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We consider variables, numbers, terms and values as follows:

x ∈ Var

n ∈ N

t ∈ Ter = x | t t | λx . t | n | S

v ∈ Val = λx . t | n | S

A term is pure if it doesn’t contain numbers or the successor operator S. The reduction

relation → ⊆ Ter2 is defined as follows:

Beta
(λx . t)v → t[x := v]

S
n′ = n+ 1

Sn→ n′

DAL
t1 → t′1

t1t2 → t′1t2
DAR

t → t′

vt → vt′

A procedure is a closed term of the form λx . t. Boolean values, pairs and the natural

numbers can be represented as pure values as follows:

true
def
= λxy . x

false
def
= λxy . y

(t1, t2)
def
= (λxyf . fxy)t1 t2

c0
def
= λfs . s

cn
def
= λfs . cn−1f(fs) (n ≥ 1)

Exercise 1.1: Numbers We say that a term t represents a number n if t is pure and

the term tS0 evalutes to n. Find a pure procedure

(a) add that given values representing m and n yields a value representing m+n.

(b) mul that given values representing m and n yields a value representing m ·n.

(c) exp that given values representing m and n yields a value representing mn.
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Abstract

Strong normalization is one of the fundamental proof-theoretic aspects of
many typed λ-calculi. We prove strong normalization of Call-By-Push-Value
with respect to a small-step reduction relation based on the equational the-
ory of the calculus. To obtain a uniform treatment of the various computa-
tion types of Call-By-Push-Value, we adapt Lindley’s >>-lifting to a notion
of >>-closure. This allows us to define a Girard/Tait style reducibility
predicate, in the presence of several different computation types.
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Chapter 1

Introduction

The Call-By-Push-Value calculus is a model of higher-order computation
and a refinement of the simply-typed λ-calculus that can easily be adapted
to various computational effects. In this thesis, we will provide a notion
of reduction for the Call-By-Push-Value calculus, based on its equational
therory, and prove strong normalization of the resulting calculus.

When studying the pure simply-typed λ-calculus (see Table 1.1), evalua-
tion order does not matter. Every term reduces to a unique normal form, re-
gardless of the order in which the reduction rules are applied. This no longer
holds, once computational effects, like divergence or output, are added. Con-
sider the term (λx.1) diverge, where diverge is a term that has no normal
form. Under call-by-value (CBV), where functions are only applied to fully
evaluated arguments, this term has no normal form. Under call-by-name
(CBN), where functions are applied only to completely unevaluated terms,
the term reduces to 1. If we add printing, every term still has a normal
form, but the output of a term like (λx.print“a”;x) (print“b”; 1) is “ab”
under CBN but “ba” under CBV.

Thus, whenever a new style of semantics is defined it usually has to be
defined individually for the call-by-name and the call-by-value setting, as
the two are fundamentally different. Furthermore, many results need to be
proven for both settings individually.

1.1 Call-By-Push-Value

This duplication of work led to the introduction of the Call-By-Push-Value
(CBPV) calculus by Paul B. Levy [Lev99]. The main idea behind the CBPV
calculus is to serve as a unified paradigm, which is meant to “subsume” the
simply-typed λ-calculus under CBV and CBN in the presence of various
computational effects. Subsumption here means that there are embeddings
from the simply typed λ-calculus, one for CBN and one for CBV, into CBPV,
such that all the usual operational semantics, denotational semantics, or
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Terms and typing rules

Γ, x : A ` x : A

Γ, x : A `M : B

Γ ` λx.M : A→ B

Γ `M : A→ B Γ ` N : A

Γ `M N : B

Γ `M : A Γ ` N : B

Γ ` (M,N) : A×B

Γ `M : A×B

Γ ` π1M : A

Γ `M : A×B

Γ ` π2M : B

β-reductions

(λx.M) N →M [N/x] π1(M,N)→M π2(M,N)→ N

η-reductions

λx.M x→M (π1M,π2M)→M

Table 1.1: The simply-typed λ-calculus

equations for CBN and CBV can be derived, via the embeddings, from the
corresponding properties of CBPV. To accomplish this, the calculus needs
to be very fine grain. It distinguishes values from computations already
at type level. A term of type F A for example is a computation that will
return a value of type A, possibly causing effects in the process. CBPV
functions are also computations, but their arguments are always values. So
to apply one function to another, we have to build a thunk of the argument,
thus “wrapping” the computation into a value. So an application f g in
the λ-calculus corresponds to f(thunk g) in CBPV. Extensive work on the
calculus and its relations to other calculi can be found in [Lev04].

In this thesis, we will investigate the CBPV calculus in an effect free
setting. To subsume the simply-typed λ-calculus under the deterministic
reduction relations CBN and CBV, Levy also defines the Call-By-Push-
Value calculus using a deterministic reduction relation. We will generalize
the notion of reduction in CBPV to allow reductions to occur anywhere
in a term, basing our reduction relation on the CBPV equational theory.
This opens up classic proof theoretic questions like strong normalization
and confluence of the new reduction relation.

1.2 Strong Normalization

Proving strong normalization turns out to be interesting and non-trivial due
to the computation types of the calculus and the elimination constructs as-
sociated with them. These make a direct application of the Girard/Tait
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proof technique (cf. Section 3.1) rather difficult. There are normalization
results for other computational calculi, like Moggi’s computational meta-
language λml [Mog91]. The calculus λml, however, has only one additional
type constructor for computation types. CBPV on the other hand has sev-
eral different kinds of computation types, like the ones noted above, so a
uniform treatment of those is desirable.

To obtain a treatment of all computation types that is as uniform as
possible, we will introduce the notion of a >>-closure. This will be a vari-
ant of the >>-lifting approach of Lindley and Stark used to prove strong
normalization of λml [LS05]. We will then show how this adaptation can be
used to prove strong normalization of CBPV.

Furthermore, we will investigate the embeddings from CBN and CBV
into CBPV in order to derive a relation between the operational semantics
of the λ-calculus under free βη-reduction and our reduction relation for
CBPV. We will show how to derive the well known normalization result for
the lambda calculus from our normalization result for CBPV.

At last, we will investigate confluence of CBPV. As it turns out, there
are two reduction rules in CBPV that each cause confluence to fail. We
will provide an example and relate this to a similar problem arising in the
simply-typed λ-calculus with sums.

1.3 Outline

In Chapter 2 we introduce the Call-By-Push-Value calculus as it was origi-
nally introduced by P.B. Levy along with two equivalent operational seman-
tics, as well as CBPV stacks. Furthermore, we develop a nondeterministic
reduction relation based on the CBPV equational theory.

In Chapter 3 we give an overview over the field of strong normalization.
We introduce the classic Girard/Tait technique, used to prove strong nor-
malization of the simply-typed λ-calculus, which is also the basis for our
normalization proof. We explain the problem of a direct application of the
Girard/Tait technique to computational calculi and consider the approach
of >>-lifting, which can be used to handle computational or monadic types
in normalization proofs.

In Chapter 4 we adapt the approach of >>-lifting to define our notion
>>-closure. We then use this to prove strong normalization of CBPV.

In Chapter 5 we investigate possible embeddings of the λ-calculus under
unrestricted βη-reduction into CBPV with our nondeterministic reduction
relation. We also show why confluence fails for CBPV and introduce direc-
tions for further work.
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Chapter 2

The Call-By-Push-Value
Calculus

The Call-By-Push-Value calculus was originally introduced by Paul Blain
Levy in 1999 [Lev99]. The idea that led to the introduction of CBPV was
that when investigating the simply-typed λ calculus under fixed evalua-
tion strategies, like call-by-name and call-by-value, many results need to
be proven for each such evaluation strategy individually. CBPV was intro-
duced to “subsume” the simply-typed λ-calculus under call-by-name and
call-by-value.

2.1 Terms and Types

To achieve this, the calculus needs to be very fine grain. The central idea
is to distinguish values from computations, both at term and at type level.
The main intuition behind this is that values “are”, and thus never need to
be evaluated, while computations “do” [Lev99]. Thus, CBPV has two type
judgements Γ `v V : A assigning value types to value terms and Γ `c M :
B assigning computation types to computations. When denoting types in
CBPV, we use the following conventions:

Notation. We always denote computation types with an underscore. Thus,
A,A′, . . . stand for value types, while B,C, . . . are computation types. For
terms U, V,W range over values while M,N range over computations.

Using this notation, we have the following types in CBPV:

A ::= U B | Σi∈IAi | A×A | 1
B ::= F A | Πi∈IBi | A→ B

where I is any countable set of indices.
For values, there is the thunk type U B, representing a computation

wrapped into a value. Then we have sum types with countable sets of
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Γ, x : A,Γ′ `v x : A

Γ `v V : A Γ, x : A `c M : B

Γ `c let V be x.M : B

Γ `v V : A

Γ `c return V : F A

Γ `c M : F A Γ, x : A `c N : B

Γ `c M to x.N : B

Γ `c N : B

Γ `v thunk N : U B

Γ `v V : U B

Γ `c force V : B

Γ `v V : Aı̂

Γ `v (̂ı, V ) :
∑

i∈I Ai

Γ `v V : Σi∈IAi . . .Γ, x : Ai `c Mi : B . . . i∈I

Γ `c pm V as {. . . , (i, x).Mi, . . .} : B

Γ `v V : A Γ `v V ′ : A′

Γ `v (V, V ′) : A×A′
Γ `v V : A×A′ Γ, x : A, y : A′ `c M : B

Γ `c pm V as (x, y).M : B

. . .Γ `c Mi : Bi . . . i∈I

Γ `c λ{. . . i.Mi, . . .} :
∏

i∈I Bi

Γ `c M :
∏

i∈I Bi

Γ `c M ı̂ : B ı̂

Γ, x : A `c M : B

Γ `c λx.M : A→ B

Γ `v V : A Γ `c M : A→ B

Γ `c M V : B

Table 2.1: Typing rules for the terms from CBPV

indices, as well as pairs of values. 1 is the unit type, whose only value is ().
For computations, there is the returner type F A for computations returning
a value of type A and a projection product, which is an indexed collection
of computations. Furthermore, we have the usual function types with the
restriction that in CBPV all functions go from value types to computation
types.

