
Dominance Constraints With Boolean

Connectives: A Model-Eliminative Treatment

Denys Duchier

Programming System Lab, Universität des Saarlandes, Saarbrücken

duchier@ps.uni-sb.de

Abstract

Dominance constraints are a language of tree descriptions. Tree descriptions are
widely used in computational linguistics for talking and reasoning about trees.
While previous research has focused on the conjunctive fragment, we now extend
the account to all Boolean connectives and propose a new formalism that combines
dominance constraints with a feature tree logic.

Although the satisfiability problem in the conjunctive fragment is known to be
NP-complete, we have previously demonstrated that it can be addressed very ef-
fectively by constraint propagation: we developed an encoding that transforms a
dominance constraint into a constraint satisfaction problem on finite sets solvable
by constraint programming. We present a generalization of this encoding for our
more expressive formalism, and prove soundness and completeness. Our main con-
tribution is a treatment of disjunction suitable for constraint propagation.

Key words: dominance constraints, tree descriptions, finite set constraints,
constraint satisfaction, constraint propagation, constraint programming

1 Introduction

In computational linguistics, theories are frequently concerned with the for-
mulation of constraints or principles restricting the admissibility of tree rep-
resentations. A large class of structural constraints can be expressed elegantly
in the form of tree descriptions, where the ‘parent’ relation may be relaxed
into the ‘ancestor’, or dominance, relation. Tree descriptions were introduced
in (Marcus et al., 1983), motivated by an application to deterministic pars-
ing, and have steadily gained in popularity (Backofen et al., 1995; Rogers and
Vijay-Shanker, 1992). Today, they are used in such varied domains as Tree-
Adjoining and D-Tree Grammars (Vijay-Shanker, 1992; Rambow et al., 1995;

Preprint submitted to Elsevier Science 3 July 2001

Duchier and Thater, 1999), for underspecified representation of scope ambi-
guities in semantics (Muskens, 1995; Egg et al., 1998), and for underspecified
descriptions of discourse structure (Gardent and Webber, 1998).

Classical dominance constraints express a tree description as a conjunction of
literals x �

∗ y and x:f(x1 . . . xn) where variables denote nodes in the tree.
The symbol �

∗ notates the dominance relation and x:f(x1 . . . xn) expresses
that the node denoted by x is formed from the n-ary constructor f and the
sequence of daughter nodes denoted by x1 through xn.

While the satisfiability problem was shown to be NP-complete (Koller, Niehren,
and Treinen, 2000b), for practical applications it remains essential to be able to
decide satisfiability and find solutions of tree descriptions efficiently. This re-
quirement may be addressed either by identifying polynomial fragments, e.g.
normal dominance constraints (Koller et al., 2000a), or by devising solvers
that more effectively deal with the combinatorial complexity of the task. An
approach based on constraint propagation has proven particularly successful:
efficient constraint programming solvers can be derived by transformation of
a dominance constraint into a constraint satisfaction problem on finite sets
(Duchier and Gardent, 1999; Duchier, 1999b; Duchier and Niehren, 2000).

Dominance constraints with set operators (Duchier and Niehren, 2000) gener-
alized dominance literals x�

∗ y into xRy for any R ⊆ {=,�+,�+,⊥}, where
�

+ denotes proper dominance and ⊥ disjointness. R is called a set operator
and is interpreted disjunctively, e.g. x {=,⊥} y expresses that the nodes de-
noted by x and y must either be equal or lie in disjoint subtrees, and x�

∗ y is
now written x{=,�+}y. In all tree structures, we have x¬Ry ≡ ¬(xRy) and
x(R1 ∪R2)y ≡ xR1y∨xR2y. Thus the extended formalism allows a controlled
form of negation and disjunction without admitting full Boolean connectives,
yet remains eminently well-suited to processing based on constraint propaga-
tion.

In the present article, we extend the account to a language with Boolean
connectives. Our main contribution is a treatment of disjunction suitable
for constraint propagation by reduction to the selection constraint (Duchier,
1999a). In contrast with previous formalisms based on constructor trees, the
one proposed here combines dominance constraints with a feature tree logic
in the style of CFT (Smolka and Treinen, 1994). A literal previously written
x:f(x1, . . . , xn) is now expressed as a conjunction of simpler constraints:

x:f(x1, . . . , xn) ≡ x:f ∧ |x|=n ∧ ∧n
i=1 x[i] = xi

|x|=n is an arity constraint, x:f is a label or sort constraint, and x[i]=xi

is a feature constraint. The finer granularity of the language facilitates the

2

treatment of negation:

¬x:f(x1 . . . xn) ≡ ¬x:f ∨ |x|6=n ∨ ∨n
i=1 x[i] 6= xi

It also allows us to generalize to all literals the constraint treatment made
possible by the set-based disjunctive representation of set operators. Where
x {=,⊥} y, now written x= y∨x⊥ y, was treated as constraining the relation
holding between x and y to be an element of {=,⊥}, similarly x:f ∨ x:g can
also be treated as constraining the label of x to be an element of {f, g}.

The increased expressivity permits in particular the direct formulation of con-
straints that previously required ad hoc extensions to the conjunctive frag-
ment. For example, the non-intervention constraint ¬(x �

∗ y �
∗ z) proposed

by Koller and Niehren (2000) in their application to underspecified processing
of dynamic semantics:

¬(x �
∗ y �

∗ z) ≡ x �
+ y ∨ x⊥ y ∨ y �

+ z ∨ y ⊥ z

In Section 2, we present our formalism and develop a semantic account that
sets the stage for the constraint-based treatment. In Section 3, we describe an
encoding of dominance constraints into a constraint satisfaction problem on
sets, and prove its soundness and completeness in Section 4. The constraint
satisfaction problem can be solved effectively using constraint programming
and, in Section 5, we formulate precise requirements for the target program-
ming language.

2 Dominance Constraints With Boolean Connectives

We propose a new language of tree descriptions that subsumes the language of
dominance constraints with set operators of Duchier and Niehren (2000) and
combines it with the feature tree logic CFT of Smolka and Treinen (1994). Its
abstract syntax is given below, where x, y range over an infinite set of node
variables, r ∈ {=,�+,�+,⊥} and f ranges over a finite signature Σ:

φ ::= x r y | |x| = n | x:f | x[i] = y | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ

Without loss of generality, we restrict our attention to a language where only
literals may be negated, i.e. where negation has been pushed inward as far as
possible. The admission of disjunction subsumes the set operator extension of
Duchier and Niehren (2000) since x R y ≡ ∨{x r y | r ∈ R}.

3

2.1 Tree Structures

The semantics of dominance constraints with Boolean connectives are given by
interpretation over tree structures. We assume a finite signature Σ of function
symbols f, g, a, b, . . . each equipped with an arity ar(f) ≥ 0. We write max

for the maximum arity in Σ. We further assume that Σ contains at least one
constant and one function symbol of arity ≥ 2. We are interested in trees
which can be regarded as ground terms over Σ, e.g. f(g(a, b)).

Nothing in our presentation critically depends on the existence of the arity
function ar: with it we obtain constructor trees, without it traditional feature
trees. What is critical is that both Σ and the set of features ({1 . .max} for
constructor trees) be finite. The finiteness of our encoding in Section 3 depends
on this assumption.

We identify a node in a tree with the path that leads to it starting from the
root of the tree. A path π is a word (i.e. a sequence) of positive integers. We
write ǫ for the empty path and π1π2 for the concatenation of π1 and π2. π′ is
a prefix of π iff there exists π′′ such that π = π′π′′. We write π1 �

∗ π2 when
π1 is a prefix of π2 and say that π1 dominates π2. A tree-domain is a non-
empty prefix-closed set of paths. A (finite) tree τ is a pair (Dτ , Lτ) of a finite
tree-domain Dτ and a labeling function Lτ : Dτ → Σ with the property that
all π ∈ Dτ and k ≥ 1 satisfy πk ∈ Dτ iff k ≤ ar(Lτ (π)), i.e. that each node
has precisely as many children as required by the arity of the function symbol
with which it is labeled. We write π[i]π′, and say that π′ is the daughter of π

at feature i, when π′ = πi.

