
Chapter 1
Dependency Grammar:
Classification and Exploration

Ralph Debusmann and Marco Kuhlmann

Abstract Grammar formalisms built on the notion of word-to-word dependencies
make attractive alternatives to formalisms built on phrase structure representations.
However, little is known about the formal properties of dependency grammars, and
few such grammars have been implemented. We present results from two strands
of research that address these issues. The aims of this research were to classify
dependency grammars in terms of their generative capacity and parsing complexity,
and to systematically explore their expressive power in the context of a practical
system for grammar development and parsing.

1.1 Introduction

Syntactic representations based on word-to-word dependencies have a long tradition
in descriptive linguistics [27]. In recent years, they have also become increasingly
used in computational tasks, such as information extraction [2], machine translation
[39], and parsing [38]. Among the purported advantages of dependency over phrase
structure representations are conciseness, intuitive appeal, and closeness to semantic
representations such as predicate-argument structures. On the more practical side,
dependency representations are attractive due to the increasing availability of large
corpora of dependency analyses, such as the Prague Dependency Treebank [17].

The recent interest in dependency representations has revealed several gaps in
the research on grammar formalisms based on these representations: First, while
several linguistic theories of dependency grammar exist (examples are Functional
Generative Description [44], Meaning-Text Theory [34], and Word Grammar [22]),
there are few results on their formal properties—in particular, it is not clear how they
are related to the more well-known phrase structure-based formalisms. Second, few
dependency grammars have been implemented in practical systems, and no tools for
the development and exploration of new grammars are available.
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In this chapter, we present results from two strands of research on dependency
grammar that addresses the above issues. The aims of this research were to classify
dependency grammars in terms of their generative capacity and parsing complexity,
and to systematically explore their expressive power in the context of a practical sys-
tem for grammar development and parsing. Our classificatory results provide funda-
mental insights into the relation between dependency grammars and phrase structure
grammars. Our exploratory work shows how dependency-based representations can
be used to model the complex interactions between different dimensions of linguis-
tic description, such as word-order, quantifier scope, and information structure.

Structure of the chapter. The remainder of this chapter is structured as follows.
In Sect. 1.2, we introduce dependency structures as the objects of description in
dependency grammar, and identify three classes of such structures that are particu-
larly relevant for practical applications. We then show how dependency structures
can be related to phrase structure-based formalisms via the concept of lexicalization
(Sect. 1.3). Section 1.4 introduces Extensible Dependency Grammar (XDG), a meta-
grammatical framework designed to facilitate the development of novel dependency
grammars. In Sect. 1.5, we apply XDG to obtain an elegant model of complex word
order phenomena, in Sect. 1.6 develop a relational syntax-semantics interface, and
in Sect. 1.7 present an XDG model of regular dependency grammars. In Sect. 1.8,
we introduce the grammar development environment for XDG and investigate its
practical utility with an experiment on large-scale parsing. Section 1.9 concludes
the chapter.

1.2 Dependency Structures

The basic assumptions behind the notion of dependency are summarized in the fol-
lowing sentences from the seminal work of Tesnière [47]:

The sentence is an organized whole; its constituent parts are the words. Every word that
functions as part of a sentence is no longer isolated as in the dictionary: the mind perceives
connections between the word and its neighbours; the totality of these connections forms
the scaffolding of the sentence. The structural connections establish relations of dependency
among the words. Each such connection in principle links a superior term and an inferior
term. The superior term receives the name governor (régissant); the inferior term receives
the name dependent (subordonné). (ch. 1, §§ 2–4; ch. 2, §§ 1–2)

We can represent the dependency relations among the words of a sentence as a
graph. More specifically, the dependency structure for a sentence w = w1 · · ·wn is
the directed graph on the set of positions of w that contains an edge i→ j if and
only if the word w j depends on the word wi. In this way, just like strings and parse
trees, dependency structures can capture information about certain aspects of the
linguistic structure of a sentence. As an example, consider Fig. 1.1. In this graph,
the edge between the word likes and the word Dan encodes the syntactic informa-
tion that Dan is the subject of likes. When visualizing dependency structures, we
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represent (occurrences of) words by circles, and dependencies among them by ar-
rows: the source of an arrow marks the governor of the corresponding dependency,
the target marks the dependent. Furthermore, following Hays [19], we use dotted
lines to indicate the left-to-right ordering of the words in the sentence.

Dan likes fresh parsnips

Fig. 1.1: A dependency structure

With the concept of a dependency structure at hand, we can express linguistic
universals in terms of structural constraints on graphs. The most widely used such
constraint is to require the dependency structure to form a tree. This requirement
models the stipulations that no word should depend on itself, not even transitively,
that each word should have at most one governor, and that a dependency analysis
should have only one independent word (usually the main verb). The dependency
analysis shown in Fig. 1.1 satisfies the treeness constraint.

Another well-known constraint on dependency structures is projectivity [32]. In
contrast to treeness, which imposes restrictions on dependency as such, projectivity
concerns the relation between dependency and the left-to-right order of the words
in the sentence. Specifically, it requires each dependency subtree to cover a con-
tiguous region of the sentence. As an example, consider the dependency structure
in Fig. 1.2a. Projectivity is interesting because the close relation between depen-
dency and word order that it enforces can be exploited in parsing algorithms [14].
However, in recent literature, there is a growing interest in non-projective depen-
dency trees, in which a subtree may be spread out over a discontinuous region of the
sentence. Such representations naturally arise in the syntactic analysis of linguistic
phenomena such as extraction, topicalization and extraposition; they are particu-
larly frequent in the analysis of languages with flexible word order, such as Czech
[20, 48]. Unfortunately, without any further restrictions, non-projective dependency
parsing is intractable [36, 33].