The types mentioned so far allow some interesting basic types to be
defined within the CBPV calculus. For example, the type bool can be
defined as 1 + 1 =

∑
i∈{0,1} 1, and nat can be defined as

∑
i∈N 1.

The terms of the calculus and the corresponding typing rules can be
found in Table 2.1. Here Γ is a context defined as follows.

Definition 2.1.1 (Context). A context Γ is a finite list of identifiers with
associated value types x0 : A0, . . . , xk : Ak.

Note that for both judgements, only value types appear to the left of `.
Thus, the restriction on function types is necessary, since function applica-
tion is done by substitution and variables can only have value type. In the
elimination rules for sums and pairs, pm stands for “pattern matching” of
the corresponding values into a computation. The semantics will be shown
in the next section.
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return V ⇓ return V λ{. . . , i.Mi, . . .} ⇓ λ{. . . , i.Mi, . . .}

λx.M ⇓ λx.M

M [V/x] ⇓ T

let V be x.M ⇓ T

M ⇓ T

force thunk M ⇓ T

M ⇓ return V N [V/x] ⇓ T

M to x.N ⇓ T

M [V/x, V ′/y] ⇓ T

pm (V, V ′) as (x, y).M ⇓ T

Mı̂[V/x] ⇓ T

pm (̂ı, V ) as {. . . , (i, x).Mi, . . .} ⇓ T

M ⇓ λx.N N [V/x] ⇓ T

M V ⇓ T

M ⇓ λ{. . . , i.Ni, . . .} Nı̂ ⇓ T

M ı̂ ⇓ T

Table 2.2: Big-step semantics for Call-By-Push-Value

2.2 Operational Semantics

Since the main purpose of CBPV is to subsume the simply-typed λ-calculus
under fixed evaluation strategies, like CBN and CBV, its operational se-
mantics also defines a fixed evaluation order. Levy defines two equivalent
operational semantics, one is a big-step semantics, the other is formulated in
terms of an abstract CK machine, introduced by Felleisen and Friedman in
[FF86]. We will introduce the big-step semantics and give a short overview
over the CK machine.

In CBPV values never need to be evaluated and are thus always termi-
nal. For computation types, we have to define the set of terms we consider
terminal, i.e. not further reducible.

Definition 2.2.1 (Terminal computations). The following computations
are considered to be terminal

T ::= return V | λx.M | λ{. . . , i.Mi, . . .}

Thus, terms are only reduced to weak head normal from, meaning that
M and the Mi need not be terminal. The set of big-step reduction rules
can be found in Table 2.2. The notation M ⇓ T can be read as “M reduces
to terminal T with any (finite) number of steps”. So, in contrast to the
small-step reduction we have seen for the simply typed λ-calculus, there is
no notion of a single reduction step. This will be different in the following
machine semantics.

The CK machine evaluates a given computation to a terminal form by
implementing the big-step rules step by step, which gives us a more fine
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grained notion of a reduction step. Whenever the big-step rules require
evaluation of a subterm, the context is pushed onto a stack and the subterm
becomes the new term to be evaluated. If we include types, the configuration
of the CK machine is a tuple (M,B,K,C) where M : B is the term currently
being evaluated, K is the stack, and C is the type of the overall computation.
So the last component does not change during execution. The machine name
CK stands for control string – continuation. In our context the control string
is the term M with the stack being its continuation.

The initial configuration to evaluate a term M of type B is (M,B, nil, B),
where nil is the empty stack. The big-step rules can then be translated into
transition rules for the machine. For example, the rule for the to binding:

M ⇓ return V N [V/x] ⇓ T

M to x.N ⇓ T

can be translated as:

M to x.N B K C
 M F A [·] to x.N :: K C

return V F A [·] to x.N :: K C
 N [V/x] B K C

and the rule for application:

M ⇓ λx.N N [V/x] ⇓ T

M V ⇓ T

can be translated into the following transition rules:

M V B K C
 M A→ B V :: K C

λx.N A→ B V :: K C
 N [V/x] B K C

This is where the name Call-By-Push-Value comes from. Functions are
called by pushing their argument – which must always be a value – onto the
stack. Then the function is evaluated until there is a λ on top and we can
do substitution into the body. At this point, note that P. B. Levy uses a
different notation for application to emphasize this “push and pop” reading.
While he writes application operand first – V ′M – we use the usual nota-
tion of the λ-calculus – M V . The main reason for this is to keep notation
clear in the presence of successor terms which we will usually denote with
M ′. Furthermore, we are heading for a nondeterministic reduction relation,
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where we can reduce redexes anywhere in the term, so the “push and pop”
reading does not directly apply.

2.3 A Nondeterministic Reduction Relation

For the remainder of this document, we will investigate the CBPV calculus
in a slightly different setting. The original calculus is defined with a deter-
ministic reduction relation where reductions only occur at top-level and in
particular there is no reduction underneath of λ. We will now generalize
the reduction relation to allow reductions at every position in a term. This
of course implies that values, especially those encapsulating computations,
can also be reduced.

We will base our reduction relation on the equational theory of the CBPV
calculus [Lev99]. The equational theory defines provable equality between
terms. In particular the equational theory respects the operational semantics
from above in the sense that M ⇓ T implies that M = T is provable using
the equations. The equational theory is also respected by the denotational
semantics of all models of CBPV. When writing down equations we use the
following definition:

Definition 2.3.1. Let x be a variable and M a term. The variable x is free
in M if Γ = Γ′, x : A,Γ′′ whenever Γ `c M : B. We write xM to denote that
x is not free in M . The definition for values is analog.

We derive our reduction relation from the equational theory by giving
each equation a direction in which it can be applied to the term. If we
consider, for example, the β-equality for to:

(return V ) to x.M = M [V/x]

we transform this into the reduction rule:

(return V ) to x.M →M [V/x]

The set of all reduction rules can be found in Table 2.3. There are 3 classes
of reduction rules. The β-reductions roughly correspond to those reduc-
tions performed by the CK machine, with the difference that in our case
β-reduction can occur anywhere in the term. η-reduction is exactly the con-
verse operation to η-expansion, which allows any term to be transformed
into an introductory form of the respective type. Finally the assoc-rules
allow rewriting of the stacks, we will introduce in the next section.

We denote the reduction relation with→ and its reflexive, transitive clo-
sure with→∗, as usual. The reduction relation has the following properties:

Proposition 2.3.2. Reduction in Call-By-Push-Value preserves types and
is preserved under substitution.

11



β-reductions:

(return V ) to x.M −→M [V/x]
force thunk M −→M

pm (̂ı, V ) as {. . . , (i, x).Mi, . . .} −→Mı̂[V/x]
pm (V, V ′) as (x, y).M −→M [V/x, V ′/y]

(λ{. . . , i.Mi, . . .}) ı̂ −→Mı̂

(λx.M)V −→M [V/x]

η-reductions:

M to x.return x −→M

thunk force V −→ V

pm V as {. . . , (i, x).xM [(i, x)/z], . . .} −→M [V/z]
pm V as (x, y).xyM [(x, y)/z] −→M [V/z]

λ{. . . , i.(M i), . . .} −→M

λx.xMx −→M

assoc-rules:

(M to x.M ′) to y.xM ′′ −→M to x.(M ′ to y.xM ′′)
(M to x.M ′) ı̂ −→M to x.(M ′ ı̂)

(M to x.M ′) V −→M to x.(M ′ V )

Table 2.3: Reductions in the CBPV calculus

12



(i) Γ `c M : B ∧M →M ′ ⇒ Γ `c M ′ : B
Γ `v V : A ∧ V → V ′ ⇒ Γ `v V ′ : A

(ii) M →M ′ ⇒M [V/x]→M ′[V/x]
V → V ′ ⇒ V [W/x]→ V ′[W/x]

Proof. By induction over the derivation of M : A and the structure of M
respectively.

Proposition 2.3.3. The reduction relation contains the big-step reductions:
If M ⇓ T then M →∗ T as well.

Proof. By induction over the big-step rules using the β-reductions.

2.4 Stacks

In conjunction with the reduction relation we just defined, we will also use
the stacks from the CK machine. As we have already seen, stacks represent
evaluation contexts for computation terms. The CK machine uses this to
move parts of a term into its context in order to evaluate subexpressions. If
we look at the second rule for to in more detail, we can split this up into
two operations.

return V F A [·] to x.N :: K C
≈ return V to x.N B K C
β−→ N [V/x] B K C

The first is a rewriting of the term being evaluated and its context, “moving”
a “stack frame” from the stack to the term, and the second is a β-reduction
step. If we generalize this, we get an operation • on stacks, which is called
dismantling. The details are in Table 2.4. This way we can view a com-
putation term and an accompanying stack as a single term obtained from
completely unwinding the stack. Thus, stacks and stack dismantling are, in
this context, merely notation and in particular no reductions. When dealing
with stacks, we also use K ++L to denote the concatenation of K and L.

So far we have no way of typing stacks. To achieve this we introduce
a third typing judgement where Γ `k K : B ( C means that K takes a
computation M of type B such that M •K is a computation term of type C.
The typing rules can be found in Table 2.5. Inspection of the CK machine
shows that if the machine is in configuration (M,B,K,C) the stack K must
have type B( C.

We have seen that once a computation of appropriate type is dismantled
into a stack the construct becomes a computation term. Since there are
reductions that can occur regardless of the term plugged into the stack, it
is intuitive to define these as reductions on the stack itself.

