
Constraint Programming for Natural
Language Processing

Denys Duchier

ESSLLI 2000

Abstract

This course demonstrates how constraint programming can beused effectively in practice,
for linguistic applications. It shows how many forms of ambiguity arising in computational
linguistic can be represented compactly and elegantly, andprocessed efficiently with con-
straints. A key idea to derive the most benefit from constraint propagation is that intended
models should be characterized as solutions ofConstraint Satisfaction Problems(CSPs)
rather than defined inductively or in a generative fashion.

We examine several topics in detail: encodings of finite domains, tree descriptions using
dominance constraints, and parsing with dependency grammars. In each case, we present a
formal characterization of the problem as a CSP and illustrate how to derive a correspond-
ing constraint program. The course includes 4 complete interactive applications written in
Oz, with full code supplied.

Through these programmatic vignettes the reader is exposedto the practice of constraint
programming withfinite domainandfinite setvariables, and introduced to some of the
more powerful types of constraints available today, such asreified constraints, disjunctive
propagators, and selection constraints.

Copyright c© by Denys Duchier, June 2000
Universität des Saarlandes, Saarbrücken, Germany

duchier@ps.uni-sb.de

This course is also available online:

http://www.ps.uni-sb.de/~duchier/esslli-2000/index. html

Contents

1 Introduction 1

2 Constraint Satisfaction Problems 5

2.1 What is a CSP? . 5

2.2 Constraint-based Representation of Assignments 5

2.2.1 Basic Constraints . 6

2.3 Improving partial info by constraint propagation 7

2.3.1 Non-Basic Constraints . 7

2.4 Searching For Solutions . 8

2.4.1 Propagation . 8

2.4.2 Distribution . 8

3 Efficient Encodings of Finite Domains 11

3.1 Finite Domain Constraints . 11

3.2 Simple Example . 11

3.3 Encoding Products of Finite Domains 13

3.3.1 Establishing a bijection between tuples and integers . . . 14

3.3.2 Implementation . 14

3.4 Application to German Agreement 18

3.4.1 Lexicon . 19

3.5 Application . 21

3.5.1 Implementation . 21

3.6 Projections . 22

3.6.1 Selection Constraint . 23

3.6.2 Partial Agreement . 23

3.6.3 Application . 24

4 Dominance Constraints 27

4.1 Descriptions of Trees . 28

4.1.1 DTree Grammar . 28

4.1.2 Underspecified Semantic Representation 29

4.2 Dominance Constraints . 29

4.2.1 Models of Dominance Constraints 30

4.2.2 Solved Forms of Dominance Constraints 30

4.3 Solving Dominance Constraints 31

4.3.1 Well-Formedness Constraints 31

4.3.2 Problem-Specific Constraints 35

4.3.3 Searching for Solved Forms 35

4.4 Implementation . 35

4.4.1 MakeNode . 36

4.4.2 Characteristic Constraints 37

4.4.3 Well-Formedness Clauses 37

4.4.4 Solver class . 37

4.5 Application . 41

4.5.1 Implementation . 42

5 Dependency Parsing 45

5.1 Overview . 45

5.2 Formal Presentation . 46

5.2.1 Dependency Tree . 47

5.2.2 Well-Formedness Principles 47

5.3 Improving Lexical Economy . 48

5.4 Constraint Model . 48

5.4.1 Representation . 49

5.4.2 Lexical Constraints . 50

5.4.3 Valency Constraints . 51

5.4.4 Role Constraints . 51

5.4.5 Treeness Constraints . 52

5.4.6 Yield and Acyclicity . 53

5.4.7 Solving the CSP . 53

5.5 Implementation . 54

5.5.1 Demo Session . 54

5.5.2 Entry.oz . 56

5.5.3 Lexicon.oz . 59

5.5.4 Gamma.oz . 65

5.5.5 Parser.oz . 67

6 Constraint Programming Bestiary 73

6.1 Constraint Store . 73

6.2 Constraint Variables . 74

6.2.1 FD Variables . 74

6.2.2 FS variables . 74

6.3 Constraints And Propagators . 74

6.4 Encapsulation And Computation Spaces 75

6.5 Search . 76

6.6 Search Predicates . 76

6.7 Disjunctive Propagator . 78

6.8 Reified Constraints . 80

6.9 Selection Constraints . 81

6.9.1 Select Package . 81

6.9.2 FD Selection Constraint 82

6.9.3 FS Selection Constraint 83

6.9.4 FS Selection Union Constraint 83

1

Introduction

Constraints play an important role in the formulation of modern linguistic theories. For
example HPSG and LFG are overtly constraint-based: they areprimarily concerned
with the formulation of general structural principles thatdetermine the class of syn-
tactically well-formed entities, typically represented as hierarchical, possibly typed,
feature structures.

Yet, practical implementations are usually not driven but merely aided by constraints.
For example implementations of HPSG typically only use constraints in the form of
type hierarchies and unification, but the backbone remains generative (e.g. CFG).

The purpose of this course is to illustrate how constraints can be put into the driver’s
seat. We will shun merely constraint-aided approaches: these have been adequately
presented by others in a Logic Programming setting. Insteadwe will focus on purely
constraint-based approaches, where computation is reduced to constraint satisfaction.

While Prolog has proven to be a versatile implementation platform for computational
linguistics, it encourages a view of computation as a non-deterministic generative pro-
cess: typically a Prolog program specifies how to generate models. Regrettably, this
often leads to difficult problems of combinatorial explosion.

In this course we wish to promote an alternative approach: replace model generation
by model elimination. We will look at problems where the class of models is known
before-hand and where constraints can be used to precisely characterize those which
are admissible solutions: i.e. constraints serve to eliminate non-admissible candidates.

This course is by no means anti-Prolog: it is pro-constraints. Indeed, many of the
techniques presented here are applicable to modern implementations of Prolog that
support constraint libraries.

Some techniques, however, go beyond the capabilities of anyProlog system. This is
primarily because Prolog does not support encapsulation orconcurrency. In particu-
lar in does not support encapsulated speculative computations. Such notions where
explored in AKL [29], in the form e.g. of deep guards, but onlyreached their full
potential in Oz, in the form of computation spaces [53] [55].We will use Oz as our
programming vehicle [61] [40].