In search of a balance between the benefit of more expressivity and the penalty
of increased processing complexity, several authors have proposed structural con-
straints that relax the projectivity restriction, but at the same time ensure that the
resulting classes of structures are computationally well-behaved [52, 37, 18]. Such
constraints identify classes of what we may call mildly non-projective dependency
structures. One important constraint is the block-degree restriction [20], which re-
laxes projectivity such that dependency subtrees can be distributed over more than
one block. For example, in Fig. 1.2b, each of the marked subtrees spans two blocks.
In our own work, we have proposed the well-nestedness condition [1], which says
that pairs of disjoint dependency subtrees must not cross—this means that there
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r a a b b

(a) degree 1, well-nested

r a b a b

(b) degree 2, ill-nested

r a b b a

(c) degree 2, well-nested

Fig. 1.2: Three dependency structures

must not be nodes i1, i2 in the first subtree and nodes j1, j2 in the second such that
i1 < j1 < i2 < j2. The dependency structure depicted in Fig. 1.2c is well-nested,
while the structure depicted in Fig. 1.2b is not.

To investigate the practical relevance of the three structural constraints, we did
an empirical evaluation on two versions of the Prague Dependency Treebank [31]
(Table 1.1). This evaluation shows that while projectivity is too strong a constraint
on dependency structures (it excludes almost 23% of the analyses in both versions
of the treebank), already a small step beyond projectivity covers virtually all of
the data. In particular, even the rather restricted class of well-nested dependency
structures with block-degree at most 2 has a coverage of almost 99.5%.

PDT 1.0 PDT 2.0

block-degree unrestricted well-nested unrestricted well-nested

1 (projective) 56 168 76.85% 56 168 76.85% 52 805 77.02% 52 805 77.02%
2 16 608 22.72% 16 539 22.63% 15 467 22.56% 15 393 22.45%
3 307 0.42% 300 0.41% 288 0.42% 282 0.41%
4 4 0.01% 2 < 0.01% 2 < 0.01% – –
5 1 < 0.01% 1 < 0.01% 1 < 0.01% 1 < 0.01%

TOTAL 73 088 100.00% 73 010 99.89% 68 562 100.00% 68 481 99.88%

Table 1.1: Structural properties of dependency structures in the Prague Dependency Treebank

1.3 Dependency Structures and Lexicalized Grammars

One of the fundamental questions that we can ask about a grammar formalism is,
whether it adequately models natural language. We can answer this question by
studying the generative capacity of the formalism: when we interpret grammars as
generators of sets of linguistic structures (such as strings, parse trees, or predicate-
argument structures), then we can call a grammar adequate, if it generates exactly
those structures that we consider relevant for the description of natural language.
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Grammars may be adequate with respect to one type of expression, but inadequate
with respect to another. In this work we were interested in the generative capacity
of grammars when interpreted as generators for sets of dependency structures:

Which grammars generate which sets of dependency structures?

An answer to this question is interesting for at least two reasons. First, dependency
structures make an attractive measure of the generative capacity of a grammar: they
are more informative than strings, and more succinct and arguably closer to predi-
cate-argument structure than parse trees. Second, an answer to the question allows
us to tap the rich resource of formal results about phrase structure-based grammar
formalisms and to transfer them to the work on dependency grammar. Specifically,
it enables us to import the expertise in developing parsing algorithms for phrase
structure-based formalisms. This can help us identify the polynomial fragments of
non-projective dependency parsing.

1.3.1 Lexicalized Grammars Induce Dependency Structures

We now explain how a grammar can be interpreted as a generator of dependency
structures. To focus our discussion, let us consider the well-known case of context-
free grammars (CFGs). As our running example, Fig. 1.3 shows a small CFG together
with a parse tree for a simple English sentence.

S → SUBJ likes OBJ

SUBJ → Dan

OBJ → MOD parsnips

MOD → fresh

S

SUBJ likes OBJ

Dan MOD parsnips

fresh

Fig. 1.3: A context-free grammar and a parse tree generated by this grammar

An interesting property of our sample grammar is that it is lexicalized: every
rule of the grammar contains exactly one terminal symbol. Lexicalized grammars
play a significant role in contemporary linguistic theories and practical applications.
Crucially for us, every such grammar can be understood as a generator for sets of
dependency structures, in the following sense. Consider a derivation of a terminal
string by means of a context-free grammar. A derivation tree for this derivation is
a tree in which the nodes are labelled with (occurrences of) the productions used in
the derivation, and the edges indicate how these productions were combined. The
left half of Fig. 1.4 shows the derivation tree for the parse tree from our example.
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S→ SUBJ likes OBJ

SUBJ→ Dan OBJ→ MOD parsnips

MOD→ fresh Dan likes fresh parsnips

Fig. 1.4: Lexicalized derivations induce dependency structures

If the underlying grammar is lexicalized, then there is a one-to-one correspondence
between the nodes in the derivation tree and the positions in the derived string: each
occurrence of a production participating in the derivation contributes exactly one
terminal symbol to this string. If we order the nodes of the derivation tree according
to the string positions of their corresponding terminal symbols, we get a dependency
tree. For our example, this procedure results in the tree depicted in Fig. 1.1. We say
that this dependency structure is induced by the derivation.

