
1

QTk: An Integrated Model-Based Approach to
Designing Executable User Interfaces

Donatien Grolaux1, Peter Van Roy1, and Jean Vanderdonckt2

Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
1Département d’Ingénierie Informatique, Place Sainte Barbe, 2

{ned,pvr}@info.ucl.ac.be
2 Institut d’Administration et de Gestion, Place des Doyens, 1

vanderdonckt@qant.ucl.ac.be

Abstract. QTk is a tool built on top of Tcl/Tk that allows user interface de-
signers to adopt a cost-effective model-based approach for designing executa-
ble user interfaces. QTk is based on a descriptive approach that uses a de-
clarative style where appropriate (symbolic records to specify widget types,
initial states, and geometry management; procedure values to specify actions),
augmented with objects and threads to handle the active part of the interface.
QTk offers four original advantages: unicity of language (only one language
serves as both modeling and programming language), reduced development
cost (the interface model immediately gives rise to an executable user inter-
face), tight integration of tools (specification, construction, and execution
tools are all integrated), and improved expressiveness (the interface model is
very compact to produce and cheap to manipulate). The advantages are made
possible by a tight integration with a multiparadigm programming language,
Oz, that supports symbolic data structures, a functional programming style, an
object programming style, and cheap threads. QTk is a module of the Mozart
Programming System, which implements Oz. We show how to port QTk to
Java, which allows to retain some but not all of the tool's advantages.

1 Introduction

The aim of exploiting a model-based approach [14] for designing user interfaces
(UIs) consists in capturing UI specifications into models from which a running UI
can be derived. It is useful to be able to specify a desired UI formally into models
before building it, particularly if a mockup suitable for testing can be obtained di-
rectly from the specification [1,9,10]. Each such model has three properties [16,18]:
1. Declarative: specifications contained in each model should be expressed in a

declarative specification language called interface modeling language.
2. Editable: specifications can be edited either manually by a human operator or

automatically by an automaton.
3. Analyzable: specifications are expressive enough to be processed in order to per-

form analysis operations. Results of this analysis can be in turn used for pro-

2

ceeding with the next steps of the UI design process.
Models involved in a model-based approach typically include [2,4]: a task model, a
user model, a domain model, a platform model, a presentation model, and a dia-
logue model. The last two models are indispensable to obtain a finally executable
UI. To obtain such a UI, specifications contained in models can be manipulated in:

• A ‘generate-compile-execute’ cycle: specifications are processed at design
time by software to automatically generate the UI code, possibly with some
design assistance. This code is usually written in the programming language of
a target development environment or in terms of instructions available in a
User Interface Management Systems (UIMS) [6]. It is then compiled and exe-
cuted to get the running UI. Any model modification results in a new cycle.

• A ‘specify-interpret’ cycle: specifications are progressively refined so as to
create a subset that is expressive enough to be interpreted at any time (design
time or execution time). When this subset reaches a reasonably advanced
status, the specifications are released and interpreted again to get the running
UI. The model can be modified at any time.

These cycles received limited success due to several constraints, such as:
1. The multiplicity of languages: although some intelligent model editor may free

designers from seeing the interface modeling language, this language is still dif-
ferent from the programming language, thus introducing many discrepancies and
difficulties in generating programming code from the specifications or interpret-
ing them. This complexity of these generation and interpretation tasks is very
high.

2. The development cost: developing a generator or an interpreter requires a high
development effort that is not cost-effective. This cost can even be multiplied if a
generator is needed for several programming languages, for example from a ‘X’
modeling language to HTML, Java, C++, and Visual Basic.

3. The poor integration of tools: five broad categories of tools are identified [6]:
requirements tools (that are used by requirements specialists to formulate re-
quirements); specification tools (that are used by system designers to produce
specifications); construction tools (that are used by implementers to transform
specifications into coded modules); execution tools (that are used by system ad-
ministrators to assemble and bind modules into interactive systems); and, evalua-
tion tools (that are used by evaluators). In most model-based approaches, most of
these tools are needed, but are still separated: no smooth transition can be pro-
vided between them.

4. The reduced expressiveness of modeling language: the success of a model-based
approach highly depends on the expressiveness of its interface modeling lan-
guage. Some approaches have proven reasonably effective in narrow domains
since the language is dedicated. However, no modeling language has been shown
to be applicable at a sufficiently general level. Additionally, the compactness of
this language is also a concern: modeling languages tend to be verbose and their
translation into programming language is even more verbose and hard to under-
stand.