The tree structureMτ of a finite tree τ is a first-order structure with domain
Dτ and containing, for each f ∈ Σ and 0 ≤ n ≤ max, the unary relations :f τ

and nτ :

:f τ = {π ∈ Dτ | Lτ (π) = f}

nτ = {π ∈ Dτ | ar(Lτ (π)) = n}

and also the binary relations [i]τ for each 1 ≤ i ≤ max:

[i]τ = {(π, π′) ∈ Dτ ×Dτ | π[i]π′} = {(π, πi) | πi ∈ Dτ}

as well as all relations formed from them by inversion −1, union ∪, intersection
∩, complementation ¬, composition ◦, and reflexive, transitive closure ∗. For
any relations R,R′ ⊆ Dτ × Dτ , we define R−1 = {(π′, π) | (π, π′) ∈ R},
R′ ◦ R = {(π, π′′) | (π, π′) ∈ R ∧ (π′, π′′) ∈ R′} and ¬R = Dτ × Dτ \ R.
Writing ⊎ for disjoint union, we obtain immediate dominance �

τ by ⊎{[i]τ |
1 ≤ i ≤ max}, dominance �

∗τ by �
τ ∗, inverse dominance �

∗τ by �
∗τ−1,

equality =τ by �
∗τ ∩ �

∗τ , inequality 6=τ by ¬=τ , proper dominance �
+τ

by

4

�
∗τ ∩ 6=τ , inverse proper dominance �

+τ
by �

+τ−1
, and disjointness ⊥τ by

¬�
∗τ ∩¬�

∗τ . We also pose �
i,∗τ

= �
∗τ ◦ [i]τ , and say that π′ is a descendant

of π at feature i when π �
i,∗τ

π′. The following partition holds in all tree
structures:

Dτ ×Dτ = =τ ⊎�
+τ
⊎�

+τ
⊎ ⊥τ

2.2 Proof System And Models

We write Vφ for the set of variables occurring in φ. Classically, a solution of φ

consists of a tree structure Mτ and a variable assignment α : Vφ → Dτ , and
we write (Mτ , α) |= φ if the constraint φ is satisfied by (Mτ , α) in the usual
Tarskian way. For technical reasons, in the proofs of Section 4 we need to keep
track of which disjuncts are being satisfied. To this end, we introduce simple
proof terms with the following abstract syntax:

δ ::= • | δ · δ′ |
←−
δ |

−→
δ

• is the constant proof term assigned to literals, the infix · is a binary proof
constructor for conjunctions, and←− (resp. −→) is a unary proof constructor for
disjunctions, with the arrow pointing in the direction of the selected disjunct.

A solution of φ is a triple (Mτ , α, δ). We say that (Mτ , α, δ) satisfies φ, and
write (Mτ , α, δ) |= φ iff (Mτ , α) ⊢ δ : φ according to the proof system of
Figure 1.

(Mτ , α) ⊢ δ1 : φ1 (Mτ , α) ⊢ δ2 : φ2

(Mτ , α) ⊢ δ1 · δ2 : φ1 ∧ φ2

(Mτ , α) ⊢ δ1 : φ1

(Mτ , α) ⊢
←−
δ1 : φ1 ∨ φ2

(Mτ , α) ⊢ δ2 : φ2

(Mτ , α) ⊢
−→
δ2 : φ1 ∨ φ2

(Mτ , α) ⊢ • : x r y if (α(x), α(y)) ∈ rτ

(Mτ , α) ⊢ • : ¬(x r y) if (α(x), α(y)) 6∈ rτ

(Mτ , α) ⊢ • : |x| = n if α(x) ∈ nτ i.e. ar(Lτ (α(x))) = n

(Mτ , α) ⊢ • : ¬(|x| = n) if α(x) 6∈ nτ i.e. ar(Lτ (α(x))) 6= n

(Mτ , α) ⊢ • : x:f if α(x) ∈ :f τ i.e. Lτ (α(x)) = f

(Mτ , α) ⊢ • : ¬(x:f) if α(x) 6∈ :f τ i.e. Lτ (α(x)) 6= f

(Mτ , α) ⊢ • : x[i]=y if α(y) = α(x)i
(Mτ , α) ⊢ • : ¬(x[i]=y) if α(y) 6= α(x)i

Fig. 1. Proof System

Theorem 1 The satisfiability problem of dominance constraints with Boolean
connectives is NP-complete.

5

This follows from the result of Koller et al. (2000b) that the satisfiability
problem of all logical languages over dominance constraints between the purely
conjunctive fragment and the positive existential fragment are NP-complete,
and from the idea of their polynomial encoding of negation in the presence of a
finite signature, namely to expand ¬x : f(x1, . . . , xn) into the finite disjunction
of all other possibilities:

 ∨

g 6=f∈Σ

x : g(x′
1, . . . , x

′
ar(g))

 ∨

(
x : f(x′′

1, . . . , x
′′
n) ∧

n∨

i=1

x′′
i 6= xi

)

where x′
i and x′′

i are fresh variables. The same idea may be used to reduce
feature constraints x[k] = y to constructor tree constraints:

∨{x : f(x1, . . . , xar(f)) ∧ xk = y | f ∈ Σ ∧ ar(f) ≥ k}

where the xi are fresh variables. In this respect, our approach has over theirs
the practical advantage of economy.

We now sketch a more direct proof: in Section 3 we describe a polynomial en-
coding of a dominance constraint with Boolean connectives into a constraint
satisfaction problem on variables ranging over elements or subsets of finite
domains, and in Section 4 we prove soundness and completeness. This estab-
lishes that the satisfiability problem is in NP (we can guess an assignment
and check it in polynomial time). NP-completeness can again be shown by
encoding propositional satisfaction: we assume a signature that contains the
two constants true and false and we consider formulae given by the abstract
syntax below, where p ranges over an infinite set of propositional variables:

P, P ′ ::= p | ¬p | P ∧ P ′ | P ∨ P ′

The satisfiability preserving encoding below transforms a propositional for-
mula P into a dominance constraint [[P]]:

[[p]] = p : true [[P ∧ P ′]] = [[P]] ∧ [[P ′]]

[[¬p]] = p : false [[P ∨ P ′]] = [[P]] ∨ [[P ′]]

2.3 Functions And Invariants

We consider tree structures equipped with the following functions of type
Dτ → 2Dτ . For each binary relation rτ ⊆ Dτ ×Dτ there is a function r̃τ :

r̃τ (π) = {π′ | (π, π′) ∈ rτ}

We write eqτ for =̃τ , downτ for �̃
+

τ
, upτ for �̃

+
τ
, sideτ for ⊥̃

τ
, eqdownτ for �̃

∗
τ
,

equpτ for �̃
∗
τ
, downi

τ for �̃
i,∗

τ
, and childi

τ for [̃i]
τ
. Finally, writing R for the

6

set of relation symbols {=,�+,�+,⊥}, there is a function relτ : Dτ×Dτ → R
defined by:

relτ (π, π′) = r if (π, π′) ∈ rτ for some r ∈ R

In all tree structures, the invariants of Figure 2 hold, where ‖ stands for dis-
jointness. These invariants form the basis of our encoding into set constraints.
They are not axiomatically minimal, but the redundancy is required to obtain
strong propagation in the solver (Duchier and Niehren, 2000).