13



M • nil = M

M • ([·] to x.N :: K) = (M to x.N) •K

M • (̂ı :: K) = (M ı̂) •K

M • (V :: K) = (M V ) •K

Table 2.4: Dismantling for stacks

Γ `k nil : B( B

Γ `k K : B( C Γ, x : A `c N : B

Γ `k [·] to x.N :: K : F A( C

Γ `k K : B( C Γ `v V : A

Γ `k V :: K : (A→ B)( C

Γ `k K : B ı̂ ( C

Γ `k ı̂ :: K :
∏

i∈I Bi ( C

Table 2.5: Typing rules for stacks

Definition 2.4.1 (Reductions on stacks). Let K be a stack of type B( C
then

K → K ′ :⇐⇒ ∀M : B : M •K →M •K ′

where M•K denotes the term obtained by plugging M into K and unwinding
the whole stack, as defined above.

Additionally, we also define the length of a stack and prove that reduc-
tions on the stack do not increase the stack length. This will be important
once we prove strong normalization of CBPV.

Definition 2.4.2 (Stack length). For every stack K we write |K| for the
length of the stack, i.e. |nil| = 0 and |F :: K| = 1 + |K| for all stack
forms F .

Lemma 2.4.3 (Reductions and stack length). For every stack K we have

K → K ′ ⇒ |K| ≥ |K ′|

Proof. Let K : B ( C be some stack and M : B with M •K → M •K ′.
There are four cases, where the stack length may change. Three of them
involve the assoc-rules and an interaction between two stack forms, while
the fourth is the η-rule for to:

assoc1: If K = L ++[·] to x.N :: [·] to y.M :: L′ then

M •K = M • (L ++[·] to x.N :: [·] to y.M :: L′)
= ((M • L) to x.N) to y.M • L′

→ (M • L) to x.(N to y.M) • L′

= M • (L ++[·] to x.(Nto y.M) :: L′) = M •K ′

14



and thus |K ′| = |K| − 1. The remaining assoc cases can be handled
by a similar use of dismantling.

assoc2:
K = L ++ [·] to x.N :: ı̂ :: L′

→ L ++ [·] to x.N ı̂ :: L′ = K ′

assoc3:
K = L ++ [·] to x.N :: V :: L′

→ L ++ [·] to x.N V :: L′ = K ′

η : If K = L ++[·] to x.return x :: L′ then the stack length may
change, even though there is no interaction between stack forms:

M •K = M • (L ++[·] to x.return x :: L′)
= ((M • L) to x.return x) • L′

→ (M • L) • L′)
= M • (L ++L′) = M •K ′

In each of these cases |K ′| = |K| − 1. We do not have to consider other
reduction rules, as their prerequisites can only occur as subterms of a stack
form. So whenever K reduces to K ′, reductions are confined to a single
stack form and no stack form can disappear due to η. Thus |K| does not
change.

Now that we have introduced the calculus with stacks and a new notion
of reduction, we turn towards the proof theoretic aspect of strong normal-
ization. In this context we will use the following definitions:

Definition 2.4.4 (Strong normalization).

• A term M is strongly normalizing iff there is no infinite reduction
sequence M → M1 → M2 → . . . beginning with M . We write M ∈
SN to denote that a term is strongly normalizing.

• Similarly a stack K is strongly normalizing (K ∈ SN ), if there is no
infinite reduction sequence starting with K
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Chapter 3

Strong Normalization

In this chapter we introduce the proof techniques we will later use to prove
strong normalization of the Call-By-Push-Value calculus, under the nonde-
terministic reduction relation we introduced in Section 2.3. First we in-
troduce the basic technique for normalization proofs of most variants of
the λ-calculus. Afterwards, we will introduce a technique that was used
to prove strong normalization of Moggi’s computational metalanguage λml

[Mog91, LS05].

3.1 Strong Normalization of the Simply-Typed λ-
Calculus

The simply typed λ-calculus, as defined in Table 1.1, is a rewrite system
for terms. One of the simplest ways to prove strong normalization of such
a rewrite system is to embed the system into a terminating relation and
showing for each instance of a rule L → R that (L,R) is in the relation,
thus every reduction step reduces the term with respect to the terminating
relation and we get strong normalization. Unfortunately, it is difficult to
show this property for the rule (λx.M) N →M [N/x] since the substitution
can create any number of instances of the term N

Moreover, it is clear that the proof technique for the simply-typed λ-
calculus should make use of the type system. The reason for this is that
in the untyped λ-calculus we can define terms like Ω = (λx.x x) (λx.x x).
This term β-reduces to itself, leading to an infinite sequence of reductions
Ω

β→ Ω
β→ · · · . However, this is not possible in the simply-typed λ-calculus,

since Ω does not have a simple type.
The standard proof technique for proving strong normalization of the

simply-typed λ-calculus is originally due to Tait [Tai67]. It was later sim-
plified and adapted to system F by Girard [Gir72] and again simplified by
Tait [Tai72]. A nice presentation of the proof, which we will also follow here,
can be found in [GLT89, Chapter 6]. The proof uses an abstract notion of
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reducibility. This reducibility relation – or predicate, since the relation is
unary – is a type-indexed family of relations where each redA is a subset of
the terms of type A.

The relation we will use here is in fact a special case of the more general
concept of logical relations, which are discussed for example by Mitchell
[Mit96]. Such a logical relation is a family of typed relations defined by
requiring some property, in our case strong normalization, at base type and
then lifting this predicate uniquely to non basic types by requiring certain
closure properties for each type constructor. In the case of the simply-typed
λ-calculus we have the type constructors→ and×. So we require the relation
redA→B to depend on the relations redA and redB in a way that the family
is closed under application and lambda abstraction. Similarly, we require
redA×B to depend on redA and redB such that the family is closed under
pairing and projection. This leads to definitions which are inductive on the
type structure of the calculus. Richer calculi, like CBPV, require additional
closure properties for each type constructor, which turn out to be difficult
to define inductively.

For the simply-typed λ-calculus we define the reducibility relation as
follows:

• If M is of atomic type A, then M ∈ redA iff M is strongly normalizing.

• If M is of type A× B, then M ∈ redA×B iff π1M ∈ redA and π2M ∈
redB.

• If M is of type A→ B then M ∈ redA→B iff ∀N ∈ redA : M N ∈ redB.

The proof then proceeds in two steps. The first step is to prove the
following properties, which can be proven by induction over the structure of
the type A.

(C1) If M ∈ redA, then M is strongly normalizing.

(C2) If M ∈ redA and M →M ′, then M ′ ∈ redA.

(C3) If M is not of the form (N,N ′) or λx.N and whenever we convert a
redex in M we obtain a term M ′ ∈ redA, then M ∈ redA.

The next step is to show that all well-typed terms are reducible. From
this we can conclude by (C1) that all terms are strongly normalizing. The
proof goes by induction over the typing derivation of the calculus. This
means that for each typing rule:

Γ `M1 : A1 . . . Γ `Mk : Ak

Γ ` N : B

we may assume the induction hypothesis for all Mi and need to prove the
claim for N . Unfortunately, this is not sufficient to directly prove that all
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terms are reducible. We need to strengthen our induction hypothesis to
handle the case of abstraction. Thus, we show the following:

All well-typed terms are reducible if the free variables are substituted with
reducible terms.

Since the cases for the different typing rules are independent, this proof
can be modularized very nicely. We will present the case of abstraction:

Γ, x : A `M : B

Γ ` λx.M : A→ B
(3.1)

the other cases can be found in [GLT89]. The idea is to prove the following
property:

If for all N ∈ redA, M [N/x] ∈ redB then λx.M ∈ redA→B

The premise is exactly what we get from (3.1) and the strengthened
induction hypothesis, when Γ is empty. To show λx.M ∈ redA→B, we need
to show that for all N ∈ redA we have (λx.M) N ∈ redB. This can be done
by showing that all successors of (λx.M) N are reducible and then applying
(C3). There are three possible reductions:

• (λx.M) N →M [N/x] which is reducible by hypothesis.

• (λx.M) N → (λx.M ′) N with M →M ′ or

• (λx.M) N → (λx.M) N ′ with N → N ′ which can both be handled by
induction on the length of the longest reduction sequence of M and
N respectively, as both are known to be reducible and thus strongly
normalizing by (C1).

From the strengthened property above, strong normalization of the sim-
ply-typed λ-calculus can be derived by substituting the free variables with
themselves using the identity substitution. This works since variables are
clearly reducible by (C3). This gives us the basic technique underlying our
normalization proof.

In the case of the simply-typed λ-calculus the definitions for the re-
ducibility predicate are relatively straight forward. The reason for this is
that in the λ-calculus the elimination construct for each type results in a
simpler type. This allows reducibility to be easily defined by induction on
the type structure. In the next section we will investigate a technique for
proving strong normalization of computational calculi, which do not have
this property.
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Additional terms and typing rules:

Γ `M : A

Γ ` [M ] : T A

Γ `M : T A Γ ` N : T B

Γ ` let x⇐M in N : B

Additional reduction rules:

let x⇐ [N ] in M −→M [N/x]
let x⇐M in [x] −→M

let y ⇐ (let x⇐ L in M) inxN −→ let x⇐ L in (let y ⇐M in xN)

Table 3.1: Additional rules for λml

3.2 >>-Lifting for Monadic Types

In the pure simply-typed λ-calculus it is very difficult to model computa-
tional effects, like printing or state. One approach to model computational
effects in this setting is to extend the simply-typed λ-calculus with monadic
types. Moggi’s computational metalanguage λml is such a calculus, which in-
troduces a new type constructor T which has to be a strong monad [Mog91].
The additional terms, typing rules, and reduction rules can be found in Table
3.1.

The idea of this construction is to distinguish values of type A from
computations type T A, which return values of type A, but may additionally
cause effects. This way, computational effects can be absorbed into the
structure of the monad. This works, because the first derivation rule, which
inserts a value into the monad, is not reversible. Thus, there is no way to
“leave” the monad, which would be equal to dropping the computational
effects. Practical uses of this include the Haskell programming language,
where the Monad type class is used to capture various effects in an otherwise
pure language [Jon03]. In λml the nature of the monad is intentionally left
unspecified to keep the calculus as general as possible.

