Mozart: A Programming System for Agent Applications

Peter Van Roy
Université catholique de Louvain and SICS

pvr@info.ucl.ac.be

Seif Haridi
Swedish Institute of Computer Science

seif@sics.se

November 3, 1999

Abstract

The Mozart Programming System is a development
platform designed for distributed programming, sym-
bolic computation, and constraint-based inferenc-
ing. This article gives a survey of the abilities
of Mozart for open, concurrent, resource-aware dis-
tributed computing. We show by example how easy
it is to develop applications with these properties.
This makes Mozart particularly well-suited for build-
ing agent applications. We give a summary of some
current agent-based projects in Mozart.

1 Introduction

The Mozart Programming System is a general-
purpose development platform that was designed
specifically to support concurrency, distribution,
resource-aware computation, and symbolic computa-
tion and inferencing [4]. This makes it well-suited for
agent-based programming.

Mozart implements Oz, a multiparadigm lan-
guage that resists easy classification. Oz has a simple
underlying model based on concurrent constraints ex-
tended with state and higher-orderness [2]. Oz can
appear to the programmer as a concurrent object-
oriented and functional language.

This article is structured as follows. Section 2
talks about symbolic computation and constraint-
based inferencing. Section 3 talks about concurrency
and explains why dataflow synchronization is impor-
tant. Section 4 shows transparent distribution with
small code examples and explains why it is efficient.
Section 5 explains how to do resource-aware com-

putation. Section 6 lists some current agent-based
projects using Mozart as their development platform.
Finally, Section 7 gives perspectives on the future
evolution of Mozart.

Mozart was developed by the Mozart Consortium,
a loose collaboration between the German Research
Center for Artificial Intelligence (DFKI), Germany,
the Swedish Institute of Computer Science, Sweden,
the Université catholique de Louvain, Belgium, and
the Universitat des Saarlandes, Germany.

2 Symbolic computation and in-
ferencing

The Oz language provides the abilities of constraint,
logic, and lazy functional languages. There are
higher-order functions with lexical scoping. Func-
tions can be declared as lazy. There are three con-
straint systems, namely rational trees (as in mod-
ern Prologs), finite domains, and finite sets of in-
tegers. Performance is competitive with commer-
cial systems (including ILOG Solver, CHIP, SICStus
Prolog, and Prolog 1V), but Oz is much more ex-
pressive and flexible, providing first-class computa-
tion spaces, programmable search strategies, a GUI
for the interactive exploration of search trees, paral-
lel search engines that exploit networked computers,
and a programming interface to add new, efficient
constraint systems. Parallel search engines make it
easy for ordinary users to vastly increase the per-
formance of compute-intensive applications, without
having to rewrite them.

3 Concurrency and dataflow syn-
chronization

Mozart provides lightweight threads and dataflow
synchronization. These help the programmer struc-
ture his or her application in a modular way. Threads
are so cheap that one can afford to create them in
large numbers. On most machines at least 100000
simultaneous active threads are possible; more if
main memory is very large. Dataflow synchroniza-
tion means that concurrent programming becomes
very easy. For example, synchronizing on data avail-
ability is completely invisible. This is one of the most
common concurrent operations.

Because of dataflow synchronization, many con-
current and distributed programming idioms become
very simple [3]. They are also efficient. For exam-
ple, we have measured a producer/consumer exam-
ple that generates a stream of 1000000 integers and
sums them [1]. This does asynchronous FIFO com-
munication between the producer and consumer. We
compared Java 2 (JDK 1.2) with Mozart 1.0.1 on
an UltraSPARC 2 running Solaris. For Mozart, the
centralized and distributed solutions both require 32
lines of code (the code is identical in both cases, see
Section 4), running in 4 and 8 seconds, respectively.
For Java, the centralized and distributed solutions
are quite different (108 and 220 lines of code; dis-
tribution uses RMI), running in 18 and 3600 sec-
onds, respectively. The distributed solutions run the
producer and consumer on different machines on the
same LAN.

We put this example in perspective. For general
computations, Mozart and Java 2 have comparable
performance. However, in concurrent and distributed
programming and in symbolic computation, Mozart
outperforms Java 2 significantly.

4 Distribution

In Mozart, a distributed program is a program that
is partitioned between a set of “sites,” where a site
is just an operating system process. Sites can be on
the same machine or on different machines.
Distributed programming in Mozart is ridicu-
lously easy because it is network transparent. That
is, the same program can be spread out over more
than one site, and it will still do exactly the same
computation. From the programmer’s point of view,

the network is invisible. Whether a computation hap-
pens here or there has no effect on what the program
does. It only has an effect on how long it takes for
the program to do it.

In our experience, new users find it hard to be-
lieve that Mozart is really network transparent and
that this does not result in inefficient network oper-
ations. So we’ll start off by showing exactly how this
is done. In fact, Mozart also makes it easy to ensure
fault tolerance; this is explained in the distribution
tutorial [5].