For all π, π′ ∈ Dτ and 1 ≤ i ≤ max

{π} = eqτ (π) (1)

Dτ = eqτ (π) ⊎ downτ (π) ⊎ upτ (π) ⊎ sideτ (π) (2)

eqdownτ (π) = eqτ (π) ⊎ downτ (π) (3)

equpτ (π) = eqτ (π) ⊎ upτ (π) (4)

downτ (π) = ⊎{downi
τ (π) | 1 ≤ i ≤ ar(Lτ (π))}

= ⊎{downi
τ (π) | 1 ≤ i ≤ max} (5)

childi
τ (π) ⊆ downi

τ (π) (6)

i > ar(Lτ (π)) ⇒ downi
τ (π) = ∅ (7)

π ¬= π′ ⇒ eqτ (π) ‖ eqτ (π
′) (8)

π �
+ π′ ⇒ eqdownτ (π

′) ⊆ downτ (π)
∧ equpτ (π) ⊆ upτ (π

′)
∧ sideτ (π) ⊆ sideτ (π

′)

(9)

π ¬�
+ π′ ⇒ eqτ (π) ‖ upτ (π

′)
∧ downτ (π) ‖ eqτ (π

′)
(10)

π ⊥ π′ ⇒ eqdownτ (π) ⊆ sideτ (π
′)

∧ eqdownτ (π
′) ⊆ sideτ (π)

(11)

π ¬⊥ π′ ⇒ eqτ (π) ‖ sideτ (π
′)

∧ sideτ (π) ‖ eqτ (π′)
(12)

π′ = πi ⇒ childi
τ (π) = eqτ (π

′)

∧ downi
τ (π) = eqdownτ (π

′)
∧ upτ (π′) = equpτ (π)

(13)

π′ 6= πi ⇒ eqτ (π
′) ‖ childi

τ (π) (14)

π′ = πiπ′′ ⇒ eqdownτ (π
′) ⊆ downi

τ (π) (15)

π′ 6= πiπ′′ ⇒ eqτ (π
′) ‖ downi

τ (π) (16)

Fig. 2. Invariants in Tree Structures

Invariants of tree structures induce corresponding invariants on the variables
they interpret, and, to make this precise, we introduce the constraint language

7

below, where S, Si are variables denoting sets:

C ::= S1 = S2 | S1 ⊆ S2 | S1 ‖ S2 | S = S1 ⊎ · · · ⊎ Sn |
C1 ∧ C2 | C1 ∨ C2 | C1 ⇒ C2

We write VC for the set of variables of C. Given a set D, a D-solution of C

is a variable assignment σ : VC → 2D that makes C true. We write σ |=D C.
For any function α : D1 → D2, we write α−1 : D2 → 2D1 for its inverse image
and overload it in the usual fashion to obtain α−1 : 2D2 → 2D1 defined by
α−1(S) = ∪{α−1(x) | x ∈ S}.

Proposition 2 Given two sets D1 and D2, a function α : D1 → D2, then
∀σ : VC → D2 if σ |=D2

C then α−1 ◦ σ |=D1
C.

The proof follows by induction and by contradiction from the fact that α is a
function. We will use this result in Section 4 to transfer invariants about sets
of nodes to corresponding invariants about the set of variables they interpret.

3 Reduction to a CSP

Our approach to solving a dominance constraint φ is to transform it into an
equivalent constraint satisfaction problem (CSP) [[φ]] involving finite domain
(FD) variables taking values in finite integer domains and finite set (FS) vari-
ables ranging over subsets of finite integer domains. Every x ∈ Vφ must be
encoded by a distinct integer; also every f ∈ Σ: in the interest of legibility we
will leave all such encodings implicit.

The encoding follows a pattern similar to our earlier work (Duchier and Gar-
dent, 1999; Duchier, 1999b; Duchier and Niehren, 2000). Section 3.1 defines
the language for expressing the CSP. Section 3.2 introduces the variables of the
CSP and states some basic constraints about them. We are only interested in
models which are trees and Section 3.3 formulates well-formedness constraints
to that effect. Finally Section 3.4 introduces the additional problem specific
constraints which admit only those trees which actually satisfy φ.

3.1 CSP Language

Let ∆ = {0 . . µ} be an integer interval for µ sufficiently large. We assume a
set of FD variables I, Ik with values in ∆ and a set of FS variables S, Sk with
values in 2∆. FD and FS variables are also generically written X,Xk. We write
D for a domain, i.e. a fixed subset of ∆. The syntax of a constraint C of our

8

target CSP language is:

C ::= X1 = X2 | I ∈ D | D ⊆ S | S ⊆ D | I ∈ S |
I1 < I2 | S1 ⊆ S2 | S1 ‖ S2 | S = S1 ⊎ · · · ⊎ Sn |
X = 〈X1, . . . , Xn〉[I] | C1 ∧ C2 | C1 ∨ C2

This language needs not provide implications since, as we shall see, our en-
coding turns all implications, e.g. those of Figure 2, into disjunctions.

We say that β is a solution of C, and write β |= C, if β is an assignment of
elements of ∆ to FD variables and subsets of ∆ to FS variables that makes C
true. The selection constraint X = 〈X1, . . . , Xn〉[I] is a novel element of our
encoding which Duchier (1999a) introduced for the efficient constraint-based
treatment of ambiguity in dependency grammar. X = 〈X1, . . . , Xn〉[I] is true
iff X = XI , more precisely β makes it true iff β(I) ∈ {1 . . . n} ∧ β(X) =
β(Xβ(I)).

3.2 CSP Variables And Invariants

As described in Section 2.3, a tree structure Mτ is equipped with a number
of functions such as eqτ , downτ , etc. The idea of the encoding is to introduce
a CSP variable to denote the value that each function takes at each x ∈ Vφ.
More precisely: given a model (Mτ , α, δ) of φ, each function γ : Dτ → 2Dτ of
Mτ induces a corresponding function Γ : Vφ → 2Vφ as follows:

Γ = α−1 ◦ γ ◦ α

For each x ∈ Vφ, we introduce a set variable Γx to denote Γ(x). Thus, for each
x ∈ Vφ, there are 6 + 2× max set variables written Eqx, Upx, Downx, Sidex,
Equpx, Eqdownx and Childi

x, Downi
x for 1 ≤ i ≤ max.

Similarly, each function γ : Dτ → N (resp. γ : Dτ → Σ) induces a correspond-
ing function Γ : Vφ → N (resp. Γ : Vφ → Σ) as follows:

Γ = γ ◦ α

Thus, for each x ∈ Vφ, we introduce two integer variables: Arityx to denote
(ar◦Lτ ◦α)(x) and Labelx to denote (Lτ ◦α)(x). Finally, for every x, y ∈ Vφ, we
introduce an integer variable Rxy to denote relτ (α(x), α(y)). For all x, y ∈ Vφ

and 1 ≤ i ≤ max:

Eqx,Downx,Upx, Sidex,Childi
x,Downi

x,Eqdownx,Equpx ⊆ Vφ

Arityx ∈ ar(Σ) Labelx ∈ Σ Rxy ∈ R
(17)

As noted in Section 2.3, invariants of tree structures induce corresponding in-
variants on the variables they interpret. Therefore, we pattern the constraints

9

below after invariants (1–7) of Figure 2:

x ∈ Eqx (18)

Vφ = Eqx ⊎Downx ⊎ Upx ⊎ Sidex (19)

Eqdownx = Eqx ⊎Downx (20)

Equpx = Eqx ⊎ Upx (21)

Downx = ⊎{Downi
x | 1 ≤ i ≤ max} (22)

Childi
x ⊆ Downi

x (23)

i > Arityx ⇒ |Downi
x| = 0 (24)

where, writing i ≤ Arityx for Arityx ∈ {i, . . . , µ}, (24) stands for:

(i > Arityx ∧ |Downi
x| = 0) ∨ i ≤ Arityx

By associativity of composition:

(ar ◦ Lτ ◦ α)(x) = ar ◦ (Lτ ◦ α)(x)

i.e. Arityx = ar(Labelx)

However, the latter equation is inappropriate for constraint propagation since
Labelx is an unknown. Instead, we take advantage of the fact that ar is a
finite map from function symbols to integers, and encode it using the selection
constraint below:

Arityx = 〈ar(f1), . . . , ar(fm)〉[Labelx] (25)

where Σ = {f1, . . . , fm} and each fk is implicitly identified with the integer k

that encodes it.

3.3 Well-Formedness Clauses

The well-formedness clauses are concerned with invariants characterizing the
shape of the tree: (1) does x stand in relation r to y, (2) is y a daughter of x

at feature i, (3) is y a descendent of x at feature i?