In this paper, we address the above shortcomings by introducing QTk, a develop-

3

ment module built on top of the Oz language that allows designers to quickly de-
velop executable UIs in the same integrated environment according to a model-
based approach. The remainder of this paper is structured as follows: the next sec-
tion provides an introduction of the Oz programming language. Section 3 details
QTk and its underlying model-based approach to designing executable UIs. Section
4 describes the QTk implementation. Section 5 compares QTk with related work,
with respect to other tools providing executable UIs and model-based approaches to
designing UIs. Section 6 concludes the paper by highlighting four salient properties
of QTk that address the above shortcomings (unicity of language, reduced devel-
opment cost, tight integration of tools, and improved expressiveness) and by intro-
ducing some future work.

2 The Oz Programming Language

Oz [12,17] is a multiparadigm programming language with high-level support for
symbolic data structures including lists and records. These records are very well
suited for a model-based approach for designing UIs as model elements can be eas-
ily represented with these structures. QTk is an Oz module implementing a function
building UIs from a correctly formatted Oz record, using a declarative approach that
is also editable and analyzable.

As records are natural data structures of the language, it is easy to dynamically
create or manipulate them in the functional paradigm provided in Oz. The UI speci-
fication being itself an Oz record, the dynamic creation of custom UI becomes as
easy as dynamic manipulation of records. Oz is a dynamically-typed language, i.e.,
types are checked at runtime, which allows for great flexibility in the kinds of rec-
ord manipulations. The UI description is a part of the language itself and can di-
rectly have references to live entities of the application. The interpretation of the
specification can be done on-the-fly at any point of the execution, making dynamic
creation of UIs very easy to implement.

2.1 Oz Data Structures

This section will detail some of the many data structures in Oz, showing useful
properties for the remainder of this article.

2.1.1 Atom
An atom is a symbolic constant that has a printable representation made up of a
sequence of alphanumeric characters starting with a lower case letter, or arbitrary
printable characters enclosed in quotes. Atoms are scalar values of the language that
have no internal structure. For example: a foo ’=’ ’:=’ ’OZ 3.0’ ’Hello
World’. Atoms have an ordering based on lexicographic ordering.

4

2.1.2 List
A list is either the atom nil representing the empty list, or is a tuple using the infix
operator | and two arguments which are respectively the head and the tail of the list.
Thus, a list of the first three positive integers is represented as: 1|2|3|nil. A list
ending by nil can also be represented by all elements between [and], separated
by a space and without the ending nil : [1 2 3] == 1|2|3|nil.

2.1.3 Strings
Another notation for a list is a sequence of characters surrounded by " (double
quotes), for example "Hello World". This is equivalent to a list of integers
where each integer is the ASCII value of the corresponding character in the string.
This implies that all list operations are available for calculating with strings.

2.1.4 Records

Records are structured compound entities. A record has a label and a fixed num-
ber of components or arguments of the form label(feat1:val1 ...

featN:valN) where label is an atom, the featX are atoms or numbers, and
valX can be any valid data structure. Note that featX are optional. If not speci-
fied, they are implicitly numbered: label (val1 ... valN) == la-

bel(1:val1 ... N:valN). A record whose features are numbered consecutively
starting from 1 is called a tuple. Operations are provided to treat tuples in a special
manner. Tuples give more concise code and have a faster implementation than rec-
ords.

Many operations can be performed on Oz records (Table 1): let R=toto(foo:10
bar:20).

Table 1. Some Oz operations.

Operation Example
Selection R.foo == 10

Get arity {Arity R} == [bar foo]

Add feature {Record.adjoinAt R nuk 30} == toto(foo:10 bar:20
nuk:30)

Subtract feature {Record.subtract R bar} == toto(foo:10)

Extract label {Label R} == toto

Rename label {Record.adjoin R lala} == lala(foo:10 bar:20)

Iterations on
record

Record.forAll, Record.map, Record.while, ...

{Record.map R fun{$ V} V div 10 end} ==
toto(foo:1 bar:2)

Many other operations are available [5,8], and if they still do not cover the needs,
the functional paradigm of Oz [17] can be used to write new ones compactly and
efficiently. Because of dynamic typing, it is easy to create new record types at run-

5

time. As an example, we will describe two functions transforming the following
record:

data(name:"Roger"
 surname:"Rabbit"
 address1:"Rue des toons"
 address2:"WB")

Function 1:

fun{Transform1 D}
 {List.toTuple td
 {List.map
 {Record.toListInd D}
 fun{$ I#E}
 lr(label(text:I)
 entry(init:E))
 end}}
end

