
A Relational Syntax-Semantics Interface Based on Dependency Grammar

Ralph Debusmann Denys Duchier∗ Alexander Koller Marco Kuhlmann Gert Smolka Stefan Thater

Saarland University, Saarbrücken, Germany ∗LORIA, Nancy, France
{rade|kuhlmann|smolka}@ps.uni-sb.de, duchier@loria.fr, {koller|stth}@coli.uni-sb.de

Abstract

We propose a syntax-semantics interface that real-
ises the mapping between syntax and semantics as
a relation and does not make functionality assump-
tions in either direction. This interface is stated in
terms of Extensible Dependency Grammar (XDG), a
grammar formalism we newly specify.XDG’s con-
straint-based parser supports the concurrent flow of
information between any two levels of linguistic
representation, even when only partial analyses are
available. This generalises the concept of underspe-
cification.

1 Introduction

A key assumption of traditional syntax-semantics
interfaces, starting with (Montague, 1974), is that
the mapping from syntax to semantics isfunctional,
i. e. that once we know the syntactic structure of a
sentence, we can deterministically compute its se-
mantics.

Unfortunately, this assumption is typically not
justified. Ambiguities such as of quantifier scope
or pronominal reference are genuinesemanticam-
biguities; that is, even a syntactically unambigu-
ous sentence can have multiple semantic readings.
Conversely, a common situation in natural language
generation is that one semantic representation can
be verbalised in multiple ways. This means that the
relation between syntax and semantics is not func-
tional at all, but rather a truem-to-n relation.

There is a variety of approaches in the literat-
ure on syntax-semantics interfaces for coping with
this situation, but none of them is completely sat-
isfactory. One way is to recast semantic ambiguity
as syntactic ambiguity by compiling semantic dis-
tinctions into the syntax (Montague, 1974; Steed-
man, 1999; Moortgat, 2002). This restores function-
ality, but comes at the price of an artificial blow-
up of syntactic ambiguity. A second approach is to
assume a non-deterministic mapping from syntax
to semantics as in generative grammar (Chomsky,
1965), but it is not always obvious how to reverse

the relation, e. g. for generation. Finally, underspe-
cification (Egg et al., 2001; Gupta and Lamping,
1998; Copestake et al., 2004) introduces a new level
of representation, which can be computed function-
ally from a syntactic analysis and encapsulates se-
mantic ambiguity in a way that supports the enu-
meration of all semantic readings by need.

In this paper, we introduce a completely rela-
tional syntax-semantics interface, building upon the
underspecification approach. We assume a set of
linguistic dimensions, such as (syntactic) immedi-
ate dominance and predicate-argument structure; a
grammatical analysis is a tuple with one component
for each dimension, and a grammar describes a set
of such tuples. While we make noa priori function-
ality assumptions about the relation of the linguistic
dimensions, functional mappings can be obtained as
a special case. We formalise our syntax-semantics
interface usingExtensible Dependency Grammar
(XDG), a new grammar formalism which general-
ises earlier work on Topological Dependency Gram-
mar (Duchier and Debusmann, 2001).

The relational syntax-semantics interface is sup-
ported by a parser forXDG based on constraint pro-
gramming. The crucial feature of this parser is that
it supports the concurrent flow of possibly partial in-
formation between any two dimensions: once addi-
tional information becomes available on one dimen-
sion, it can be propagated to any other dimension.
Grammaticality conditions and preferences (e. g. se-
lectional restrictions) can be specified on their nat-
ural level of representation, and inferences on each
dimension can help reduce ambiguity on the oth-
ers. This generalises the idea of underspecifica-
tion, which aims to represent and reduce ambiguity
through inferences on asingledimension only.

The structure of this paper is as follows: in Sec-
tion 2, we give the general ideas behindXDG, its
formal definition, and an overview of the constraint-
based parser. In Section 3, we present the relational
syntax-semantics interface, and go through ex-
amples that illustrate its operation. Section 4 shows
how the semantics side of our syntax-semantics in-

terface can be precisely related to mainstream se-
mantics research. We summarise our results and
point to further work in Section 5.

2 Extensible Dependency Grammar
This section presents Extensible Dependency
Grammar (XDG), a description-based formalism for
dependency grammar.XDG generalizes previous
work on Topological Dependency Grammar (Duch-
ier and Debusmann, 2001), which focussed on word
order phenomena in German.