(1) For each r ∈ R, Figure 2 lists invariants of the form:

π r π′ ⇒ Cr(π, π′) and π ¬r π′ ⇒ C¬r(π, π′)

Since π r π′ ∨ π ¬r π is valid in all tree structures, so is the disjunction below:

(π r π′ ∧ Cr(π, π′)) ∨ (π ¬r π′ ∧ C¬r(π, π′))

10

Thus, on the basis of invariants (8–12), we formulate a quadratic number of
well-formedness clauses. For each x, y ∈ Vφ and r ∈ R:

B[[x r y]] ∧Rxy = r ∨ Rxy 6= r ∧ B[[x ¬r y]] (26)

where Rxy = r corresponds to α(x) r α(y) and B[[x r y]], defined in Figure 3,
corresponds to Cr(α(x), α(y)) and forms the characteristic set constraints of
the case x r y.

B[[x = y]] = Eqx = Eqy ∧ Upx = Upy ∧Downx = Downy ∧ Sidex = Sidey ∧
Equpx = Equpy ∧ Eqdownx = Eqdowny ∧ Labelx = Labely ∧
Arityx = Arityy ∧

max

i=1 Downi
x = Downi

y ∧
max

i=1 Childi
x = Childi

y

B[[x ¬= y]] = Eqx ‖ Eqy

B[[x �
+ y]] = Eqdowny ⊆ Downx ∧ Equpx ⊆ Upy ∧ Sidex ⊆ Sidey

B[[x ¬�
+ y]] = Eqx ‖ Upy ∧Downx ‖ Eqy

B[[x⊥ y]] = Eqdownx ⊆ Sidey ∧ Eqdowny ⊆ Sidex

B[[x ¬⊥ y]] = Eqx ‖ Sidey ∧ Sidex ‖ Eqy

B[[y �
+ x]] = B[[x �

+ y]]

B[[y ¬�
+ x]] = B[[x ¬�

+ y]]

Fig. 3. Characteristic Set Constraints

(2) Similarly, on the basis of invariants (13) and (14), we also formulate clauses
concerned with whether or not y is x’s daughter at feature i:

Childi
x = Eqy ∧Downi

x = Eqdowny ∧ Upy = Equpx ∨ Childi
x ‖ Eqy (27)

(3) Finally, y either is or is not a descendent of x at feature i. On the basis of
invariants (15) and (16) we obtain:

Eqdowny ⊆ Downi
x ∨ Eqy ‖ Downi

x (28)

3.4 Problem-Specific Constraints

So far, the constraints of our encoding only served to characterize structures
appropriate for interpreting the variables of φ: namely tree structures. Now
we turn to the last part of the encoding which forms the additional problem
specific constraints that further restrict the admissibility of tree structures and
admits only those which are models of φ.

φ can be viewed as a finite tree (Dφ, Lφ) over the finite signature Σφ containing
all symbols of the form ∧, ∨, x r y, ¬(x r y), |x|=n, ¬(|x|=n), x:f , ¬(x:f),

11

x[n]=y, ¬(x[n]=y), for all x, y and n appearing in φ, f ∈ Στ , and 1 ≤ i ≤ max.
We write φ[π] for the subformula of φ at path π.

The intuition is that each subformula of φ stipulates a set of licensed values
for Rxy,Arityx,Labelx,Childi

x. Thus for each π ∈ Dφ we introduce variables
Rπ

xy,Arityπ
x,Labelπx to represent the values licensed by φ[π] for Rxy, Arityx,

Labelx. We also introduce Loπ
i,x,Hiπi,x to represent resp. the upper and lower

bounds stipulated for Childi
x. We write V π

φ for the set of variables Rπ
xy, Arityπ

x,
Labelπx, Loπ

i,x, Hiπi,x for 1 ≤ i ≤ max. The problem-specific constraints are then
expressed as follows:

Rxy ∈ Rǫ
xy (29)

Arityx ∈ Arityǫ
x (30)

Labelx ∈ Labelǫx (31)

Childi
x ⊇ Loǫ

i,x (32)

Childi
x ⊆ Hiǫi,x (33)

Each variable Xπ ∈ V π
φ is defined by a constraint and we first present an

example to help clarify the intuition. Consider φ of the form (x:f ∨ x:g) ∧
(x:h ∨ x:f). For each disjunction φ[π] we introduce a selector variable Iπ to
indicate which alternative is selected: Iπ = 1 for the left disjunct and Iπ = 2
for the right one. For each π ∈ Dφ, variable Labelπx is defined as follows:

Labelx ∈ Labelǫx Label1x = 〈Label1 1
x ,Label1 2

x 〉[I
1]

Labelǫx = Label1x ∩ Label2x Label2x = 〈Label2 1
x ,Label2 2

x 〉[I
2]

Label1 1
x = {f} Label2 1

x = {h}

Label1 2
x = {g} Label2 2

x = {f}

where I1 and I2 indicate which disjunct is selected in resp. the 1st and 2nd dis-
junction. Constraint propagation infers Label1x ⊆ {f, g} and Label2x ⊆ {h, f},
i.e. Labelǫx = {f}, i.e. Labelx = f .

For simplicity, we introduce a selector variable Iπ for every subformula φ[π]
and stipulate Iπ ∈ {1, 2} if φ[π] is a disjunction and Iπ = 0 otherwise.

Each variable Xπ ∈ V π
φ is defined by a constraint Υπ

φ(Xπ). We call Υπ
φ a

restriction and define it, in Figure 4, ∀π ∈ Dφ by induction on the syntac-
tic representation of φ. Υπ

φ,∧, Υπ
φ,∨, and ⊤π

φ[·] are defined below. The selector
variables Iπ identify which disjuncts are satisfied by a model (Mτ , α, δ). Intu-
itively Iπ = 1 (resp. Iπ = 2) if in the proof of (Mτ , α) ⊢ δ : φ, φ[π] is assigned

a proof term
←−
δ′ (resp.

−→
δ′).

Υπ
φ,∧ is the restriction for conjunctive subformulae and is defined as follows,

12

φ[π] Υπ
φ

φ1 ∧ φ2 Υπ
φ,∧

φ1 ∨ φ2 Υπ
φ,∨

x r y ⊤π
φ[Rxy 7→ {r}]

¬(x r y) ⊤π
φ[Rxy 7→ R \ {r}]

|x|=n ⊤π
φ[Arityx 7→ {n}]

¬(|x|=n) ⊤π
φ[Arityx 7→ {0 . .max} \ {n}]

x:f ⊤π
φ[Labelx 7→ {f}]

¬(x:f) ⊤π
φ[Labelx 7→ Σ \ {f}]

x[i]=y ⊤π
φ[Loi,x 7→ {y}]

¬(x[i]=y) ⊤π
φ[Hii,x 7→ Vφ \ {y}]

Fig. 4. Inductive Definition of Restrictions

where π1 selects the left conjunct and π2 selects the right conjunct:

Υπ
φ,∧(Iπ) ≡ Iπ = 0

Υπ
φ,∧(Loπ

i,x) ≡ Loπ
i,x = Loπ1

i,x ∪ Loπ2
i,x

Υπ
φ,∧(Xπ) ≡ Xπ1 ∩Xπ2 otherwise

Υπ
φ,∨ is the restriction for disjunctive subformulae and is defined as follows:

Υπ
φ,∨(Iπ) ≡ Iπ ∈ {1, 2}

Υπ
φ,∨(Xπ) ≡ Xπ = 〈Xπ1, Xπ2〉[Iπ] otherwise

We write ⊤π
φ for the most general restriction at φ[π] defined as follows:

⊤π
φ(Rπ

xy) ≡ Rπ
xy = R

⊤π
φ(Arityπ

x) ≡ Arityπ
x = ar(Σ) ⊆ {0 . .max}

⊤π
φ(Labelπx) ≡ Labelπx = Σ

⊤π
φ(Loπ

i,x) ≡ Loπ
i,x = ∅

⊤π
φ(Hiπi,x) ≡ Hiπi,x = Vφ

⊤π
φ(Iπ) ≡ Iπ = 0

and we write ⊤π
φ[X 7→ V] for the restriction such that:

⊤π
φ[X 7→ V](Y π) ≡

Xπ = V if Y is X

⊤π
φ(Y π) otherwise

The restriction constraints are given by:

∧{Υπ
φ(Rπ

xy) ∧Υπ
φ(Arityπ

x) ∧Υπ
φ(Labelπx) ∧Υπ

φ(Loπ
i,x)

∧Υπ
φ(Hiπi,x) ∧Υπ

φ(Iπ) | π ∈ Dφ, x, y ∈ Vφ, 1 ≤ i ≤ max}

(34)

13

3.5 Assembling The CSP

We now formulate the complete CSP by putting together the translated in-
variants, the well-formedness clauses, and the problem-specific constraints. We
refer to these constraints by means of their integer labels.