Not all practically relevant dependency structures can be induced by derivations
in lexicalized context-free grammars. A famous counterexample is provided by the
verb-argument dependencies in German and Dutch subordinate clauses: context-
free grammar can only characterize the ‘nested’ dependencies of German, but not
the ‘cross-serial’ assignments of Dutch. This observation goes along with argu-
ments [23, 45] that certain constructions in Swiss German require grammar for-
malisms that adequately model these constructions to generate the so-called copy
language, which is beyond even the string-generative capacity of CFGs. If we ac-
cept this analysis, then we must conclude that context-free grammars are not ade-
quate for the description of natural language, and that we should look out for more
powerful formalisms. This conclusion is widely accepted today. Unfortunately, the
first class in Chomsky’s hierarchy of formal languages that does contain the copy
language, the class of context-sensitive languages, also contains many languages
that are considered to be beyond human capacity. Also, while CFGs can be parsed
in polynomial time, parsing of context-sensitive grammars is PSPACE-complete. In
search of a class of grammars that extends context-free grammar by the minimal
amount of generative power that is needed to account for natural language, several
so-called mildly context-sensitive grammar formalisms have been developed; per-
haps the best-known among these is Tree Adjoining Grammar (TAG) [25]. The class
of string languages generated by TAGs contains the copy language, but unlike con-
text-sensitive grammars, TAGs can be parsed in polynomial time. More important
to us than their extended string-generative capacity however is their stronger power
with respect to dependency representations: derivations in (lexicalized) TAGs can
induce the ‘cross-serial’ dependencies of Dutch [24]. A central result of our work
is a mathematically precise classification of TAG and other mildly context-sensitive
grammar formalisms with respect to the kinds of ‘crossing’ dependencies that these
formalisms can induce.
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While researchers in the field have a strong intuition that the generative capacity
of a grammar formalism and the structural properties of the dependency structures
that this formalism can induce are intimately related, there have been only few for-
mal results on these matters. A fundamental reason for this is that, while constraints
such as projectivity, block-degree, and well-nestedness are immediately observable
in a structure, it is not obvious how they fit into a grammar: During a derivation,
the induced dependency structure is determined by its constituent parts and the op-
erations that are used to combine them, but it is not clear what these constituents
or combining operations are in the case of, say, well-nested dependency structures
with block-degree at most 2. One of the central technical contributions of our work
on connecting grammars and structures is a compositional description of structural
constraints.

1.3.2 The Compositional View on Dependency Structures

In order to link structural constraints to grammar formalisms, we need to view de-
pendency structures as the outcomes of compositional processes. Under this view,
structural constraints do not only apply to fully specified dependency trees, but al-
ready to the composition operations by which these trees are constructed. We de-
veloped such a compositional view in two steps. In the first step, we showed that
dependency structures can be encoded into terms over a certain signature of order
annotations in such a way that the different classes of dependency structures that we
have discussed above stand in one-to-one correspondence with terms over specific
subsets of this signature [29]. In the second step, we showed how order annotations
can be interpreted as composition operations on dependency structures [28, 30], and
proved that these operations can be freely simulated by term construction on the
encodings.

〈〈012〉,r〉

〈〈01〉,a〉

〈〈0〉,a〉

〈〈01〉,b〉

〈〈0〉,b〉

(a) t1

〈〈01212〉,r〉

〈〈0,1〉,a〉

〈〈0〉,a〉

〈〈0,1〉,b〉

〈〈0〉,b〉

(b) t2

〈〈0121〉,r〉

〈〈0,1〉,a〉

〈〈0〉,a〉

〈〈01〉,b〉

〈〈0〉,b〉

(c) t3

Fig. 1.5: Terms for the dependency structures in Fig. 1.2

To give an intuition for our formal framework, Fig. 1.5 shows the terms that cor-
respond to the dependency structures in Fig. 1.2. Each order annotation in these
terms (the first components in the node labels) encodes local information about the
linear order. As an example, the annotation 〈0,1〉 in Fig. 1.5b represents the infor-
mation that both the ‘a’ subtree and the ‘b’ subtree in Fig. 1.2b consist of two blocks
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(the two components of the tuple 〈0,1〉), with the root node (represented by the sym-
bol 0) situated in the left block, and the subtree rooted at the first child (represented
by the symbol 1) in the right block. Under this encoding, the block-degree measure
corresponds to the maximal number of components per tuple, and the well-nested-
ness condition corresponds to the absence of certain ‘forbidden substrings’ in the
individual order annotations, such as the substring 1212 in the term in Fig. 1.5b.

1.3.3 Regular Dependency Grammars

With the term encoding at hand, we can also lift our results from individual depen-
dency structures to sets of such structures. The key to this transfer is the concept
of regular sets of dependency structures or regular dependency languages [29]: We
call a set of structures regular, if its term encoding forms a regular set of terms [16].
Regular sets of terms are standard in formal language theory, and have many char-
acterizations: they are recognized by finite tree automata, definable in monadic sec-
ond-order logic, and generated by regular term grammars. These grammars are very
similar to standard context-free grammars, but generate terms instead of strings. Un-
der the correspondence between dependency structures and terms discussed above,
regular term grammars can be understood as generators of dependency structures,
and thus as ‘regular dependency grammars’.

To illustrate the idea, we give two examples of regular dependency grammars.
The sets of dependency structures generated by these grammars mimic the verb-
argument relations found in German and Dutch subordinate clauses, respectively:
grammar G1 generates structures with ‘nested’ dependencies, grammar G2 generates
structures with ‘cross-serial’ dependencies. We only give the productions for the
verbs; the arguments are generated by rules such as N→ 〈〈0〉,Jan〉.

S→ 〈〈120〉,sah〉(N,V ) V → 〈〈120〉,helfen〉(N,V ) | 〈〈10〉, lesen〉(N) (G1)
S→ 〈〈1202〉,zag〉(N,V ) V → 〈〈12,02〉,helpen〉(N,V ) | 〈〈1,0〉, lezen〉(N) (G2)

Figure 1.6 shows terms generated by these grammars, and the corresponding depen-
dency structures.

