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equation such as x+y = y+x without losing termination. Several approacheshave been proposed since the early 80's to overcome this problem. One ofthe most interesting is to orient the equation, depending on which instanceof it is applied. In other words, if � is a total monotonic ordering on terms,then we may see s = t as the two constrained rules s ! t j s > t (read:s rewrites to t if s > t) and t ! s j t > s, which translate into classicalrewriting as the set of all s� ! t� such that s� � t� and the set of allt�! s� such that t�� s�. This allows one to use ordered strategies, even inpresence of equations which are not uniformly orientable. A similar approachwas used for the unfailing completion [8] and was described in its full generalityin [13] where also the completeness of a set of deduction rules is proved. Thispowerful (yet simple) approach however requires constraint solving techniquesfor ordering constraints that are built over the > symbol, which is interpretedas a monotonic ordering on ground terms, typically a recursive path ordering.Basically, there are two forms of recursive path orderings: rpo with multisetstatus, which was the original de�nition of rpo by Dershowitz, and rpo withlexicographic status, also called by its more popular name lexicographic pathordering (short: lpo), and there also mixed forms (see [4] for a survey). In thispaper we are concerned with the lexicographic path ordering, in Section 6 wewill discuss shortly why our result does not transfer to the case of rpo withmultiset status.The constraints which have to be solved depend on the deduction rules that areused on constrained equations. At least the existential fragment of the theoryof the ordering must be decidable. Furthermore, the question of decidability ofthe 9�8� fragment is also of great importance to constrained deduction. Indeed,one problem with constrained equational reasoning is to de�ne simpli�cationrules (which are essential in rewriting techniques). Such a simpli�cation rulecould be de�ned as follows: s! t j c u! v j c0u! v j c0 s[v]p = t j c0 ^ sjp = uIf T (F ) j= 8V ar(s)9V ar(u):c! (sjp = u ^ c0)Here, sjp is the subterm of s at position p, s[v]p denotes the term obtainedfrom s by replacing sjp by v, and T (F ) is the �rst-order logic structure ofground terms. This rule is called \total simpli�cation" in [10]; it can be readas: \the rule s! t j c is simpli�ed by the rule u! v j c0 at position p in s if,for all instances of s! t that satisfy the constraint c, there is an instance ofu! v which satis�es c0 and which reduces sjp".The case of a total lexicographic path ordering has been investigated by H.Comon and its existential fragment has been shown decidable [2]. This frag-2



ment is actually NP-complete, as shown by R. Nieuwenhuis [12]. The exis-tential fragment of the theory of any total recursive path ordering is actuallydecidable [9]. On the other side, R. Treinen has shown that the full �rst-ordertheory (actually the 9�8�9�8� fragment) of the theory of a partial recursivepath ordering is undecidable [15]. This leaves as open questions the existen-tial fragment of a partial recursive path ordering on the one hand, and the�rst-order theory of a total recursive path ordering on the other hand. Theseproblems were listed as Problem 24 in the lists of open problems in rewritingtheory in [6] and further in [7]. A partial answer to the �rst question has beengiven by A. Boudet and H. Comon: the positive existential fragment of thetheory of tree embedding is decidable [1]. The second problem remained openup to now. We answer this question here, showing that the 9�8� fragment ofa lexicographic path ordering is undecidable, both in the total and in the par-tial cases. This improves Treinen's result for the partial case by reducing thenumber of quanti�er alternations of the undecidable fragment. Furthermore,as an application, we show that this implies the undecidability of the abovesimpli�cation rule.The undecidability proof follows the ideas developed by R. Treinen in [15]: weencode the Post Correspondence Problem (PCP) thanks to a direct simulationof sequences. The general idea is to express as a �rst-order formula that a termis a \Post sequence", i.e. that every subsequence is either empty or obtainedby one step of the PCP problem. Note that the universal quanti�cation oversubsequences is essential here. In [15], this is achieved using the fact that thereare two incomparable symbols in F . In this case, sequences can be coded insuch a way that the predicate \s is a subsequence of t" can (roughly) beexpressed as \s is a maximal term smaller than t (w.r.t. �lpo) following acertain pattern." In the case of a total ordering, however, this technique cannot be applied since every �nite set has a greatest element. We need hereanother trick: sequences are encoded the other way around (\upside down"if we compare with [15]) which allows to express the \subsequence relation".This last part is the most di�cult part of our proof.The paper is organized as follows: in Section 2 we state precisely the problemand establish (or recall) some properties of the lexicographic path ordering. InSection 3 we explain the top level structure of the proof, reducing undecidabil-ity of our problem to the problem of expressing some properties in the theoryof �lpo. In Section 4, which is the heart of the paper, we show how to constructthe formulas satisfying the requirements given in Section 3. In Section 5 weshow the undecidability of the simpli�cation rule and conclude in Section 6. Inparticular, we summarize the hypotheses we used on the signature and discussvarious possible extensions. 3



2 The Problem2.1 The Main TheoremIn this section, we de�ne precisely the setting and present the main theorem.We use mainly the notations of [5]. Terms are built from an alphabet F offunction symbols each of which is associated with a �xed arity. Typical ele-ments of F are f; g; h; k; 0. In addition, we use variable symbols out of a set X.The set of terms built over some subset G � F is written T (G), and we writeT (G;X) for the set of terms built over G and X.Assuming an ordering �F on F (called precedence on F ), the lexicographicpath ordering �lpo on T (F ) is de�ned as follows.De�nition 2.1 (lexicographic path ordering, [4]) For all f; g 2 F ands1; : : : ; sn; t1; : : : ; tm 2 T (F ) we de�ne f(s1; : : : ; sn) >lpo g(t1; : : : ; tm) i� oneof the following holds:{ si �lpo g(t1; : : : ; tm) for some i{ f >F g and f(s1; : : : ; sn) >lpo ti for all i = 1; : : : ;m{ f = g and the two following properties are satis�ed:� f(s1; : : : ; sn) >lpo ti for all i = 1; : : : ;m and� there is an i 2 f1; : : : ; ng such that s1 = t1^: : :^si�1 = ti�1 and si >lpo ti.In this de�nition (and in the rest of the paper) we use the standard notationalderivations of s �lpo t : s >lpo t is an abbreviation for s �lpo t and s 6= t,t �lpo s stands for s �lpo t, t 6�lpo s means that t �lpo s does not hold, etc.The following properties of �lpo can be found in the literature (see the surveyof N. Dershowitz [4]).Proposition 2.2 The relation �lpo de�ned on T (F ){ is an ordering, i.e. it is reexive, antisymmetric and transitive.{ is monotonic, i.e. f(s1; : : : ; sn) �lpo f(t1; : : : ; tn) whenever si �lpo ti for alli = 1; : : : ; n,{ has the subterm property, i.e. s >lpo t whenever t is a proper subterm of s.{ is total whenever �F is total.If we know that h(�t) >lpo k(�s), then we can in general not tell from the headsymbols which case of De�nition 2.1 applies. For instance if f >F> b >F a,then we have to use the �rst case of De�nition 2.1 to prove f(a; f(b; b)) >lpof(b; b), but we can not prove this if we �rst decompose by the third case.Hence, to decompose an inequality, we have in general to consider di�erent4