The parameter D of the function is firstly transformed into a list of pairs:
featX#valX. This list is mapped to a list where all elements have the form:
lr(label (text:featX) entry (init:valX)), where X is the position of the
item in the list. This list is transformed back into a tuple. The example record is thus
transformed into (assuming implicit numbering):

td(lr(label(text:address1)
 entry(init:"Rue des toons"))
 lr(label(text:address2)
 entry(init:"WB"))
 lr(label(text:name)
 entry(init:"Roger"))
 lr(label(text:surname)
 entry(init:"Rabbit")))

Function 2:

fun{Transform2 D}
 fun{Loop P}
 case P of I#E|Xs then
 label(text:I)|
 entry(init:E)|
 newline|
 {Loop Xs}
 else nil end
 end
in
 {List.toTuple lr
 {Loop {Record.toListInd D}}}
end

Like Transform1, the function Transform2 first transforms the record given as
parameter into a list of pairs featX#valX. This list is then processed by the Loop
function and the resulting list transformed back into a tuple whose label will be lr.
The Loop function recursively parses a list of pairs and creates another list where

6

for one item featX#valX in the first list correspond three items in the second list:
label(text:featX)|entry(init:valX)|newline. The resulting record is:

lr(label(text:address1)
 entry(init:"Rue des toons")
 newline
 label(text:address2)
 entry(init:"WB")
 newline
 label(text:name)
 entry(init:"Roger")
 newline
 label(text:surname)
 entry(init:"Rabbit")
 newline)

3 A Model-Based Approach Based on Oz Records

The idea of the model-based approach underlying QTk [7] is to map records de-
scribing starting models (typically, a domain model) onto widgets (typically, a pres-
entation and a dialog model) according to the following mapping rules: a record is
mapped onto a widget according to selection rules [19], its label is mapped onto the
widget type, and any feature, e.g., to set the initial value, is mapped onto any widget
parameter. The example label(text:"surname")declares a label widget which
initially displays the text surname. The geometry management is defined by con-
tainer widgets (td for top-down and lr for left-right) and not by a separate mecha-
nism. Functions 1 and 2 of Section 2.1.4 give rise to the windows depicted in Fig. 1.

Fig. 1. Windows generated by applying mapping rules.

We briefly introduce the main mechanisms used by QTk to describe and integrate
UI description records. These mechanisms make QTk a complete and useful toolkit
for designing UIs in a model-based approach. [7] is a complete description of QTk.

3.1 Geometry Management

The geometry management is done by means of container widgets. The two most
common container widgets are td and lr widgets which organize the contained

7

widgets respectively top to down and left to right. Fig. 2 shows the two windows
that QTk builds with the following two records:

lr(label(text:"left")
 label(text:"center")
 label(text:"right"))
td(label(text:"top")
 label(text:"center")
 label(text:"down"))

Fig. 2. Windows generated from lr and td expressions.

Any of the contained widgets can recursively be containers. These two widgets
can split a window into packed rectangular areas. To determine what size these
areas must occupy, each widget has a glue parameter that place constraints on
them. Without going into full details, one can choose that either a widget should
occupy only the size required in a specific direction, or take as much space as possi-
ble. One can also choose to stick widgets to none, one, or more of its four possible
edges to "glue" its neighbors or container border.

lr(label(text:"Name" glue:w) entry(glue:we) glue:nwe)

Fig. 3. Windows generated from a glue instruction.

The example reproduced in Fig. 3 shows a lr container widget glued so that it
expands horizontally and is stuck to its container top edge. The label widget is glued
so that its left edge is stuck to the border of the container. The entry expands hori-
zontally taking all remaining available size left from the container.

3.2 Geometry Management: The Grid Structure

It is possible to have a grid structure where all widgets are organized in lines or
columns of the same size (Fig. 4). The lr (resp. td) widget supports the newline
special code which makes the following contained widgets jump to a new line (resp.
column) right below the previous widgets, keeping the same column structure (resp.
line) with the widgets above them. The empty special code leaves an empty space
in a line (resp. column) and the continue special code spans a widget over several

8

columns (resp. lines) (Fig. 4).

lr(button(text:"One" glue:we) button(text:"Two" glue:we)
 button(text:"Three" glue:we) newline
 button(text:"Four" glue:we) button(text:"Five" glue:we)
 button(text:"Six" glue:we) newline
 button(text:"Seven" glue:we) button(text:"Height" glue:we)
 button(text:"Nine" glue:we) newline
 empty button(text:"Zero" glue:we) continue)

Fig. 4. Window generated from newline and continue instructions.

3.3 Creation of a window

The function build of the QTk module takes a record as input and if the record is a
valid description, it builds a window corresponding to the description and returns an
object controlling that window: Window={QTk.build td(label(text:"Hello
world"))}. {Window show} exposes the previously created window.

