
Mozart: A Programming System for Agent ApplicationsPeter Van RoyUniversit�e catholique de Louvain and SICSpvr@info.ucl.ac.beSeif HaridiSwedish Institute of Computer Scienceseif@sics.seNovember 3, 1999AbstractThe Mozart Programming System is a developmentplatform designed for distributed programming, sym-bolic computation, and constraint-based inferenc-ing. This article gives a survey of the abilitiesof Mozart for open, concurrent, resource-aware dis-tributed computing. We show by example how easyit is to develop applications with these properties.This makes Mozart particularly well-suited for build-ing agent applications. We give a summary of somecurrent agent-based projects in Mozart.1 IntroductionThe Mozart Programming System is a general-purpose development platform that was designedspeci�cally to support concurrency, distribution,resource-aware computation, and symbolic computa-tion and inferencing [4]. This makes it well-suited foragent-based programming.Mozart implements Oz, a multiparadigm lan-guage that resists easy classi�cation. Oz has a simpleunderlying model based on concurrent constraints ex-tended with state and higher-orderness [2]. Oz canappear to the programmer as a concurrent object-oriented and functional language.This article is structured as follows. Section 2talks about symbolic computation and constraint-based inferencing. Section 3 talks about concurrencyand explains why dataow synchronization is impor-tant. Section 4 shows transparent distribution withsmall code examples and explains why it is e�cient.Section 5 explains how to do resource-aware com-

putation. Section 6 lists some current agent-basedprojects using Mozart as their development platform.Finally, Section 7 gives perspectives on the futureevolution of Mozart.Mozart was developed by the Mozart Consortium,a loose collaboration between the German ResearchCenter for Arti�cial Intelligence (DFKI), Germany,the Swedish Institute of Computer Science, Sweden,the Universit�e catholique de Louvain, Belgium, andthe Universit�at des Saarlandes, Germany.2 Symbolic computation and in-ferencingThe Oz language provides the abilities of constraint,logic, and lazy functional languages. There arehigher-order functions with lexical scoping. Func-tions can be declared as lazy. There are three con-straint systems, namely rational trees (as in mod-ern Prologs), �nite domains, and �nite sets of in-tegers. Performance is competitive with commer-cial systems (including ILOG Solver, CHIP, SICStusProlog, and Prolog IV), but Oz is much more ex-pressive and exible, providing �rst-class computa-tion spaces, programmable search strategies, a GUIfor the interactive exploration of search trees, paral-lel search engines that exploit networked computers,and a programming interface to add new, e�cientconstraint systems. Parallel search engines make iteasy for ordinary users to vastly increase the per-formance of compute-intensive applications, withouthaving to rewrite them.1



3 Concurrency and dataow syn-chronizationMozart provides lightweight threads and dataowsynchronization. These help the programmer struc-ture his or her application in a modular way. Threadsare so cheap that one can a�ord to create them inlarge numbers. On most machines at least 100000simultaneous active threads are possible; more ifmain memory is very large. Dataow synchroniza-tion means that concurrent programming becomesvery easy. For example, synchronizing on data avail-ability is completely invisible. This is one of the mostcommon concurrent operations.Because of dataow synchronization, many con-current and distributed programming idioms becomevery simple [3]. They are also e�cient. For exam-ple, we have measured a producer/consumer exam-ple that generates a stream of 1000000 integers andsums them [1]. This does asynchronous FIFO com-munication between the producer and consumer. Wecompared Java 2 (JDK 1.2) with Mozart 1.0.1 onan UltraSPARC 2 running Solaris. For Mozart, thecentralized and distributed solutions both require 32lines of code (the code is identical in both cases, seeSection 4), running in 4 and 8 seconds, respectively.For Java, the centralized and distributed solutionsare quite di�erent (108 and 220 lines of code; dis-tribution uses RMI), running in 18 and 3600 sec-onds, respectively. The distributed solutions run theproducer and consumer on di�erent machines on thesame LAN.We put this example in perspective. For generalcomputations, Mozart and Java 2 have comparableperformance. However, in concurrent and distributedprogramming and in symbolic computation, Mozartoutperforms Java 2 signi�cantly.4 DistributionIn Mozart, a distributed program is a program thatis partitioned between a set of \sites," where a siteis just an operating system process. Sites can be onthe same machine or on di�erent machines.Distributed programming in Mozart is ridicu-lously easy because it is network transparent. Thatis, the same program can be spread out over morethan one site, and it will still do exactly the samecomputation. From the programmer's point of view,