[[φ]] ≡ ∧{(17–25) | x, y ∈ Vφ 1 ≤ i ≤ max}

∧{(26–28) | x, y ∈ Vφ 1 ≤ i ≤ max, r ∈ R}

∧{(29–34) | x, y ∈ Vφ 1 ≤ i ≤ max}

4 Soundness And Completeness

Theorem 3 (Soundness) if [[φ]] is satisfiable then so is φ.

Theorem 4 (Completeness) if φ is satisfiable then so is [[φ]].

4.1 Completeness

We show that, given a model (Mτ , α, δ) of φ, we can construct a solution β

of [[φ]]. We choose β so that it makes the following assignments:

Γx 7→ Γ(x)

Rxy 7→ relτ (α(x), α(y))

where Γx and Γ are as described in Section 3.2. By (Proposition 2), CSP
constraints (17–25) are satisfied.

If α(x) = π and α(y) = π′ and π r π′ holds in Mτ . Then, from invariant
π r π′ ⇒ Cr(π, π′), one of (8–12), it follows that Cr(π, π′) holds. Therefore, by
(Proposition 2), β satisfies B[[xry]]. Also β(Rxy) = r by construction. Similarly
if π ¬r π′. Thus the well-formedness clauses (26) are satisfied.

The well-formedness clauses (27) are satisfied: if π′ = πi, then πi ∈ Dτ and
invariant (13) applies. Thus, by (Proposition 2), β satisfies the left disjunct
of (27). If π′ 6= πi, then, by definition of childi

τ , π′ 6∈ childi
τ (π). Thus, by

(Proposition 2), β satisfies the right disjunct of (27). Similarly for (28).

We now turn to the problem-specific constraints. Given a model (Mτ , α, δ) of
φ, we write Π(δ) for the set of paths of the subformulae of φ involved in the

14

proof of (Mτ , α) |= δ : φ. Π is defined as follows:

Π(•) = {ǫ}
Π(δ · δ′) = {ǫ} ∪ 1Π(δ) ∪ 2Π(δ′)

Π(
←−
δ) = {ǫ} ∪ 1Π(δ)

Π(
−→
δ) = {ǫ} ∪ 2Π(δ)

where we write iΠ(δ) for {iπ | π ∈ Π(δ)}. We now describe how β assigns
values to the restriction variables Xπ. We are going to proceed by induction
on π. π is said to be maximal in Π(δ) if ππ′ ∈ Π(δ)⇒ π′ = ǫ.

if π is maximal, then φ[π] is a literal and Υπ
φ(Xπ) is of the form Xπ = V where

V is a constant value. We pose β(Xπ) = V . If π is not maximal, then φ[π] is
either a conjunction or a disjunction.

If φ[π] is a conjunction, then by hyp., ∀i ∈ {1, 2}, β(Xπi) has been established.
Since Υπ

φ(Iπ) ≡ Iπ = 0, we pose β(Iπ) = 0. For X other than I, Υπ
φ(Xπ) has

the form Xπ = Xπ1 ρ Xπ2 for ρ either ∩ or ∪. We pose β(Xπ) = β(Xπ1) ρ

β(Xπ2).

If φ[π] is a disjunction, then by hyp., ∀i ∈ {1, 2}, β(Xπi) has been established.
If πi ∈ Π(δ), we pose β(Iπ) = i, otherwise we pick i arbitrarily in {1, 2}.
For X other than I, Υπ

φ(Xπ) has the form Xπ = 〈Xπ1, Xπ2〉[Iπ]. We pose

β(Xπ) = β(Xπβ(Iπ)).

By construction, β satisfies (34). Now it only remains to show that the problem-
specific constraints (29–33) are also satisfied by β. We will do this only for
(29), i.e. Rxy ∈ Rǫ

xy. The other proofs are similar.

We show that ∀π ∈ Π(δ) β |= Rxy ∈ Rπ
xy. Again we proceed by induction on

π. If π is maximal, then φ[π] is a literal ℓ and we distinguish the cases when ℓ

is xry, ¬(xry), or something else. Since π ∈ Π(δ), (Mτ , α) ⊢ • : ℓ is satisfied.

If ℓ is x r y, then (α(x), α(y)) ∈ rτ and β(Rxy) = r. By construction β(Rπ
xy) =

{r}, which proves β |= Rxy ∈ Rπ
xy. If ℓ is ¬(x r y), then (α(x), α(y)) 6∈ rτ and

β(Rxy) 6= r. By construction β(Rπ
xy) = R \ {r}, which also proves β |= Rxy ∈

Rπ
xy. Finally in all other cases, β(Rπ

xy) = R which again proves β |= Rxy ∈ Rπ
xy.

In π is not maximal, then φ[π] is either a conjunction or a disjunction. If φ[π]
is a conjunction, we have ∀i ∈ {1, 2} πi ∈ Π(δ) and by hyp. β |= Rxy ∈ Rπi

xy.
Since Rπ

xy = Rπ1
xy ∩ Rπ2

xy , also β |= Rxy ∈ Rπ
xy. If φ[π] is a disjunction, we have

∃i ∈ {1, 2} πi ∈ Π(δ) and β(Iπ) = i. Since Rπ
xy = Rπβ(Iπ)

xy , also β |= Rxy ∈ Rπ
xy.

Hence by induction β |= Rxy ∈ Rǫ
xy.

15

4.2 Soundness

We show that given a solution β of [[φ]], we can construct a model (Mτ , α, δ)
of φ. We define x ≺β y ≡ β(Rxy) = �

+. If β(Rxy) = �
+, then Rxy 6= �

+ is
false and β must satisfy the other alternative of (26), i.e. B[[x �

+ y]] holds,
i.e. y ∈ Eqdowny ⊆ Downx, i.e. Downx ‖ Eqy is false, i.e. B[[x ¬�

+ y]] is
false. From B[[x ¬�

+ y]] = B[[y ¬�
+ x]], we infer that β must satisfy the other

alternative of (26), i.e. Ryx = �
+ holds. Thus we have β(Rxy) = �

+ iff
β(Ryx) = �

+. In particular, ≺β is antisymmetric. Further ≺β is transitive:
if we have x ≺β y ∧ y ≺β z, then B[[x �

+ y]] and B[[y �
+ z]] must hold, i.e.

x ∈ Equpx ⊆ Upy ⊆ Equpy ⊆ Upz, which makes Eqx ‖ Upz, i.e. B[[x ¬�
+ z]],

inconsistent. Therefore the other alternative of clause (26), B[[x�
+ z]]∧Rxz =

�
+ must hold, i.e. β(Rxz) = �

+. Thus ≺β defines a partial ordering on Vφ.

We consider V =
φ a maximal subset of Vφ such that for every distinct x, x′ ∈ V =

φ ,
we have β(Rxx′) 6==. We define:

⌈S⌉β = {x ∈ S | x is ≺β maximal}

⌊S⌋β = {x ∈ S | x is ≺β minimal}

⌊x⌋β = {y ∈ V =
φ | x≺β y and y is ≺β minimal}

⌊x⌋iβ = {y ∈ ⌊x⌋β | y ∈ β(Downi
x)}

We inductively construct V,D, α, L where τ = (D,L) is a finite tree, V is a
set of variables of φ and α is a function from V to D. We assumed that the
signature Σ contains at least one constant and one function symbol of arity
≥ 2. Given a constant a and a binary constructor f , n trees (τi) can be placed
at disjoint positions by forming f(τ1, f(τ2 . . . f(τn, a) . . .)). In such a case, for
simplicity of presentation, we will pretend that we have a n-ary constructor
consn giving us consn(τ1, . . . , τn).