Unfortunately, the new derivation rules noted above make it difficult to
prove strong normalization of λml via reducibility. In the classic normal-
ization proof, the elimination construct for each type constructor is used to
define the reducibility relation by induction on the type structure. For λml,
this straightforward approach fails, since the elimination construct for T A
is not inductive on the type structure, as we can only get to terms of type
T B starting from a term of type T A.

There are, however, several ways to prove strong normalization of λml.
Benton et al. embedded the calculus into the simply-typed λ-calculus with
sums and then used Prawitz’s normalization result for that calculus [Pra71,
BBdP98]. Another approach is due to Lindley and Stark. They work their
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way to a reducibility relation by induction on the type structure and give a
standalone proof in the style of Girard/Tait, which we will shortly introduce
here [LS05].

The question is how to define such a reducibility relation. The naive
approach could be to mimic the definition for functions.

Bad 1 M ∈ redT A ⇐⇒ ∀N ∈ redT B : let x⇐M in N ∈ redT B

But this is not inductive over types as type T B can be more complex
than T A. One could try to patch this by dropping the dependence on T B

Bad 2 M ∈ redT A ⇐⇒ ∀N ∈ redT B : let x⇐M in N ∈ SN

But this is too weak to prove the properties of M in the presence of
nested let constructs like let y ⇐ (let x⇐ [·] in N) in P . But the struc-
ture of nested let constructs leads to a definition of reducibility which is
inductive on types. For this we need a notion of continuation in λml, which
we get from the following definitions:

• A term abstraction [·] to x.N of type T A ( T B is a computation
term N of type T B with a hole accepting terms of type T A.

• A continuation is a finite list of term abstractions, ended by nil.

• Continuations can by typed as follows:

Γ ` nil : T A( T A

Γ ` [·] to x.N : T A( T B Γ ` K : T B( T C

Γ ` ([·] to x.N :: K) : T A( T C

• A continuation of type T A( T B is applied to a computation of type
T A using the following rules

M • nil = M

M • ([·] to x.N :: K) = (let x⇐M in N) •K

So the application of a term M : T A to a continuation K : T A ( T B
can be rewritten into a term of type T B. This can easily be verified by
induction on K.

The above definitions correspond directly to the stacks of Call-By-Push-
Value, where [·] to x.N is the only stack frame used, and thus, all stacks
have type F A ( F B. So we can define reductions on continuations and
the length for continuations as in Section 2.4. Note that in λml we can have
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a value (and variables) of type T A, which we cannot in CBPV. So T A
corresponds to U (F A) rather than F A, since, from the CBPV perspective,
a value of type T A is a thunk of a computation returning a value of type A
[Lev99].

Now we are in the position to define reducibility at type T A via reducibil-
ity for continuations. For the definition of redT A we need an auxiliary set of
type indexed relations redk

T A, where each redk
T A is a subset of the continu-

ations accepting terms of type T A. With this, we get the following notions
of reducibility:

• M ∈ redT A iff for all K ∈ redk
T A the application M • K is strongly

normalizing.

• K ∈ redk
T A iff for all V ∈ redA the application [V ] • K is strongly

normalizing.

This is enough to prove strong normalization of λml. Due to the great
similarities between λml computations and the CBPV returner type, we will
not present the proof here. In particular, our Lemmas 4.3.5 and 4.3.6 are
only mild extensions, to the additional types of CBPV, of the corresponding
lemmas for λml, given in [LS05].

Instead we will look at the operation of >>-lifting, defined by Lindley
and Stark [LS05], as a general way to lift any predicate, not just reducibility,
from a definition at value type to the corresponding monadic type. This
is achieved by a “leap-frog” over continuations. Assume any observation
predicate O ⊆ Terms, and a predicate φ ⊆ {V | Γ ` V : A} on the value
type A. >>-lifting can then be defined as follows:

φ> = {K | ∀V ∈ φ : [V ] •K ∈ O}
φ>> = {M | ∀K ∈ φ> : M •K ∈ O}

This way we get a predicate on the corresponding monadic type as well as the
respective continuation types. In particular, the above case of reducibility
is obtained by choosing O = SN . The construction is inspired by similar
constructions to specific computational effects and generalizes them to some
arbitrary strong monad T . Pitts and Stark, for example, use the method to
define a structurally inductive notion of contextual equivalence for a subset
of Standard ML with integer references [PS98].

Similar problems to those occurring in the monadic case also occur when
proving strong normalization of the simply-typed λ-calculus with sums. If
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we extend the calculus with the following constructs:

Γ `M : A

Γ ` ι1M : A + B

Γ `M : B

Γ ` ι2M : A + B

Γ `M : A + B N1 : T C N2 : T C

case M of ι1(x)⇒ N1 | ι2(x2)⇒ N2 : T C

we can see that the elimination rule is again not inductive on the type
structure. This case can however be handled by adapting the notion of
continuation to include term abstractions of type A + B ( T C. Here
we have the restriction that both branches of the case construct need to
be computations. This can be remedied by moving from continuations to
frame stacks as in [Lin05].

It is noteworthy that the approach of >>-lifting is also strong enough
to handle commuting conversions or permutative conversions, like the last
reduction rule in Table 3.1. The name comes from the transforming action
via the Curry-Howard isomorphism on derivation trees in natural deduction.
Commuting conversions arise, for example, when one wishes to maintain the
subformula property for normal proofs in the presence of disjunction and are
known to cause difficulties in normalization proofs. This was originally han-
dled by Prawitz [Pra71]. Another nice proof handling strong normalization
of the simply-typed λ-calculus with sums and commuting conversions from
a logical perspective can be found in [dG02]. Here the calculus is embedded
into the the simply-typed λ-calculus without sums. However, the embedding
is quite involved and there is no straightforward intuition given.
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Chapter 4

Strong Normalization of
Call-By-Push-Value

In this chapter we prove strong normalization of a slightly restricted version
of the Call-By-Push-Value calculus under the nondeterministic reduction
relation introduced in Section 2.3. So before starting with the proof, we show
why it is necessary to restrict the calculus. We then introduce a reducibility
relation, defined by induction on the types of CBPV. For this we define a
>>-closure operation, closely related to the approach of >>-lifting.

4.1 Restriction

There is one restriction we have to make to CBPV, in order to actually
make the calculus strongly normalizing. CBPV provides generalized sum
and product types,

∑
i∈I Ai and

∏
i∈I Bi, where the only restriction on the

index set I is to be countable. This leads to an infinitely wide syntax which
is not strongly normalizing. Consider the following term Θ of type

∏
i∈N F 1:

λ{. . . , i.((λx.return x) ()), . . .}

There are infinitely many subterms of the form (λx.return x)() and each
can make a single β-reduction. So we get an infinite sequence of reductions
starting at Θ. For sum types the values of a type like nat themselves do
not present a problem. Instead the corresponding pattern match construct
pm V as {. . . , (i, x).Mi, . . .} becomes infinitely wide. So in the following we
restrict ourselves to the case of finite index sets I for sums and products.

This of course means that types like nat can no longer be defined within
the language and need to be added externally. However, types with finitely
many elements, like bool, can still be defined within the language. So for
practical purposes, like considering CBPV as a meta language in a compiler,
this restriction is irrelevant.
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Another approach could be to define a notion of parallel reductions on
infinitely wide terms by reducing all terms underneath of λ{. . .} simultane-
ously, as long as they still contain redexes. However, this would completely
change our model of reduction, so we are not investigating this idea further.
On the other hand, the non-normalization of full CBPV is completely dif-
ferent from the non-normalization of the untyped λ-calculus. There are no
terms like Ω in CBPV that reduce to themselves. With this restriction the
calculus becomes finitely branching and we can define:

Definition 4.1.1. If P ∈ SN we write max(P ) for the length of a longest
reduction sequence beginning with P .

4.2 Defining Reducibility

In section 3.2 we have seen how >>-lifting can be used to define reducibility
by induction on types for the computational metalanguage λml. In this
section we will adapt this technique to the types of CBPV to get a uniform
treatment of all the computation types. For this we use an operation we call
>>-closure, which roughly corresponds to the unary case of the relational
>>-closure used by Pitts to define a form of observational congruence for
PolyPCF [Pit00].

The problem we get when trying to apply >>-lifting directly to CBPV
is that the definition of the lifting already includes the term construct for
turning a value V into a computation, namely [V ] for λml or return V the
CBPV analog. So to reach a uniform treatment of all computation types,
we have to factor this construction out of the lifting operation. So instead
of lifting a predicate from a value type to a computation type, we aim to
define a part of the predicate already at computation type and then use a
suitable closure operator. We do this by defining the following symmetric
operations:

Definition 4.2.1 (>>-closure).

• Let Terms(B) be the set of all terms M of type B and let Stacks(B)
be the set of all stacks of type B ( C for any computation types B
and C

• We define the operation (−)> : P(Terms(B))→ P(Stacks(B))

T> = {K | ∀M ∈ T : M •K ∈ SN}

• And in the other direction (−)> : P(Stacks(B))→ P(Terms(B))

S> = {M | ∀K ∈ S : M •K ∈ SN}
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Lemma 4.2.2. The operations (−)> form an antitone Galois connection
with respect to inclusion:

T ⊆ S> ⇐⇒ S ⊆ T> (∗)

and thus (−)> is:

inclusion reversing: A ⊆ B ⇒ B> ⊆ A>

and (−)>> is:

monotone: A ⊆ B ⇒ A>> ⊆ B>>

inflationary: A ⊆ A>>

idempotent: A>> = (A>>)>>

Proof. Using Definition 4.2.1 we can rewrite S ⊆ T> as:

S ⊆ T> ⇐⇒ ∀K : (K ∈ S ⇒ ∀M ∈ T : M •K ∈ SN )
⇐⇒ ∀K ∈ S : ∀M ∈ T : M •K ∈ SN
⇐⇒ ∀M ∈ T : ∀K ∈ S : M •K ∈ SN ⇐⇒ T ⊆ S>

We then get the remaining properties from (∗). We prove the properties for
T, T ′ ⊆ Terms(B). The case for stacks is completely symmetric.

inflationary: Since for any set we have T> ⊆ T> we get T ⊆ T>> using
(∗) with S = T>.

order reversing: Assume T ⊆ T ′ then T ⊆ T ′ ⊆ (T ′)>> and we get
(T ′)> ⊆ T> using (∗) with S = (T ′)>

monotone: Since (−)> is order reversing in both directions it follows im-
mediately that (−)>> is monotone.

idempotent: Since (−)>> is inflationary is sufficient to prove (T>>)>> ⊆
T>>. Applying (∗) to T>> ⊆ T>> yields T> ⊆ (T>>)>. Thus, we
get (T>>)>> ⊆ T>> by applying (−)> which is order reversing.