2.1 XDG in a Nutshell
XDG is a description language over finite labelled
graphs. It is able to talk about two kinds of con-
straints on these structures: Thelexiconof an XDG

grammar describes properties local to individual
nodes, such as valency. The grammar’sprinciples
express constraints global to the graph as a whole,
such as treeness. Well-formed analyses are graphs
that satisfy all constraints.

An XDG grammar allows the characterisation
of linguistic structure along severaldimensionsof
description. Each dimension contains a separate
graph, but all these graphs share the same set of
nodes. Lexicon entries synchronise dimensions by
specifying the properties of a node on all dimen-
sions at once. Principles can either apply to a single
dimension (one-dimensional), or constrain the rela-
tion of several dimensions (multi-dimensional).

Consider the example in Fig. 1, which shows an
analysis for a sentence of English along two dimen-
sions of description, immediate dominance (ID) and
linear precedence (LP). The principles of the under-
lying grammar require both dimensions to be trees,
and theLP tree to be a “flattened” version of theID
tree, in the sense that whenever a nodev is a trans-
itive successor of a nodeu in the LP tree, it must
also be a transitive successor ofu in the ID tree. The
given lexicon specifies the potential incoming and
required outgoing edges for each word on both di-
mensions. The worddoes, for example, accepts no
incoming edges on either dimension and must there-
fore be at the root of both theID and theLP tree. It is
required to have outgoing edges to a subject (subj)
and a verb base form (vbse) in the ID tree, needs
fillers for a subject (sf) and a verb complement field
(vcf) in the LP tree, and offers an optional field for
topicalised material (tf). All these constraints are
satisfied by the analysis, which is thus well-formed.

2.2 Formalisation
Formally, anXDG grammar is built up of dimen-
sions, principles, and a lexicon, and characterises a
set of well-formed analyses.

subj

vbse

obj

what does John eat

sf
vcf

what does John eat

tf

word inID outID inLP outLP

what {obj?} {} {tf?} {}
does {} {subj,vbse} {} {tf?,sf,vcf}
John {subj?,obj?} {} {sf?,of?} {}
eat {vbse?} {obj} {vcf?} {}

Figure 1:XDG analysis of “what does John eat”

A dimensionis a tupleD = (Lab,Fea,Val,Pri) of
a setLab of edge labels, a setFeaof features, a set
Val of feature values, and a set of one-dimensional
principlesPri. A lexicon for the dimensionD is a
setLex⊆ Fea→Val of total feature assignments (or
lexical entries). AD-structure, representing an ana-
lysis on dimensionD, is a triple(V,E,F) of a setV
of nodes, a setE ⊆V×V×Labof directed labelled
edges, and an assignmentF : V → (Fea→ Val) of
lexical entries to nodes.V andE form a graph. We
write StrD for the set of all possibleD-structures.
The principles characterise subsets ofStrD that have
further dimension-specific properties, such as being
a tree, satisfying assigned valencies, etc. We assume
that the elements ofPri are finite representations of
such subsets, but do not go into details here; some
examples are shown in Section 3.2.

An XDG grammar((Labi ,Feai ,Vali ,Pri i)n
i=1,Pri,

Lex) consists ofn dimensions, multi-dimensional
principlesPri, and a lexiconLex. An XDG analysis
(V,Ei ,Fi)n

i=1 is an element ofAna= Str1×·· ·×Strn
where all dimensions share the same set of nodesV.

Multi-dimensional principles work just like one-
dimensional principles, except that they specify
subsets ofAna, i. e. couplings between dimensions
(e. g. the flattening principle betweenID and LP in
Section 2.1). The lexiconLex⊆ Lex1× ·· · × Lexn
constrains all dimensions at once. AnXDG analysis
is licenced byLex iff (F1(w), . . . ,Fn(w)) ∈ Lex for
every nodew∈V.

In order to compute analyses for a given input, we
model it as a set ofinput constraints(Inp), which
again specify a subset ofAna. The parsing prob-
lem for XDG is then to find elements ofAna that
are licenced byLex and consistent withInp and
Pri. Note that the term “parsing problem” is tradi-
tionally used only for inputs that are sequences of
words, but we can easily represent surface realisa-
tion as a “parsing” problem in whichInp specifies a
semantic dimension; in this case, a “parser” would
compute analyses that contain syntactic dimensions
from which we can read off a surface sentence.