The computational paradigm explored in this course, namelyconcurrent constraint pro-
gramming, is the result of a historical progression that granted constraints an increas-
ingly important role in computations:

2 Chapter 1. Introduction

Generate and Test: generate a candidate model and then verify that it solves theproblem. Constraints
are used only as post-hoc filters. Combinatorial explosion is fearsomely uncontrolled.

Test and Generate: generation and filtering are interleaved. Constraints typically remain passive but
are successful in pruning entire branches of the search. This technique is often based
on coroutined constraints usingfreeze (akageler) introduced by Prolog II.

Propagate and Distribute: constraints are active and perform as much deterministic inference as pos-
sible. The generative aspect is reduced to the minimum: the distribution strategy is
invoked to make a choice only when propagation is not sufficient to resolve all ambi-
guities.

This progression results in increasingly smaller search trees. We can give an example
that illustrates the improvements. Suppose that we are searching for solutions of the
equation2*A=B whereA andB denote integers between 0 and 9 inclusive. Let us first
consider agenerate and testsolver written in Oz: it picks values for variablesA andB

and only then checks whether these values satisfy the equation:

2a 〈Equation Solver: generate and test2a〉≡
proc { EquationSolver1 Solution}

[A B] = Solution

in

Solution :::0#9

{FD.distribute naive Solution}

2*A=B

end

What you see above is anamed code chunk. This form of code presentation, in small
named chunks that are individually explained in the text, was pioneered by Donald
Knuth under the name ofLiterate Programming. We will use it constantly throughout
this course.

The generate and test approach produces the search tree of size 199 shown below. Blue
circles represent choice points, red squares failed nodes,and green diamonds solutions.

3

Now let’s turn to thetest and generateapproach: the equation is posted in its own
thread (i.e. the test is issued first) which suspends until a value has been chosen forA,
at which the corresponding value forB can be computed.

3a 〈Equation Solver: test and generate3a〉≡
proc { EquationSolver2 Solution}

[A B] = Solution

in

Solution :::0#9

thread 2*A=B end

{FD.distribute naive Solution}

end

The test and generate approach produces the search tree of size 19 shown below:

Finally, here is the real constraint programming way of solving the problem, using the
propagate and distributemethod. The equation is represented by a constraint:

3b 〈Equation Solver: propagate and distribute 3b〉≡
proc { EquationSolver3 Solution}

[A B] = Solution

in

Solution :::0#9

2*A=:B

{FD.distribute naive Solution}

end

The propagate and distribute approach produces the search tree of size 9 below. Note
that this search tree contains no failed node.

4 Chapter 1. Introduction

When writing this course, my first priority was to demonstrate how constraints can be
used effectively in practice, for linguistic applications. As a result, for each topic, in
addition to the formal presentation, I also provide the corresponding code. In each
case, you get a complete interactive application that you can run, and whose code you
can study. For reasons of space, the printed version of the course does not contain
absolutely all the code, but almost. The online version contains absolutely everything
and is available at:

http://www.ps.uni-sb.de/~duchier/esslli-2000/index. html

The online version also allows you to start the applicationsby clicking on appropriate
links. Since Oz code forms a large part of the diet in this course, the reader is urgently
advised to become marginally familiar with Oz. We highly recommend that you read
at leastThe Oz Tutorial1 [22]. The Mozart system (implementing Oz) comes with a lot
of online documentation2, which is also available in Postscript or PDF3 for printing.

1http://www.mozart-oz.org/documentation/tutorial/ind ex.html
2http://www.mozart-oz.org/documentation/
3http://www.mozart-oz.org/download/print.cgi

2

Constraint Satisfaction Problems

Where constraint programming really shines is in solving constraint satisfaction prob-
lems where constraint propagation very effectively helps pruning the search space. In
this chapter, we explain how constraint satisfaction problems (henceforth CSPs) are
solved by means of constraint programming.

Much more is possible with constraint programming; in particular, using the record
constraints (aka open feature structures) traditionally favored by computational lin-
guists. However, record constraints do not lead to formulations with especially strong
constraint propagation. For 2 reasons: (1) record constraints cannot represent nega-
tive information, (2) they only take effect when record structure appears (i.e. they are
passive). We entirely shun them in this course and emphasizeinstead encodings using
integers and sets of integers that provide very strong and efficient constraint propaga-
tion.

2.1 What is a CSP?

A CSP is specified by a finite number of variables and a finite number of constraints
on these variables:

CSP ≡ Variables+ Constraints

A solution to a CSP is an assignment of values to the variablessuch that the constraints
are satisfied.

The constraint programming approach to solving a CSP rests of the following ideas:

• devise an explicit representation of the partial information known about the de-
sired assignment of values to variables

• improve this information through constraint propagation

2.2 Constraint-based Representation of Assignments

The types of problems that constraint programming is reallygood at are all about inte-
gers. This is where constraints are able to provide strong and efficient propagation.

Constraints involvingFinite Domainshave become a fairly standard tool of the trade.
More recently, constraints onFinite Sets(of integers) have appeared [20] [42] [41]

6 Chapter 2. Constraint Satisfaction Problems

and proven to be extremely expressive, especially for applications in computational
linguistics [8] [9]. In this course, we will see many applications of set constraints.

Thus, we will consider CSPs involving integer variables (written I) and set variables
(written S). The fundamental idea of the constraint programming approach is to ex-
plicitly represent the partial information about the sought assignment. For example,
we may not precisely know the value to be assigned toI, but we may know that it must
be either 2, 3, or 7. Thus we would writeI ∈ {1, 2, 7}. The general form of the partial
information about the assignment to an integer variable is thus:

I ∈ D

whereD is a domain, i.e. a given finite set of integers.

Similarly, we may not know precisely which set value to assign to a set variableS, but
we may have some information about its lower and upper bounds(i.e. the integers at
least, resp. at most, inS). Thus we write:

D1 ⊆ S ⊆ D2

2.2.1 Basic Constraints

This intuitive way, presented above, of capturing partial information about an assign-
ment can be formally presented as a logical system ofBasic Constraints. Its abstract
syntax is given by:

B ::= I ∈ D | D ⊆ S | S ⊆ D | false | B1 ∧ B2

It is equipped with the following inference rules.