possibilities. In case of unary head symbols, however, we can decompose de-terministically:Proposition 2.3 If h(t) >lpo h(s), then t >lpo s.Proof: Let h(t) >lpo h(s). If the last case of De�nition 2.1 applies, then t >lpos must hold. If the �rst case of De�nition 2.1 applies, then t �lpo h(s) >lpo s,where the second inequality holds by the subterm property. 2We de�ne the language L as the set of all �rst-order predicate logic formulaebuilt on the two binary predicates = and �. The 9�8�-fragment of L, written�2(L), is de�ned as the set of formulae of the special form9x1; : : : ; xn8y1; : : : ; ynPwhere P is a Boolean combination of atoms s = t and s � t. For a givenprecedence �F on F , the formulae of L are interpreted in the domain of(ground) terms T (F ) where = is the (syntactic) equality between terms and� is the lexicographic path ordering generated �F . We write such a model asAF;�F or shortly as A, when F and �F are clear. Our concern is to show that,under certain conditions on F and �F , it is undecidable whether AF;�F j= �holds for given � 2 �2(L). Our assumption on the set F and the precedence isF is a �nite set of function symbols containing at least{ a constant 0 which is minimal among the constants,{ a binary function f which is minimal in F � f0g,{ a unary function symbol g which is minimal in fh j h >F fg.9>>>=>>>; (1)This assumption includes both partial and total orderings. We do not requirethat f �F 0. Note that there might be non-constant functions symbols smallerthan 0, and constants greater than f . These restrictions are further discussedin Section 6.Theorem 2.4 (Main Theorem) For any set F of function symbols andprecedence �F satisfying (1), it is undecidable whether for given formula � 2�2(L) we have AF;�F j= �.2.2 Consequences of the Assumption on the PrecedenceBefore we begin with the proof we list some consequences of our assumptionon the precedence.Proposition 2.5 The term 0 is minimal, that is there is no term t with0 >lpo t. 5



Proof: Assume that 0 >lpo t. The term t must contain a constant a, hence weget 0 >lpo t �lpo a by the subterm property (Proposition 2.2). This contradictsthe minimality of 0 among the constants. 2Lemma 2.6 Let t 2 T (F ) and u 2 T (f0; fg). If t <lpo u, then f(0; t) �lpo u.Hence, f(0; t) can be seen as a successor of t as far as comparison to termsconsisting only of 0 and f is concerned. A complete characterization of thesuccessor function in the context of total lpos has been given in [2].Proof: Let t <lpo u. We proceed by induction on the size of u. By Propo-sition 2.5, u can not be 0. Hence u = f(u1; u2) for some u1; u2 2 T (ff; 0g).First, observe that 0 <lpo u, 0 �lpo u1 and 0 �lpo u2 since 0 is a subterm of u1and of u2. Let t = h(t). There are three cases:h = 0. Since 0 �lpo u1 and 0 �lpo u2, we get f(0; 0) �lpo f(u1; u2) from themonotonicity property (Proposition 2.2).h = f . Let t = f(t1; t2). We have to show thatf(0; f(t1; t2)) �lpo f(u1; u2) where f(t1; t2) <lpo f(u1; u2)If the �rst case of De�nition 2.1 applies to t <lpo u, we have to consider twocases:{ If t �lpo u1, then f(0; t) �lpo f(0; u1) �lpo f(u1; u2). The �rst inequalityfollows from the monotonicity property of �lpo. The second inequalityholds since either u1 = 0 and 0 �lpo u2, or 0 <lpo u1 and u1 <lpo f(u1; u2)by the monotonicity property of �lpo.{ If t �lpo u2, then f(0; t) �lpo f(0; u2) �lpo f(u1; u2) by the monotonicityproperty of �lpo, and since 0 �lpo u1.If the last case of De�nition 2.1 applies to t <lpo u, there are again twocases:{ If u1 = 0, then since t1 < 0 is not possible by Proposition 2.5, we havet1 = 0 and t2 <lpo u2. We apply the induction hypothesis to t2 <lpo u2 andobtain f(0; t2) �lpo u2. Hence, f(0; f(0; t2)) �lpo f(0; u2) by monotonicity.{ If u1 6= 0, then in fact 0 <lpo u1. From the assumption that f(t1; t2) <lpof(u1; u2) it follows that f(0; f(t1; t2)) <lpo f(u1; u2) by De�nition 2.1.h 62 ff; 0g. By (1), this means h 6�F f . By the lpo de�nition, t �lpo u1 ort �lpo u2, but equality does not hold because the top symbols of the termsare di�erent. Hence, by the induction hypothesis, we have f(0; t) �lpo u1 orf(0; t) �lpo u2. The claim follows from the subterm property of �lpo. 2Lemma 2.7 Let t; u 2 T (f0; f; gg), then t and u are comparable w.r.t. �lpo.Proof: We use induction on the sum of the sizes of t and u. If u = 0 ort = 0 then t; u are comparable since, for all s 2 T (fg; f; 0g), s �lpo 0, by the6