2.3 Constraint Solver

The parsing problem ofXDG has a natural read-
ing as a constraint satisfaction problem (CSP) (Apt,
2003) on finite sets of integers; well-formed ana-
lyses correspond to the solutions of this problem.
The transformation, whose details we omit due to
lack of space, closely follows previous work on ax-
iomatising dependency parsing (Duchier, 2003) and
includes the use of theselection constraintto effi-
ciently handle lexical ambiguity.

We have implemented a constraint solver for
this CSPusing the Mozart/Oz programming system
(Smolka, 1995; Mozart Consortium, 2004). This
solver does a search for a satisfying variable assign-
ment. After each case distinction (distribution), it
performs simple inferences that restrict the ranges
of the finite set variables and thus reduce the size
of the search tree (propagation). The successful
leaves of the search tree correspond toXDG ana-
lyses, whereas the inner nodes correspond topartial
analyses. In these cases, the current constraints are
too weak to specify a complete analysis, but they
already express that some edges or feature values
must be present, and that others are excluded. Partial
analyses will play an important role in Section 3.3.

Because propagation operates on all dimensions
concurrently, the constraint solver can frequently in-
fer information about one dimension from inform-
ation on another, if there is a multi-dimensional
principle linking the two dimensions. These infer-
ences take place while the constraint problem is be-
ing solved, and they can often be drawn before the
solver commits to any single solution.

BecauseXDG allows us to write grammars with
completely free word order,XDG solving is anNP-
complete problem (Koller and Striegnitz, 2002).
This means that the worst-case complexity of the
solver is exponential, but the average-case complex-
ity is still bearable for many grammars we have
experimented with, and we hope there are useful
fragments ofXDG that would guarantee worst-case
polynomial complexity.

3 A Relational Syntax-Semantics Interface
Now that we have the formal and processing frame-
works in place, we can define a relational syntax-
semantics interface forXDG. We will first show
how we encode semantics within theXDG frame-
work. Then we will present an example grammar
(including some principle definitions), and finally
go through an example that shows how the rela-
tionality of the interface, combined with the con-
currency of the constraint solver, supports the flow
of information between different dimensions.

every student reads a book

subj
det

obj
det

every student reads a book

ag

arg

pat
arg

i. ID-tree ii. PA-structure

s

every student reads a book

s
r

r s

every student reads a book

s
r r

iii. scope trees

Figure 2: Two analyses for the sentence “every stu-
dent reads a book.”

3.1 Representing Meaning
We represent meaning withinXDG on two dimen-
sions: one forpredicate-argument structure(PA),
and one forscope(SC). The function of thePA di-
mension is to abstract over syntactic idiosyncrasies
such as active-passive alternations or dative shifts,
and to make certain semantic dependencies e. g. in
control constructions explicit; it deals with concepts
such as agent and patient, rather than subject and ob-
ject. The purpose of theSC dimension is to reflect
the structure of a logical formula that would repres-
ent the semantics, in terms of scope and restriction.
We will make this connection explicit in Section 4.
In addition, we assume anID dimension as above.
We do not include anLP dimension only for ease
of presentation; it could be added completely ortho-
gonally to the three dimensions we consider here.

While oneID structure will typically correspond
to onePA structure, eachPA structure will typically
be consistent with multipleSC structures, because
of scope ambiguities. For instance, Fig. 2 shows the
uniqueID andPA structures for the sentence “Every
student reads a book.” These structures (and the in-
put sentence) are consistent with the two possible
SC-structures shown in (iii). Assuming a Davidso-
nian event semantics, the twoSC trees (together
with thePA-structure) represent the two readings of
the sentence:

• λe.∀x.student(x)→∃y.book(y)∧ read(e,x,y)

• λe.∃y.book(y)∧∀x.student(x)→ read(e,x,y)

3.2 A Grammar for a Fragment of English
The lexicon for anXDG grammar for a small frag-
ment of English using theID, PA, and SC dimen-
sions is shown in Fig. 3. Each row in the table spe-
cifies a (unique) lexical entry for each part of speech
(determiner, common noun, proper noun, transitive

verb and preposition); there is no lexical ambiguity
in this grammar. Each column specifies a feature.
The meaning of the features will be explained to-
gether with the principles that use them.