Weakening
I ∈ D → I ∈ D′ whereD′ ⊇ D

D ⊆ S → D′ ⊆ S whereD′ ⊆ D

S ⊆ D → S ⊆ D′ whereD′ ⊇ D

Strengthening
I ∈ D1 ∧ I ∈ D2 → I ∈ D1 ∩ D2

D1 ⊆ S ∧ D2 ⊆ S → D1 ∪ D2 ⊆ S

S ⊆ D1 ∧ S ⊆ D2 → S ⊆ D1 ∩ D2

Contradiction
I ∈ ∅ → false
D1 ⊆ S ∧ S ⊆ D2 → false whereD1 6⊆ D2

Of course, after saturation with the above rules, for each variable there is always a most
specific approximation of its assignment. For an integer variableI, this is the smallest
D such thatI ∈ D. For a set variableS there is a largest lower boundD1 ⊆ S and a
smallest upper boundS ⊆ D2. In practice, these most specific basic constraints are the
only ones that the system needs to represent (all others can be derived by weakening).

2.3. Improving partial info by constraint propagation 7

Constraint Store A constraint programming system contains aconstraint store
which is the (saturated) set of basic constraints representing the partial information
currently known about the assignment.

I ∈ {1, 6, 7}
{1, 5} ⊆ S

store of
basic constraints

Determined Variables We say that a variable isdeterminedwhen its assignment
has been decided. For an integer variableI ∈ D this happens when its domainD
becomes a singleton. For a set variableD1 ⊆ S ⊆ D2 this happens when its lower
bound becomes equal to its upper bound.

2.3 Improving partial info by constraint propagation

Now we want the constraints of the CSP to take an active role and improve the partial
information concerning the assignment. In particular, whenever possible, they should
eliminate from consideration values that cannot lead to a solution.

2.3.1 Non-Basic Constraints

A constraint programming system typically provides a rich set of non-basic constraints,
such as:

Equality
I1 = I2 or S1 = S2

Ordering, e.g.
I1 < I2

Arithmetic, e.g.
I1 = 2 ∗ I2

Set, e.g.
S1 ⊆ S2 subset
S1 ‖ S2 disjointness
S3 = S1 ∪ S2 union
Membership, e.g.
I ∈ S

and many more. The operational semantics of each non-basic constraint is specified by
a collection of inference rules.

For example, the disjointness constraintS1 ‖ S2 corresponds to the two inference rules
below:

S1 ‖ S2 ∧ S1 ⊆ D1 ∧ D2 ⊆ S2 → S1 ⊆ D1 \ D2

S1 ‖ S2 ∧ D1 ⊆ S1 ∧ S2 ⊆ D2 → S2 ⊆ D2 \ D1

8 Chapter 2. Constraint Satisfaction Problems

i.e. all elements known to be inS1 cannot possibly be inS1 and vice versa.

A challenge that must be faced by every user of a constraint programming system is
then to express a CSP’s constraints in terms of non-basic constraints available in the
system. Fortunately, Mozart has a very rich set of constraints (see [12]) that facilitate
the task.

2.4 Searching For Solutions

We find solutions of a CSP (i.e. assignments satisfying the constraints) by alternating
steps ofpropagationanddistribution.

2.4.1 Propagation

Propagation is saturation under deterministic inference.The basic inference rules as
well the inference rules corresponding to the non-basic constraints are applied repeat-
edly until a fix point is reached, i.e. until the partial information about the assignment
can no longer be improved. At this point, there are 3 possibilities:

1. falsewas derived, i.e. we have arrived at a contradiction and thisbranch of the
search must be abandoned since it cannot lead to a solution.

2. All variables are determined: the assignment is fully known and satisfies the
constraints. This is a solution.

3. At least one variable is not yet determined. At this point we need search and
non-deterministically apply a distribution rule.

{1, 2} ⊆ S1

S2 ⊆ {1, 5, 6}

S1 ‖ S2

{1, 2} ⊆ S1

S2 ⊆ {5, 6}

S1 ‖ S2

propagation

2.4.2 Distribution

The purpose of a distribution step is to allow the search to proceed by making a non-
deterministic choice.

Naive Strategy The naive distribution strategy for integer variables picks a non-
determinedI ∈ D and non-deterministically infers eitherI = min(D) or I 6= min(D).
For finding solutions of2*A=B with A andB integers between 0 and 9 inclusive, the
strategy produces the search tree below:

2.4. Searching For Solutions 9

Domain Splitting Another strategy for integer variables is known asdomain split-
ting. It picks a non-determined integer variableI ∈ D1 ⊎ D2, whereD1,D2 6= ∅ and
non-deterministically infers eitherI ∈ D1 or I ∈ D2. For the same problem2*A=B

this strategy produces the search tree below:

Alternating Steps of Propagation and Distribution The picture below shows
a propagation step followed by a distribution step that creates a branching point in
the search tree. The distribution strategy used isdomain splittingon variableI: each
branch investigates one half ofI ’s domain:

10 Chapter 2. Constraint Satisfaction Problems

I ∈ D1 ⊎ D2

S1 ‖ S2
. . .

Store of
basic constraints

Propagators

propagation

distribution

I ∈ D1

S1 ‖ S2
. . .

I ∈ D2

S1 ‖ S2
. . .

3

Efficient Encodings of Finite Domains

Ambiguity (lexical ambiguity, attachment ambiguity) is a major source of combinato-
rial complexity. It is typically addressed by resorting to some form of disjunctive rep-
resentation. In this chapter, we are going to explain how constraint programming using
finite domainsallows the compact representation and efficient processingof common
types of disjunctive information.

3.1 Finite Domain Constraints

Finite domain (FD) constraints have become quite popular and are widely supported. A
finite domain variableI denotes an integer. However, we may not know exactly which
integer. Typically we only know that it must be one of a finite number of possibilities,
e.g. one of 1,2 or 7. This would be represented by a basic constraint:

I ∈ {1, 2, 7}

Suppose, we have a second FD variableJ ∈ {2, 3, 4}. If we unify themI = J , their
domains are intersected thus resulting in the conclusionI = J = 2. This technique
underlies the efficient treatment of agreement: ifI encodes the agreement information
on one word andJ on another and the 2 words must agree, then the constraintI = J

enforces this agreement.