Lemma 5 Given β such that β |= [[φ]]. For any S ⊆ V =
φ , and every distinct

x, x′ ∈ ⌊S⌋β, we have β(Rxx′) = ⊥. Similarly for every y ∈ V =
φ and every

distinct x, x′ ∈ ⌊y⌋iβ.

Proof: by definition of V =
φ , β(Rxx′) 6= =. By definition of ⌊ ⌋β, β(Rxx′) 6∈

{�+,�+} otherwise one of them would not be minimal. Therefore β(Rxx′) =
⊥. Similarly for ⌊y⌋iβ.

We start with V = ⌊V =
φ ⌋β = {x1, . . . , xn}. By Lemma 5, β(Rxixj

) = ⊥ for
1 ≤ i 6= j ≤ n and we place the xi at disjoint positions: D = {ǫ, 1, . . . , n},
α(xi) = i, and L(ǫ) = consn. D is a tree domain.

For the inductive step, consider the fringe ⌈V ⌉β, i.e. the variables x such that
α(x) is currently maximal in D. For each x ∈ ⌈V ⌉β, consider ⌊x⌋β, i.e. the ≺β

minimal variables below x. It follows from (22,24) that ⌊x⌋β is partitioned by

16

⌊x⌋iβ for 1 ≤ i ≤ Arityx. For each ⌊x⌋iβ, there are 3 cases:

(1) y ∈ ⌊x⌋iβ ∩ β(Childi
x). In this case, y is the only element of ⌊x⌋iβ. Sup-

pose there is a distinct y′ ∈ ⌊x⌋iβ. By (27), y′ ∈ Downi
x = Eqdowny, i.e.

β(Ryy′) 6= ⊥ which contradicts Lemma 5. We pose α(y) = α(x)i and add
it to D.

(2) ⌊x⌋iβ 6= ∅∧⌊x⌋
i
β∩β(Childi

x) = ∅. Posing ⌊x⌋iβ = {y1, . . . , ym}, by Lemma 5,
β(Ryiyj

) = ⊥ for 1 ≤ i 6= j ≤ m. We place them at disjoint positions. We
pose α(yk) = α(x)ik and L(α(x)i) = consn, and add α(x)i and α(yk) to
D.

(3) ⌊x⌋iβ = β(Childi
x) = ∅. If i ≤ β(Arityx) we add α(x)i to D and pose

L(α(x)i) = c where c is a constant.

We add ⌈V ⌉β to V . D is still a tree domain. We stop when ∀x ∈ ⌈V ⌉β,
⌊x⌋β = ∅. By induction, it must be the case that V = V =

φ . For every x ∈ Vφ\V
=
φ

there is y ∈ V such that β(Rxy) = =: we pose α(x) = α(y) and add x to V .
∀x ∈ Vφ we define L(α(x)) = β(Labelx). For all π ∈ D \ α−1(Vφ), L(π) was
defined by the construction procedure.

Lemma 6 In the tree constructed above, ∀r ∈ R, we have α(x) r α(y) iff
β(Rxy) = r.

The construction method enforces the invariant that α(x) �
+ α(y) in τ iff

β(Rxy) = �
+, and α(x) = α(y) iff β(Rxy) = =. Therefore, ∀r ∈ R, we have

α(x) r α(y) iff β(Rxy) = r.

Now that we have a tree τ , and therefore a tree structure Mτ , as well as a
variable assignment α, we turn to the proof term δ such that (Mτ , α) ⊢ δ : φ.
We pose δ = [ǫ]φ, where [π]φ is defined as follows:

[π](φ1 ∧ φ2) = [π1]φ1 · [π2]φ2

[π](φ1 ∨ φ2) =
←−−−
[π1]φ1 if β(Iπ) = 1

[π](φ1 ∨ φ2) =
−−−→
[π2]φ2 if β(Iπ) = 2

[π]φ = • otherwise

Lemma 7 By induction, the problem-specific constraints (29–33) hold not
only at ǫ, but at every π ∈ Π(δ).

We prove this for Rxy ∈ Rπ
xy, for π ∈ Π(δ); the other proofs are similar.

ǫ ∈ Π(δ) and β satisfies (29), i.e. β |= Rxy ∈ Rǫ
xy holds. Assume β |= Rxy ∈ Rπ

xy

for π ∈ Π(δ). If φ[π] = φ1 ∧ φ2, then π1, π2 ∈ Π(δ) and Rπ
xy = Rπ1

xy ∩ Rπ2
xy ;

therefore β |= Rxy ∈ Rπi
xy must hold for both i ∈ {1, 2}. If φ[π] = φ1 ∨φ2, then

only πi ∈ Π(δ) for i = β(Iπ), and β |= Rxy ∈ Rπ
xy = 〈Rπ1

xy , R
π1
xy〉[I

π] = Rπi
xy;

therefore β |= Rxy ∈ Rπi
xy. Otherwise φ[π] is a literal and we are done.

17

Lemma 8 By induction, (Mτ , α) ⊢ [π]φ : φ[π] holds for all π ∈ Π(δ).

For π maximal in Π(δ), φ[π] is a literal. If φ[π] = x r y, by Lemma 7, β |=
Rxy ∈ Rπ

xy = {r} and therefore, by Lemma 6, α(x) r α(y). If φ[π] = x[i]=y, by

Lemma 7, β |= Childi
x ⊇ Loπ

i,x = {y} and therefore y ∈ Childi
x and by step (1)

of the tree construction procedure α(y) = α(x)i. Similarly for the other cases.

If π is not maximal in Π(δ), then φ[π] is not a literal. If φ[π] = φ1 ∧ φ2,
then both π1, π2 ∈ Π(δ) and by induction hyp. (Mτ , α) ⊢ [πi]φ : φ[πi] for
both i ∈ {1, 2}. Therefore (Mτ , α) ⊢ [π1]φ · [π2]φ : φ[π] according to the proof
system, i.e. (Mτ , α) ⊢ [π]φ : φ[π]. If φ[π] = φ1∨φ2, then (Mτ , α) ⊢ [πi]φ : φ[πi]

for one of i ∈ {1, 2}. Suppose i = 1: then we have (Mτ , α) ⊢
←−−
[πi]φ : φ[π], i.e.

(Mτ , α) ⊢ [π]φ : φ[π]. Similarly for i = 2, which completes the proof.

5 Solving The CSP

Solving the CSP [[φ]] is a highly combinatorial task and brute force enumeration
is not practical. An effective means of pruning the search space is required so
that not all possible variable assignments β need be investigated. Constraint
propagation is such a technique and has proven very successful in a wide
range of application domains, from academic applications in computational
linguistics to hard industrial scheduling problems.

A CSP consists of a constraint C on a set of variables VC . Each xi ∈ VC takes
values in a finite domain Di. A solution of C is a variable assignment β, such
that β(xi) ∈ Di, that makes C true. To solve C using constraint propagation,
for each xi ∈ VC we maintain x̂i ⊆ Di representing the remaining set of possible
values for xi: i.e. β(xi) ∈ x̂i. Constraint propagation is a process of simple
deterministic inference. Its role is to discover and remove from x̂i values that
are inconsistent with C and cannot lead to a solution. It is said to perform
model elimination because it prunes candidate models from consideration.
When x̂i = {vi}, we say that xi is determined, and β(xi) = vi.

When constraint propagation alone is insufficient to determine all variables in
VC , then a non-deterministic choice is required. This is known as a distribu-
tion step. A non-determined variable xi is chosen: since x̂i is not a singleton,
∃D,D′ 6= ∅ such that x̂i = D ⊎ D′. We non-deterministically perform ei-
ther the update x̂i ← D or the update x̂i ← D′. The search for solutions of
C proceeds by alternating steps of deterministic constraint propagation and
non-deterministic distribution.