Thus, (−)>> is a closure operation. We can use this closure operation
to define reducibility for the computation types of CBPV by induction on
the type structure. We do this by choosing a base set having a particular
syntactic structure, in our case the introductory form for the respective
computation type. Such a set is easily definable by induction on types, but
would be to weak to prove strong normalization. We then apply our >>-
closure to obtain the full reducibility predicate on the computation type,
which is strong enough to carry out subsequent proofs.
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Since CBPV clearly separates computations and values using two differ-
ent type judgements, we also use two different sets of reducibility relations:
{redv

A | A is a value type} for value types and {redc
B | B is a computation

type}. Additionally we will use redk
B do denote reducibility for stacks ac-

cepting computations of type B. Using these conventions, reducibility for
computation types can be defined like this:

Definition 4.2.3 (Reducibility).

• redc
F A = {return V | V ∈ redv

A}>>

• redc
A→B = {λx.M | ∀V ∈ redv

A : M [V/x] ∈ redc
B}>>

• redcQ
i∈I Bi

= {λ{. . . , i.Mi, . . .} | ∀i ∈ I : Mi ∈ redc
Bi
}>>

What remains to be done is defining reducibility for value types. Here
we make use of the fact that the version of CBPV we are investigating does
not include “complex values”. This means that we can rely on a value being
either a variable or in the introductory form of the corresponding type. For
example V : A×A′ is either a variable or of the form (W,W ′). This allows
reducibility on value types to be defined by the same construction we use
to construct the base sets for computation types, with the difference that
we do not need a lifting operation for values. The definitions become even
simper when we exclude variables from the set of reducible terms. This
spares us some case distinctions in the proof. While at first it appears that
this restricts the normalization result to closed terms we will see, at the end
of the normalization proof, that this is not the case. Table 4.1 contains the
full definitions for redv,redc, and redk expanded in the way they are applied
in the normalization proof.

Strictly speaking, the closure approach may not be necessary for the
types A→ B and

∏
i∈I Bi since we have an elimination construct for these

types. Our approach, on the other hand, gives us a very uniform treatment
of all computation types, which is captured by the following observation:

Observation 4.2.4. For every computation type B we have

redc
B = {M : B | ∀K ∈ redk

B : M •K ∈ SN}

This allows some cases of the following normalization proof to be proven
together.

4.3 Proof of Strong Normalization

We begin by proving the following lemma:
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Reducibility for value types:

redv
1 = {()}

redv
A×A′ = {(V, V ′) | V ∈ redv

A, redv
A′}

redvP
i∈I Ai

= {(i, Ai) | Ai ∈ redv
Ai
}

redv
U B = {thunk M | M ∈ redc

B}

Reducibility for computation types:

redc
F A = {return V | V ∈ redv

A}>>

= {M : F A | ∀K ∈ redk
F A : M •K ∈ SN}

redc
A→B = {λx.M | ∀V ∈ redv

A : M [V/x] ∈ redc
B}>>

= {M : A→ B | ∀K ∈ redk
A→B : M •K ∈ SN}

redcQ
i∈I Bi

= {λ{. . . , i.Mi, . . .} | ∀i ∈ I : Mi ∈ redc
Bi
}>>

= {M : Πi∈IBi | ∀K ∈ redkQ
i∈I Bi

: M •K ∈ SN}

Reducibility for stacks

redk
F A = {K : F A( B |

∀M ∈ {return V | V ∈ redv
A} : M •K ∈ SN}

redk
A→B = {K : (A→ B)( C |

∀M ∈ {λx.M | ∀V ∈ redv
A : M [V/x] ∈ redc

B} : M •K ∈ SN}
redkQ

i∈I Bi
= {K : Πi∈IBi ( C |

∀M ∈ {λ{. . . , i.Mi, . . .} | ∀i ∈ I : Mi ∈ redc
Bi
} : M •K ∈ SN}

Table 4.1: Reducibility for the types of CBPV
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Lemma 4.3.1. M [V/x] ∈ SN ⇒M ∈ SN

Proof. By contraposition. Assume M /∈ SN . In this case, there is some
infinite reduction sequence beginning with M . By Proposition 2.3.2 there
is also a corresponding infinite reduction sequence beginning with M [V/x]
and thus M [V/x] /∈ SN .

Since CBPV does not provide variables of computation type, we also
need the following technical lemma:

Lemma 4.3.2 (Existence Lemma). For every computation type B there
exists a closed term M ∈ redc

B and for every value type A there exists a
term V ∈ redv

A

Proof. The term () is reducible. The rest follows by induction on the type
structure using the introduction rule for each type.

Now we are in the position to prove that the reducibility predicate implies
strong normalization, is preserved under reduction, and that neutral terms
reducing only to reducible terms are also reducible, where the technical
notion of neutrality is defined as follows:

Definition 4.3.3 (Neutral terms). A term is neutral, if it is not of one of
the following forms:

x λx.M λ{. . . , i.Mi, . . .} return V

Note, that our notion of neutrality differs from that used in the classic
normalization proof of Girard. We only need to exclude the introduction
forms for computations. This is due to fact that we do not consider complex
values in CBPV. Additionally, we have to exclude variables since we decided
to exclude them from the set of reducible terms. Thus we can prove:

Lemma 4.3.4. The reducibility relation for computation types fulfills the
following properties:

(C1) M ∈ redc
B ⇒M ∈ SN

(C2) M ∈ redc
B ∧M →M ′ ⇒M ′ ∈ redc

B

(C3) M : B neutral ∧ (∀M ′ : M →M ′ ⇒M ′ ∈ redc
B)⇒M ∈ redc

B

The relation for value types is analog.

(C1) V ∈ redv
A ⇒ V ∈ SN

(C2) V ∈ redv
A ∧ V → V ′ ⇒ V ′ ∈ redv

A

(C3) V : A neutral ∧ (∀V ′ : V → V ′ ⇒ V ′ ∈ redv
A)⇒ V ∈ redv

V
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Proof. Proof over the type structure. Since we do not consider complex
values the part for value types is relatively straightforward. Furthermore,
variables are neither reducible nor neutral so we only have to consider closed
terms.

1: The unit type clearly satisfies all conditions, since the only closed
value of type 1 is () which is reducible and normal.

A×A′:

(C1) Let W ∈ redv
A×A′ . Thus W = (U, V ) with U ∈ redv

A and
V ∈ redv

A′ by the definition of reducibility. U and V are strongly
normalizing by induction hypothesis (C1) on A and A′ respec-
tively and we have max(W ) ≤ max(U) + max(V ). Thus W is
strongly normalizing as well.

(C2) Let W = (U, V ) as above, then W →W ′ implies U → U ′ or V →
V ′. In in first case we have U ′ ∈ redv

A by induction hypothesis
(C3) and thus W ′ ∈ redv

A×A′ . The other case is symmetric.

(C3) Let W : A×A′ be neutral. Then W = (U, V ) and reduction can
either happen in U or in V . In the first case W → (U ′, V ) ∈
redv

A×A′ and U → U ′ ∈ redv
A by definition of redv

A×A′ . By induc-
tion hypothesis (C3) for A we know that U ∈ redv

A. The same
argument holds for V so W ∈ redv

A×A′ .∑
i∈I Ai:

(C1) Let W ∈ redvP
i∈I Ai

. Then W = (̂ı, V ) with V ∈ redv
Aı̂

by
definition. Since V is strongly normalizing by induction hy-
pothesis and W = (̂ı, V ) → W ′ = (̂ı, V ′) iff V → V ′ we have
max((̂ı, V )) = max(V ) and thus W is also strongly normalizing.

(C2+C3) Follow by the same equivalence, and the respective inductions
hypothesis for Ai.

U B:

(C1) Let W = thunk M ∈ redv
U B By induction hypothesis M ∈ SN .

We show thunk M ∈ SN by induction on max(M). The term
thunk M can reduce as follows:
If M 6= force V then thunk M → thunk M ′ with M →M ′ and
max(M ′) < max(M) only and we can apply the induction hy-
pothesis.
If M = force V for some V of type U B, this V must be of the

31



form thunk N for some N ∈ redc
B because V cannot be a variable

and

force (thunk N) ∈ redc
B ⇒ ∀K ∈ redk

B : force thunk N •K ∈ SN

β⇒ ∀K ∈ redk
B : N •K ∈ SN

⇒ N ∈ redc
B

Now thunk M can also reduce as follows:

thunk M → thunk M ′ with M →M ′ as above or
thunk M = thunk (force thunk N)

η→ thunk N

But since M = force thunk N and thus M → N we have that
max(N) < max(M). and we can again apply the induction hy-
pothesis.

(C2) Let W = thunk M ∈ redv
U B as above. There are two cases to

consider. If M 6= force V then W → W ′ iff M → M ′ where
M ′ ∈ redc

B by induction hypothesis on B and thus W ′ ∈ redv
U B.