the network is invisible. Whether a computation hap-pens here or there has no e�ect on what the programdoes. It only has an e�ect on how long it takes forthe program to do it.In our experience, new users �nd it hard to be-lieve that Mozart is really network transparent andthat this does not result in ine�cient network oper-ations. So we'll start o� by showing exactly how thisis done. In fact, Mozart also makes it easy to ensurefault tolerance; this is explained in the distributiontutorial [5].4.1 Network transparency and opennessNetwork transparency means that a program will per-form exactly the same computation independently ofhow it is partitioned over a set of sites. This meansthat a language entity used on one site has to be-have in rigorously the same way if it is referencedfrom many sites. To illustrate this, we'll give self-contained code examples that can be run in Mozart'sinteractive user interface. In these examples, we willreference language entities from two sites.In Mozart, openness is implemented by means oftickets. A ticket is a global reference into a Mozartstore, represented as an ASCII string. A Mozart com-putation can create a ticket for any local reference. Asecond computation gets the reference by getting theticket. Since the ticket is an ASCII string, there area million and one ways that another process can getthe ticket. It could be through a shared �le, througha Web page, through email, etc.Let's start with a simple example. The �rst pro-cess has a big data structure that it wants to share.It �rst creates the ticket:declareX=the_novel(text:"It was a dark and ..."author:"E.G.E. Bulwer-Lytton"year:1803){Show {Connection.offerUnlimited X}}Creating and getting tickets are implementedthrough the module Connection. The code createsthe ticket (with Connection.offerUnlimited) anddisplays it in the Mozart emulator window (withShow). Any other process that wants to get a copy ofX just has to know the ticket. Here's what the otherprocess does:



declareX2={Connection.take'...ticket comes here...'}(To make this work, replace the text '...ticketcomes here...' by what was displayed by the �rstprocess.) That's it. The reference X2 now points tothe big data structure. Both X and X2 behave identi-cally.This works for other data types as well. Let's saythe �rst process has a function instead of a record:declarefun {MyEncoder X}(X*4449+1234) mod 33667 end{Show {Connection.offerUnlimitedMyEncoder}}The second process can get the function easily:declareE2={Connection.take'...MyEncoder's ticket...'}{Show {E2 10000}} % Call functionIn addition to records and functions, the ticketcan also be used to pass unbound variables. Suchvariables can be bound to exactly one value. Anyoperation that needs the value will wait; this is howMozart does dataow synchronization [3]. The �rstprocess creates the variable and makes it globally ac-cessible:declare X{Show {Connection.offerUnlimited X}}But the process does not bind the variable yet. Otherprocesses can get a reference to the variable:declareX={Connection.take'...X's ticket...'}{Browse X}Unlike Show, which just prints the current value,Browse is a concurrent tool that observes the storecontinuously and tells us when the variable is bound.If we bind the variable to something, then the bindingwill become visible at all sites that reference the vari-able. Any process can bind the variable, including adi�erent process than the variable's creator.

With tickets, one can pass references to any datatype, including objects, classes, functors, and ports.For example, here's how to distribute an object:declareclass Coderattr seedmeth init(S) seed<-S endmeth get(X)X=@seedseed<-(@seed*1234+4449)mod 33667endendC={New Coder init(100)}{Show {Connection.offerUnlimited C}}This de�nes the class Coder and an object C. Anyprocess that takes the object's ticket will referenceit. The Mozart system guarantees that the object willbehave exactly like a centralized object. For example,if the object raises an exception, then the exceptionwill be raised in the thread calling the object.As a �nal example, let's use a port to make anopen server. A port is an Oz type; it is a channel withan asynchronous send operation. It guarantees thatsuccessive sends in the same thread will appear inthe same order in the channel's stream. Let's createa port, make it globally accessible, and display thestream contents locally:declare S P in{NewPort S P}threadfor X in S do{Browse X}endend{Show {Connection.offerUnlimited P}}This sets up a thread to display everything sent to theport. The for loop1 causes dataow synchronizationto take place for elements appearing on the streamS. Each time a new element appears, the loop does anew iteration. Here's how a second process sends tothe port:declareP={Connection.take1The for syntax is supported starting from Mozart 1.1.0.



'...P's ticket...'}thread {Send P 100} {Send P 200} endthread {Send P foo} {Send P bar} endIn the �rst process, 100 will appear before 200 andfoo will appear before bar.4.2 Network awarenessThese examples show us that the apparently simplemodule Connection is actually doing many di�erentthings. Its implementation uses a wide variety of dis-tributed algorithms to provide a simple abstractionto the programmer.We have left one big question unanswered.We've seen that Connection lets us build network-transparent connections between processes. Butwhat price have we paid in terms of network oper-ations? There are in fact two related questions:� What are the network communications that thesystem uses to implement the transparency?� Are the network communications predictable,i.e., is it possible to build applications that com-municate in predictable ways?As we will see, the network communications are bothfew and predictable; in most cases exactly whatwould be achieved by explicit message passing. Thisproperty of the implementation is called networkawareness. Here's a quick summary of what happensfor the most-used language entities; for more detailsplease see the distribution tutorial [5].� Records, procedures, and functions. Theseare copied over immediately when the ticket istaken. This takes one round trip, i.e., two mes-sages. At most one copy of a given procedureor function can exist on a site.� Dataow variables. When binding the vari-able, one message is sent to each site that ref-erences the variable.� Objects. By default, objects execute locallyon each site that calls them. A mobility pro-tocol moves the object to a site that asks forit. This requires a maximum of three messagesfor each object move. This is optimized for thecase when the object is updated frequently; itis also possible to optimize for other cases.