3.4 Interaction with Oz

A QTk description is a static record that has to be interpreted. For the application to
gain dynamic control over its UI, handles can be defined for all widgets:

entry(handle:E)

When the window is built, each defined handle is bound to an object controlling its
corresponding widget.

Window={QTk.build td(entry(handle:E))}
{Window show}
{E set(text:"Type here")}

This is where QTk places the border between the declarative approach and a clas-
sical imperative, possibly object-oriented, approach: declarative approach for
building the window in an initial state, imperative approach for dynamical interac-
tion with window components.

3.5 Dynamic Windows

QTk provides a widget, called placeholder, whose content can change dynami-

9

cally during UI execution. A placeholder widget defines a rectangular area in the
window that can contain any other widget at any time as long as the window exists.
In the following example, the window alternatively contains a label and a push but-
ton.

placeholder(handle:P)
...
{P set(label(text:"Hello"))}
...
{P set(button(text:"World"))}

3.6 Events

Some widgets have an action parameter that can be defined to execute an Oz proce-
dure (or a method invocation) when a widget specific action occurs. For example,
the action parameter of a push button executes the procedure when the user presses
this button. For arbitrary events, widgets can invoke the bind method from their
handles.

3.7 Summary of the Model-Based Approach of QTk

QTk can map a single correctly formatted record to build a window:
1. Many different types of windows can be built with different type of geometry

management, including grid structures.
2. All initial states of widgets can be defined.
3. All widgets can be controlled by the application using handles.
4. All type of events supported by widgets can be managed.
5. Part of a window can be defined and changed at any time during execution by

means of the placeholder widget.
It is thus reasonable to use QTk as a support toolkit for a model-based approach to
designing executable UIs and their applications.

4 Integration of QTk and Oz

This section describes interesting points of the current implementation of QTk in
Oz.

4.1 Building a UI on-the-fly with a Model-Based Approach

Using Oz records for building interfaces reduces the implementation issues to ma-
nipulating records:
• Records are natural Oz data structures with a complete support to extensively

manipulate them: the problem of building an interface (at least in its initial

10

state) is reduced to natural data structure manipulations. In practice this reduces
very much the amount of work required for building a window: clear and com-
pact notation and easy manipulation with extensive support from the language.

• Records are part of the application itself. They can be fully integrated with the
application’s data in a natural way without requiring a special communication
layer. The dynamic part of the UI is managed by a classical imperative ap-
proach.

• Records can be built on-the-fly: an application can therefore completely create
its UI at runtime from its model. This is a very important property: the model-
based UI generation can be done both at design time and runtime, using one and
only one programming language.

• Dynamic building of UI is a matter of creating a correctly formatted record on-
the-fly. As Oz extensively supports this kind of manipulation, creating a UI at
runtime is much simpler with Oz than with a classical imperative approach
where developers manipulate many lines of code describing the dynamic UI
creation rather than data structures.

• Records can be embedded inside Oz objects or procedures. It is consequently
easy to write several widgets having different presentations for the same data
structure, with a common interface at the Oz level. Fig. 1 shows two (slightly)
different presentations of the same data structure. If various presentations are
embedded inside objects or procedures, a selection rule can choose which pres-
entation to use. Note that this selection is completely done at runtime. Writing
such a selection rule in QTk is significantly shorter than with traditional im-
perative languages. It is estimated that a QTk selection rule would require one
fourth of the code required in, for instance, SEGUIA [19]. This system contains
about 360 selection rules written in imperative programming. Fig. 5 in Appen-
dix shows a dialog box that can be dynamically adapted by change its interac-
tion: either as read-only display or an input/output dialog box. These two pres-
entations are embedded in two separate functions with their own handling and
offer a common interface. Moreover, they are put in a placeholder so that the
application can switch between the two states on-the-fly. The complete Oz
code is given to demonstrate the compactness of the required code. Again,
coding this UI with a traditional imperative programming language would re-
quire a significantly larger portion of code.

4.2 Porting QTk to Other Languages

Four language entities of Oz are used extensively by QTk: records (along with their
manipulation operations), objects (for controlling widgets), procedures (for defining
actions), and threads (for window concurrency).
1. The declarative specification uses records and is built using the record-

manipulation operations in the language. The functional programming part of Oz
is particularly useful for this. The declarative style is expressive enough to spec-
ify three basic properties:

11

- The widget types and their initial states.
- The initial actions, specified as procedure values (in the functional style).
- The geometric arrangement of widgets in the window and their behavior upon

window resizing.
2. The active behavior of the UI is modeled using objects and threads. Each widget

has a "handle", an object that can be used to control and interrogate the widget.
Each window is associated with a thread. All actions of the window are executed
sequentially in that thread. This guarantees that order of events within a window
is not lost and that windows can operate autonomously. Threads in Oz are not op-
erating system threads but are implemented by the Oz runtime system. They are
designed to be extremely lightweight, thus allowing them to be used when the ar-
chitecture of the application requires it, without having to be particularly con-
cerned about efficiency.