If M = force V for some V then V must be of the form thunk N
for some N . Thus W = thunk (force thunk N) where N ∈ redc

B

by the same argument as above. W only reduces to the following
reducible terms:

thunk M = thunk (force thunk N)
η→ thunk N ∈ redv

U B or

thunk M → thunk M ′ ∈ redv
U B with M →M ′ ∈ redc

B

(C3) Let W = thunk M be some term of type U B. and ∀W ′ : W →
W ′ ⇒ W ′ ∈ redv

U B By definition of redv
U B all W ′ must be of

the form thunk N with N ∈ redc
B. In particular this holds for all

reductions confined to M . By induction hypothesis on B we have
M ∈ redc

B and thus W ∈ redv
U B

For computation types Observation 4.2.4 allows (C2) and (C3) to be proven
simultaneously:

(C2) Let M ∈ redc
B and M → M ′. Since M is reducible we have ∀K ∈

redk
B : M •K ∈ SN . Since M → M ′ we have that M •K → M ′ •K

and therefore ∀K ∈ redk
B : M ′ •K ∈ SN as well. Thus M ′ ∈ redc

B
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(C3) Let M : B be neutral and ∀M ′ : M → M ′ ⇒ M ′ ∈ redc
B. We show

∀K ∈ redk
B : M •K ∈ SN .

Let K ∈ redk
B. We first show that K is strongly normalizing. By

Lemma 4.3.2 there exists some term N ∈ redc
B and for this we have

N •K ∈ SN . Since K → K ′ ⇐⇒ ∀N : N •K → N •K ′ we know
that K is strongly normalizing. Now we can prove M •K ∈ SN by
induction on max(K).
M •K reduces to the following terms:

– M ′•K which is strongly normalizing as M ′ ∈ redc
B and K ∈ redk

B

– M •K ′ which is strongly normalizing by induction hypothesis

Because M is neutral and neutral terms do not interact with stack
forms there are no other reductions.

The idea for proving (C1) for some type B is to show that nil ∈ redk
B,

for then we have:

M ∈ redc
B ⇒M • nil ∈ SN ⇒M ∈ SN

(F A) To show nil ∈ redk
F A, we have to show for all M from the set

{return V | V ∈ redv
A} that M • nil = M ∈ SN . But by induction

hypothesis V ∈ redv
A implies V ∈ SN and so return V ∈ SN as well.

(A→ B) To show nil ∈ redk
F A, let M ∈ {λx.N | ∀V ∈ redv

A : N [V/x] ∈ redc
B},

and show M ∈ SN as above. If N [V/x] ∈ redc
B then N [V/x] ∈ SN by

induction hypothesis. By Lemma 4.3.1 N ∈ SN and thus λx.N ∈ SN
The last step follows since λx.N can at most make one additional
η-reduction if N →∗ xN ′ x.

(
∏

i∈I Bi) Let M ∈ {λ{. . . , i.Ni, . . .} | ∀i ∈ I : Ni ∈ redc
Bi
} and show M ∈ SN .

As above, the induction hypothesis on the Bi gives us ∀i ∈ I : Ni ∈ SN
and so λ{. . . , i.Ni, . . .} ∈ SN as well. Thus nil ∈ redkQ

i∈I Bi

Thus we have nil ∈ redk
B for any computation type B. This finishes the

proof.

The next step is to prove that all terms are in fact reducible. We are
heading for a proof over the typing derivation. To modularize the proof
we first show some lemmas where reducibility is preserved by the typing
derivation.

Lemma 4.3.5. If P : A, P ∈ SN , x : A `c N : B, and N [P/x] •K ∈ SN
then (return P to x.N) •K ∈ SN

Proof. By induction on max(P ) + max(N •K) + |K|. The term
M = (return P to x.N) •K can be reduced in the following ways:
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• M
β−→ N [P/x] •K which is strongly normalizing by hypothesis

• If N = return x
M

η−→ return P •K = N [P/x] •K ∈ SN as above.

• If K = [·] to y.xM :: K ′

M
assoc1−→ return P to x.(N to y.xM) •K ′

We want to apply the induction hypothesis with N∗ = N to y.xM
and K∗ = K ′. So we have to show that N∗[P/x] • K∗ is strongly
normalizing. But this is clear since:

N∗[P/x] •K∗ = (N to y.xM)[P/x] •K ′

= N [P/x] to y.xM •K ′

= N [P/x] •K ∈ SN

Further we have |K∗| < |K| and N∗ • K∗ = N • K which implies
max(N∗•K∗) = max(N•K) so we can apply the induction hypothesis.
This gives us:
(return P to x.N∗)•K∗ = (return P to x.(N to y.xM))•K ′ ∈ SN
as required.

• If K = ı̂ :: K ′

M
assoc2−→ (return P to x.N ı̂) • K ′ We again go for the induction

hypothesis with N∗ = N ı̂ and K∗ = K ′ and have

N∗[P/x] •K∗ = (N [P/x]) ı̂ •K ′

= N [P/x] •K ∈ SN

Thus we can again apply the induction hypothesis which gives us
return P to x.N∗ •K∗ = (return P to x.N ı̂) •K ′ ∈ SN

• If K = V :: K ′

M
assoc3−→ (return P to x.N V )•K ′ but this case is identical to assoc2

if one substitutes V for ı̂.
All other reductions are confined to either P , K or N . This decreases
either max(P ) or max(N •K). By lemma 2.4.3, |K| does not increase,
so these cases can all be handled by the induction hypothesis, which
finishes the proof.

Lemma 4.3.6 (Preservation – to).
If M ∈ redc

F A, x : A `c N : B, and ∀P ∈ redv
A : N [P/x] ∈ redc

B then
M to x.N ∈ redc

B
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Proof. Let K ∈ redk
B. We then need to show that (M to x.N)•K is strongly

normalizing. Let P ∈ redv
A. P is strongly normalizing by (C1) and since

N [P/x] ∈ redc
B we have N [P/x] ∈ SN as well.

By Lemma 4.3.5 we know that (return P to x.N) •K is strongly normal-
izing. But this term is equal to (return P ) • ([·] to x.N :: K). Since P was
arbitrary, ([·] to x.N :: K) ∈ redk

F A by definition and since M ∈ redc
F A we

have:
M • ([·] to x.N :: K) = (M to x.N) •K ∈ SN .

Lemma 4.3.7 (Preservation – force). If V ∈ redv
U B then force V ∈ redc

B

Proof. Let V ∈ redv
U B, then V = thunk M for some M ∈ redc

B. Further-
more V is strongly normalizing by (C1). We prove the claim by induction
on max(V ). The term force V = force thunk M reduces as follows.

• β−→M ∈ redc
B

• −→ force V ′ for some reduction V → V ′ where V ′ ∈ redv
U B by

(C2) and max(V ′) < max(V ) so that we can apply the induction
hypothesis.

Lemma 4.3.8. If K ∈ redk
B and V ∈ redv

A then V :: K ∈ redk
A→B

Proof. Let K and V be reducible as in the premise and show:

∀M ∈ {λx.N | N [V/x] ∈ redc
B} : M • V :: K ∈ SN

Since all M from this set are reducible, and thus normalizing, we can prove
the claim by induction on max(M)+max(V )+max(K). The only case we
can not handle by induction hypothesis is the beta reduction to N [V/x] •
K. But this term is strongly normalizing since both N [V/x] and K are
reducible.

Lemma 4.3.9 (Preservation – Application). If M ∈ redc
A→B and V ∈ redv

A

then M V ∈ redc
B

Proof. Let K ∈ redk
B. We then have to show that (M V ) • K ∈ SN

By Lemma 4.3.8, V :: K ∈ redk
A→B.Hence M • (V :: K) ∈ SN , since

M ∈ redc
A→B. But by the definition of • this is the same as (M V ) •K

Lemma 4.3.10. If K ∈ redk
Bı̂

and ı̂ ∈ I then ı̂ :: K ∈ redkQ
i∈I Bi
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Proof. As for the function type stacks we prove this by showing:

∀M ∈ {λ{. . . , i.Mi, . . .} | ∀i ∈ I : Mi ∈ redc
Bi
} : M • ı̂ :: K ∈ SN

We take some M = λ{. . . , i.Mi, . . .} and show that M • i :: K ∈ SN by
induction on max(K) +

∑
i∈I max(Mi). All reductions in M or K can be

handled by the induction hypothesis. So the only interesting case is the β-
reduction to Mı̂ •K. But this term is strongly normalizing since Mı̂ ∈ redc

Bı̂

and K ∈ redk
Bı̂

.

Lemma 4.3.11 (Preservation – Projection). If M ∈ redcQ
i∈I Bi

and ı̂ ∈ I

then M ı̂ ∈ redc
Bı̂

Proof. The proof is similar to the function case. Let K ∈ redk
Bı̂

. We then
need to show (M ı̂) • K ∈ SN . By Lemma 4.3.10, ı̂ :: K ∈ redkQ

i∈I Bi

Therefore, and since M ∈ redcQ
i∈I Bi

, we have M • (̂ı :: K) ∈ SN . But this
term is equal to (M ı̂) •K.

Lemma 4.3.12 (Preservation – pm×). If V ∈ redv
A×A′ and ∀W ∈ redv

A,W ′ ∈
redv

A′ :
M [W/x,W ′/y] ∈ redc

B then pm V as (x, y).M ∈ redc
B

Proof. Since V is reducible V = (W,W ′) for some W ∈ redv
A and W ′ ∈

redv
A′ . So it suffices to show M0 = pm (W,W ′) as (x, y).M ∈ redc

B. By (C1)
M [W/x,W ′/y] ∈ SN and thus by Proposition 4.3.1 M ∈ SN . Thus we can
prove by induction on max(M)+max(V ) that M0 only reduces to reducible
terms. Possible reductions are:

• M0
β−→M [W/x,W ′/y] which is reducible by hypothesis.

• If M = xyN [(x, y)/z] then M0 = pm (W,W ′) as (x, y).xyN [(x, y)/z] and
M0

η−→ (xyN [(x, y)/z])[(W,W ′)/z] = xyN [(W,W ′)/z] = M [W/x,W ′/y]
which is again reducible.