subterm property. There are now three cases (up to permutation):{ If s = g(s1) and t = g(t1), then, by the induction hypothesis, s1 �lpo t1(resp. t1 �lpo s1). Hence, s �lpo t (resp. t �lpo s) holds.{ If s = g(s1) and t = f(t1; t2), then, by the induction hypothesis, s andt1 (resp. t2) are comparable. If t1 �lpo s (resp. t2 �lpo s), then t >lpo s.Otherwise, s >lpo t1 and s >lpo t2 and, s >lpo t follows from the fact thatg >F f .{ Assume now that t = f(t1; t2) and u = f(u1; u2). By induction hypothesis,t1 and u1 are comparable, hence we can assume without loss of generalitythat t1 �lpo u1.If t1 = u1, then by the induction hypothesis t2 �lpo u2 or t2 �lpo u2.Hence, t �lpo u or t �lpo u holds.If t1 >lpo u1, then by the induction hypothesis, t >lpo u2 or t �lpo u2. Inthe former case, t >lpo u holds, and t <lpo u in the latter case. 23 Coding the Post Correspondence ProblemIn this section we present the overall framework that we employ in the re-duction of the Post Correspondence Problem to the theory of a lexicographicpath ordering. We will explain the di�erence to the method developed in [15]at the end of this section.3.1 The Post Correspondence ProblemDe�nition 3.1 (Post Correspondence Problem, [14]) An instance P ofthe Post Correspondence Problem over the alphabet fa; bg is a �nite set of theform f(pi; qi) j 1 � i � m; pi; qi 2 fa; bg+g. A sequence ((li; ri))i=1;:::;n withli; ri 2 fa; bg� is a solution of P if l1 = r1 = �, ln = rn 6= � and for every i < nthere is a ji � m such that li+1 = lipji and ri+1 = riqji.If ((li; ri))i=1;:::;n is a solution of P , we say that (li+1; ri+1) is constructed from(li; ri) in one P -step. Our de�nition of a solution is slightly di�erent from mostof the literature, where the index sequence j1; : : : ; jn�1 would be consideredas solution. Solvability of an instance of the Post Correspondence Problem isone of the most famous undecidable problems [14].7



3.2 Coding the Construction StepsIn this subsection, we de�ne formulae i(x), f(x) and x sx0 such that(i) x sx0 de�nes a well-founded relation on A, that is there is no in�nitesequence t1; t2; : : : of ground terms with A j= ti s ti+1 for all i;(ii) the relation de�ned by s is contained in <lpo, that is if A j= ti s ti+1, thenti <lpo ti+1.In the next subsection, we show how to construct a formula solvablei;s;f suchthat A j= solvablei;s;f holds if and only if there is a sequence (t1; : : : ; tn) 2A� with A j= i(t1), A j= f(tn) and A j= ti s ti+1 for every i < n.Having such a solvablei;s;f at hand, we can encode the solvability of aninstance P = f(pi; qi) j i = 1; : : : ; ng of the Post Correspondence Problemover an alphabet fa; bg. The idea is to de�ne a representation of pairs ofstrings, such that A j= i(t) if t represent (�; �), A j= f(t) if t represents some(w;w) with w 6= �, and A j= t s t0 if t0 represents a pair which is constructedin one P -step from the pair represented by t.The two above conditions on the relation de�ned by s will be used at twodi�erent stages of the proof. We will use the well-foundedness of s in thissection only. Here, the well-foundedness of the relation is essential for the�niteness of the sequence. The second condition, that the relation de�ned bys be contained in <lpo, will not be used for the overall framework but only inthe next section to prove the properties of the auxiliary formulae. We will notuse the fact that this second property implies that s is also well-founded inthe \reverse direction".First we de�ne an injective coding function cw: fa; bg� ! T (F ) bycw(�)= 0cw(wa) = f(0; cw(w))cw(wb) = f(f(0; 0); cw(w))For instance, cw(ba) = f(0; f(f(0; 0); 0)). In the following, we will often iden-tify a string with its term representation and write w instead of cw(w). Forevery �xed word v 2 fa; bg� we can now easily de�ne a formula x = x0 � v withthe property that for all w 2 fa; bg� and t 2 A, we haveA j= t = cw(w) � v i� t = cw(wv)For instance, the formula x = x0 � ba is x = f(0; f(f(0; 0); x0)).8



f""""""""bbbbbbbbf f���@@@� cw(l) ���@@@f c���@@@0 cw(r)Fig. 1. A representation of (l; r).A �rst attempt to code pairs of words could be to map (l; r) to the termf(cw(l); cw(r)). With this approach, the relation de�ned by s would be con-tained in <lpo, but it would not be well-founded. For this reason, we add a\counter" to the representation which is decremented by s (hence, we nowhave a representation relation rather than a function, since the counter cantake any value). Note, however, that with the de�nition f(cw(l); f(cw(r); c))the relation de�ned by s is no longer contained in <lpo, as the reader easilyveri�es. Hence, we take another approach and code a pair (l; r) as the termf(f(�; cw(l)); f(f(0; cw(r)); c))where � = f(f(0; 0); 0) and where c is the counter mentioned before (seeFigure 1). We now de�nei(x) :=9z:x = f(f(�; 0); f(f(0; 0); z))f(x) :=9xl:x = f(f(�; xl); f(f(0; xl); 0)) ^ xl 6= 0x sx0 :=9xl; xr; z; x0l; x0r; z0: x = f(f(�; xl); f(f(0; xr); z))^ x0 = f(f(�; x0l); f(f(0; x0r); z0))^ z = f(0; z0)^ f(f(0; xr); z) < x0^ _(p;q)2P(x0l = xl � p ^ x0r = xr � q)The �rst two lines in the de�nition of x sx0 match x and x0 with the patternof Figure 1. The third line decrements the counter, and the last line says thatone P -construction step has been performed. The forth line is needed for theproof of Lemma 3.2.Lemma 3.2 If A j= t s t0, then t <lpo t0.9