The sets of dependency structures generated by regular dependency grammars
have all the characteristic properties of mildly context-sensitive languages. Further-
more, it turns out that the structural constraints that we have discussed above have
direct implications for the string-generative capacity and parsing complexity. First,
we can show that the block-degree measure gives rise to an infinite hierarchy of
ever more powerful string languages, and that adding the well-nestedness constraint
leads to a proper decrease of string-generative power on nearly all levels of this hi-
erarchy [30] (Fig. 1.7). Certain string languages enforce structural properties in the
dependency languages that project them: For every natural number k, the language

COUNT(k) := {an
1bn

1 · · ·an
kbn

k | n ∈ N} .
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〈〈120〉,sah〉

〈〈0〉,Jan〉 〈〈120〉,helfen〉

〈〈0〉,Marie〉 〈〈10〉, lesen〉

〈〈0〉,Wim〉 . . . dass Jan Marie Wim lesen helfen sah

(a) Grammar G1 (nested dependencies)

〈〈1202〉,zag〉

〈〈0〉,Jan〉 〈〈12,02〉,helpen〉

〈〈0〉,Marie〉 〈〈1,0〉, lezen〉

〈〈0〉,Wim〉 . . . omdat Jan Marie Wim zag helpen lezen

(b) Grammar G2 (cross-serial dependencies)

Fig. 1.6: Terms and structures generated by two regular dependency grammars

requires every regular set of dependency structures that projects it to contain struc-
tures with a block-degree of at most k. Similarly, the language

RESP(k) := {am
1 bm

1 cn
1dn

1 · · ·am
k bm

k cn
kdn

k | m,n ∈ N}

requires every regular set of dependency structures with block-degree at most k that
projects it to contain structures that are not well-nested. Second, while the parsing
problem of regular dependency languages is polynomial in the length of the input
string, the problem in which we take the grammar to be part of the input is still
NP-complete. Interestingly, for well-nested dependency languages, parsing is poly-
nomial even with the size of the grammar taken into account [28].

REGD(D1) = REGD(D1∩Dwn) = CFG

LCFRS(2) = REGD(D2)

LCFRS(3) = REGD(D3)

LCFRS(4) = REGD(D4)

REGD(D2∩Dwn) = TAG

REGD(D3∩Dwn) = CCFG(3)

REGD(D4∩Dwn) = CCFG(4)

Fig. 1.7: The hierarchy of regular dependency languages. Notation: Dk, the class of all dependency
structures with block-degree at most k; Dwn, the class of well-nested structures
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Our formal framework finally enables us to answer the question which gram-
mars generate which sets of dependency structures [28]. In particular, we can extend
Gaifman’s result [15] that lexicalized context-free grammars generate only projec-
tive dependency structures into the realm of the mildly context-sensitive: The class
of regular dependency languages over block-restricted structures (REGD(Dk) for
some fixed k) is the class of dependency languages induced by Linear Context-
Free Rewriting Systems (LCFRS) [49, 50]. The restriction to well-nested structures
(REGD(Dk ∩Dwn)) corresponds to the restriction to Coupled Context-Free Gram-
mar (CCFG) [21]. As a special case, the regular dependency languages over well-
nested structures with block-degree at most 2 (REGD(D2 ∩Dwn)) is exactly the
class of dependency languages induced by (lexicalized) Tree Adjoining Grammar
[25, 1]. The latter result is particularly interesting in the context of our treebank
evaluation: It shows that, while unrestricted non-projective dependency parsing re-
mains an NP-hard problem, for a class of structures that covers close to 99.5% of
the data in the Prague Dependency Treebank, parsing is polynomial—every regular
dependency grammar over well-nested structures with block-degree at most 2 can
be converted into a lexicalized TAG in linear time, so that these grammars can be
parsed in polynomial time using the parsing algorithms available for TAG.

Taken together, our classificatory results provide a rather complete picture of the
relation between structural constraints such as block-degree and well-nestedness
on the one hand, and language-theoretic properties such as generative capacity and
parsing complexity on the other.

1.4 Extensible Dependency Grammar

In order to explore the power of dependency grammars, we have developed a new
meta-grammatical framework called Extensible Dependency Grammar (XDG) [8,
5]. At the core of XDG is the principle of multi-dimensionality: an XDG analysis
consists of a tuple of dependency structures, all sharing the same set of nodes, called
dependency multigraph. The components of the multigraph are called dimensions.
Multi-dimensionality was crucial for our formulations of a new, elegant model of
complex word order phenomena, and a new, relational syntax-semantics interface.

1.4.1 Dependency Multigraphs

Dependency multigraphs are collections of dependency structures; they contain one
structure for each linguistic dimension that we want to model. To give an example,
consider the multigraph in Fig. 1.8. This graph has three dimensions: DEP (depen-
dency tree), QS (quantifier scope analysis), and DEP/QS (DEP/QS syntax-semantics
interface). The DEP dimension is used to model syntactic dependencies as before.
The QS dimension represents certain aspects of the semantic structure of the sen-
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tence. Finally, the DEP/QS dimension captures information about how the syntactic
and the semantic structures of the sentence interact.

DEP

1
everybody{
in : {(subj, !)}

out : {}
order : {}

} 2
loves{

in : {}
out : {(subj, !), (obj, !)}

order : {(subj, ↑), (subj, obj), (↑, obj)}

} 3
somebody{
in : {(obj, !)}

out : {}
order : {}

}
subj obj

QS
1

everybody
2

loves
3

somebody

sc

sc

DEP/QS

1
everybody

{ dom : {} }

2
loves

{ dom : {subj, obj} }

3
somebody

{ dom : {} }

Fig. 1.8: Dependency multigraph for Everybody loves somebody

In an XDG multigraph, each dimension is a dependency graph made up of a set of
nodes associated with indices (positions in the sentence), words, and node attributes.
The indices and words are shared across all dimensions. For instance, the second
node on the DEP dimension is associated with the index 2, the word loves, and the
node attributes in, out and order. On the DEP/QS dimension, the node has the same
index and word and the node attribute dom. Node attributes always denote sets of
tuples over finite domains of atoms; their typical use is to model finite relations
like functions and orders. The nodes are connected by labeled edges. On the QS
dimension for example, there is an edge from node 3 to node 1 labeled sc, and
another one from node 1 to node 2, also labeled sc.