• Some reduction within W,W ′ or M which can be handled by (C2) and
the induction hypothesis.

There are no other reductions and thus by (C3) pm (W,W ′) as (x, y).M ∈
redc

B

Lemma 4.3.13 (Preservation – pmΣ). If (̂ı, V ) ∈ redvP
i∈I Ai

and ∀i ∈
I ∀V ′ ∈ redv

Ai
: Mi[V ′/x] ∈ redc

B then pm (̂ı, V ) as {. . . , (i, x).Mi, . . .} ∈
redc

B
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Proof. We show by induction on max(V ) +
∑

i∈I max(Mi) that M0 =
pm (̂ı, V ) as {. . . , (i, x).Mi, . . .} only reduces to reducible terms. The term
reduces as follows:

• M0
β−→Mı̂[V/x] which is reducible by hypothesis.

• If all Mi are of the form Mi = xN [(i, x)/z] for some fixed N , then:
M0 = pm (̂ı, V ) as {. . . , (i, x).xN [(i, x)/z], . . .}

η−→ (xN [(i, x)/z])[(̂ı, V )/z] = N [V/x] for the N at position ı̂ which is
reducible by hypothesis.

• Some reduction within some Mi or V which can again be handled by
(C2) and the induction hypothesis

There are no other reductions and thus by (C3)
pm (̂ı, V ) as {. . . , (i, x).Mi, . . .} ∈ redc

B

The next step is to show that all terms are reducible if the free variables
are substituted with reducible values.

Theorem 4.3.14 (Fundamental Property).
If
−−−−→
xi : Ai `c M : B and ∀i : Vi ∈ redv

Ai
then M [

−−−→
Vi/xi] ∈ redc

B

and
if
−−−−→
xi : Ai `v V : A and ∀i : Vi ∈ redv

Ai
then V [

−−−→
Vi/xi] ∈ redv

A

Proof. We prove both claims at once by induction on the typing derivation
of an arbitrary term T

• If T = xi for some variable xi, then T [
−−−→
Vi/xi] = Vi is certainly reducible.

• If T = M to x.N then M [
−−−→
Vi/xi] ∈ redc

F A and N [
−−−→
Vi/xi, V/x] ∈ redc

B for

all V ∈ redv
A. By Lemma 4.3.6 M [

−−−→
Vi/xi] to x.N [

−−−→
Vi/xi] = T [

−−−→
Vi/xi] ∈

redc
B

• If T = M V , then M [
−−−→
Vi/xi] ∈ redc

A→B and V [
−−−→
Vi/xi] ∈ redv

A by in-

duction hypothesis. By Lemma 4.3.9 M [
−−−→
Vi/xi] V [

−−−→
Vi/xi] = T [

−−−→
Vi/xi] ∈

redc
B.

• If T = force V , then V [
−−−→
Vi/xi] ∈ redv

U B by induction hypothesis and

T [
−−−→
Vi/xi] ∈ redc

B by Lemma 4.3.7.

• If T = pm V as (x, y).M , then T [
−−−→
Vi/xi] ∈ redc

B by induction hypothesis
and Lemma 4.3.12.

• If T = pm V as {. . . , (i, x).Mi, . . .}, then T [
−−−→
Vi/xi] ∈ redc

B by induction
hypothesis and Lemma 4.3.13.
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• If T = M ı̂, then T [
−−−→
Vi/xi] ∈ redc

B by induction hypothesis and Lemma
4.3.11.

• If T = λx.N , then N [
−−−→
Vi/xi, V/x] ∈ redc

B for all V ∈ redv
A by induc-

tion hypothesis and thus λx.(N [
−−−→
Vi/xi]) = T [

−−−→
Vi/xi] ∈ redc

A→B by the
definition of reducibility.

• If T = return V then V [
−−−→
Vi/xi] ∈ redv

A by induction hypothesis and
T [
−−−→
Vi/xi] ∈ redc

F A by the definition of reducibility.

• If T = thunk M , then M [
−−−→
Vi/xi] ∈ redc

B by induction hypothesis and

T [
−−−→
Vi/xi] ∈ redv

U B by the definition of reducibility.

• The cases T = (̂ı, V ), T = (V, V ′) ,and T = λ{. . . , i.Mi, . . .} can all be
handled like the case T = thunk M or T = return V

Theorem 4.3.15 (Strong Normalization). All terms of the Call-By-Push-
Value calculus are strongly normalizing.

Proof. For closed terms the claim follows immediately from Theorem 4.3.14
and (C1). For any computation M with free variables x0, . . . , xk we can
find a closed computation N = λx0 . . . λxk.M using lambda closure. This
term is strongly normalizing by the reasoning above. Since M →M ′ implies
λx0 . . . λxk.M → λx0 . . . λxk.M

′ we have max(M) ≤ max(N) and thus M
is strongly normalizing. For any value V with free variables we build the
lambda closure around the term return V and reason as above.
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Chapter 5

Observations

In the last section we have proven strong normalization for Call-By-Push-
Value. In this chapter we will look at the connection between the simply-
typed λ-calculus and the CBPV calculus. We will introduce an embedding
of the λ-calculus into CBPV, due to Levy, and analyze some of its properties.
Furthermore we will investigate confluence of CBPV and show why it fails.
We will use the following convention throughout the chapter:

Notation. CBN and CBV refer to the simply-typed λ-calculus with sums
under their respective deterministic evaluation strategies evaluating to weak
head normal form. λ→×+ and λ→× refer to the simply-typed λ-calculus,
with or without sum types, under full nondeterministic βη-reduction. The
additional rules for λ→×+ can be found in Table 5.1

5.1 Embedding the λ-calculus into CBPV

In our normalization proof we considered the CBPV calculus without com-
plex values. The main motivation was that complex values are not needed
to subsume CBN and CBV. Both languages can be suitably embedded into
CBPV without complex values. Thus, we will also not use complex values
to embed λ→×+ or λ→× into CBPV with our nondeterministic reduction
relation.

What we would like to obtain is an embedding (−)n from the simply-
typed λ-calculus to CBPV that fulfills at least the following property:

Property 5.1.1. If M →M ′ in λ→×+ then Mn →+ (M ′)n in CBPV

We certainly need the →+ in this property since CBPV is a lot more
fine grain than λ→×+, and thus will require additional reduction steps to
remove, force thunk prefixes and so on. Since there are already two em-
beddings, one for CBN and one for CBV, we will evaluate their suitability
as an embedding for λ→×+ into CBPV
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Terms and typing rules:

Γ `M : A

Γ ` (1,M) : A + B

Γ `M : B

Γ ` (2,M) : A + B

Γ `M : A + B Γ, x : A ` N1 : C Γ, x : B ` N2 : C

Γ ` pm M as {(1, x).N1, (2, x)N2} : C

reductions:

pm (̂ı, M) as {(1, x).N1, (2, x).N2} → Nı̂[M/x]

pm M as {(1, x).xN [(1, x)/z], (2, x).xN [(2, x)/z]} → N [M/z]

Table 5.1: Additional rules for sum types in λ→×+

When considering CBN and CBV, the difference between these two eval-
uation strategies can be reduced to the question of what we may substitute
for an identifier during reduction. In the case of CBV we only allow fully
evaluated terms to be substituted for an identifier, where fully evaluated
means evaluated to weak head normal form. This directly implies that
the argument to a function must be evaluated before the corresponding β-
reduction can happen, leading to a CBV strategy. In CBN we only allow
fully unevaluated terms to be substituted for an identifier. This in turn
means that the β-reduction for function application must occur before any
reduction in the argument occurs, leading to a CBN strategy. Using the
original deterministic semantics of CBPV, these evaluation orders can be
enforced by suitable embeddings, which can be found in [Lev99].

Apart from enforcing the operational semantics of CBV and CBN, these
embeddings can also be used to translate denotational and other semantics
even in the presence of side effects. This leads to problems when trying to
use these embeddings to embed the effect free λ→×+-calculus into CBPV
with our nondeterministic reduction relation. The reason for this is that in
the presence of effects, some of the η laws of λ→×+ are no longer valid. For
example, the η law for sum types

N [M/z] = pm M as {(1, x).xN [(1, x)/z], (2, x).xN [(2, x)/z]}

is not valid in CBN with effects. To illustrate this, we add the effect of
printing, such that a term now evaluates to a tuple of an output string and
the resulting term. So consider the term

pm (print “x”; (̂ı, ())) as {(1, x).(), (2, x).()}
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thus setting M = print “x”; (̂ı, ()) and N = (). Evaluating this term in
CBN yields (“x”, ()), whereas the η-reduced term () does not create output
when it is evaluated. In CBV however, the η-law for sums holds, because
we are only allowed to substitute completely evaluated terms for a variable.
Thus, the above term is no instance of the η-law for CBV, since M is not
terminal. The η-law for λ→×+, allowing every term to be substituted for an
identifier, does not hold in either setting. In contrast to the η-law for sums,
the η-law for function types holds in CBN but not in CBV.

This however means that, although CBPV does fulfill both laws, neither
the CBV nor the CBN embedding allows both η-rules to be derived via
the embedding, and, considering the above, it seems unlikely to find an
embedding that does. The reason for this are the fundamental differences
between the two paradigms, leading to completely different embeddings,
which are difficult to combine in a meaningful manner.

In CBV and in the presence of effects, we have to distinguish between
unevaluated terms or returners, which can still cause effects, and values,
which are fully evaluated and may thus be substituted for an identifier.
Thus, a CBV term that is terminal has two different embeddings; one into
computation types and one into value types. Here we make use of the fact
that in CBPV only values can be bound to an identifier. This way we can
translate the types of CBV into the value types of CBPV. In CBN however,
we bind values to unevaluated terms, so all CBN types are translated to
computation types and we bind identifiers to thunks of computations.