4.1 Network transparency and openness

Network transparency means that a program will per-
form exactly the same computation independently of
how it is partitioned over a set of sites. This means
that a language entity used on one site has to be-
have in rigorously the same way if it is referenced
from many sites. To illustrate this, we’ll give self-
contained code examples that can be run in Mozart’s
interactive user interface. In these examples, we will
reference language entities from two sites.

In Mozart, openness is implemented by means of
tickets. A ticket is a global reference into a Mozart
store, represented as an ASCII string. A Mozart com-
putation can create a ticket for any local reference. A
second computation gets the reference by getting the
ticket. Since the ticket is an ASCII string, there are
a million and one ways that another process can get
the ticket. It could be through a shared file, through
a Web page, through email, etc.

Let’s start with a simple example. The first pro-
cess has a big data structure that it wants to share.
It first creates the ticket:

declare

X=the_novel(
text:"It was a dark and ..."
author:"E.G.E. Bulwer-Lytton"
year:1803)

{Show {Connection.offerUnlimited X}}

Creating and getting tickets implemented
through the module Connection. The code creates
the ticket (with Connection.offerUnlimited) and
displays it in the Mozart emulator window (with
Show). Any other process that wants to get a copy of
X just has to know the ticket. Here’s what the other
process does:

are

declare
X2={Connection.take
>, ..ticket comes here...’}
(To make this work, replace the text ’...ticket
comes here...’ by what was displayed by the first

process.) That’s it. The reference X2 now points to
the big data structure. Both X and X2 behave identi-
cally.

This works for other data types as well. Let’s say
the first process has a function instead of a record:

declare
fun {MyEncoder X}
(X*4449+1234) mod 33667 end

{Show {Connection.offerUnlimited
MyEncoder}}

The second process can get the function easily:

declare
E2={Connection.take
’...MyEncoder’s ticket...’}

{Show {E2 10000}} % Call function

In addition to records and functions, the ticket
can also be used to pass unbound variables. Such
variables can be bound to exactly one value. Any
operation that needs the value will wait; this is how
Mozart does dataflow synchronization [3]. The first
process creates the variable and makes it globally ac-
cessible:

declare X

{Show {Connection.offerUnlimited X}}

But the process does not bind the variable yet. Other
processes can get a reference to the variable:

declare
X={Connection.take
>, ..X’s ticket...’}

{Browse X}

Unlike Show, which just prints the current value
Browse is a concurrent tool that observes the store
continuously and tells us when the variable is bound.
If we bind the variable to something, then the binding
will become visible at all sites that reference the vari-
able. Any process can bind the variable, including a
different process than the variable’s creator.

With tickets, one can pass references to any data
type, including objects, classes, functors, and ports.
For example, here’s how to distribute an object:

declare
class Coder
attr seed
meth init(S) seed<-S end
meth get (X)
X=0seed
seed<-(@seed*1234+4449)mod 33667
end
end

C={New Coder init(100)}

{Show {Connection.offerUnlimited C}}

This defines the class Coder and an object C. Any
process that takes the object’s ticket will reference
it. The Mozart system guarantees that the object will
behave exactly like a centralized object. For example,
if the object raises an exception, then the exception
will be raised in the thread calling the object.

As a final example, let’s use a port to make an
open server. A port is an Oz type; it is a channel with
an asynchronous send operation. It guarantees that
successive sends in the same thread will appear in
the same order in the channel’s stream. Let’s create
a port, make it globally accessible, and display the
stream contents locally:

declare S P in
{NewPort S P}
thread
for X in S do
{Browse X}
end
end

{Show {Connection.offerUnlimited P}}

This sets up a thread to display everything sent to the
port. The for loop' causes dataflow synchronization
to take place for elements appearing on the stream
S. Each time a new element appears, the loop does a
new iteration. Here’s how a second process sends to
the port:

declare
P={Connection.take

!The for syntax is supported starting from Mozart 1.1.0.

’,..P’s ticket...’}

thread {Send P 100} {Send P 200} end
thread {Send P foo} {Send P bar} end

In the first process, 100 will appear before 200 and
foo will appear before bar.

4.2 Network awareness

These examples show us that the apparently simple
module Connection is actually doing many different
things. Its implementation uses a wide variety of dis-
tributed algorithms to provide a simple abstraction
to the programmer.

We have left one big question unanswered.
We’ve seen that Connection lets us build network-
transparent connections between processes. But
what price have we paid in terms of network oper-
ations? There are in fact two related questions:

e What are the network communications that the
system uses to implement the transparency?

e Are the network communications predictable,
i.e., is it possible to build applications that com-
municate in predictable ways?

As we will see, the network communications are both
few and predictable; in most cases exactly what
would be achieved by explicit message passing. This
property of the implementation is called network
awareness. Here’s a quick summary of what happens
for the most-used language entities; for more details
please see the distribution tutorial [5].

¢ Records, procedures, and functions. These
are copied over immediately when the ticket is
taken. This takes one round trip, i.e., two mes-
sages. At most one copy of a given procedure
or function can exist on a site.

¢ Dataflow variables. When binding the vari-
able, one message is sent to each site that ref-
erences the variable.

e Objects. By default, objects execute locally
on each site that calls them. A mobility pro-
tocol moves the object to a site that asks for
it. This requires a maximum of three messages
for each object move. This is optimized for the
case when the object is updated frequently; it
is also possible to optimize for other cases.