In the example, the DEP dimension states that everybody is the subject of loves,
and somebody the object. The in and out attributes represent licensed incoming and
outgoing edges. For example, node 2 must not have any incoming edges, and it
must have one outgoing edge labeled subj and one labeled obj. The order attribute
represents a total order among the head (↑) and its dependents: the subj dependents
must precede the head, and head must precede the obj dependents. The QS dimension
is an analysis of the scopal relationships of the quantifiers in the sentence, inspired
by the formalism of dominance constraints (described in another chapter of this
volume). It models a reading of the sentence in which somebody takes scope over
everybody, which in turn takes scope over loves. The DEP/QS analysis represents the
syntax-semantics interface between DEP and QS. The attribute dom is a set of those
dependents on the DEP dimension that must dominate the head on the QS dimension.
For example, the subj and obj dependents of node 2 on DEP must dominate 2 on QS.
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1.4.2 Grammars

Extensible Dependency Grammar is a model-theoretic framework: grammars first
delineate the set of all candidate structures, and second, all structures which are not
well-formed according to a set of constraints are eliminated. The remaining struc-
tures are the models of the grammar. This contrasts with the perspective taken by
the regular dependency grammars of Sect. 1.3.3, where the models are understood
as being generated using a set of productions.

An XDG grammar G = (MT, lex,P) has three components: a multigraph type MT ,
a lexicon lex, and a set of principles P. The multigraph type specifies the dimensions,
words, edge labels and node attributes, and thus delineates the set of candidate struc-
tures of the grammar. The lexicon is a function from the words of the grammar to
sets of lexical entries, which determine the node attributes of the nodes with that
word. The principles are a set of formulas in first-order logic constituting the con-
straints of the grammar. Principles can talk about precedence, edges, dominances
(transitive closure1 of the edge relation), the words associated to the nodes, and the
node attributes. Here is an example principle forbidding cycles on dimension DEP.
It states that no node may dominate itself:

∀v : ¬(v→+
DEP v) (1.1)

The second example principle stipulates a constraint for all edges from v to v′ labeled
l on dimension DEP: if l is in the set denoted by the lexical attribute dom of v on
DEP/QS, then v′ must dominate v on QS:

∀v : ∀v′ : ∀l : v l−→DEP v′ ∧ l ∈ domDEP/QS(v) ⇒ v′→+
QS v (1.2)

Observe that the principle is indeed satisfied in Fig. 1.8: the attribute dom for node
2 on DEP/QS includes subj and obj, and both the subj and the obj dependents of node
2 on DEP dominate node 2 on QS.

A multigraph is a model of a grammar G = (MT, lex,P) iff it is one of the candi-
date structures delineated by MT , it selects precisely one lexical entry from lex for
each node, and it satisfies all principles in P.

The string language L(G) of a grammar G is the set of yields of its models. The
recognition problem is the question: given a grammar G and a string s, is s in L(G)?
We have investigated the complexity of three kinds of recognition problems [6]: The
universal recognition problem where both G and s are variable is PSPACE-complete,
the fixed recognition problem where G is fixed and s is variable is NP-complete, and
the instance recognition problem where the principles are fixed, and the lexicon and
s are variable is also NP-complete. The latter problem is the problem most relevant
for parsing; in this sense, XDG parsing is NP-complete.

1 Transitive closures cannot be expressed in first-order logic. As in practice, the only transitive
closure that we need is the transitive closure of the edge relation, we have decided to encode it in
the multigraph model and thus stay in first-order logic [7].
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Mittelfeld verb cluster

(dass) Nilpferde3 Maria1 Hans2 füttern3 helfen2 soll1
(that) hippos3 Maria1 Hans2 feed3 help2 should1

(that) Maria should help Hans feed hippos

Fig. 1.9: Example for scrambling

1.5 Modelling Complex Word Order Phenomena

To illustrate the power of multi-dimensionality, we now present two applications of
XDG to different areas of linguistic description. The first application is the design
of a new, elegant model of complex word order phenomena. Note that, due to space
limitations, we have to simplify the description of both the linguistic data and our
approach to modelling it. For details, we refer the reader to the cited publications.

In German, the word order in subordinate sentences is such that all verbs are
positioned at the right end in the so-called verb cluster, and are preceded by all the
non-verbal dependents in the so-called Mittelfeld. Whereas the mutual order of the
verbs is fixed, that of the non-verbal dependents in the Mittelfeld is almost totally
free. This phenomenon is known as scrambling. We show an example in Fig. 1.9.
The subscript attached to the words indicate the dependencies between the verbs
and their arguments.