3.2 Simple Example

As a simple example, lets consider a minuscule English lexicon consisting of the
words: a, the , man, men and just the information about whether the word is singu-
lar or plural. We are going to encode ‘singular’ as the integer 1 and ‘plural’ as the
integer 2.

declare

Sing = 1

Plur = 2

Lexicon = o(a : [Sing]

the : [Sing Plur]

man : [Sing]

men : [Plur])

12 Chapter 3. Efficient Encodings of Finite Domains

Now, we can represent the ‘number’ information of a wordWby introducing a FD vari-
able I and constraining its domain using the information in the lexicon. For example
for an occurrence of articlethe , we could write:

declare THE

THE::Lexicon .the

We can observe this variable in the browser [45] by invoking{Browse THE} , and we
see:

I.e. THE is bound to a FD variable whose domain just contains the integers 1 and 2. We
can do the same for an occurrence of the wordman:

declare MAN

MAN::Lexicon .man

{Browse MAN}

and we see:

3.3. Encoding Products of Finite Domains 13

Finally we can impose the constraint that the determiner must agree with the noun, i.e.
THE=MAN, and the display is updated as follows:

The ambiguous number information of the determiner has beendisambiguated.

3.3 Encoding Products of Finite Domains

Our simple example hardly touched on the power of the technique: it was not suffi-
ciently ambiguous. In a real application, agreement involves several features and not
just ‘number’. For example, German agreement involves 5 features:

gender -> masculine,feminine,neutral

number -> singular,plural

person -> 1,2,3

case -> nominative,accusative,dative,genitive

quantifier -> definite,indefinite,none

However these features do not vary independently. For example the determinerein is
singular , but may be eithermasculine or neutral . If it is masculine , then it has
nominative case. If it isneutral then it may have casenominative or accusative .

An elegant way to address the issue is, instead of insisting that the program preserve
the distinction of features,1 to merge them together into a compound ‘agreement’ tuple
that takes values in the cartesian product:

gender * number * person * case * quantifier

Next we notice that, since each dimension of the cartesian product can take only finitely
many values, the cartesian product itself has finitely many values. This means that we
can encode each tuple by a distinct integer and we can represent a disjunction of tuples
by means of a finite domain.

1actually we can recover this distinction easily as explained in Section 3.6.

14 Chapter 3. Efficient Encodings of Finite Domains

3.3.1 Establishing a bijection between tuples and integers

Considerp domainsD1 throughDp. Each domainDℓ has cardinalitynℓ:

Dℓ = {vℓ
1, . . . , v

ℓ
nℓ
}

The cardinality of the cartesian productD1 × · · · × Dp is N = n1 × · · · × np. We are
going to establish a bijection betweenD1 × · · · × Dp and[1. .N].

The idea is to partition the interval[1. .N] into n1 equal subintervals: one for each
value inD1. Then to partition each subinterval inton2 subsubintervals: one for each
value inD2. Etc recursively.

It is easy to capture this idea in a formula. Consider a tuple(v1
i1

, v2
i2

, . . . , v
p
ip

). Accord-
ing to the recursive algorithm outlined above, it is assigned to the following integer:

(i1 − 1) × (n2 × n3 × · · · × np)
+ (i2 − 1) × (n3 × · · · × np)
...
+ (ip−1 − 1) × np

+ (ip − 1)
+ 1

Thus, given an indexI in the range[1. .N], we can recover the corresponding tuple by
calling {DecodeInt I -1 Divs Doms} , whereDivs is the list:

[n2 × n3 × · · · × np

n3 × · · · × np

...
np

1]

andDoms is the list of domains, each one consisting of a list of values. The function
DecodeInt is implemented as follows:

14a 〈DomainProduct DecodeInt function 14a〉≡
fun { DecodeInt I Divs Doms}

case Divs #Doms

of nil #nil then nil

[] (Div |Divs) #(Dom|Doms) then

Q = I div Div

R = I mod Div

in

{Nth Dom Q+1} |{DecodeInt R Divs Doms}

end

end

3.3.2 Implementation

In this section, we provide an Oz implementation of the encoding technique described
above. It is provided as classDomainProduct exported by functorEncode (file Encode.oz).

3.3. Encoding Products of Finite Domains 15

15a 〈Encode.oz 15a〉≡
functor

import FD FS

export DomainProduct

define

〈DomainProduct DecodeInt function 14a〉
class DomainProduct

〈DomainProduct features 15b〉
〈DomainProduct attributes 15c〉
〈DomainProduct init method 15d〉
〈DomainProduct encode method17a〉
〈DomainProduct decode method17b〉

end

end

3.3.2.1 Features and Attributes

EveryDomainProduct object is equipped with featurerange giving the range[1. .N],
featureempty for the empty set, and featurefull for the set of all the integers in the
range:

15b 〈DomainProduct features 15b〉≡ 18a⊲

feat range empty full

and also with attributesdivisors anddomains which are as described for function
DecodeInts . Attribute value2set is a dictionary mapping each valuevℓ

i , from some
domainDℓ, to the set of integers encoding the tuples in which this value occurs.

15c 〈DomainProduct attributes 15c〉≡
attr divisors domains value2set

3.3.2.2 Init Method

The init method is given a list of domains. Each domain is representedby the list of
its values (these should be atoms or integers). ADomainProduct object is created as
follows:

declare O = {New DomainProduct init([D1 D2 ... Dp])}

where eachDi is a list of values representing a domain.

The initialization code constructs the mapvalue2set by iterating through the integers
in the range[1. .N]. For eachI in this range,DecodeInt is invoked to obtain the
corresponding tuple (as a list of values). For each valueV in this tuple,I is added to
the list of indices forV. When we are done, these lists of indices are turned into setsof
indices.

15d 〈DomainProduct init method 15d〉≡

16 Chapter 3. Efficient Encodings of Finite Domains

meth init (Domains)

Sizes = {Map Domains Length}

L1 = {Map Sizes fun { $ Size} _ #Size end}

N = {FoldR L1 fun { $ M#N Accu} M=Accu N*Accu end 1}

Divs = {Map L1 fun { $ M#_} M end}

Val2Ints = {Dictionary .new}

in

for I in 1..N do

Tuple = {DecodeInt I -1 Divs Domains}

in

for V in Tuple do

{Dictionary .put Val2Ints V

I |{Dictionary .condGet Val2Ints V nil}}

end

end

divisors <- Divs

domains <- Domains

〈DomainProduct init method, niceties 18b〉
for K in {Dictionary .keys Val2Ints} do

Val2Ints .K := {FS .value .make Val2Ints .K}

end

self.range = 1 #N

self.empty = FS .value .empty

self.full = {FS .value .make self.range}

value2set <- Val2Ints

end

3.3.2.3 Encode Method

One we have created aDomainProduct objectO, we can use it to turn aspecification
into a set of integers encoding the tuples corresponding to this specification. We want
to allow the user to write specifications with the following abstract syntax:

φ ::= vℓ
i | φ ∧ φ′ | φ ∨ φ′

A tuple satisfies specificationvℓ
i if it contains valuevℓ

i . It satisfiesφ ∧ φ′ if it satisfies
bothφ andφ′. It satisfiesφ ∨ φ′ if it satisfies eitherφ or φ′.