Porting QTk to a more usual language like Java would require implementing two
separate program components:
1. A package to support dynamically-typed records and allow their manipulation in

a similar way to higher-order functional programming.
2. An interpreter, the analogue of QTk, that takes the records as input and interfaces

with a low-level toolkit such as AWT. QTk and the low-level Tk interface to-
gether consist of about 13,000 lines of Oz. QTk fully uses the abilities of the Oz
language, including its flexible object system (e.g., first-class messages), sym-
bolic data structures (records and lists), and higher-order (functional) program-
ming style where appropriate. It is more difficult to estimate the effort needed in
duplicating the record functionality, since records are an integral part of the Oz
system and their functionality is spread out. The record functionality consists of
record input/output, an efficient internal record representation, a wide variety of
primitive record manipulation operations, and hooks into the garbage collector.

However, this port would retain three disadvantages:
1. Cumbersome syntax. The record syntax provided by a Java package would al-

most certainly be more verbose than the Oz record syntax, unless an Oz-like
parser is built into the package. Furthermore, since in-line procedures are not
possible in Java, they would have to be defined separately and then referenced in
the record.

2. Inefficient records. Oz records are carefully implemented to be efficient in both
time and memory. They require one word per feature and label. If the record
type and feature name are known at compile-time, then the field’s content is ac-
cessed by direct indexing (similar to statically-typed languages). If they are not,
then the following techniques are used to get almost the same performance. For
tuples the field is accessed by direct indexing, for records either by hashing (first
access of a field) or by direct indexing (subsequent accesses of a field, with
cached index [5]).

3. Inefficient threads. Building "plastic widgets" or other dynamic interface ele-
ments is straightforward in QTk because Oz threads are highly reactive and

12

lightweight.1 Thread creation in Mozart 1.1.0 is two orders of magnitude faster
than in JDK 1.2 (some timing figures are given in [7]). In Java, one would there-
fore have to build an explicit task scheduler: create the threads once and then
give them tasks to do.

5 Related Work

QTk can be compared to several other works in the domain of UI development
environments that support designers and developers in designing UIs according to a
model-based approach leading to executable UIs. We now compare QTk with some
selected work regarding to the executability of models and regarding to other
model-based approach.

Jacob [9,10] is one of the pioneers who introduced the need for executable UIs
from their specifications and demonstrated its feasibility, in this case from a state-
transition diagram expressing the dialogue. Lean Cuisine+ [15] is an executable
semi-formal graphical notation for specifying the underlying behavior of event-
based direct manipulation interfaces. It is a multi-layered notation which supports
the early design phase of the interface development life cycle.

In [2], Bomsdorf & Szwillus developed a task model enriched with complex re-
lations between tasks that can be executed. Depending on the abstraction level of the
development process, graphical representations or early ideas of screen layout can
be attached to it. With this technique, prototypes can be used very early in the de-
sign process, improving the capabilities to evaluate the model.

In these examples, various models (a dialogue model for Jacob and LeanCuisine,
a task model for Bomsdorf and Szwillus) are exploited to obtain an executable UI.
In QTk, presentation and dialogue models are considered as the terminal models
needed to run a UI. But other models can be incorporated and translated into Oz
records when needed and depending on the needs of the target system. For instance,
the domain-to-presentation mapping problem [16] can be solved by writing selection
rules and arrangement rules that map Oz data structures (i.e. the domain model) to
widget structures (i.e. the presentation model), along with their predetermined be-
havior (i.e. the dialogue model). Any other mapping can be equally established.

Tcl is a simple scripting language for controlling and extending interactive appli-
cations: the Tcl interpreter is designed to be easily extended with application spe-
cific commands. Tk extends Tcl with command for building user interfaces. Tcl/Tk
[13] provided us with at least two advantages: (i) the high level of abstraction of
Tcl/Tk makes it easy to generate implementations, and (ii) its free availability for
multiple computing platforms, such as OSF/Motif and Microsoft Windows. QTk
goes beyond the simple facilities provided by Tcl/Tk by offering the power of the

1 Lightweight threads are important for constraint programming, which was one of the origi-

nal target domains of the Oz language.