DEP Nilpferde Maria Hans füttern helfen soll

vbse

vbse

subj

iobj

obj

TOP Nilpferde Maria Hans füttern helfen soll

vcf

vcf

mfmfmf

Fig. 1.10: Dependency analysis (top) and topological analysis (bottom) of the scrambling example

In the dependency analysis of the example sentence, given in Fig. 1.10 (top),
we can see that scrambling gives rise to non-projectivity—in fact, it is easy to
see that unrestricted scrambling even gives rise to an unbounded block-degree (see
Sect. 1.2), which means that it cannot be modelled by the regular dependency gram-
mars that we discussed in Sect. 1.3.3. However scrambling can be modeled in XDG
[5]: While there is no straightforward way of articulating appropriate word order
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constraints on the DEP dimension directly, we can make use of multi-dimensional-
ity. The idea is to keep the dependency analysis on the DEP dimension as is, and
move all ordering constraints to an additional dimension called TOP, which models
the topological structure of the sentence, as in Topological Dependency Grammar
(TDG) [12]. The models on TOP are projective trees; one TOP analysis of the ex-
ample sentence is depicted in Fig. 1.10 (bottom). Here, the non-verbal dependents
Nilpferde, Maria and Hans are dependents of the finite verb soll labelled mf for
‘Mittelfeld’. The verbal dependent of soll, helfen, and that of helfen, füttern, are
labelled vcf for ‘verb cluster field’. With this additional dimension, articulating the
appropriate word order constraints is straightforward: all mf dependents of the finite
verb must precede its vcf dependents, and the mutual order of the mf dependents is
unconstrained.

The relation between the DEP and TOP dimensions is such that the trees on TOP
are a flattening of the corresponding trees on DEP. We can express this by requiring
the dominance relation on TOP to be a subset of the dominance relation on DEP:

∀v : ∀v′ : v→+
TOP v′ ⇒ v→+

DEP v′

This principle is called the climbing principle [12], and gets its name from the ob-
servation that the non-verbal dependents seem to ‘climb up’ from their position on
DEP to a higher position on TOP. For example, in Fig. 1.10, the noun Nilpferde is a
dependent of füttern on DEP, and climbs up to become a dependent of the finite verb
soll on TOP.

Just using the climbing principle is too permissive. For example, in German,
extraction of determiners and adjectives out of noun phrases must be ruled out,
whereas relative clauses can be extracted. To this end, we apply a principle called
barriers principle [12], which allows each word to ‘block’ certain dependents from
climbing up. This allows us to express that nouns block their determiner and adjec-
tive dependents from climbing up, but not their relative clause dependents.

1.6 A Relational Syntax-Semantics Interface

Our second illustration for the power of multi-dimensionality is the realization of a
new, relational syntax-semantics interface for dependency grammar [8]. The inter-
face is relational in the sense that it constrains the relation between the syntax and
the semantics, as opposed to the traditional approach where the semantics is derived
from syntax. In combination with the constraint-based implementation of XDG, the
main advantage of this approach is bi-directionality: the same grammar can be ‘re-
versed’ and used for generation, and constraints and preferences can ‘flow back’
from the semantics to disambiguate the syntax. In this section, we introduce a sub-
set of the full relational syntax-semantics interface for XDG [8], concerned only with
the relation between grammatical functions and quantifier scope. Our modelling of
scope is inspired by the formalism of dominance constraints [13].
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3 : somebody

X 1 : everybody

X 2 : loves

X 1 : everybody

X 2 : loves

X 3 : somebody

X

1
everybody

2
loves

3
somebody

sc

sc

1
everybody

2
loves

3
somebody

sc

sc

(a) (b) (c) (d)

Fig. 1.11: Configurations representing (a) the strong reading, (b) the weak reading of Everybody
loves somebody, (c) corresponding XDG dependency tree for the strong reading, (d) weak reading.

Dominance constraints can be applied to model underspecified scopal relation-
ships. The example sentence Everybody loves somebody from Sect. 1.4 not only
has the reading where everybody loves the same somebody (somebody takes scope
over everybody), the so-called strong reading, but also one where everybody loves
somebody else (everybody takes scope over somebody), the weak reading. Using
dominance relations, we can model both readings in one underspecified description:

X1 : everybody ∧ X2 : loves ∧ X3 : somebody ∧ X1 C∗ X2 ∧ X3 C∗ X2 (1.3)

This formula expresses that both everybody and somebody must take scope over
loves, but that their mutual dominance relationship is unknown. The models of
dominance constraints are trees called configurations. The example dominance con-
straint (1.3) represents the two configurations displayed in Fig. 1.11 (a) and (b).

In XDG, we can represent the configurations on a dimension QS (quantifier scope
analysis). For example, the configuration in Fig. 1.11 (a) corresponds to the XDG
dependency tree in Fig. 1.11 (c), and (b) to (d). The QS dimension must satisfy
only one principle: it must be a tree. We model the dominance constraint itself by
translating the dominance literals C∗ into constraints on the dependency graph. For
example, the description (1.3) is translated into the following XDG constraint:

w(1) = everybody ∧ w(2) = loves ∧ w(3) = somebody ∧ 1→∗QS 2 ∧ 3→∗QS 2 (1.4)

The set of QS tree structures which satisfy this constraint corresponds precisely to
the set of configurations of the formula in (1.3).

We now apply the translation of dominance constraints in XDG to build a re-
lational syntax-semantics interface. The interface relates the dimensions DEP (de-
pendency structure) and QS, and consists of two ingredients: the additional inter-
face dimension DEP/QS, and an interface principle. The models on DEP/QS have no
edges, as the sole purpose of the multigraphs on this dimension is to carry the lexi-
cal attribute dom that specifies how the syntactic dependencies on DEP relate to the
quantifier scope dependencies on QS. The value of dom is a set of DEP edge labels,
and for each node, all syntactic dependents with a label in dom must dominate the
node on QS. We call the corresponding principle, already formalized in (1.2), the
dominance principle.
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Our syntax-semantics interface is ‘two-way’, or bi-directional: information does
not only flow from syntax to semantics, but also vice versa. Most syntax-semantics
interfaces are able to derive a semantic representation from a syntactic representa-
tion. For example, the two syntactic dependencies from node 2 (loves) to node 1
(labelled subj) and to node 3 (labelled obj) in Fig. 1.8, together with the dominance
principle, yield the information that both the subject and the object of loves must
dominate it on the QS dimension. Our interface goes beyond this in its ability to
let information from semantics ‘flow back’ to syntax. For example, assume that we
start with a partial QS structure including the information that everybody and some-
body both dominate loves. Together with the dominance principle, this excludes any
edges from loves to everybody and from loves to somebody on DEP. In this way,
information from semantics can help to disambiguate the syntax. This bi-direction-
ality can also be exploited for ‘reversing’ grammars to be used for generation as
well as for parsing [26, 4].