Instead of explicit connectives, we will simply allow a specification to consist of ar-
bitrarily nested lists, eventually bottoming out with domain values. The outer level
is interpreted disjunctively, and each nesting switches the interpretation of the con-
nective: thus the 2nd level is interpreted conjunctively, the 3rd disjunctively, etc. For
example, let us consider agreement information limited to just gender and person. The
specification:

[[masc [1 3]] [fem 2]]

denotes the 3 tuples[masc 1] , [masc 3] , [fem 2] . However:

[[masc 1 3] [fem 2]]

3.3. Encoding Products of Finite Domains 17

just denotes[fem 2] since a tuple cannot contain both1 and2. The spec:

[[masc 1] fem]

denotes the 4 tuples[masc 1] , [fem 1] , [fem 2] and[fem 3] .

17a 〈DomainProduct encode method17a〉≡
meth encode (Desc $)

{ self Disj(Desc $)}

end

meth Disj (Desc $)

case Desc

of _|_ then {FoldL Desc

fun { $ Accu Desc}

{FS .union Accu

{ self Conj(Desc $)}}

end self.empty}

[] nil then self.empty

else @value2set .Desc end

end

meth Conj (Desc $)

case Desc

of _|_ then {FoldL Desc

fun { $ Accu Desc}

{FS .intersect Accu

{ self Disj(Desc $)}}

end self.full}

[] nil then self.full

else @value2set .Desc end

end

3.3.2.4 Decode Method

A DomainProduct objectOmakes available 3 main decoding methods:

{O decode(I L)}

returns the listL of tuples corresponding to the integers in the domain of FD variable
I .

{O decodeLo(S L)}

return the listL of tuples corresponding to the integers in the lower bound ofFS variable
S.

{O decodeHi(S L)}

idem for the upper bound.

17b 〈DomainProduct decode method17b〉≡

18 Chapter 3. Efficient Encodings of Finite Domains

meth decodeInt (I $)

{DecodeInt I -1 @divisors @domains}

end

meth decodeInts (L $)

{Map L fun { $ I} { self decodeInt(I $)} end}

end

meth decode (I $)

{ self decodeInts({FD .reflect .domList I} $)}

end

meth decodeLo (S $)

{ self decodeInts({FS .reflect .lowerBoundList S} $)}

end

meth decodeHi (S $)

{ self decodeInts({FS .reflect .upperBoundList S} $)}

end

3.3.2.5 Niceties

Note that we can also use our abstraction in the degenerate case where we compute
the product of just 1 domain. In that case, however, there is abijection between the
elements of the domain and the integers 1 to n of the encoding.It turns out to be often
convenient to be able to map an element of the domain to its corresponding integer
rather than to encode it into the singleton containing that integer. For this reason, we
add a featuretoint to the class:

18a 〈DomainProduct features 15b〉+≡ ⊳15b

toint

For products of 2 or more domains, this feature is not used andis simply set tounit,
but for a 1-product it is a dictionary mapping each domain element to its corresponding
integer. Here is how we initialize the feature:

18b 〈DomainProduct init method, niceties 18b〉≡
case Domains of [Dom] then

ToInt = {NewDictionary}

in

self.toint = ToInt

for K in Dom do

case Val2Ints .K of [I] then

ToInt .K := I

end

end

else self.toint= unit end

3.4 Application to German Agreement

In this section we illustrate the technique with an application to agreement of deter-
miner/adjective/noun in German. Agreement depends of course on gender, number
and person, but also on case, and on the determiner type (definite, indefinite, none).
This leads us to define agreement information as a tuple in thecartesian product:

3.4. Application to German Agreement 19

Gender * Number * Person * Case * Quantifier

We are going to develop a very small lexicon mapping words to sets of tuples. Each
tuple will be encoded by an integer.

3.4.1 Lexicon

Our small lexicon is made available as functorSmallLexicon (file SmallLexicon.oz),
exportingGet andAgreement . Get takes a word as an argument and returns a finite
domain variable whose domain consists of the agreement tuples for that word (or more
precisely, the integers encoding those tuples).Agreement is aDomainProduct object
for the cartesian product of agreement information.

19a 〈SmallLexicon.oz 19a〉≡
functor

import Encode FS

export Get Agreement

define

Agreement = {New Encode .domainProduct

init([[masc fem neut]

[sing plur]

[1 2 3]

[nom acc dat gen]

[def indef none]])}

Lexicon = {Dictionary .new}

proc { Enter W Desc}

Lexicon .W := {Agreement encode(Desc $)}

end

proc { Get W I}

I ::Agreement .range

{FS .include I Lexicon .W}

end

〈SmallLexicon nouns 19b〉
〈SmallLexicon definite articles 20a〉
〈SmallLexicon indefinite articles 20b〉
〈SmallLexicon no article 20c〉
〈SmallLexicon adjectives 20d〉

end

We just enter the 4 forms ofMann in the lexicon:

19b 〈SmallLexicon nouns 19b〉≡
{Enter mann [[masc 3 sing [nom acc dat]]]}

{Enter mannes [[masc 3 sing gen]]}

{Enter männer [[masc 3 plur [nom acc gen]]]}

{Enter männern [[masc 3 plur dat]]}

20 Chapter 3. Efficient Encodings of Finite Domains

Now all forms of the definite articleder/die/das:

20a 〈SmallLexicon definite articles 20a〉≡
{Enter der [[def [[masc sing 3 nom]

[fem sing 3 [dat gen]]

[plur 3 gen]]]]}

{Enter den [[def [[masc sing 3 acc]