The ID dimension uses the edge labelsLabID =
{det,subj,obj,prep,pcomp} resp. for determined
common noun,1 subject, object, preposition, and
complement of a preposition. ThePA dimension
usesLabPA = {ag,pat,arg,quant,mod, instr}, resp.
for agent, patient, argument of a modifier, common
noun pertaining to a quantifier, modifier, and instru-
ment; andSCusesLabSC = {r,s,a} resp. for restric-
tion and scope of a quantifier, and for an argument.

The grammar also contains three one-dimen-
sional principles (tree, dag, and valency), and three
multi-dimensional principles (linking, co-domin-
ance, and contra-dominance).

Tree and dag principles. The tree principle re-
stricts ID andSC structures to be trees, and the dag
principle restrictsPA structures to be directed acyc-
lic graphs.

Valency principle. The valency principle, which
we use on all dimensions, states that the incoming
and outgoing edges of each node must obey the spe-
cifications of thein andout features. The possible
values for each featureind andoutd are subsets of
Labd×{!,?,∗}. `! specifies a mandatory edge with
label`, `? an optional one, and̀∗ zero or more.

Linking principle. The linking principle for di-
mensionsd1,d2 constrains how dependents ond1
may be realised ond2. It assumes a featurelinkd1,d2

whose values are functions that map labels from
Labd1 to sets of labels fromLabd2, and is specified
by the following implication:

v
l→d1 v′ ⇒ ∃l ′ ∈ linkd1,d2(v)(l) : v

l ′→d2 v′

Our grammar uses this principle with thelink fea-
ture to constrain the realisations ofPA-dependents in
the ID dimension. In Fig. 2, the agent (ag) of reads
must be realised as the subject (subj), i. e.

reads
ag→PA every ⇒ reads

subj→ ID every

Similarly for the patient and the object. There
is no instrument dependent in the example, so this
part of thelink feature is not used. An ergative verb
would use alink feature where the subject realises
the patient; Control and raising phenomena can also
be modelled, but we cannot present this here.

1We assume on all dimensions that determiners are the
heads of common nouns. This makes for a simpler relationship
between the syntactic and semantic dimensions.

Co-dominance principle. The co-dominance
principle for dimensionsd1,d2 relates edges ind1
to dominance relations in the same direction ind2.
It assumes a featurecodomd1,d2 mapping labels in
Labd1 to sets of labels inLabd2 and is specified as

v
l→d1 v′ ⇒ ∃l ′ ∈ codomd1,d2(v)(l) : v

l ′→→∗
d2

v′

Our grammar uses the co-dominance principle on
dimensionPA andSC to express, e. g., that the pro-
positional contribution of a noun must end up in the
restriction of its determiner. For example, for the de-
terminereveryof Fig. 2 we have:

every
quant→ PA student ⇒ every

r→→∗
SCstudent

Contra-dominance principle. The contra-dom-
inance principle is symmetric to the co-dominance
principle, and relates edges in dimensiond1 to dom-
inance edges into the opposite direction in dimen-
sion d2. It assumes a featurecontradomd1,d2 map-
ping labels ofLabd1 to sets of labels fromLabd2 and
is specified as

v
l→d1 v′ ⇒

∃l ′ ∈ contradomd1,d2(v)(l) : v′
l ′→→∗

d2
v

Our grammar uses the contra-dominance principle
on dimensionsPA andSC to express, e. g., that pre-
dicates must end up in the scope of the quantifiers
whose variables they refer to. Thus, for the transit-
ive verbreadsof Fig. 2, we have:

reads
ag→PA every ⇒ every

s→→∗
SCreads

reads
pat→PA a ⇒ a

s→→∗
SCreads

3.3 Syntax-Semantics Interaction
It is important to note at this point that the syntax-
semantics interface we have defined is indeed re-
lational. Each principle declaratively specifies a set
of admissible analyses, i. e. a relation between the
structures for the different dimensions, and the ana-
lyses that the complete grammar judges grammat-
ical are simply those that satisfy all principles. The
role of the lexicon is to provide the feature values
which parameterise the principles defined above.