1.7 Translating Regular Dependency Grammars

The previous two sections have demonstrated the expressiveness of XDG using
case studies. Before we address the practical implementation of the formalism,
we discuss the relation between XDG and the regular dependency grammars from
Sect. 1.3.3. In what follows, we use the abbreviation RDG for the class of these
grammars. We have previously shown that XDG is at least as expressive as CFG [5],
and that, at the same time, XDG is fundamentally different from CFG in that the
string languages that can be characterized with XDG are closed under intersection
[7]. In this section we will see that XDG is at least as expressive as RDG. As XDG is
able to model scrambling (as we saw in Sect. 1.5), which RDG is not, this implies
that XDG is indeed more expressive than RDG, and therefore, more expressive than
all formalisms in the hierarchy from Fig. 1.7, such as TAG and LCFRS.

To translate an RDG into XDG, we use two dimensions: the first dimension, DEP
(for dependency tree), models the tree aspect of the structures generated by the RDG;
the second dimension, BLOCK, models the distribution of the nodes in a subtree
over one or more blocks in the linear order. This is best explained by means of an
example. We consider the following RDG rule:

A→ 〈〈01,21〉,a〉(A,B) (1.5)

Rule 1.5 can be used during an RDG derivation to rewrite the non-terminal sym-
bol A. When used, it contributes the word a and introduces two new non-terminals,
A and B, which need to be rewritten in subsequent steps. We model these require-
ments in XDG by assigning to the word a a lexical entry that requires an incoming
edge labelled with the symbol A, and two outgoing edges, labelled with the symbols
A and B, respectively. This is the entry that is selected for the second occurrence of
the word a in the dependency structure shown in Fig. 1.12 (top). The first and third
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occurrence of a have entries that correspond to the rules

S→ 〈〈0121〉,a〉(A,B) and A→ 〈〈0,1〉,a〉(B) ,

respectively. Note that the first of these rules, which rewrites the symbol S that we
take as the distinguished start symbol of the grammar, is translated into a lexical
entry that requires an empty set of incoming edges, and therefore can be used only
to contribute the root node of the structure.

DEP

1

a

2

a

3

a

4

b

5

b

6

b

B

BA

BA

BLOCK

1

a

2

a

3

a

4

b

5

b

6

b

1 1

1

1

2

1 2

2

Fig. 1.12: XDG dependency tree (top) and XDG block graph (bottom) for the string aaabbb

Using rule 1.5 during an RDG derivation not only determines the tree shape of the
resultant dependency structure, but also its order; this is represented on the BLOCK
dimension. Specifically, the order annotation 〈01,21〉 of the word a specifies that the
subtree rooted at that word is distributed over two blocks in the linear order: the first
block is composed of a itself, succeeded by the first block of the subtree obtained by
rewriting the non-terminal A; the second block is composed of the first (and only)
block of the subtree obtained by rewriting the non-terminal B, and the second block
of the A tree. Between the two blocks, there is a gap in the yield of a. We translate
these requirements into a lexical entry for the second occurrence of a in Fig. 1.12
that specifies three pieces of information: First, it requires an outgoing edge labelled
with 1 (‘first block’) to both the node itself and every node that is reached by an
incoming edge labelled with 1 from the A-daughter of the node. Second, it requires
an outgoing edge labelled with 2 (‘second block’) to every node reached by an
incoming edge labelled with 1 from the B-daughter, and to every node reached by
an incoming edge labelled with 2 from the A-daughter. These edges are drawn as
solid edges in the lower half of Fig. 1.12. (For clarity, the Figure does not contain
the edge from node 2 to itself, which would also be enforced by the translation.)
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Third, the lexical entry enforces all nodes reached by an edge labelled with 1 to
precede all nodes reached by an edge labelled with 2. For the structure as a whole,
this guarantees that there is an i-labelled edge v→BLOCK v′ if and only if v′ belongs
to the ith block in the yield of v. The only thing that remains to be done in order to
determine the linear order is to require that the blocks are contiguous sets of nodes.
This can be done by a principle that stipulates that for all pairs of edges, one from
v to v′, and one from v to v′′, both labelled with the same label l, the set of nodes
between v′ and v′′ must also be in the yield of v:

∀v : ∀v′ : ∀v′′ : ∀l : (v l−→BLOCK v′∧ v l−→BLOCK v′′)⇒ (∀v′′′ : v′ < v′′′∧ v′′′ < v′′⇒ v→∗BLOCK v′′′)

1.8 Grammar Development Environment

We have complemented the theoretical exploration of dependency grammars using
XDG with the development of a comprehensive grammar development environment,
the XDG Development Kit (XDK) [10, 5, 43]. The XDK includes a parser, a powerful
grammar description language, an efficient compiler for it, various tools for testing
and debugging, and a graphical user interface, all geared towards rapid prototyping
and the verification of new ideas. It is written in MOZART/OZ [46, 35]. A snapshot
of the XDK is depicted in Fig. 1.13.

Fig. 1.13: The XDG Development Kit (XDK)



1 Dependency Grammar: Classification and Exploration 19

The included parser is based on constraint programming [41], a modern tech-
nique for solving combinatorial problems. For efficient processing, the applied con-
straints implementing the XDG principles must be fine-tuned. Fine-tuned implemen-
tations of the principles of the account of word order outlined in Sect. 1.5, and the
relational syntax-semantics interface outlined in Sect. 1.6 already exist, and have
yielded efficiently parsable, smaller-scale grammars for German [3], and English
[5]. Koller and Striegnitz show that an implementation of TDG can be applied for
efficient surface realization using TAG [26].