13

Oz language to UI designers and developers.
Bumbulis et al. built a methodology and a system allowing the designer to de-

scribe a user interface with an IL specification language that results into Tcl/Tk
instructions [3]. In some sense, specifications contained in a presentation model and
a dialogue model are examined and analyzed to produce an executable UI. How-
ever, the IL specification language differs from the Tcl scripting language, thus
forcing developers to constantly switch from one language to another.

Miyashita et al. argued that programming by visual example can be achieved
through their TRIP3 tool. In this system, a bi-directional translation exists between
the application data contained in a domain model and the pictorial data contained in
a presentation model. This system is able to generate mapping rules from the do-
main model to the presentation model for the translation from example data and its
corresponding example presentation. Note that QTk is advantageous over TRIP3 in
that multiple mappings between several models can be specified at once, whereas
TRIP3 has only one type of mapping. On the other hand, TRIP3 and QTk both share
the scheme in which the presentation model can be expressed in a declarative man-
ner that can be instantly executed.

6 Conclusion

Due to facilities explained before and due to its implementation, QTk offers four
original and substantive advantages:
1. Unicity of language: only one language serves as both modeling and program-

ming language. This provides a significant advantage over most existing model-
based UI development environment where the interface modeling language is
significantly different from the target programming language. In QTk, the inter-
face modeling language is the programming language and vice versa. Moreover,
all mappings between potential models contained in one Oz program can be sup-
ported by the language itself. The example provided in the appendix shows how
some reasonably complex UIs can be written with QTk.

2. Reduced development cost: the interface model immediately gives rise to an ex-
ecutable user interface. There is no longer a need for translating specifications
contained in the models into code of the target programming environment.

3. Tight integration of tools: specification, construction, and execution tools are all
integrated. There is no longer a need to distinguish the categories of tools that are
often prevalent in model-based approaches. There is only one developing envi-
ronment. Moreover, once the UI has been produced, the semantic core component
can be developed without leaving the environment and without transforming the
UI models into another expression. Rarely in the field of Human-Computer Inter-
action or in the domain of model-based approaches, such a tight integration be-
tween modeling and developing has been reached.

4. Improved expressiveness: the interface model is very compact to produce and
cheap to manipulate. In most cases, the code needed to express the rules that gov-

14

ern the presentation and the dialogue of a running UI is significantly reduced with
respect to fully imperative languages. For example, adaptation rules can be writ-
ten in a very straightforward way that is more expressive than, for instance, its
corresponding code in Java or C++. It is to a point that an adaptation rule can
even be read, and thus interpreted, by just reading the Qtk code.

As QTk is built on top of Tcl/Tk [13], all its declarations are transformed into
100% imperative Tcl scripts. This is time consuming as the Oz process has to build
a script, send it to the Tcl/Tk process, and Tcl/Tk has to interpret and process it.
Moreover QTk has to interpret the UI declarations which is also time consuming,
but that has to be done only once at the creation of the window (or when something
new is put in a placeholder). The first overhead will disappear very soon as an
equivalent to the QTk module is being currently developed for the GTk toolkit,
where access to the toolkit is achieved by direct call to its API instead of an inter-
mediate scripting language. The second overhead cannot be removed completely as
there still will be an interpretation part when interacting through actions and han-
dles, but we expect it to be small as this interaction is quite straightforward and does
not require much computation.

Future work includes the development of mapping rules that support multiple
forms of adaptation, including adaptativity, adaptability and plasticity. The example
provided in the appendix is an example of such a UI with dynamic adaptation.

Acknowledgements

We thank all Mozart developers and contributors for their hard work in developing
Oz and the Mozart platform. The development of QTk would not have been possible
without their work. In particular, we thank Christian Schulte, the author of the Oz
object-oriented binding to Tk that underlies QTk. This research is partly financed by
the Walloon Region of Belgium.

References

1. Alexander, H.: Executable Specifications as an Aid to Dialogue Design. In: Proc. of IFIP
International Conference on Human-Computer Interaction Interact’87 (1987) 739–744

2. Bomsdorf, B., Szwillus, G.: Early Prototyping Based on Executable Task Models. In:
Proc. of ACM Conference on Human Factors in Computing Systems CHI’96 (Vancou-
ver, April 14-18, 1996). ACM Press, New York, v. 2 (1996) 254–255

3. Bumbulis, P., Alencar, P.S.C., Cowan, D.D., Lucena, C.J.P.: Combining Formal Tech-
niques and Prototyping in User Interface Construction and Verification. In: Palanque,
Ph;, Bastide, R. (eds.): Proc. of Eurographics Workshop on Design, Specification and
Verification of Interactive Systems DSV-IS’95 (Bonas, June 7-9, 1995). Springer-
Verlag, Vienna (1995) 174–192