Proof: By the �rst two lines of the de�nition of t s t0, we know thatt = f(f(�; tl); f(f(0; tr); u)) and t0 = f(f(�; t0l); f(f(0; t0r); u0)) :Furthermore, by the last line of the de�nition of t s t0, tl <lpo t0l since tl isa proper subterm of t0l, hence f(�; tl) <lpo f(�; t0l). The claim follows, sincef(f(0; tr); u) <lpo t0 by the forth line of the de�nition of t s t0. 2Lemma 3.3 s de�nes a well founded relation on A, that is there is no in�nitesequence t1; t1; : : : of ground terms with A j= ti s ti+1 for every i.Proof: This follows immediately from the fact that by the third line of thede�nition of t s t0, the \counter-component" is decreasing with respect to thesubterm relation. 2Lemma 3.4 An instance P of the Post Correspondence Problem has a so-lution if and only if there is a sequence (t1; : : : ; tn) 2 A� with A j= i(t1),A j= f(tn) and A j= ti s ti+1 for every i < n.Proof: Any such sequence (t1; : : : ; tn) obviously exhibits a solution to P .On the other hand, let (l1; r1); : : : ; (ln; rn) be a solution of P . We de�ne thesequence (t1; : : : ; tn) byti = f(f(�; cw(li)); f(f(0; cw(ri)); fn�i(0)))where we take the inductive de�nitionf0(0) := 0fn+1(0) := f(0; fn(0))Now, every two consecutive elements of the sequence are in the relation s, asthe reader easily veri�es. For the veri�cation of the third line of the de�nitionof t s t0 note that, by the de�nition of the coding function cw, f(0; cw(w)) <lpof(�; cw(v)) for all v;w 2 fa; bg�. 23.3 Coding SolvabilityIn this subsection we present the top level of the de�nition of solvablei;s;fwhich expresses the solvability of an instance of the Post CorrespondenceProblem. The construction of solvablei;s;f uses some subformulas whichwill be de�ned in the next section. The requirements on these subformulasused for the correctness proof of the coding are stated. The subformulas willbe de�ned and the respective requirements will be proven in the next section.10



The intended meaning of the subformulas is as follows. constructions;f ywill express the fact that y can be interpreted as a sequence (t1; : : : ; tn) withA j= f(tn) and A j= ti s ti+1 for every i < n. The formulae head, s and i willbe de�ned in Section 4. x heady is intended to express that x is the head ofthe list y, (x; y0) finsegy is intended to express that the sequence with headx and tail y0 is a �nal segment of y and nonemptyy will express that the listy has a head.Now we can de�nesolvablei;s;f :=9x; y: i(x) ^ constructions;f y ^ 9y0(x; y0) finsegyconstructions;f y :=8x; y0: (x; y0) finsegy !ff(x) _ (nonemptyy0 ^ 8x0:x0 heady0 ! x sx0)gWe have to verify that A j= solvablei;s;f if and only if P has a solution.The two following lemmata show what needs to be done in order to prove thisequivalence. We de�neSeq := f(t1; : : : ; tn) 2 T (f0; fg)� j A j= f(tn);A j= ti s ti+1 for all i < ngLemma 3.5 Let ct:Seq!A such that for all t; u 2 A and s 2 Seq we haveA j= nonemptyct(s) i� s 6= () (2)A j= t head ct(s) i� s = cons(t; s0) for some s0 2 Seq (3)A j= (t; u) finsegct(s) i�u = ct(s0) for some s0 2 Seqand cons(t; s0) is a �nal segment of s (4)If P has a solution, then A j= solvablei;s;f.Proof: This follows directly from Lemma 3.4. 2Lemma 3.6 Suppose that the following statements hold:A j=8y:nonemptyy ! 9x:x heady (5)A j=8x; x0; y; y0:(x; y0) finsegy ^ x0 heady0 ^ x sx0! 9y00:(x0; y00) finsegy (6)If A j= solvablei;s;f, then P has a solution.Proof: Suppose that A j= constructions;f u. We will show that wheneverA j= (t; u0) finsegu, then there is a sequence t1; : : : ; tn 2 A� such that t = t1,11



A j= f(tn) and A j= ti s ti+1 for all i < n. We proceed by induction on therelation s which is well founded by Lemma 3.3. If A j= f(t), then we cantake the sequence to be (t), and we are done. Otherwise, A j= nonemptyu0holds. By (5), there is an t0 with A j= t0 headu0. From the de�nition ofconstructions;f y we get that A j= t s t0. Hence, by (6), there is a u00 suchthat A j= (t0; u00) finsegu. Now we can apply the induction hypothesis on t0,which yields the claim. By Lemma 3.4, P has a solution. 2The number of quanti�er alternations of the formula solvablei;s;f dependsof course on the quanti�er pre�x in the subformulas. The reader easily checksthat solvablei;s;f has the quanti�er pre�x 9�8� (that is the best we can getwith this approach) if and only ifi(x) has quanti�er pre�x 9�8�;x sx0 has quanti�er pre�x 8�;f(x) has quanti�er pre�x 8�;nonemptyy has quanti�er pre�x 8�;x heady has quanti�er pre�x 9�;(x; y0) finsegy has quanti�er pre�x 9�:The formula i(x) is already in the required form, but for x sx0 and f(x) wehave to �nd equivalent formulae in the 8�-fragment. For the case of f(x), thiscan be achieved with the quanti�er elimination method of [3]. An equivalentuniversal form of f(x) isĥ6=f8�u; v1; v2; v3�x 6= h(�u) ^ x 6= f(h(�u); v1) ^ x 6= f(v1; h(�u))^x 6= f(f(v1; v2); f(h(�u); v3))�^8v1; v2; v3; v4; v5�x = f(f(v1; v2); f(f(v3; v4); v5))!v1 = � ^ v2 = v4 ^ v3 = 0 ^ v5 = 0�By the �rst two lines, x is of the form f(f(v1; v2); f(f(v3; v4); v5)). Sincev1; : : : ; v5 are completely determined by the value for x, we can now use anuniversal quanti�er to state further properties about these variables.The method of [3] does not apply to formulae involving inequations. In caseof x sx0, however, we can nevertheless �nd an equivalent universal formula.Intuitively speaking, this is possible since all the variables in the inequationf(f(0; xr); z) < x0 are either free (the variable x0) or are existentially quanti�edand \completely de�ned" by the equations (the variables xr; z). The universalform of x sx0 is given in Appendix A.12