18

5.1 Language Requirements

Constraint programming (CP) is the computational paradigm which supports
problem solving in the manner described above. In order to efficiently solve
the CSP [[φ]] of Section 3, the target programming language must not only
support the constraints required by our encoding, but also implement their
operational semantics in a way that guarantees strong propagation. In the
following, we make these requirements precise: we introduce an abstract CP
language and specify the expected propagation as a system of inference rules.

Let ∆ = {0 . . µ} be an integer interval for some sufficiently large practical
limit µ. We assume a set of integer variables I, Ik, J with values in ∆, and a
set of set variables S, Sk with values in 2∆. Integer and set variables are also
both generically written Xk. We write D for a domain, i.e. a fixed subset of
∆, and i, j, n,m for particular integers in ∆. The syntax of our CP language
is given in Figure 5.

B ::= false | X1 = X2 | I ∈ D | D ⊆ S | S ⊆ D | B1 ∧ B2

C ::= B | I1 ≤ I2 | I ∈ S | S1 ‖ S2 | S3 ⊆ S1 ∪ S2 |
X = 〈X1 . . . Xn〉[J] | C1 ∧ C2 | C1 or C2

Fig. 5. CP Language

We distinguish between basic constraints B and non-basic constraints C, or
propagators. Basic constraints represent x̂i for each xi ∈ VC . For an integer
variable I, Î is represented by the basic constraint I ∈ D. For a set variable

equality

X1 = X2 ∧ B[Xj] → B[Xk] {j, k} = {1, 2}
finite domain constraints

I ∈ D1 ∧ I ∈ D2 → I ∈ D1 ∩D2

I ∈ ∅ → false

I1 ≤ I2 ∧ I1 ∈ {n . . m} → I2 ∈ ∆ \ {1 . . n− 1}
I1 ≤ I2 ∧ I2 ∈ {n . . m} → I1 ∈ ∆ \ {m + 1 . . µ}
finite set constraints

I ∈ S ∧ S ⊆ D → I ∈ D

I ∈ S ∧ I ∈ {i} → {i} ⊆ S

D1 ⊆ S ∧D2 ⊆ S → D1 ∪D2 ⊆ S

S ⊆ D1 ∧ S ⊆ D2 → S ⊆ D1 ∩D2

D ⊆ S ∧ S ⊆ D′ ∧D 6⊆ D′ → false

S1 ‖ S2 ∧Dj ⊆ Sj → Sk ⊆ ∆ \Dj {j, k} = {1, 2}
S3 ⊆ S1 ∪ S2 ∧ S1 ⊆ D1 ∧ S2 ⊆ D2 → S3 ⊆ D1 ∪D2

S3 ⊆ S1 ∪ S2 ∧D3 ⊆ S3 ∧ Sj ⊆ Dj → D3 \Dj ⊆ Sk {j, k} = {1, 2}

Fig. 6. Main Propagation Rules

19

B ∧ C →∗ false

B ∧ (C or C ′) → C ′
B ∧ C′ →∗ false

B ∧ (C or C ′) → C

Fig. 7. Disjunctive Propagator

finite domain selection constraint

I = 〈I1 . . . In〉[J] → J ∈ {1. .n}
I = 〈I1 . . . In〉[J] ∧ J ∈ D ∧{Ij ∈ Dj | j ∈ D} → I ∈ ∪{Dj | j ∈ D}
I = 〈I1 . . . In〉[J] ∧ J ∈ D ∧ Ij ∈ Dj ∧ D ∩Dj = ∅ → J ∈ ∆ \ {j}
I = 〈I1 . . . In〉[J] ∧ J ∈ {j} → I = Ij

finite set selection constraint

S = 〈S1 . . . Sn〉[I] → I ∈ {1. .n}
S = 〈S1 . . . Sn〉[I] ∧ I ∈ D ∧{Di ⊆ Si | i ∈ D} → ∩{Di | i ∈ D} ⊆ S

S = 〈S1 . . . Sn〉[I] ∧ I ∈ D ∧{Si ⊆ Di | i ∈ D} → S ⊆ ∪{Di | i ∈ D}
S = 〈S1 . . . Sn〉[I] ∧ D ⊆ S ∧ Si ⊆ Di ∧ D 6⊆ Di → I ∈ ∆ \ {i}
S = 〈S1 . . . Sn〉[I] ∧ S ⊆ D ∧ Di ⊆ Si ∧ Di 6⊆ D → I ∈ ∆ \ {i}
S = 〈S1 . . . Sn〉[I] ∧ I ∈ {i} → S = Si

Fig. 8. Selection Propagator

S, representing all its possible values in 2∆ is usually prohibitive both in
memory and in processing: instead Ŝ is represented by a lower bound and an
upper bound, i.e. by basic constraints D ⊆ S and S ⊆ D′. A set variable is
determined when its lower and upper bounds are equal.

Constraint propagation may be formalized as a process of inferential satura-
tion. The system of inference rules for the CP language of Figure 5 is given
in Figures 6, 7, and 8. Alternatively, a propagator may be understood as a
concurrent agent implementing a non-basic constraint: it observes the mono-
tonically growing set of basic constraints, called the store, and derives new
basic constraints according to the declarative semantics of its constraint. In
this view, a constraint C of the CP language can be regarded as a collection of
concurrent agents, and the inference rules specify the behavior of these agents.

While finite domain constraints are now standard and finite set constraints
(Gervet, 1995; Müller and Müller, 1997; Müller, 2001) are gaining in pop-
ularity, our CP language includes two unusual constructs both serving the
constraint-based treatment of disjunction: disjunctive propagators and selec-
tion constraints.

5.2 Disjunctive Propagators

In Logic Programming (LP), disjunction is handled solely by the non-deter-
ministic exploration of alternatives. When encountering a disjunction C1 ∨

20

C2, a LP system immediately makes the non-deterministic decision of either
attempting to solve C1 or C2. For problems of high combinatorial complexity,
such a strategy of early commitment is usually disastrous. It is often preferable
to delay the choice until sufficient information is available to reject one of
the alternatives. That is the purpose of disjunctive propagators. They allow
disjunction to be treated not as a choice point but as a constraint.

A disjunctive propagator (C or C ′) infers C ′ when C becomes inconsistent
with the basic constraints derived so far. Its precise semantics are given in
Figure 7 where we write B ∧C →∗ false to mean that false is in the saturation
of B∧C under the propagation rules. Disjunctive propagators are supported by
the concurrent constraint programming language Oz (Smolka, 1995; Mozart,
1999; Schulte, 2000).

5.3 Selection Constraints

A very common form of disjunction is selection out a finite collection of alter-
native values. It can be given more specific and effective support in the form of
a constraint which we write X = 〈X1, . . . , Xn〉[I]. Its declarative semantics is
simply X = XI and is logically equivalent to a n-ary disjunctive propagator:

(X = X1 ∧ I = 1) or . . . or (X = Xn ∧ I = n)

but gives you more. Consider the case X1 ∈ {i1, i
′
1}, X2 ∈ {i2}, X3 ∈ {i3},

I ∈ {1, 3}: the constraint X = 〈X1, X2, X3〉[I] is able to derive X ∈ {i1, i
′
1, i3}.

This is known as constructive disjunction: information is lifted out of the
remaining alternatives of the disjunction. While difficult and expensive to
implement in the general case, it can be very efficiently supported for selection
out of homogeneous sequences.

This powerful idea was first introduced in CHIP (Dincbas et al., 1988) for
selection out of a sequence of integer values. Duchier (1999a) extended it to
selection out of homogeneous sequences of finite set variables and described
its application to the efficient treatment of lexical ambiguity when parsing
with a dependency grammar. In Figure 8, we give the propagation rules for
both sequences of finite domain variables and sequences of finite set variables.
Selection constraints are available for Oz. 1

1 http://www.mozart-oz.org/mogul/info/duchier/select.html

21

5.4 CP Solver and Solved Forms

A solver consists of a constraint program and a distribution strategy. The
program provides the deterministic inference for model elimination performed
during the constraint propagation step. The distribution strategy implements
the non-deterministic search: at each distribution step, it is responsible for
choosing a non-determined variable and non-deterministically splitting its do-
main.