The constraint solver complements this relation-
ality by supporting the use of the principles to move
information between any two dimensions. If, say,
the left-hand side of the linking principle is found to
be satisfied for dimensiond1, a propagator will infer
the right-hand side and add it to dimensiond2. Con-
versely, if the solver finds that the right-hand side

inID outID inPA outPA inSC outSC

DET {subj?,obj?,pcomp?} {det!} {ag?,pat?,arg?} {quant!} {r?,s?,a?} {r!,s!}
CN {det?} {prep∗} {quant?} {mod?} {r?,s?,a?} {}
PN {subj?,obj?,pcomp?} {prep∗} {ag?,pat?,arg?} {mod?} {r?,s?,a?} {r?,s!}
TV {} {subj!,obj!,prep∗} {} {ag!,pat!, instr?} {r?,s?,a?} {}
PREP {prep?} {pcomp!} {mod?, instr?} {arg!} {r?,s?,a?} {a!}

link codom contradom
DET {quant 7→ {det}} {quant 7→ {r}} {}
CN {mod 7→ {prep}} {} {mod 7→ {a}}
PN {mod 7→ {prep}} {} {mod 7→ {a}}
TV {ag 7→ {subj},pat 7→ {obj}, instr 7→ {prep}} {} {ag 7→ {s},pat 7→ {s}, instr 7→ {a}}
PREP {arg 7→ {pcomp}} {} {arg 7→ {s}}

Figure 3: The example grammar fragment

Mary saw a student with a book

ag
pat

quant

arg
quant

Mary saw a student with a book

s s r s r

Mary saw a student with a book

sub
j obj

det

arg
det

prep

Mary saw a student with a book

ag pat quant
arg

quant

Mary saw a student with a book

s r
s r

Mary saw a student with a book

sub
j obj

det
arg

det

instr

as

Mary saw a student with a book

ag
pat

arg

arg
quant

Mary saw a student with a book

s s r
s r

Mary saw a student with a book

subj
obj

det

arg
det

mod

prep

a

i. Partial analysis ii. verb attachment iii. noun attachment

ID

PA

SC

Figure 4: Partial description (left) and two solutions (right) for “Mary saw a student with a book.”

must be false ford2, the negation of the left-hand
side is inferred ford1. By letting principles interact
concurrently, we can make some very powerful in-
ferences, as we will demonstrate with the example
sentence “Mary saw a student with a book,” some
partial analyses for which are shown in Fig. 4.

Column (i) in the figure shows the state after the
constraint solver finishes its initial propagation, at
the root of the search tree. Even at this point, the
valency and treeness principles have conspired to
establish an almost completeID-structure. Through
the linking principle, thePA-structure has been de-
termined similarly closely. TheSC-structure is still
mostly undetermined, but by the co- and contra-
dominance principles, the solver has already estab-
lished that some nodes mustdominateothers: A dot-
ted edge with labels in the picture means that the
solver knows there must be a path between these
two nodes which starts with ans-edge. In other
words, the solver has computed a large amount of
semantic information from an incomplete syntactic

analysis.

Now imagine some external source tells us that
with is a mod-child of studenton PA, i. e. the ana-
lysis in (iii). This information could come e. g.
from a statistical model of selectional preferences,
which will judge this edge much more probable than
an instr-edge from the verb to the preposition (ii).
Adding this edge will trigger additional inferences
through the linking principle, which can now infer
thatwith is aprep-child ofstudenton ID. In the other
direction, the solver will infer more dominances on
SC. This means that semantic information can be
used to disambiguate syntactic ambiguities, and se-
mantic information such as selectional preferences
can be stated on their natural level of representation,
rather than be forced into theID dimension directly.

Similarly, the introduction of new edges onSC

could trigger a similar reasoning process which
would infer newPA-edges, and thus indirectly also
new ID-edges. Such new edges onSC could come
from inferences with world or discourse knowledge

(Koller and Niehren, 2000), scope preferences, or
interactions with information structure (Duchier and
Kruijff, 2003).