For the simply typed λ-calculus without sums, things are easier. The
η-laws for function types and projection products are both valid in CBN
and so we can adapt the embedding for CBN provided by Levy in [Lev99]
to embed λ→× into CBPV. The terms and types of λ→× can be embedded
as in Table 5.2. We use the unit type as the single base type. Other base
types can be included in a similar manner.

The question is how to characterize this embedding. We will prove Prop-
erty 5.1.1, resticted to λ→×. To prove this and the following theorem, we
need the following definition and lemma:

Definition 5.1.2. We define a resticted reduction in CBPV

M  N :⇐⇒M → N using either force thunk M →M

or thunk force V → V

Lemma 5.1.3 (Substitution and (−)n).

Mn[thunk Nn/x] ∗ (M [N/x])n

Proof. By induction on the structure of the term M . The only case where
a reduction occurs is the case M = x. Here we have

xn[thunk Nn/x] = force x[thunk Nn/x] = force thunk Nn

 Nn = (x[N/x])n
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Types:

C Cn(a computation type)
1 F 1

A→ B (U An)→ Bn

A1 ×A2
∏

i∈{1,2} Ai

Terms:

x0 : A0 . . . xk : Ak `M : C x0 : U A0 . . . xk : U Ak `c Mn : Cn

x force x
() return ()

λx.M λx.Mn

M N Mn(thunk Nn)
(M,N) λ{1.Mn, 2.Nn}
πı̂M M ı̂

Table 5.2: Embedding the λ-calculus into CBPV

In all other cases we push the substitution to the subterms and apply the
induction hypothesis, as in the case M = (̂ı, P ).

(̂ı, P )n[thunk Nn/x] = return (̂ı, thunk Pn)[thunk Nn/x]
= return (̂ı, thunk Pn[thunk Nn/x])
I.H.

 ∗ return (̂ı, thunk (P [N/x])n) = (̂ı, P [N/x])n

Theorem 5.1.4. If M →M ′ in λ→× then Mn →+ (M ′)n in CBPV.

Proof. By induction over the structure of M . The case M = x is trivial, the
other cases are:

M = λx.N : If N 6= xP x then λx.N → λx.N ′ with N → N ′ only, and
we apply the induction hypothesis for N , obtainting Nn →+ (N ′)n.
Thus Mn = λ.Nn →+ λ.(N ′)n = (M ′)n as well. If N = xP x then
λx.xP x→ xP and

Mn = (λx.xP x)n = λx.(xP )n (thunk force x)

 λx.x(Pn) x
η→ (xP )n

where (xP )n = x(Pn) holds since (−)n does not introduce free variables.
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M = P Q : If P 6= λx.N then reduction can only occur in P or in Q
and we apply the induction hypothesis as above. If P = λx.N then
(λx.N) Q→ N [Q/x] and

((λx.N) Q)n = (λx.Nn) (thunk Qn)
β→ (Nn[thunk Qn/x])

By Lemma 5.1.3, (Nn[thunk Qn/x]) ∗ (N [Q/x])n as required.

M = (P,Q) : If (P,Q) 6= (π1N,π2N) then M →M ′ iff P → P ′ or Q→ Q′.
Assume P → P ′ then

(P,Q)n = λ{1.Pn, 2.Qn}
I.H.

→+ λ{1.(P ′)n, 2.Qn} = (P ′, Q)n

The other case is symmetric. If (P,Q) = (π1N,π2N), then
(π1N,π2N)

η→ N and

(π1N,π2N)n = λ{1.Nn 1, 2.Nn 2} η→ Nn

as required.

M = π1N : If N 6= (P,Q) then reduction is confined to N and we can
apply the induction hypothesis. If N = (P,Q), then π1(P,Q) → P
and

(π1(P,Q))n = λ{1.Pn, 2.Qn} 1
β→ Pn

Using the normalization result on CBPV we can immediately conclude:

Corollary 5.1.5. λ→× is strongly normalizing.

The other direction of the theorem above does not hold. In the reduc-
tion of a term Mn we can even selectively keep redexes of the form force
thunk N to “skip over” the images of all M ′ reachable from M . But if
we investigate the above proof closely, we can use it to prove a stronger
property. For this we define an equivalence relation on the terms of CBPV
“modulo force thunk” and a corresponding reduction.

Definition 5.1.6 (Equivalence relation).

• M ∼ N :⇐⇒ ∃P1 . . . Pk : M  ∗ P1
∗ · · · ∗ PkN

• [M ]∼ → [N ]∼ : ⇐⇒ ∃P,Q : M ∼ P → Q ∼ N where → is not a
 -reduction.

Thus we can prove:
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Theorem 5.1.7. If M →M ′ in λ→× then [Mn]∼ → [(M ′)n]∼ in CBPV.

Proof. Any element of [Mn]∼ can be converted to Mn using only  -con-
versions. We then use the corresponding case of the proof of Theorem 5.1.4
where we use exactly one reduction that is not from  

From Theorem 5.1.4 we can also derive

Corollary 5.1.8. If M →∗ N in λ→× then Mn →∗ Nn

Proof. The reflexive case is trivial, the case M →k N follows by k-fold
application of Theorem 5.1.4

For both Theorem 5.1.7 and Corollary 5.1.8 we conjecture the other
direction to hold as well. This would allow confluence to be carried over
from CBPV to λ→×, provided that the normal form reached in CBPV is in
[Mn]∼ for some M . While this may hold for the fragment of CBPV used
by the embedding, we will see in the next section that, in general, CBPV is
not confluent.

5.2 Failure of Confluence

The original definitions for reducibility in our normalization proof were made
in the hope to generalize this technique to other observational predicates,
like confluence. Unfortunately confluence for CBPV fails in the presence of
the η-rules for the pm-constructs. We consider the following counterexample
in detail, because it is a nice display of the power of the η-conversion rule.
We define

T1 = pm P1 as {(1, x).(pm P2 as {(1, y).N1, (2, y).N2}),
(2, x).(pm P2 as {(1, y).M1, (2, y).M2})}

and

T2 = pm P2 as {(1, y).(pm P1 as {(1, x).N1, (2, x).M1}),
(2, y).(pm P1 as {(1, x).N2, (2, x).M2})}

where x and y do not occur free in Pi,Mi, Ni, dropping the usual annotation
to improve readability. We can prove T1 = T2 within the CBPV equational
theory using the rules of Table 2.3 in their undirected versions in the follow-
ing way:
We write T1 as Q[P2/z] giving us

Q = pm P1 as {(1, x).(pm z as {(1, y).N1, (2, y).N2}),
(2, x).(pm z as {(1, y).M1, (2, y).M2})}

and then η-expand Q[P2/z] as
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pm P2 as {. . . , (i, k).kQ[(i, k)/z], . . .}
= pm P2 as { (1, k).(pm P1 as {(1, x).(pm (1, k) as {(1, y).N1, (2, y).N2}),

(2, x).(pm (1, k) as {(1, y).M1, (2, y).M2})}}
(2, k).(pm P1 as {(1, x).(pm (2, k) as {(1, y).N1, (2, y).N2}),

(2, x).(pm (2, k) as {(1, y).M1, (2, y).M2})}}

for some fresh variable k. Using β-reduction we obtain

T2 = pm P2 as {(1, k).(pm P1 as {(1, x).N1, (2, x).M1}),
(2, k).(pm P1 as {(1, x).N2, (2, x).M2})}

which α-converts to T2.
Thus, for confluence, we would require T1 →∗ T ←∗ T2, for some term

T . However, we can choose Pi = xi, avoiding β-reduction, and chose all Mi

and Ni to be distinct computations in normal form (such as return xj with
distinct xj for all M,N) avoiding η-reduction. Under these circumstances T1

and T2 are provably equal, syntactically different and both normal, contra-
dicting confluence. Furthermore, T1 and T2 have the same syntactic struc-
ture. Thus, extending the reduction to include either T1 →∗ T2 or T2 →∗ T1

would make the calculus non-normalizing. An example similar to this one
can also be derived for the pm rule for products.

This failure of confluence is not specific to CBPV. The same prob-
lem arises in the simply typed λ-calculus with sums in the presence of η-
reduction. Lindley uses a decomposition of the η rule for sum types into
several axioms to define a normalizing and confluent rewriting theory for
λ→×+ modulo some decidable congruence relation [Lin07]. This congruence
relation contains the case above as a special case. As a corollary he obtains
decidability of the λ→×+ equational theory. A similar treatment of CBPV
might also be possible.

5.3 Conclusions

We have introduced a new notion of reduction for the Call-By-Push-Value
calculus and have investigated strong normalization and confluence of the
resulting calculus.

For the proof of strong normalization we have introduced a new notion
of >>-closure. While our >>-closure is not completely new and clearly
related to the constructs of Lindley, Stark, and Pitts, we believe that our
use in normalization proofs for calculi with multiple computation types is.

While we have proven strong normalization for CBPV without complex
values, it is not clear how this proof can be adapted to the variant of CBPV
allowing pattern-matching not only into computations but also into values.
One of the problems arising in this context is how to suitably extend the
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stacks to also accept values, while maintaining a well defined notion of re-
duction on stacks.

For confluence we have seen that the η-rules for sums and pattern-
match products in combination with the usual β-rules make the calculus
non-confluent. The problem is even more severe, as the addition of reduc-
tion rules establishing confluence would destroy the normalization result.
Thus, the straightforward approach to proving decidability of the CBPV
equational theory fails and we are not aware of any other work in that di-
rection.

We have found an embedding of λ→× into CBPV that allows the well
known normalization result of the λ-calculus to be derived from the corre-
sponding result for CBPV. On the other hand, we also have seen that the
handling of η-rules is not only problematic when considering confluence, they
also cause problems when trying to embed λ→×+ into the CBPV calculus.
Further evaluation of this subject, possibly including CBPV with complex
values, may also provide an embedding of λ→×+ into CBPV.

Altogether, CBPV together with our nondeterministic reduction relation
turns out be an interesting calculus whose properties are far from being fully
understood.
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