¢ Ports. Sending to a port is both asynchronous
and FIFO. Each element sent causes one mes-
sage to be sent to the port’s home site. This
kind of send is not possible with RMI, but it
is important to have: in many cases, one can
send things without having to wait for a result.

It is clear that the distributed behavior of these enti-
ties is both simple and well-defined. In a first approx-
imation, we recommend that a developer just ignore
it and assume that the system is being essentially as
efficient as a human programmer doing explicit mes-
sage passing. There are no hidden inefficiencies.

5 Resource-aware computing

By resource we mean any system ability that is re-
stricted to a single site. An important part of any
adaptive distributed computation is that it can spec-
ify dynamically what resources it needs, and link it-
self to those resources on the site it is initiated.

In Mozart, the basic unit of resource-aware com-
putation is the functor. A functor is just a mod-
ule specification that lists the resources the module
needs. For example:

declare
functor F
import 0S
export time:T
define
S P={NewPort S}
thread
for X in S do {0S.time X} end
end
fun {T} X in {Send P X} X end
end

The functor F specifies a module that imports the
resource 08, defines a server (i.e., the port and its
thread), and exports the function T, which queries
the server. The resource 0S contains basic operating
system functionality. The procedure 0S.time returns
the current time in seconds since Jan. 1, 1970.
There are several ways to install a functor on a
site. The easiest is by using a compute server. A com-
pute server takes a functor, links the site’s resources
to the functor, and executes the functor body, thus
creating a module. Compute servers are defined in
Oz [5]. For example, let’s say that CS is a local refer-
ence to a remote compute server. Then the following

code will install the functor remotely and give local
access to the function T:

declare
T={CS F}.time

{Browse {T}}

The function T is asynchronous; it can be made syn-
chronous by adding {Wait X} to its definition. The
call {Wait X} suspends until X is bound to a value.

6 Agent-based
Mozart

projects using

We mention some of the projects that are using
Mozart as their main development platform:

e The COORD project’s main goal is to develop
methods to coordinate the actions of agents by
using decentralized market-based models of in-
teraction. The project will develop techniques
to construct complex plans and resource al-
locations, and apply the results in a “band-
width market.” An original approach is to use
derivatives to express more complex resource
demands while maintaining the volatility of
market resources. Mozart is used for agent sim-
ulation. The main contact is Lars Rasmusson
(lra@sics.se).

e The DMS project’s main goal is to develop a
multi-agent platform on top of Mozart. The
platform is inspired by FTPA, but uses the prop-
erties of Mozart to provide a more powerful yet
more concise expression of agents. A secondary
goal is to study interaction protocols and build
a library of protocols useful for building real-
world agent applications. The main contact is
Fredrik Holmgren (fredrikh@sics.se).

e The ESPRIT project ToCEE’s main goal is to
develop a distributed environment for coopera-
tive and concurrent engineering in the building
and construction industry. Mozart was chosen
for its fine-grained concurrency, metaprogram-
ming abilities, constraint-based inferencing,
and ability to efficiently construct user inter-
faces. The main contact is Rainer Wasserfuhr

(Rainer.Wasserfuhr@cib.bau.tu-dresden.de).

e The InfoCities project (European Fifth Frame-
work Programme) will study the evolution of
information cities in the Internet. Mozart will
be used as a platform to house large-scale
agent simulations (millions of agents). The
project will study the laws governing their
evolution. The main contact is Seif Haridi
(seif@sics.se).

7 Conclusions and perspectives

This article explains some of the strengths of the
Mozart Programming System. In Mozart, any dis-
tributed application behaves exactly as if it were cen-
tralized, in contrast to Java-based platforms. This
vastly simplifies the development of distributed ap-
plications including agent-based ones.

Current research includes construction of agent
platforms that take advantage of Mozart’s strengths,
advanced constraint debugging, high-level abstrac-
tions for fault tolerance, security, and implementa-
tions for devices with restricted resources.

References

[1] Per Brand. An example of programming in
Mozart versus Java, October 1999. Available at
http://www.sics.se/"seif/JavaVSMozart.html.

[2] Seif Haridi, Peter Van Roy, Per Brand, and Chris-
tian Schulte. Programming languages for dis-
tributed applications. New Generation Comput-
ing, 16(3):223-261, May 1998.

[3] Seif Haridi, Peter Van Roy, Per Brand, Michael
Mehl, Ralf Scheidhauer, and Gert Smolka. Ef-
ficient logic variables for distributed computing.

ACM Transactions on Programming Languages
and Systems, May 1999.

[4] Mozart Consortium.
ming System, January 1999.
http://www.mozart-oz.org/.

The Mozart Program-
Available at

[5] Peter Van Roy, Seif Haridi, and Per Brand.
Distributed programming in Mozart — A tuto-
rial introduction. Technical report, Mozart Con-
sortium and Université catholique de Louvain,
1999. In Mozart documentation, available at
http://www.mozart-oz.org.