The main di�erence to the method of [15] lies in the representation of pairs ofstrings in the �rst-order structure under consideration, and in the de�nitionof s. As explained in the beginning of this section, an essential property of s iswell-foundedness. In [15], we could de�ne s in such a way that v sw holds i� vis constructed from w in one P -construction step. In most of the applicationsshown in [15], this implies immediately the well-foundedness of s.The situation is di�erent in this paper. As we already mentioned, we will needthe property that s is contained in <lpo. With all natural representations ofwords, v <lpo w does not hold if v is constructed from w in one P -step. Onthe other hand, it is not di�cult to ensure that w <lpo v holds in this case.Hence, we decided to use a \reversed" de�nition of s with the property thatv sw holds i� w is constructed from v in one P -construction step.As a consequence, we have to regain well-foundedness of s, since there mightwell be in�nite sequences v0 <lpo v1 <lpo v2 <lpo � � �. Hence, we introduced anadditional representation of pairs of strings (in [15], pairs where \hard-wired"in the formulae s, finseg, i etc.), and equipped the representation of pairswith a \counter" which is decreased along s.4 The Undecidability ProofFollowing the method presented in Section 3, we will now de�ne the predicatesnonemptyy, x heady, (x; y0) finsegy and the coding function ct and verify theconditions 2, 3, 4, 5, and 6. This completes the proof of Theorem 2.4.4.1 De�nition of the Coding FunctionWe code a sequence (t1; : : : ; tn) 2 Seq asct(t1; : : : ; tn) = f(g(t1); f(g(t1); : : : ; f(g(tn); 0) : : :))(see Figure 2). The term 0 encodes the empty sequence.4.2 Accessing the Greatest Element of a ListBefore we give the complete de�nition of the predicates, we �rst de�ne someintermediate formulae and show some of their properties. The purpose is tohave, in the presentation of a list (t1; : : : ; tn) as de�ned in Subsection 4.1,13



f���gt1 PPPPPPPPPf���gt2 PPPPP PPPPPf���gtn @@@0Fig. 2. The term ct((t1; : : : ; tn)).access to the last element tn. Note that the last element might occur as anarbitrarily deep subterm in the coding. First, we de�ne�1(x; y) := f(g(x); g(x)) � y > g(x)The following lemma explains its meaning:Lemma 4.1 Let A j= �1(t; u). Then(i) g(t) is a subterm of u(ii) for every subterm g0(�v) of u with g0 6<F g, we have g(t) �lpo g0(�v).Intuitively,�1(t; u) means that t is the greatest subterm of uwhich is headed bya symbol not smaller than g. Especially, g(t) is the greatest g-headed subtermof u.Proof: For the second claim let g0(�v) be a subterm of u with g0 6<F g. Bythe subterm property and since f 6= g0 (since g >F f), the �rst inequality of�1(t; u) yields f(g(t); g(t)) >lpo g0(�v). Now, since g0 6�F f , we have g(t) �lpog0(�v) by the de�nition of �lpo.For proving that g(t) is a subterm of u, we use an induction on the structureof u = h(u1; : : : ; un). There are three cases:h = 0. This can not occur, since the second inequation of �1(t; u), 0 >lpo g(t),contradicts Proposition 2.5.h = f . The second inequality of �1(t; u), f(u1; u2) >lpo g(t), yields u1 �lpo g(t)or u2 �lpo g(t). If u1 = g(t) or u2 = g(t), then the claim is proven.14



Otherwise, the �rst inequality of �1(t; u), f(g(t); g(t)) �lpo f(u1; u2),yields g(t) >lpo u1 and f(g(t); g(t)) >lpo u2. Since this contradicts u1 >lpog(t), u2 >lpo g(t) must hold. Hence, by the induction hypothesis, g(t) is asubterm of u2 and consequently of u.h 62 ff; 0g. Hence h 6�F f . The �rst inequation of �1(t; u), f(g(t); g(t)) >lpo u,yields g(t) �lpo u which contradicts the second inequation of �1(t; u), u >lpog(t). Hence, this case cannot occur. 2Corollary 4.2 For every term u, if A j= 9x:�1(x; u) then there is a uniqueterm gs(u) such that A j= �1(gs(u); u).If we want to ensure the existence of an x such that A j= �1(x; u) we have toassume more hypotheses on u. Let (y) = g(0) < y < g(g(0))^ 8x:y 6= g(x)^ 8x:(y 6� f(g(x); g(x)) ^ y > g(x))! y > g(f(0; x))^ 8x: y > g(x)! ^h=2ff;0gx 6� h(0; : : : ; 0) (7)Lemma 4.3 Let u 2 T (F ). Then A j=  (u)! 9x:�1(x; u).Proof: Let A j=  (u). From the inequality u <lpo g(g(0)), we infer that everysymbol in u is 0 or is equal to or smaller than g. From this and the fact thatg(0) <lpo u we infer that u contains at least one occurrence of g.Hence, there is a subterm g(w) of u. From the last part of  and the sub-term property of �lpo, for any subterm g(w) of u, w 2 T (ff; 0g). Then, byLemma 2.7, there is a term w0 = maxfw j g(w) subterm of ug.We show that A j= �1(w0; u). We have of course u �lpo g(w0). Moreover,u is not equal to g(w0) by the second part of  (u). Assume that u 6�lpof(g(w0); g(w0)). By the third part of  (u), this means that u >lpo g(f(0; w0)).Hence, there is a subterm g(v) of u which v �lpo f(0; w0). By the maximalityof w0, we get w0 �lpo v �lpo f(0; w0). This is a contradiction to the subtermproperty, hence u �lpo f(g(w0); g(w0)) holds. 2Lemma 4.4 For all sequences s = (t1; : : : ; tn) 2 Seq with n � 1, we haveA j=  (ct(s)).Proof: The formula  (ct(s)) consists of four parts.(i) A j= g(0) < ct(s) < g(g(0)). This follows immediately from the de�nitionof <lpo.(ii) A j= 8x:ct(s) 6= g(x) since ct(s) = f(g(t1); u) for some u.15



(iii) A j= 8x:(ct(s) 6� f(g(x); g(x)) ^ ct(s) > g(x)) ! ct(s) > g(f(0; x)).If ct(s) >lpo g(t), then, for some i, ti �lpo t, hence t 2 T (ff; 0g) and,by Lemma 2.7, ct(s) >lpo f(g(t); g(t)). Then ti >lpo t holds for some i.By Lemma 2.6, this implies ti �lpo f(0; t). Hence, ct(s) >lpo g(ti) �lpog(f(0; t)).(iv) If ct(s) >lpo g(t), then ti �lpo t for some i. This implies, by minimality off that t 2 T (ff; 0g). This proves the last part of  (ct(s)). 2Corollary 4.5 For all sequences s = (t1; : : : ; tn) 2 Seq with n � 1, we haveA j= �1(tn; ct(s)).Proof: By Lemma 4.4, A j=  (ct(s)). By Lemma 4.3, there is a t withA j= �1(t; ct(s)). By Lemma 4.1, t must be equal to tn. 24.3 De�nition of the PredicatesWe are now ready to give the missing de�nitions:(x; y0) finsegy :=(�1(x; y) ^ y0 = 0) _9w:f(g(x); f(g(x); y0)) > y � f(g(x); y0) ^g(w) > g(x) ^ �1(w; y)x heady :=9y0:y = f(g(x); y0) ^ (y0 = 0 _ 9w:(x < w ^ �1(w; y)))nonemptyy :=8u; u0: ^f 0 6=f y 6= f 0(u) ^ ^g0 6=g y 6= f(g0(u); u0)^ (y)^8x; y0:(y = f(g(x); y0)! (y0 = 0 _ 8w:(�1(w; y)! x < w)))All parts of the predicate finseg will be used in in the proof of Property 4,and also later in the proof of Property 6.With regard to Property 3, it would be su�cient to de�ne x heady as 9y0:y =f(g(x); y0). The second part of the predicate head is needed in the proof ofProperty 6.Note that the �rst conjunct of the predicate nonempty is equivalent to theformula 9x; y0:(y = f(g(x); y0)). Since nonempty is required to be 8�-formula(see the discussion at the end of Section 3), we use the universal form insteadof the straightforward existential form. Again, this would be su�cient withregard to Property 2 alone, but we need the last two conjuncts for the proofof Property 5. 16