4. Cockton, G.: Using the Human Context in Interactive Systems Development. In: Unger,

15

C., Bass, L.: Proc. of Engineering for Human-Computer Interaction EHCI’95. Chapman
and Hall (1995) 339–347

5. Duchier, D., Kornstaedt, L., Schulte, Ch.: The Oz Base Environment. (February 7, 2000).
Accessible at http://www.mozart-oz.org/documentation/base/index.html

6. Gram, Ch., Cockton, G. (eds.): Design Principles for Interactive Software. Chapman &
Hall, London (1996)

7. Grolaux, D.: QTk Module. (March 13, 2000). Accessible at http://www.info.ucl.ac.be/
people/ned/qtk/http-html/index.html

8. Haridi, S., Franzén, N.: Tutorial of Oz. (February 7, 2000). Accessible at http://www.
mozart-oz.org/documentation/tutorial/index.html

9. Jacob, R.J.K.: Executable Specifications for a Human-Computer Interface. In: Proc. of
ACM Conference on Human Factors in Computing Systems CHI’83 (Boston, December
12-15, 1983). New York, ACM Press (1983) 28–34

10. Jacob, R.J.K.: An Executable Specification Technique for Describing Human-Computer
Interaction. Chapter 8. In: R. Hartson (ed.): “Directions in Human-Computer Interac-
tion”. Ablex Publishing Company (1987) 211–242

11. Miyashita, K., Matsuoka, S., Takahashi, S.: Declarative Programming of Graphical Inter-
faces by Visual Examples. In: Proc. of ACM Conf. on User Interface Software Technol-
ogy UIST’92 (Pittsburgh, November 15-18, 1992). ACM Press, New York (1992) 107–
116

12. Mozart Consortium: The Mozart Programming System (Oz 3). (January 1999). Accessi-
ble at http://www.mozart-oz.org

13. Ousterhout, J.K.: Tcl and the Tk Toolkit. Addison-Wesley, Reading (1994)
14. Paternò, F., Model-based Approach, Springer-Verlag, Berlin, 1999.
15. Phillips, Ch.: Serving Lean Cuisine+: Towards a Support Environment. In: Proceedings

of, the CHISIG Annual Conference on Human-Computer Interaction OZCHI'94 (Mel-
bourne, November 28-December 1, 1994). Ergonomics Society of Australia, Canberra
(1994) 41–46

16. Puerta, A., Eisenstein, J.: Towards a General Computational Framework for Model-based
Interface Development Systems. In: Proc. of ACM Conference on Intelligent User Inter-
faces IUI’99 (Los Angeles, January 1999). ACM Press, New York (1999), 171–178

17. Smolka, G.: The Oz Programming Model. In: Lecture Notes in Computer Science, vol.
1000. Springer-Verlag, Berlin (1995)

18. Szekely, P., Luo, P., Neches, R.: Facilitating the Exploration of Interface Design Alter-
natives: The HUMANOID Model of Interface Design. In: Proc. of ACM Conference on
Human Factors in Computing Systems CHI’92 (Monterey, May 3-7, 1992). New York,
ACM Press (1992) 507–515

19. Vanderdonckt, J., Bodart, F.: Encapsulating Knowledge for Intelligent Automatic Inter-
action Objects Selection. In: Proc. of the ACM Conference on Human Factors in Com-
puting Systems InterCHI’93 (Amsterdam, April 24-29, 1993). ACM Press, New York
(1993) 424–429

16

7 Appendix

The following example will show how two representations can be dynamically cal-
culated on the same set of data. The user has the opportunity to freely switch be-
tween both views by clicking a check button (Fig. 5). For simplicity reasons and as
the object-oriented notation of Oz wasn’t introduced in this paper, this example uses
a functional paradigm. The OO paradigm can be even more suited for this kind of
UI development [12].

Fig. 5. Two representations with the opportunity to switch dynamically between them.

This application uses two functions to calculate two distinct views and encapsulate
the access to the inner widget through a common interface. A placeholder is used to
dynamically display one of these two views. The common interface makes switch-
ing and keeping the coherence between views trivial.

Fig. 6. From the initial data to the user interface.