[plur 3 dat]]]]}

{Enter dem [[def [[[masc neut] sing 3 dat]]]]}

{Enter des [[def [[[masc neut] sing 3 gen]]]]}

{Enter die [[def [[fem sing 3 [nom acc]]

[plur 3 [nom acc]]]]]}

{Enter das [[def [[neut sing 3 [nom acc]]]]]}

All forms of the indefinite articleein:

20b 〈SmallLexicon indefinite articles 20b〉≡
{Enter ein [[indef [[masc sing 3 nom]

[neut sing 3 [nom acc]]]]]}

{Enter einen [[indef [[masc sing 3 acc]]]]}

{Enter einem [[indef [[[masc neut] sing 3 dat]]]]}

{Enter eines [[indef [[[masc neut] sing 3 gen]]]]}

{Enter eine [[indef [[fem sing 3 [nom acc]]]]]}

{Enter einer [[indef [[fem sing 3 [dat gen]]]]]}

A dummy entry for the absence of article:

20c 〈SmallLexicon no article 20c〉≡
{Enter ’*no determiner*’ none}

And all forms of adjectiveschön:

20d 〈SmallLexicon adjectives 20d〉≡
{Enter schöne [[none [nom acc] [fem plur]]

[def sing [nom [acc [neut fem]]]]

[indef plur [nom acc]]]}

{Enter schönen [[none [[masc sing [acc gen]]

[fem sing gen]

[plur dat]]]

[def [plur dat gen [masc sing acc]]]

[indef sing [dat gen [masc acc]]]]}

{Enter schöner [[none [[masc sing nom]

[fem sing [dat gen]]

[plur gen]]]

[indef sing masc nom]]}

{Enter schönes [[neut sing [nom acc] [indef none]]]}

{Enter schönem [[[masc neut] sing dat none]]}

3.5. Application 21

3.5 Application

In this section, we include a small interactive application2 to allow you to test our im-
plementation of agreement. A window will appear as shown below, and you must select
one entry in each column, i.e. one article (or none, represented by the*no determiner*

entry), one adjective, and one noun:

Then you click on theTry button and a browser window pops up listing the possible
tuples for this agreement.

If no agreement is possible, the atomerror is displayed instead.

3.5.1 Implementation

The implementation is provided as functorSmallTest (file SmallTest.oz).

21a 〈SmallTest.oz 21a〉≡
functor

import

QTk at ’http://www.info.ucl.ac.be/people/ned/qtk/QTk.ozf’

Application

SmallLexicon

Browser(browse:Browse)

2http://www.ps.uni-sb.de/~duchier/esslli-2000/SmallT est.oza

22 Chapter 3. Efficient Encodings of Finite Domains

define

DetBox AdjBox NounBox

DetWords = [’*no determiner*’

der den dem des die das

ein einen einem eines eine einer]

AdjWords = [schöne schönen schöner schönes schönem]

NounWords= [mann mannes männer männern]

proc { Try }

{Browse

try

D = {Nth DetWords {DetBox get(firstselection:$)}}

A = {Nth AdjWords {AdjBox get(firstselection:$)}}

N = {Nth NounWords {NounBox get(firstselection:$)}}

in

{SmallLexicon .agreement

decode(

{SmallLexicon .get D}=

{SmallLexicon .get A}=

{SmallLexicon .get N} $)}

catch _ then error end}

end

Interface =

lr(listbox(init:DetWords glue:we exportselection: false handle:DetBox)

listbox(init:AdjWords glue:we exportselection: false handle:AdjBox)

listbox(init:NounWords glue:we exportselection: false handle:NounBox)

newline

button(text: ’Try’ glue:we action:Try)

empty

button(text: ’Quit’ glue:we

action: proc { $} {Application .exit 0} end))

Window = {QTk .build Interface}

{Window show}

end

3.6 Projections

Consider now the problem of agreement between noun and relative pronoun: they must
agree in gender and number, but nothing else. How can we express such agreement
condition, when gender and number have been combined with other features into one
DomainProduct ? What we need is to project aDomainProduct onto a subset of its
dimensions. In this section, we illustrate how this can be achieved using theselection
constraint.

The idea is that to each tuple[G N P C Q] in the cartesian product:

Gender * Number * Person * Case * Quantifier

we can associate a corresponding tuple[G N] in the projection productGender * Number.
In other words, there is a finite map from the integers encoding the 1st product into the
integers encoding the 2nd product.

3.6. Projections 23

3.6.1 Selection Constraint

In this section, we very briefly introduce the idea of the selection constraint for finite
domains. It has the form:

I={Select .fd [I1 I2 ... In] K}

where I , I1 , ..., In , K are all FD variables (possibly determined, i.e. integers).Its
declarative semantics is thatI = I K. Constraint propagation can affect bothI and
K: if Ip cannot be equal toI (i.e. their domains are disjoint), thenp is removed from
the domain ofK. Furthermore, the domain ofI must be a subset of the union of the
domains ofIp for p in the domain ofK. To learn more about the selection constraint,
see Section 6.9 and also the treatment of dependency parsingin Chapter 5.

3.6.2 Partial Agreement

Consider now the selection constraint:

ProjectedAgreement={Select .fd [I1 I2 ... In] Agreement}

when p encodes agreement tuple[G N P C Q] and Ip encodes the projected tuple
[G N] . The constraint above precisely implements the mapping from agreement tuples
to projected tuples.

We make this particular projection facility available in functor SmallPartial (file
SmallPartial.oz), which exportsPartialAgreement (the projected product in-
volving only gender and number) andGetPartialAgreement which is a function tak-
ing 2 input arguments that must partially agree and returning said partial agreement.

23a 〈SmallPartial.oz 23a〉≡
functor

import

Select at ’x-ozlib://duchier/cp/Select.ozf’

SmallLexicon

Encode FS

export

PartialAgreement

GetPartialAgreement

define

PartialAgreement =

{New Encode .domainProduct

init([[masc fem neut]

[sing plur]])}

1#N = SmallLexicon .agreement .range

Projection = {Tuple .make o N}

for I in 1..N do

case {SmallLexicon .agreement decode(I $)}

of [[Gender Number _ _ _]] then

S = {PartialAgreement encode([[Gender Number]] $)}

[J] = {FS .reflect .lowerBoundList S}

24 Chapter 3. Efficient Encodings of Finite Domains

in

Projection .I = J

end

end

proc { GetPartialAgreement A1 A2 P}

P = {Select .fd Projection A1}

P = {Select .fd Projection A2}

end

end

3.6.3 Application

Now we provide an application3 similar to the previous one, but where only partial
agreement is required (fileSmallPartialTest.oz).