4.4 Proof of the Conditions of Lemma 3.5Lemma 4.6 Property (4) holds.Proof: We have to prove for all (t1; : : : ; tn) 2 Seq the equivalenceA j= (t; u0) finseg ct(t1; : : : ; tn)() exists i � n with t = ti and u0 = ct(ti+1; : : : ; tn).where it is understood that (tn+1; : : : ; tn) is the empty sequence.For the direction from left to right we have to consider two cases.If A j= �1(t; ct(t1; : : : ; tn)) ^ u0 = 0, then n � 1 and t = tn by Corollaries 4.5and 4.2.Otherwise, there is an r 2 A such thatAj=f(g(t); f(g(t); u0)) > ct(t1; : : : ; tn) � f(g(t); u0)^g(r) > g(t) ^ �1(r; ct(t1; : : : ; tn))By Corollaries 4.5 and 4.2, r = tn holds. Now, g(r) >lpo g(t), hence tn >lpo tby Proposition 2.3. Since tn >lpo t, there is a smallest index i such thatti �lpo t. Hence, ti0 6�lpo t for all i0 < i. Using the lpo rules and Proposition 2.3,ct(t1; : : : ; tn) �lpo f(g(t); u0) is simpli�ed into ct(ti; : : : ; tn) �lpo f(g(t); u0),hence ct(ti; : : : ; tn) >lpo u0.Since t 6�lpo tn, there is a smallest index j such that t 6�lpo tj. Furthermore,since f(g(t); f(g(t); u0)) >lpo ct(t1; : : : ; tn), it follows from the subterm prop-erty that f(g(t); f(g(t); u0)) >lpo ct(tj; : : : ; tn). Since by construction t 6�lpo tj,this inequality is equivalent to u0 �lpo ct(tj; : : : ; tn). Together we havect(ti; : : : ; tn) >lpo u0 �lpo ct(tj; : : : ; tn)and hence i < j. By our construction of j this means t �lpo ti. On the otherhand we have ti �lpo t, hence t = ti. Using the de�nition of an lpo, we cannow simplifyf(g(ti); f(g(ti); u0)) >lpo ct(t1; : : : ; tn))� f(g(ti); f(g(ti); u0)) >lpo ct(ti; : : : ; tn)) f(g(ti); u0) >lpo ct(ti+1; : : : ; tn)) u0 �lpo ct(ti+1; : : : ; tn) 17



On the other hand, we havect(t1; : : : ; tn) �lpo f(g(ti); u0))� ct(ti; : : : ; tn) �lpo f(g(ti); u0)) ct(ti+1; : : : ; tn) �lpo u0Hence, u0 = ct(ti+1; : : : ; tn).For the direction from right to left we only have to check thatA j= �1(tn; ct(t1; : : : ; tn))(this is Corollary 4.5), and that for i < n we haveA j=9w: f(g(ti); f(g(ti); ct(ti+1; : : : ; tn))) > ct(t1; : : : ; tn)� f(g(ti); ct(ti+1; : : : ; tn))^g(w) > g(ti)^�1(w; ct(t1; : : : ; tn))This is easily proven for the choice w = tn. 2Lemma 4.7 Property (2) holds.Proof: For the implication from left to right, assume A j= nonemptyct(s).We have to show that then s 6= (). Note that the formula8u: ^f 0 6=f y 6= f 0(u)implies in particular that y 6= 0, hence the sequence is not empty.For the implication from right to left, assume that s 6= (). We have to showthat A j= nonemptyct(s). We split this proof into three parts correspondingrespectively to the three conjuncts in the formula nonemptyy.{ When s is not empty, ct(s) = f(g(t1); u) for some u. Hence the �rst part ofthe formula is valid:A j= 8u; u0: ^f 0 6=f ct(s) 6= f 0(u) ^ ĝ0 6=g ct(s) 6= f(g0(u); u0){ A j=  (ct(s)) has been proven in Lemma 4.4.{ For the last part of the formula let ct(s) = f(g(t1); u). If u = 0, then theformula holds. Otherwise, u must be of the form f(g(t2); v) with t2 >lpo t1.18



For all w such that �1(w; ct(s)) holds, g(w) �lpo g(t2) >lpo g(t1) thanks toLemma 4.1. As a consequence, w >lpo t1 holds by Proposition 2.3. 2Lemma 4.8 Property (3) holds.Proof: For the implication from left to right, assume that A j= t head ct(s).We have to show that s = cons(t; s0) for some s0 2 Seq. Indeed, by de�nitionof x heady, we must have A j= 9y0:ct(s) = f(g(t); y0) which means that s =(t; t2; : : : ; tn) and s0 = ct(t2; : : : ; tn).For the other direction, let s = (t1; : : : ; tn) 2 Seq. We have to show thatA j= t1 head ct(s). Indeed, ct(s) = f(g(t1); u) for some u. If u = 0, then theclaim is proven. Otherwise, tn >lpo t1 and A j= �1(tn; ct(s)) by Corollary 4.5.2Note that actually some parts of the de�nitions of x heady and nonemptyyhave not been used so far. They will be exploited when proving Property 6.4.5 Proof of the Conditions of Lemma 3.6We are left to prove Properties 6 and 5, which is the subject of the next twolemmas.Lemma 4.9 Property (5) holds.Proof: We have already seen that the �rst part of the formula nonemptyuimplies that there are t; u such that u = f(g(t); u0) If u0 = 0, then we are done.Otherwise, since A j=  (u) there is by Lemma 4.3 a t0 with A j= �1(t0; u).From the last part of nonemptyu it follows that A j= t < t0. 2Lemma 4.10 Property (6) holds.Proof: Assume that (t; u0) finsegu and t0 headu0 and t s t0 hold. We have toshow that (t0; u00) finsegu holds for some u00.Since A 6j= t0 head0, u0 6= 0 holds and A j= (t; u0) finsegu implies thatA j= 9w:f(g(t); f(g(t); u0)) > u � f(g(t); u0) ^ g(w) > g(t) ^ �1(w; u) (8)holds. Moreover, by de�nition of t0 headu0 we have that for some u00A j= u0 = f(g(t0); u00) ^ (u00 = 0 _ 9w0:�1(w0; u0) ^ t0 < w0) (9)Note that, by (8), gs(u) exists. We shall show that19