Evaluating the quality of the implementation, we now want to answer the ques-
tion whether the constraint parser of the XDK scales up to large-scale parsing. We
find a positive answer to this question: we show that the parser can be fine-tuned
for parsing the large-scale TAG grammar XTAG [51] such that most of the time, it
finds the first parses of a sentence before the standard XTAG chart parser. This is
surprising given that the XDK constraint parser has worst-case exponential runtime.

For our experiment, we applied the most recent version of the XTAG grammar
from February 2001, which has a full form lexicon of 45171 words and 1230 ele-
mentary trees. The average lexical ambiguity is 28 elementary trees per word, and
the maximum lexical ambiguity 360 (for get). Verbs are typically assigned more
than 100 elementary trees. We developed an encoding of the XTAG grammar into
XDG based on ideas from [9] and our encoding of regular dependency grammars,
and implemented these ideas in the XDK.

We tested the XDK with this grammar on a subset of section 23 of the Penn
Treebank, where we manually replaced words not in the XTAG lexicon by appropri-
ate words from the XTAG lexicon. We compared our results with the official XTAG
parser: the LEM parser [40], a chart parser implementation with polynomial com-
plexity. For the LEM parser, we measured the time required for building up the
chart, and for the XDK parser, the time required for the first solution and the first
1000 solutions. Contrary to the LEM parser, the XDK parser does not build up a
chart representation for the efficient enumeration of parses. Hence, one interesting
question was how long the XDK parser would take to find not only the first but the
first 1000 parses.

We parsed 596 sentences of section 23 of the Penn Treebank whose length ranged
from 1 to 30 on an Athlon 64 3000+ processor with 1 GByte of RAM. The average
sentence length was 12.36 words. From these 596 sentences, we first removed all
those which took longer than a timeout of 30 minutes using either the LEM or the
XDK parser. The LEM parser exceeded the timeout in 132 cases, and the XDK in 94
cases, where 52 of the timeouts were shared among both parsers. As a result, we
had to remove 174 sentences to end up with 422 sentences where neither LEM nor
the XDK had exceeded the timeout. They have an average length of 10.73 words.

The results of parsing these remaining 422 sentences is shown in Table 1.2.
Here, the second column shows the time the LEM parser required for building up
the chart, and the percentage of exceeded timeouts. The third and fourth column
show the times required by the standard XDK parser (using the constraint engine
of MOZART/OZ 1.3.2) for finding the first parse and the first 1000 parses, and the
percentage of exceeded timeouts. The fourth and fifth column show the times when
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replacing the standard MOZART/OZ constraint engine with the new, faster GECODE
2.0.0 constraint library [42], and again the percentage of exceeded timeouts.

Interestingly, the XDK parser does not only less often ran into the 30 minute
timeout, but was also faster than the LEM parser on the remaining sentences. Using
the standard MOZART/OZ constraint engine, the XDK found the first parse 3.2 times
faster, and using GECODE, 16.8 times faster. Even finding the first 1000 parses was
1.7 (MOZART/OZ) and 7.8 (GECODE) times faster. The gap between LEM and the
XDK parser increased with increased sentence length. Of the sentences between
16 and 30 words, the LEM parser exceeded the timeout in 82.14% of the cases,
compared to 45.54% (MOZART/OZ) and 38.39% (GECODE). Finding the first parse
of the sentences between 16 and 30 words was 8.9 times faster using MOZART/OZ,
and 41.1 times faster using GECODE. The XDK parser also found the first 1000
parses of the longer sentences faster than LEM: 5.2 times faster using MOZART/OZ
and 19.8 times faster using GECODE.

LEM XDK
MOZART/OZ GECODE

1 parse 1000 parses 1 parse 1000 parses

1−30 words 200.47s 62.96s 117.29s 11.90s 25.72s
timeouts 132 (22.15%) 93 (15.60%) 94 (15.78%) 60 (10.07%) 60 (10.07%)

1−15 words 166.03s 60.48s 113.43s 11.30s 24.52s
timeouts 40 (8.26%) 42 (8.68%) 43 (8.88%) 17 (3.51%) 17 (3.51%)

16−30 words 1204.10s 135.24s 229.75s 29.33s 60.71s
timeouts 92 (82.14%) 51 (45.54%) 51 (45.54%) 43 (38.39%) 43 (38.39%)

Table 1.2: Results of the XTAG parsing experiment

As a note, in our experiments we did not use the supertagger included in the LEM
package, which significantly increases its efficiency at the cost of accuracy [40]. We
must also note that longer sentences are assigned up to millions of parses by the
XTAG grammar, making it unlikely that the first 1000 parses found by the constraint
parser also include the best parses. One may be able to remedy this using specialized
search techniques for constraint parsing [11].

1.9 Conclusion

The goals of the research reported in this chapter were to classify dependency gram-
mars in terms of their generative capacity and parsing complexity, and to explore
their expressive power in the context of a practical system. To reach the first goal,
we have developed the framework of regular dependency grammars, which provides
a link between dependency structures on the one hand, and mildly context-sensitive
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grammar formalisms such as TAG on the other. To reach the second goal, we have
designed a new meta grammar formalism, XDG, implemented a grammar develop-
ment environment for it, and used this to give novel accounts of linguistic phenom-
ena such as word order variation, and to develop a powerful syntax-semantics inter-
face. Taken together, our research has provided fundamental insights into both the
theoretical and the practical aspects of dependency grammars, and a more accurate
picture of their usability.
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