24a 〈SmallPartialTest.oz 24a〉≡
functor

import

QTk at ’http://www.info.ucl.ac.be/people/ned/qtk/QTk.ozf’

Application

SmallLexicon

SmallPartial

Browser(browse:Browse)

define

Box1 Box2

Words1 = [der den dem des die das]

Words2 = [mann mannes männer männern

schöne schönen schöner schönes schönem]

proc { Try }

{Browse

try

W1 = {Nth Words1 {Box1 get(firstselection:$)}}

W2 = {Nth Words2 {Box2 get(firstselection:$)}}

in

{SmallPartial .partialAgreement

decode(

{SmallPartial .getPartialAgreement

{SmallLexicon .get W1}

{SmallLexicon .get W2}} $)}

catch _ then error end}

end

Interface =

lr(listbox(init:Words1 glue:we exportselection: false handle:Box1)

listbox(init:Words2 glue:we exportselection: false handle:Box2)

newline

button(text: ’Try’ glue:we action:Try)

button(text: ’Quit’ glue:we

action: proc { $} {Application .exit 0} end))

3http://www.ps.uni-sb.de/~duchier/esslli-2000/SmallP artialTest.oza

3.6. Projections 25

Window = {QTk .build Interface}

{Window show}

end

26 Chapter 3. Efficient Encodings of Finite Domains

4

Dominance Constraints

Trees are widely used for representing hierarchically organized information, such as
syntax trees, first-order terms, or formulae representing meanings. A tree can be re-
garded as a particular type of directed graph. A directed graph is a pair(V,E) where
V is a set of vertices andE a multiset of directed edges between them, i.e. a subset
of V × V . A forest is an acyclic graph where all vertices have in-degree at most 1. A
tree is a forest where there is precisely one vertex, called the root, with in-degree 0; all
others have in-degree 1.

First-order terms, or finite constructor trees, are characterized by a further restriction:
each node is labeled by some constructorf of a signatureΣ, and its out-edges are
labeled by integers from 1 to n, where n is the arity of the constructor. This can be
formalized as follows: we assume a signatureΣ of function symbolsf, g, . . ., each
equipped with an arityar(f) ≥ 0. A finite constructor tree is then a triple(V,E,L)
where(V,E) defines a finite tree, andL : V → Σ andL : E → N are labelings, and
such that for any vertexv ∈ V there is exactly one outgoing edge with labelk for each
1 ≤ k ≤ ar(L(v)) and no other outgoing edges.

Trees are often used to represent syntactic structure. For example, here is a possible
analysis of"beans, John likes everyday".

S

NP

beans

S

NP

john

VP

VP

V

likes

NP

ǫ

ADV

everyday

or logical formulae representing meanings. For example, here are the simplified repre-
sentations of the two meanings of the ambiguous sentence"every yogi has a guru":

forall •
yogi • exists •

guru • has •

exists •
guru • forall •

yogi • has •

28 Chapter 4. Dominance Constraints

4.1 Descriptions of Trees

Since trees are a basic food group in the computational linguist’s diet, it is often very
convenient to be able to describe classes of trees with certain general structural proper-
ties. As mentioned earlier, a tree is typically specified extensionally by listing its edges,
i.e. by providing a relation of immediate dominance betweenvertices. This is often
too specific, hence the idea of also permitting the more relaxed relation of (general)
dominance, which is simply the transitive closure of immediate dominance.

This makes it possible to express that some vertexv1 should dominate another vertex
v2, which we writev1 ⊳

∗ v2, without having to commit to any specific detail. This
merely requires thatv2 must occur belowv1, and allows arbitrary material to be in-
serted on the path between them. In other words, math/v_1\LE v_2/ is satisfied in
every model (tree) in whichv1 denotes a proper ancestor ofv2.

4.1.1 DTree Grammar

One application of tree descriptions is in the class of grammars which here we will,
a bit loosely, generically call DTree grammars (DTGs) [63] [46] [47] [16]. Where
Lexicalized Tree Adjoining Grammars (LTAGs) require the non-monotonic operation
of adjunction, DTGs instead support the monotonic insertion into holesprovided by
dominance. For example, here is an elementary tree description for a topicalized NP:

S

NP

beans

↓S

NP

ǫ

Note how the description introduces a dominancehole (graphically represented by a
dotted line) between a sentence node S and a trace NP to be positioned somewhere
below (i.e. to stand for the missing NP that was topicalized).

One main attraction of tree descriptions, is that it should be possible to put together
several descriptions and then look for solution trees that simultaneously satisfy all of
them. Parsing is one application: we would like to select in the lexicon one description
for each word and combine them into a syntax tree. Consider our example sentence
"beans, John likes everyday"and the following descriptions for each word:

S

NP

beans

↓S

NP

ǫ

NP

john

S

↓NP ↓VP

VP

V

likes

↓NP

VP

↓VP ADV

everyday

A corresponding solution tree is shown below where the partsoriginating with the
description for the topicalized NP"beans"are shown in red.

4.2. Dominance Constraints 29

S

NP

beans

S

NP

john

VP

VP

V

likes

NP

ǫ

ADV

everyday

4.1.2 Underspecified Semantic Representation

Semantic representations are typically expressed in the form of higher-order logical
formulae [38] [18]. The semantic representation of a phraseis built-up from the se-
mantic contributions of its parts. One advantage of tree descriptions in this context is
that they permit a certain amount of underspecification sufficient to account for scope
ambiguity [44].