Aj=(u00 = 0 ^ t0 = gs(u))_(f(g(t0); f(g(t0); u00)) > u � f(g(t0); u00) ^ g(gs(u)) > g(t0)^�1(gs(u); u)There are two cases:t0 = gs(u) . If u00 = 0, then the claim is proven.Otherwise, assume that u00 6= 0. Then by (9), gs(u0) exists and t0 <lpogs(u0). From (8) and Lemma 4.1, we know that u �lpo f(g(t); u0) >lpo u0 �lpog(gs(u0)). By the lpo rules, there must be a subterm h(�r) of u with h 6<F gand h(�r) �lpo g(gs(u0)). By the second part of Lemma 4.1, this meansg(gs(u)) �lpo h(�r) �lpo g(gs(u0)), hence gs(u) �lpo gs(u0) by Proposition 2.3.This contradicts t0 = gs(u) <lpo gs(u0), hence the case u00 6= 0 can not occur.t0 6= gs(u) . Note that �1(gs(u); u) holds by (8). We have to prove three in-equalities(i) A j= f(g(t0); f(g(t0); u00)) > u. From (8), (9) and from t0 >lpo t (sinceA j= t s t0 and by Lemma 3.2), we getf(g(t0); f(g(t0); u00)) = f(g(t0); u0) >lpo f(g(t); f(g(t); u0)) >lpo u :(ii) A j= u � f(g(t0); u00). From (8) and (9) we getu �lpo f(g(t); u0) = f(g(t); f(g(t0); u00)) >lpo f(g(t0); u00) :(iii) A j= g(gs(u)) > g(t0). By (8) and (9), u >lpo g(t0) holds. Hence, there isa subterm g0(�v) of u with g0 6<F g and g0(�v) � g(t0). This implies, byLemma 4.1, g(gs(u)) �lpo g(t0). Since we assumed t0 6= gs(u) in the casedistinction, g(gs(u)) >lpo g(t0) follows. 2Theorem 2.4, reconsidered: Let F contain (at least) one binary symbol f ,one unary symbol g and one constant 0. The 9�8� fragment of the theory ofa lexicographic path ordering extending a precedence in which 0 is a minimalconstant, f is minimal in F � f0g and g is a minimal symbol greater than fis undecidable.Proof: For every instance P of the Post Correspondence Problem, we canconstruct the sentence solvablei;s;f, which belongs to the 9�8�-fragment.Lemma 3.5, Lemma 4.6, Lemma 4.7 and Lemma 4.8 show that T (F ) j=solvablei;s;f if P is solvable. If P is solvable, then by Lemma 3.6, Lemma 4.9and Lemma 4.10, T (F ) j= solvablei;s;f holds. Since solvability of an in-stance of the Post Correspondence Problem is undecidable, so is validity of9�8�-sentences in T (F ). 220



5 Undecidability of the simpli�cation ruleRecall the simpli�cation rule given in the introduction, which corresponds tothe \total simpli�cation rule" of [10].s! t j c u! v j c0u! v j c0 s[v]p = t j c0 ^ sjp = uIf T (F ) j= 8V ar(s)9V ar(u):c! (sjp = u ^ c0)When writing a constrained rule like s! t j c, it is understood that V ar(c) �V ar(s) [ V ar(t). We consider the constraint system consisting of constraintsof the form 9y1; : : : ; yn:b where b is Boolean combination of equalities andinequalities.Theorem 5.1 For any set F of function symbols and precedence �F satisfy-ing (1), the set of instances of the simpli�cation rule is undecidable. This alsoholds when c is instantiated to be >.Proof: We reduce the validity problem in A of 8�9�-sentences to the decisionproblem of the set of instances of the simpli�cation rule. Note that the set of8�9�-sentences which are valid in A is (up to equivalence transformations) thecomplement of the set of 9�8�-sentences valid inA, and hence is undecidable byTheorem 2.4. Let 8x0; : : : ; xn9y0; : : : ; ym:� be given. This sentence is obviouslyequivalent to8x0; : : : ; xn9z0; : : : ; zn; y0; : : : ; ym: z0 = x0 ^ : : : ^ zn = xn^ �[z0=x0; : : : ; zn=xn] (10)where z0; : : : ; zn are fresh distinct variables. We use the abbreviationsF (�x)= f(x0; f(: : : f(xn; 0) : : :))F (�z)= f(z0; f(: : : f(zn; 0) : : :))�0=�[z0=x0; : : : ; zn=xn]Now, (10) is equivalent to8x0; : : : ; xn9z0; : : : ; zn; y0; : : : ; ym: �0 ^ F (�z) = F (�x)21