4 Traditional Semantics
Our syntax-semantics interface represents semantic
information as graphs on thePA and SC dimen-
sions. While this looks like a radical departure from
traditional semantic formalisms, we consider these
graphs simply an alternative way of presenting more
traditional representations. We devote the rest of the
paper to demonstrating that a pair of aPA and aSC

structure can be interpreted as a Montague-style for-
mula, and that a partial analysis on these two di-
mensions can be seen as an underspecified semantic
description.

4.1 Montague-style Interpretation
In order to extract a standard type-theoretic expres-
sion from anXDG analysis, we assign each node
v two semantic values: alexical valueL(v) repres-
enting the semantics ofv itself, and aphrasalvalue
P(v) representing the semantics of the entireSC-
subtree rooted atv. We use theSC-structure to de-
termine functor-argument relationships, and thePA-
structure to establish variable binding.

We assume that nodes for determiners and proper
names introduce unique individual variables (“in-
dices”). Below we will write〈〈v〉〉 to refer to the in-
dex of the nodev, and we write↓` to refer to the
node which is thè-child of the current node in the
appropriate dimension (PA or SC). The semantic lex-
icon is defined as follows; “L(w)” should be read as
“L(v), wherev is a node for the word w”.

L(a) = λPλQλe.∃x(P(x)∧Q(x)(e))
L(book) = book′

L(with) = λPλx.(with′(〈〈↓arg〉〉)(x)∧P(x))
L(reads) = read′(〈〈↓pat〉〉)(〈〈↓ag〉〉)

Lexical values for other determiners, common
nouns, and proper names are defined analogously.
Note that we do not formally distinguish event
variables from individual variables. In particular,
L(with) can be applied to either nouns or verbs,
which both have type〈e, t〉.

We assume that no node in theSC-tree has more
than one child with the same edge label (which our
grammar guarantees), and writen(`1, . . . , `k) to in-
dicate that the noden hasSC-children over the edge
labels`1, . . . , `k. The phrasal value forn is defined
(in the most complex case) as follows:

P(n(r,s)) = L(n)(P(↓r))(λ 〈〈n〉〉.P(↓s))

This rule implements Montague’s rule of quan-
tification (Montague, 1974); note thatλ 〈〈n〉〉 is a
binder for the variable〈〈n〉〉. Nodes that have no
s-children are simply functionally applied to the
phrasal semantics of their children (if any).

By way of example, consider the left-handSC-
structure in Fig. 2. If we identify each node by the
word it stands for, we get the following phrasal
value for the root of the tree:

L(a)(L(book))(λx.L(every)(L(student)
(λy.read′(y)(x)))),

where we writex for 〈〈a〉〉 andy for 〈〈every〉〉. The
arguments ofread′ arex andy becauseeveryand
a are thearg andpat children of readson thePA-
structure. After replacing the lexical values by their
definitions and beta-reduction, we obtain the fa-
miliar representation for this semantic reading, as
shown in Section 3.1.

4.2 Underspecification

It is straightforward to extend this extraction of
type-theoretic formulas from fully specifiedXDG

analyses to an extraction of underspecified semantic
descriptions from partialXDG analyses. We will
briefly demonstrate this here for descriptions in the
CLLS framework (Egg et al., 2001), which supports
this most easily. Other underspecification formal-
isms could be used too.

Consider the partialSC-structure in Fig. 5, which
could be derived by the constraint solver for the
sentence from Fig. 2. We can obtain a CLLS con-
straint from it by first assigning to each node of
theSC-structure a lexical value, which is now a part
of the CLLS constraint (indicated by the dotted el-
lipses). Becausestudentandbookare known to ber-
daughters ofeveryanda on SC, we plug their CLLS
constraints into ther-holes of their mothers’ con-
straints. Because we know thatreadsmust be dom-
inated by thes-children of the determiners, we add
the two (dotted) dominance edges to the constraint.
Finally, variable binding is represented by the bind-
ing constraints drawn as dashed arrows, and can be
derived fromPA exactly as above.

5 Conclusion
In this paper, we have shown how to build a fully re-
lational syntax-semantics interface based onXDG.
This new grammar formalism offers the grammar
developer the possibility to represent different kinds
of linguistic information on separate dimensions
that can be represented as graphs. Any two dimen-
sions can be linked by multi-dimensional principles,

@

@

every

λ

@

@

a

λ

@

@

read var

var

student book

rs s
r

every student reads a book

r
rs s

every student reads a book

ag

arg

pat
arg

Figure 5: A partialSC-structure and its correspond-
ing CLLS description.

which mutually constrain the graphs on the two di-
mensions. We have shown that a parser based on
concurrent constraint programming is capable of in-
ferences that restrict ambiguity on one dimension
based on newly available information on another.