17

7.1 Commented code

First of all, the application must declare it wants to use the QTk module. This mod-
ule is available through an URL:

declare
[QTk]={Module.link
["http://www.info.ucl.ac.be/people/ned/qtk/QTk.ozf"]}

The data to work on is a list of pairs of identifier#value:

Data=[name#"Roger"
 surname#"Rabbit"
 age#14]

The ViewPresentation function builds a representation where each pair
identifier#value is mapped to a label whose text is identifier followed by
":" and by the corresponding value. The functions returns a record with four fields:

• desc: the description record.
• handle: the handle of this representation.
• set: a one parameter procedure that refreshes the representation with the in-

formation that is given as parameter.
• get : a function that returns the state of the displayed data. Note that for sim-

plicity, this state is the last one stored in the In variable, and not deduced from
the displayed widgets.

fun{ViewPresentation Data}
 Handle In={NewCell Data} in
 r(desc:{Record.adjoin {List.toTuple td {List.map Data
 fun{$ D#V} label(glue:we feature:D text:D#":"#V) end}}
 td(glue:nswe handle:Handle)}
 handle:Handle
 set:proc{$ N} {Assign In N}

 {ForAll N proc{$ D#V} {Handle.D set(text:D#":"#V)} end}
 end

 get:fun{$} {Access In} end)
end

The EditPresentation function builds a representation where each pair
identifier#value is mapped to a label containing identifier followed by ":"
and an entry (if value is a string) or numberentry (if value is an integer) con-
taining value. This representation uses a gridded structure, very much like example
2 in Fig. 1. This function returns a record with four similar fields to the
ViewPresentation function. Note that this time, the data returned by the get
function is deduced from the widgets themselves.

fun{EditPresentation Data}
 Handle Feats={List.map Data fun{$ D#_} D end}
 fun{Loop X} case X of D#V|Xs then
 label(glue:e text:D#":")|if {IsInt V}
 then numberentry(feature:D init:V glue:we)
 else entry(feature:D init:V glue:we)

18

 end|newline|{Loop Xs} else nil end
 end in
 r(desc:{Record.adjoin {List.toTuple lr {Loop Data}}
 lr(glue:nswe handle:Handle)}
 handle:Handle
 set:proc{$ N}
 {ForAll N proc{$ D#V} {Handle.D set(V)} end} end
 get:fun{$}
 {List.map Feats fun{$ D} D#{Handle.D get($)} end} end)
end

The main application calls both functions on the same data. The main window con-
tains a placeholder and a check box. Checking or unchecking the box switches be-
tween both views, maintaining data integrity between views by using their associ-
ated set and get procedure and function. After the window is built, the descrip-
tions of both views are placed in the window. Thereafter they can be placed back at
any time by using their handles.

V1={ViewPresentation Data}
V2={EditPresentation Data}
P C
{{QTk.build td(placeholder(glue:nswe handle:P)

 checkbutton(text:"Edit" init:false handle:C
 action:proc{$}

 Old#New=if {C get($)} then
V1#V2 else V2#V1 end

 V={Old.get} in
 {New.set V}
 {P set(New.handle)}
 end))} show}

{P set(V2.desc)} {P set(V1.desc)}

19

7.2 Uncommented code

declare
[QTk]={Module.link
["http://www.info.ucl.ac.be/people/ned/qtk/QTk.ozf"]}
Data=[name#"Roger"
 surname#"Rabbit"
 age#14]
fun{ViewPresentation Data}
 Handle In={NewCell Data} in
 r(desc:{Record.adjoin {List.toTuple td {List.map Data
 fun{$ D#V} label(glue:we feature:D text:D#":"#V) end}}
 td(glue:nswe handle:Handle)}
 handle:Handle
 set:proc{$ N} {Assign In N}

 {ForAll N proc{$ D#V} {Handle.D set(text:D#":"#V)} end}
 end

 get:fun{$} {Access In} end)
end
fun{EditPresentation Data}
 Handle Feats={List.map Data fun{$ D#_} D end}
 fun{Loop X} case X of D#V|Xs then
 label(glue:e text:D#":")|if {IsInt V}
 then numberentry(feature:D init:V glue:we)
 else entry(feature:D init:V glue:we)
 end|newline|{Loop Xs} else nil end
 end in
 r(desc:{Record.adjoin {List.toTuple lr {Loop Data}}
 lr(glue:nswe handle:Handle)}
 handle:Handle
 set:proc{$ N}
 {ForAll N proc{$ D#V} {Handle.D set(V)} end} end
 get:fun{$}
 {List.map Feats fun{$ D} D#{Handle.D get($)} end} end)
end
V1={ViewPresentation Data}
V2={EditPresentation Data}
P C
{{QTk.build td(placeholder(glue:nswe handle:P)

 checkbutton(text:"Edit" init:false handle:C
 action:proc{$}

 Old#New=if {C get($)} then
V1#V2 else V2#V1 end

 V={Old.get} in
 {New.set V}
 {P set(New.handle)}
 end))} show}

{P set(V2.desc)} {P set(V1.desc)}

