constraints within the
components are satisfied by inductive assumption. By definition, there are no
dominance edges between different components. The disjointness constraints be-
tween different components are clearly also satisfied. Finally, the disjoint union



of U1 and U2 is well-nested, since by definition of the dominance graph all inter-
leaving subtrees lie in the same connected component of the dominance graph.

Now we describe the procedure SolveCon. The given constraint set C has
to satisfy the assumption that every solution is an arborescent drawing. This
is guaranteed by the calls of SolveCon from the above procedure Solve, see
Lemma 4. We can therefore also assume that every satisfiable instance contains
a free variable. The procedure first searches for a variable x that satisfies P1 and
P2. This can be checked easily in linear time. If there is no such variable, the
procedure outputs ‘there is no solution’ and terminates (and indeed, for such
a constraint there is no free node, and therefore no solution). Otherwise, the
procedure Solve is called for the constraint set C[V − {x}]. If this procedure
call produces a solution F , we can return the arborescent drawing that results
from introducing an edge from x to all roots in the drawing F . This drawing
satisfies all constraints in C: The constraints within C[V − {x}] are satisfied by
the inductive assumption. P2 asserts that there are no disjointness constraints
incident to x. P1 asserts that there are no dominance constraints y /+ x in C.
Finally, all dominance constraints x /+ y in C are satisfied by construction.

6 Conclusion

This paper introduced drawings as models of syntactic structure and presented a
novel perspective on lexicalised tag by characterising a class of drawings struc-
turally equivalent to tag derivations. The drawings in this class—we called them
tag drawings—have two properties: they have a gap degree of at most one and
are well-nested. tag drawings are suitable structures for a model-theoretic treat-
ment of tag.

We believe that our results can provide a new perspective on the treatment
of languages with free word order in tag. Since tag’s ability to account for
word order variations is extremely limited, various attempts have been made
to move tag into a description-based direction.3 Drawings allow us to analyse
these proposals with respect to the question how they extend the class of models
of tag, and what new descriptive means they offer to talk about these models.
We feel that these issues were not clearly separated in previous work on model-
theoretic tag [10, 11].

A model-theoretic approach to natural language processing lends itself to
constraint-based processing techniques. We have started to investigate the com-
putational complexity of constraint satisfaction problems on tag drawings by
defining a relevant constraint language and formulating a constraint solver that
decides in polynomial time whether a formula in that language can be satis-
fied on a well-nested drawing. This solver can be used as a propagator in a
constraint-based processing framework for tag descriptions.

Our immediate future work will be concerned with the further development of
our processing techniques into a model-based parser for tags. The current con-
straint solver propagates information about structures that are already known;
3 Kallmeyer’s dissertation [9] provides a comprehensive summary.



a full parser would need to construct these structures in the first place. In the
longer term, we hope to characterise other proof-theoretic syntactic frameworks
in terms of drawings, such as Multi-Component tag and Combinatory Catego-
rial Grammar.

Acknowledgements We are grateful to Alexander Koller, Guido Tack and an
anonymous reviewer for useful comments on earlier versions of this paper. The
work of Kuhlmann and Möhl is funded by the Collaborative Research Centre
378 ‘Resource-Adpative Cognitive Processes’ of the Deutsche Forschungsgemein-
schaft (dfg).

References

1. Bodirsky, M., Kuhlmann, M., Möhl, M.: Well-nested drawings as models of syn-
tactic structure. In: 10th Conference on Formal Grammar and 9th Meeting on
Mathematics of Language, Edinburgh, Scotland, UK (2005)

2. Joshi, A., Schabes, Y.: Tree Adjoining Grammars. In: Handbook of Formal Lan-
guages. Volume 3. Springer (1997) 69–123

3. Steedman, M.: The Syntactic Process. MIT Press (2001)
4. Plátek, M., Holan, T., Kuboň, V.: On relax-ability of word-order by d-grammars.

In Calude, C., Dinneen, M., Sburlan, S., eds.: Combinatorics, Computability and
Logic. Springer (2001) 159–174

5. Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting
systems. Th. Computer Science 223 (1999) 87–120

6. Yli-Jyrä, A.: Multiplanarity – a model for dependency structures in treebanks. In:
Second Workshop on Treebanks and Linguistic Theories, Växjö, Sweden (2003)
189–200

7. Bodirsky, M., Duchier, D., Niehren, J., Miele, S.: A new algorithm for normal
dominance constraints. In: Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA’04), New Orleans (2004) 59–67

8. Bodirsky, M., Kutz, M.: Pure dominance constraints. In: Proceedings of the
Symposium on Theoretical Aspects of Computer Science (STACS’02). (2002) 287–
298

9. Kallmeyer, L.: Tree Description Grammars and Underspecified Representations.
PhD thesis, Universität Tübingen (1999)

10. Palm, A.: From constraints to TAGs: A transformation from constraints into formal
grammars. In: Second Conference on Formal Grammar, Prague, Czech Republic
(1996)

11. Rogers, J.: Syntactic structures as multi-dimensional trees. Research on Language
and Computation 1 (2003) 265–305