Because the interface we have presented makes
no assumption that any dimension is more “ba-
sic” than another, there is no conceptual difference
between parsing and generation. If the input is the
surface sentence, the solver will use this information
to compute the semantic dimensions; if the input is
the semantics, the solver will compute the syntactic
dimensions, and therefore a surface sentence. This
means that we get bidirectional grammars for free.

While the solver is reasonably efficient for many
grammars, it is an important goal for the future
to ensure that it can handle large-scale grammars.
One way in which we hope to achieve this is to
identify fragments ofXDG with provably polyno-
mial parsing algorithms, and which contain most
useful grammars. Such grammars would probably
have to specify word orders that are not completely
free, and we would have to control the combin-
atorics of the different dimensions (Maxwell and
Kaplan, 1993). One interesting question is also
whether different dimensions can be compiled into
a single dimension, which might improve efficiency
in some cases, and also sidestep the monostratal vs.
multistratal distinction.

The crucial ingredient ofXDG that make rela-
tional syntax-semantics processing possible are the
declaratively specified principles. So far, we have
only given some examples for principle specific-
ations; while they could all be written as Horn
clauses, we have not committed to any particular
representation formalism. The development of such
a representation formalism will of course be ex-
tremely important once we have experimented with
more powerful grammars and have a stable intuition

about what principles are needed.
At that point, it would also be highly interest-

ing to define a (logic) formalism that generalises
bothXDG and dominance constraints, a fragment of
CLLS. Such a formalism would make it possible to
take over the interface presented here, but use dom-
inance constraints directly on the semantics dimen-
sions, rather than via the encoding intoPA and SC

dimensions. The extraction process of Section 4.2
could then be recast as a principle.

References
K. Apt. 2003. Principles of Constraint Programming.

Cambridge University Press.
N. Chomsky. 1965.Aspects of the Theory of Syntax.

MIT Press, Cambridge, MA.
A. Copestake, D. Flickinger, C. Pollard, and I. Sag.

2004. Minimal recursion semantics. an introduction.
Journal of Language and Computation. To appear.

D. Duchier and R. Debusmann. 2001. Topological de-
pendency trees: A constraint-based account of linear
precedence. InACL 2001, Toulouse.

D. Duchier and G.-J. M. Kruijff. 2003. Information
structure in topological dependency grammar. In
EACL 2003.

D. Duchier. 2003. Configuration of labeled trees un-
der lexicalized constraints and principles.Research
on Language and Computation, 1(3–4):307–336.

M. Egg, A. Koller, and J. Niehren. 2001. The Constraint
Language for Lambda Structures.Logic, Language,
and Information, 10:457–485.

V. Gupta and J. Lamping. 1998. Efficient linear logic
meaning assembly. InCOLING/ACL 1998.

A. Koller and J. Niehren. 2000. On underspecified
processing of dynamic semantics. InProceedings of
COLING-2000, Saarbrücken.

A. Koller and K. Striegnitz. 2002. Generation as de-
pendency parsing. InACL 2002, Philadelphia/USA.

J. T. Maxwell and R. M. Kaplan. 1993. The interface
between phrasal and functional constraints.Compu-
tational Linguistics, 19(4):571–590.

R. Montague. 1974. The proper treatment of quantifica-
tion in ordinary english. InFormal Philosophy. Selec-
ted Papers of Richard Montague, pages 247–271. Yale
University Press, New Haven and London.

M. Moortgat. 2002. Categorial grammar and formal
semantics. InEncyclopedia of Cognitive Science.
Nature Publishing Group, MacMillan. To appear.

Mozart Consortium. 2004. The Mozart-Oz website.
http://www.mozart-oz.org/.

G. Smolka. 1995. The Oz Programming Model. In
Computer Science Today, Lecture Notes in Computer
Science, vol. 1000, pages 324–343. Springer-Verlag.

M. Steedman. 1999. Alternating quantifier scope in
CCG. InProc. 37th ACL, pages 301–308.