Our encoding [[φ]] has a direct reading as a CP program by translating (C ∨C ′)
to (CorC ′) and defining S = S1⊎S2 as S1 ‖ S2∧S1 ⊆ S∧S2 ⊆ S∧S ⊆ S1∪S2.
The design of a practical distribution strategy is more subtle.

First, note that it may not be necessary to determine all variables in order to
guarantee satisfiability; e.g. if β1 |= φ1, then we need not also assign values
to the variables of φ2 in order to guarantee the satisfiability of φ1 ∨ φ2. More
generally, when searching for a model (Mτ , α, δ) of φ, for any π 6∈ Π(δ), the
truth value of φ[π] is irrelevant to the truth value of φ. Therefore it is both
unnecessary to enumerate the possible assignments to the variables Xπ of [[φ]]
as well as undesirable to do so since this merely introduces spurious ambiguity.

For these reasons, a practical solver should not search for fully explicit solu-
tions, but rather for less explicit solved forms. A solved form is to the satis-
faction of a constraint C what a most general unifier is to the satisfaction of
an equation t1 = t2 between first-order terms. A solved form for constraint
C, is a function β̂ assigning a subset of Di to x̂i for each xi ∈ VC , such that
C ∧ {xi ∈ β̂(x̂i) | xi ∈ VC} 6→

∗ false and satisfying a criterion sufficient to
guarantee that it can be extended to a fully explicit solution. The criterion
should allow β̂ to remain as unspecific as possible. For example, Duchier and
Niehren (2000) proved that, for the conjunctive fragment, a solved form need
only distinguish between Rxy ∈ {=,�+} and Rxy 6∈ {=,�+} and that doing
so could save an exponential number of choice points over the search for fully
explicit solutions.

The design of an economical solved form for our formalism will be the next
step on the way to a practical implementation, but remains at present an open
issue for further research.

6 Conclusions

In this article, we introduced the new formalism of dominance constraints with
Boolean connectives which combines dominance constraints with a feature tree

22

logic in the style of CFT (Smolka and Treinen, 1994). Our main contribution
is a treatment of disjunction suitable for constraint propagation by reduction
to the selection constraint (Duchier, 1999a).

By abandoning constructor trees in favor of feature trees, we obtained a lan-
guage with more fine grained expressivity that facilitated the treatment of
negation and allowed us to generalize the set-based representation of disjunc-
tive information pioneered by set operators (Duchier and Niehren, 2000).

We gave a semantic account for our formalism by interpreting dominance
constraints over tree structures. On the basis of that account, we described an
encoding procedure to transform a dominance constraint φ into a CSP [[φ]]. We
proved soundness and completeness of this encoding, i.e. that φ is satisfiable
iff [[φ]] is satisfiable.

Finally we described how to obtain a solver by interpreting [[φ]] as a con-
straint program. The requirements placed on the target language were made
precise by defining an abstract CP language and by stipulating the expected
propagation as a system of inference rules. Oz is an example of a constraint
programming language satisfying our requirements.

Future work will first involve the design of a criterion for less explicit solved
forms that refrains from making unnecessary choices and leads to a solver
needing less search. Second, we will evaluate the performance on the conjunc-
tive fragment to determine the practical impact of supporting a more general
formalism. Third, we will evaluate our technique on highly disjunctive appli-
cations such as parsing with D-tree grammars (Duchier and Thater, 1999).

Acknowledgments: the author is grateful to Alexander Koller and Joachim
Niehren for their knowledgeable input and extends special thanks to the
anonymous reviewers whose insightful suggestions and attention to detail
greatly helped improve this article.

References

Backofen, R., Rogers, J., Vijay-Shanker, K., 1995. A first-order axiomatization
of the theory of finite trees. Journal of Logic, Language, and Information 4,
5–39.

Blackburn, P., Gardent, C., Meyer-Viol, W., 1993. Talking about trees. In:
Proceedings of the European Chapter of the Association of Computational
Linguistics. Utrecht.

Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., Berthier,
F., Dec. 1988. The constraint logic programming language CHIP. In: Pro-

23

ceedings of the International Conference on Fifth Generation Computer
Systems FGCS-88. Tokyo, Japan.

Duchier, D., July 1999a. Axiomatizing dependency parsing using set con-
straints. In: Sixth Meeting on Mathematics of Language. Orlando, Florida.

Duchier, D., Sep. 1999b. Set constraints in computational linguistics – solv-
ing tree descriptions. In: Workshop on Declarative Programming with Sets
(DPS’99).

Duchier, D., Gardent, C., 1999. A constraint-based treatment of descriptions.
In: Int. Workshop on Computational Semantics. Tilburg.

Duchier, D., Niehren, J., Jul. 2000. Dominance constraints with set operators.
In: Proceedings of the First International Conference on Computational
Logic (CL2000). LNCS. Springer.

Duchier, D., Thater, S., 1999. Parsing with tree descriptions: a constraint-
based approach. In: Int. Workshop on Natural Language Understanding
and Logic Programming. Las Cruces, New Mexico.

Egg, M., Niehren, J., Ruhrberg, P., Xu, F., 1998. Constraints over lambda-
structures in semantic underspecification. In: Joint Conf. COLING/ACL.

Gardent, C., Webber, B., 1998. Describing discourse semantics. In: Proceed-
ings of the 4th TAG+ Workshop. Philadelphia.

Gervet, C., Sep. 1995. Set Intervals in Constraint-Logic Programming: Defini-
tion and Implementation of a Language. Ph.D. thesis, Université de France-
Compté, European Thesis.

Koller, A., Mehlhorn, K., Niehren, J., 3–6Oct. 2000a. A polynomial-time frag-
ment of dominance constraints. In: Proceedings of the 38th Annual Meeting
of the Association of Computational Linguistics. Hong Kong.

Koller, A., Niehren, J., 2000. On underspecified processing of dynamic seman-
tics. In: Proceedings of COLING-2000. Saarbrücken.

Koller, A., Niehren, J., Treinen, R., 2000b. Dominance constraints: Algorithms
and complexity. In: Logical Aspects of Comp. Linguistics 98. To appear in
LNCS.

Marcus, M., 1987. Deterministic parsing and description theory. In: White-
lock, P., Wood, M., Somers, H., Johnson, R., Bennett, P. (Eds.), Linguistic
Theory and Computer Applications. Academic Press.

Marcus, M. P., Hindle, D., Fleck, M. M., 1983. D-theory: Talking about talking
about trees. In: 21st ACL.

Mozart, 1999. The Mozart Programming System
http://www.mozart-oz.org/.

Müller, T., 2001. Constraint propagation in mozart. Doctoral dissertation,
Universität des Saarlandes, Fachrichtung Informatik, Saarbrücken, Ger-
many, in preparation.

Müller, T., Müller, M., 1997. Finite set constraints in Oz. In: Bry, F., Freitag,
B., Seipel, D. (Eds.), 13. Workshop Logische Programmierung. Technische
Universität München.

Muskens, R., 1995. Order-Independence and Underspecification. In: Groe-
nendijk, J. (Ed.), Ellipsis, Underspecification, Events and More in Dynamic

24

Semantics. DYANA Deliverable R.2.2.C.
Rambow, O., Vijay-Shanker, K., Weir, D., 1995. D-tree grammars. In: Pro-

ceedings of ACL’95. MIT, Cambridge.
Rogers, J., Vijay-Shanker, K., 1992. Reasoning with descriptions of trees. In:

Annual Meeting of the Association for Comp. Linguistics (ACL).
Schulte, C., 2000. Programming constraint services. Doctoral dissertation,

Universität des Saarlandes, Fachrichtung Informatik, Saarbrücken, Ger-
many, to appear in Lecture Notes in Artificial Intelligence, Springer-Verlag.

Smolka, G., 1995. The Oz Programming Model. In: van Leeuwen, J. (Ed.),
Computer Science Today. Springer-Verlag, Berlin.

Smolka, G., Treinen, R., Apr. 1994. Records for logic programming. Journal
of Logic Programming 18 (3), 229–258.

Vijay-Shanker, K., 1992. Using descriptions of trees in a tree adjoining gram-
mar. Computational Linguistics 18, 481–518.

25