This sentence is valid in A if and only ifF (�x)! 0 j > F (�z)! 0 j �0F (�z)! 0 j �0 0 = 0 j �0 ^ F (�x) = F (�z)is an instance of the simpli�cation rule. 26 Concluding RemarksWe proved the undecidability of the 9�8� fragment of lexicographic path or-derings over �nite signatures. This proof assumes some weak hypotheses onthe precedence. Choosing 0 as a minimal constant is not a restriction. Themain restrictions are(i) among the minimal symbols of F n f0g w.r.t. �F , there should be a (atleast) binary one (which we called f);(ii) among the minimal symbols larger than f there should be a non-constantone (which we called g).Indeed, if there is a minimal symbol h in F nf0g whose arity is, say, 3, we canfor example code g and f as:f(x; y) def= h(0; x; y); g(x) def= h(h(0; 0; 0); 0; x):Note that, in such a case, Assumption (ii) above is no longer used: the proofapplies to one constant and one ternary function symbol. Similarly, g needsnot to be unary: \at least unary" is su�cient.We conjecture that Assumption (ii) above can be removed, at the price ofsome additional coding, which we avoid here for sake of simplicity. The ideaof the coding would be to map T (f0; f; gg) into T (f0; hg) where h is binary,while preserving the ordering relation. For example, we could de�ne f(x; y) def=h(0; h(x; y)) and g(x) def= h(h(0; 0); x). Actually, this particular mapping doesnot work. Some additional work has to be done in order to cope with several\overlappings" of g(x) into f(x; y) or of f(x; y) into itself. This did not occurin the ternary symbol case above because of the \atness" of the coding. Webelieve that the coding is still possible, though tedious.However, Assumption (i) cannot be removed easily. Actually, the decidabilityof the �rst-order theory of a total lexicographic path ordering on a signaturecontaining only unary symbols and constants remains open. Our method can-not be applied in this case, because we have no means by which we could22



encode sequences.Similarly, our method cannot be applied directly to recursive path orderingswith multiset status. Indeed, Lemma 4.6 does not hold: we took advantage ofthe fact that x > x0 j= f(x; y) > f(x0; y0)$ f(x; y) > y0which does not hold for multiset status. Moreover, this property is importantsince this is the way we \go down" in the terms, retrieving subterms.On the positive side, our method might be applied for proving undecidabilityof conuence of ordered rewrite systems (see [11]) which use a lexicographicpath ordering. Indeed, strong ground conuence of such systems is expressedusing a 8�9� sentence over �lpo. But there are still di�culties because in theproblem, as it is stated in [11], the constraints only consist in single inequalitiesl > r for each rule l ! r. It is possible to encode any quanti�er-free formulaover �lpo into a single inequation, using additional function symbols. However,we would need existential quanti�cations in the constraints. This can only beachieved through rules which introduce new variables. But then, we get onlyinequalities in which existentially quanti�ed variables are all on the same sideof the inequality, which is not su�cient for our purpose.References[1] A. Boudet and H. Comon. About the theory of tree embedding. In M. C.Gaudel and J.-P. Jouannaud, editors, 4th International Joint Conference onTheory and Practice of Software Development, Lecture Notes in ComputerScience, vol. 668, pages 376{390, Orsay, France, Apr. 1993. Springer-Verlag.[2] H. Comon. Solving symbolic ordering constraints. International Journal ofFoundations of Computer Science, 1(4):387{411, 1990.[3] H. Comon and P. Lescanne. Equational problems and disuni�cation. Journalof Symbolic Computation, 7:371{425, 1989.[4] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,3(1):69{115, Feb. 1987.[5] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,editor, Handbook of Theoretical Computer Science, volume B, pages 243{309.North-Holland, 1990.[6] N. Dershowitz, J.-P. Jouannaud, and J. Klop. Open problems in term rewriting.In R. V. Book, editor, 4th International Conference on Rewriting Techniques23



and Applications, Lecture Notes in Computer Science, vol. 488, pages 445{456,Como, Italy, Apr. 1991. Springer-Verlag.[7] N. Dershowitz, J.-P. Jouannaud, and J. Klop. More problems in rewriting.In C. Kirchner, editor, 5th International Conference on Rewriting Techniquesand Applications, Lecture Notes in Computer Science, vol. 690, pages 468{487,Montreal, Canada, June 1993. Springer-Verlag.[8] J. Hsiang and M. Rusinowitch. On word problems in equational theories. InT. Ottmann, editor, 14th International Colloquium on Automata, Languagesand Programming, Lecture Notes in Computer Science, vol. 267, pages 54{71,Karlsruhe, Germany, July 1987. Springer-Verlag.[9] J.-P. Jouannaud and M. Okada. Satis�ability of systems of ordinal notationswith the subterm property is decidable. In J. L. Albert, B. Monien, and M. R.Artalejo, editors, 18th International Colloquium on Automata, Languages andProgramming, Lecture Notes in Computer Science, vol. 510, pages 455{468,Madrid, Spain, 1991. Springer-Verlag.[10] C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolicconstraints. Revue Fran�caise d'Intelligence Arti�cielle, 4(3):9{52, 1990. Specialissue on automatic deduction.[11] R. Nieuwenhuis. A new ordering constraint solving method and itsapplications. Research Report MPI-I-92-238, Max-Planck- Institut f�urInformatik, Saarbr�ucken, Feb. 1993.[12] R. Nieuwenhuis. Simple LPO constraint solving methods. Inf. Process. Lett.,47(2):65{69, Aug. 1993.[13] R. Nieuwenhuis and A. Rubio. Theorem proving with ordering constrainedclauses. In D. Kapur, editor, 11th International Conference on AutomatedDeduction, Lecture Notes in Computer Science vol. 607, pages 477{491,Saratoga Springs, NY, June 1992. Springer-Verlag.[14] E. L. Post. A variant of a recursively unsolvable problem. Bulletin of the AMS,52:264{268, 1946.[15] R. Treinen. A new method for undecidability proofs of �rst order theories.Journal of Symbolic Computation, 14(5):437{458, Nov. 1992.A The Universal Form of x sx0In Section 3, x sx0 has been de�ned in form of a 9�-formula. We give here anequivalent de�nition as a 8�-formula (see also the explanation given with the24



universal formulation of f(x), Section 3.ĥ6=f8�u; v1; v2; v3�x 6= h(�u) ^ x 6= f(h(�u); v1)^x 6= f(v1; h(�u))^x 6= f(f(v1; v2); f(h(�u); v3))�^ĥ6=f8�u; v1; v2; v3�x0 6= h(�u) ^ x0 6= f(h(�u); v1)^x0 6= f(v1; h(�u))^x0 6= f(f(v1; v2); f(h(�u); v3))�^8v1; v2; v3; v4; v5; v01; v02; v03; v04; v05�x = f(f(v1; v2); f(f(v3; v4); v5))^x0 = f(f(v01; v02); f(f(v03; v04); v05))! v1 = � ^ v3 = 0 ^ v5 = f(0; v05)^v01 = � ^ v03 = 0^f(f(0; v4); v5) < x0^ _(p;q)2P(v02 = v2 � p ^ v04 = v4 � q)�
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