� Ports. Sending to a port is both asynchronousand FIFO. Each element sent causes one mes-sage to be sent to the port's home site. Thiskind of send is not possible with RMI, but itis important to have: in many cases, one cansend things without having to wait for a result.It is clear that the distributed behavior of these enti-ties is both simple and well-de�ned. In a �rst approx-imation, we recommend that a developer just ignoreit and assume that the system is being essentially ase�cient as a human programmer doing explicit mes-sage passing. There are no hidden ine�ciencies.5 Resource-aware computingBy resource we mean any system ability that is re-stricted to a single site. An important part of anyadaptive distributed computation is that it can spec-ify dynamically what resources it needs, and link it-self to those resources on the site it is initiated.In Mozart, the basic unit of resource-aware com-putation is the functor. A functor is just a mod-ule speci�cation that lists the resources the moduleneeds. For example:declarefunctor Fimport OSexport time:TdefineS P={NewPort S}threadfor X in S do {OS.time X} endendfun {T} X in {Send P X} X endendThe functor F speci�es a module that imports theresource OS, de�nes a server (i.e., the port and itsthread), and exports the function T, which queriesthe server. The resource OS contains basic operatingsystem functionality. The procedure OS.time returnsthe current time in seconds since Jan. 1, 1970.There are several ways to install a functor on asite. The easiest is by using a compute server. A com-pute server takes a functor, links the site's resourcesto the functor, and executes the functor body, thuscreating a module. Compute servers are de�ned inOz [5]. For example, let's say that CS is a local refer-ence to a remote compute server. Then the following



code will install the functor remotely and give localaccess to the function T:declareT={CS F}.time{Browse {T}}The function T is asynchronous; it can be made syn-chronous by adding {Wait X} to its de�nition. Thecall {Wait X} suspends until X is bound to a value.6 Agent-based projects usingMozartWe mention some of the projects that are usingMozart as their main development platform:� The COORD project's main goal is to developmethods to coordinate the actions of agents byusing decentralized market-based models of in-teraction. The project will develop techniquesto construct complex plans and resource al-locations, and apply the results in a \band-width market." An original approach is to usederivatives to express more complex resourcedemands while maintaining the volatility ofmarket resources. Mozart is used for agent sim-ulation. The main contact is Lars Rasmusson(lra@sics.se).� The DMS project's main goal is to develop amulti-agent platform on top of Mozart. Theplatform is inspired by FIPA, but uses the prop-erties of Mozart to provide a more powerful yetmore concise expression of agents. A secondarygoal is to study interaction protocols and builda library of protocols useful for building real-world agent applications. The main contact isFredrik Holmgren (fredrikh@sics.se).� The ESPRIT project ToCEE's main goal is todevelop a distributed environment for coopera-tive and concurrent engineering in the buildingand construction industry. Mozart was chosenfor its �ne-grained concurrency, metaprogram-ming abilities, constraint-based inferencing,and ability to e�ciently construct user inter-faces. The main contact is Rainer Wasserfuhr(Rainer.Wasserfuhr@cib.bau.tu-dresden.de).

� The InfoCities project (European Fifth Frame-work Programme) will study the evolution ofinformation cities in the Internet. Mozart willbe used as a platform to house large-scaleagent simulations (millions of agents). Theproject will study the laws governing theirevolution. The main contact is Seif Haridi(seif@sics.se).7 Conclusions and perspectivesThis article explains some of the strengths of theMozart Programming System. In Mozart, any dis-tributed application behaves exactly as if it were cen-tralized, in contrast to Java-based platforms. Thisvastly simpli�es the development of distributed ap-plications including agent-based ones.Current research includes construction of agentplatforms that take advantage of Mozart's strengths,advanced constraint debugging, high-level abstrac-tions for fault tolerance, security, and implementa-tions for devices with restricted resources.References[1] Per Brand. An example of programming inMozart versus Java, October 1999. Available athttp://www.sics.se/~seif/JavaVSMozart.html.[2] Seif Haridi, Peter Van Roy, Per Brand, and Chris-tian Schulte. Programming languages for dis-tributed applications. New Generation Comput-ing, 16(3):223{261, May 1998.[3] Seif Haridi, Peter Van Roy, Per Brand, MichaelMehl, Ralf Scheidhauer, and Gert Smolka. Ef-�cient logic variables for distributed computing.ACM Transactions on Programming Languagesand Systems, May 1999.[4] Mozart Consortium. The Mozart Program-ming System, January 1999. Available athttp://www.mozart-oz.org/.[5] Peter Van Roy, Seif Haridi, and Per Brand.Distributed programming in Mozart { A tuto-rial introduction. Technical report, Mozart Con-sortium and Universit�e catholique de Louvain,1999. In Mozart documentation, available athttp://www.mozart-oz.org.