Consider again the sentence"every yogi has a guru". It is ambiguous in the scope
of the existential quantifier associated withguru. If this quantifier takes wide scope,
then all yogis have the same guru. If it takes narrow scope, different yogis may have
different gurus. This ambiguity can be succinctly expressed with the description shown
below:

forall • x0

yogi • x1 • x2

exists • y0

guru • y1

has • z

• y2

4.2 Dominance Constraints

We now present a formal language with which we can write tree descriptions. This is
the language ofDominance Constraints with Set Operatorsas described in [15]. It has
the following abstract syntax:

φ ::= x R y | x : f(x1 . . . xn) | φ ∧ φ′

where variablesx, y denote nodes andR ⊆ {=,⊳+,⊲+,⊥}. ⊳
+ represents proper

dominance and⊥ disjointness. The constraintx R y is satisfied when the relationship
that holds betweenx andy is one inR. Thusx {=,⊥} y is satisfied either whenx and
y are equal, or when they denote nodes in disjoint subtrees. Wewrite x⊳

∗ y instead of
x {=,⊳+} y and generally omit braces when we can write a single symbol.

Consider again the scope ambiguity example:

forall • x0

yogi • x1 • x2

exists • y0

guru • y1

has • z

• y2

30 Chapter 4. Dominance Constraints

It can be expressed as the following dominance constraint:

x0 : forall(x1, x2)
∧ y0 : exists(y1, y2)
∧ x1 : yogi ∧ x2 ⊳

∗ z

∧ y1 : guru ∧ y2 ⊳
∗ z

∧ z : has

4.2.1 Models of Dominance Constraints

A model of a dominance constraintφ is a pair(T, I) of a treeT and an interpretation
of I mapping variables ofφ to nodes inT , and such thatφ is satisfied. We write
(T, I) |= φ to say thatφ is satisfied by(T, I) and define it in the usual Tarskian way as
follows:

(T, I) |= φ ∧ φ′ if (T, I) |= φ and(T, I) |= φ′

(T, I) |= x R y if I(x) is in relationr to I(y) in T, for somer ∈ R

Solving dominance constraints is NP-hard. This was shown e.g. in [31] by encoding
boolean satisfiability as a dominance problem. However, theconstraint-based tech-
nique first outlined in [11] has proven quite successful and solves practical problems
of arising e.g. in semantic underspecification very efficiently. The technique is for-
mally studied and proven sound and complete in [15]. An extension of this technique
to handle general descriptions with arbitrary Boolean connectives was presented in
[10].

4.2.2 Solved Forms of Dominance Constraints

If a dominance constraint is satisfiable, it has infinitely many models; in particular, if
T is a solution ofφ, then any tree that containsT is also a solution. For example, here
are a few models ofx ⊳

∗ y:

x y x

y

x

y x

y

. . .

The problem is similar when solving equations on first-orderterms. The equation
f(a,X1,X2) = f(Y1, b, Y2) has infinitely many models, namely all first-order terms
of the formf(a, b, T) whereT is a first-order term. Instead of attempting to enumerate
all models, a solver returns amost general unifier:

X1 = b, Y1 = a,X2 = Y2

A unifier is also known as asolved form: it represents a non-empty family of solutions.

For a dominance constraintφ, we are going to proceed similarly and search for solved
forms rather than for solution trees. The idea is that we simply want to arrange the
nodes interpreting the variables ofφ into a tree shape.

4.3. Solving Dominance Constraints 31

For our purpose, a solved form will make explicit the relationship x r y that holds
between every two variablesx andy of the description: i.e. in a solved formr ∈
{=,⊳+,⊲+,⊥}. In [15], we show that it is possible to use less explicit solved forms
while preserving completeness: the relationship betweenx andy need not be fully
decided, but merely one ofx ⊳

∗ y or x ¬⊳
∗ y. For simplicity of presentation, we will

only consider fully explicit solved forms, but, in practice, less explicit solved forms are
to be preferred since they require less search. In [15], we show that the less explicit
solved forms may avoid an exponential number of choice points.

4.3 Solving Dominance Constraints

A naïve approach to search for solutions of a descriptionφ is to non-deterministically
fix the relationshipxry between any two variables ofφ and then (1) verify that there are
trees corresponding to this configuration (i.e. essentially that the solved form has a tree-
shape), (2) verify that some of these trees also satisfyφ. This algorithm is exponential.
But, many configurations do not correspond to trees, and/or cannot satisfyφ. This is
where constraint propagation can prove very effective: it can deterministically rule out
configurations that cannot lead to admissible solutions.

Thus our approach will consist in formulating 2 sets of criteria:

Well-formedness Constraints: these guarantee that a solved form has a tree-shape, i.e. that it has tree
solutions.

Problem-specific Constraints: these guarantee that a solved form actually satisfies the description

4.3.1 Well-Formedness Constraints

Consider a solution tree for a descriptionφ. Further consider the nodeNodex, in that
tree, interpreting variablex occurring inφ. When observed from the vantage point of
this node, the nodes of the tree (hence the variables that they interpret) are partitioned
into 4 regions:Nodex itself, all nodes above, all nodes below, and all nodes to theside
(i.e. in disjoint subtrees).

x

Eqx

Upx

Downx

Sidex

The variables ofφ are correspondingly partitioned: all variables that are also inter-
preted byNodex, all variables interpreted by the nodes above, resp. below or to the
side. We introduce 4 variables to denote these sets:

Eqx, Upx, Downx, Sidex

32 Chapter 4. Dominance Constraints

Clearly,x is one of the variables interpreted byNodex:

x ∈ Eqx

Furthermore, as described above, these sets must form a partition of the variables oc-
curring inφ:

Vars(φ) = Eqx ⊎ Upx ⊎ Downx ⊎ Sidex

4.3.1.1 Characteristic Set Constraints

In order to formulate the constraints that will only licensetree-shaped solved forms,
we must first consider each individual casex r y for r ∈ {=,⊳+,⊲+,⊥}. For each
casexry and its negationx¬ry, we will formulate characteristic constraints involving
the set variables that we introduced above.

Let’s consider the casex ⊳
+ y for which a solution looks as shown below:

x

y

For convenience, we define, for each variablex, the additional set variablesEqdownx
andEqupx as follows:

Eqdownx = Eqx ⊎ Downx

Equpx = Eqx ⊎ Upx

We write [[x ⊳
+ y]] for the constraint characteristic of casex ⊳

+ y and define it as
follows:

[[x ⊳
+ y]] ≡ Eqdowny ⊆ Downx

∧ Equpx ⊆ Upy

∧ Sidex ⊆ Sidey

I.e. all variables equal or belowy are belowx, all variables equal or abovex are above
y, and all variables disjoint fromx are also disjoint fromy. This illustrates how set
constraints permit to succinctly express certain patternsof inference. Namely[[x⊳

+ y]]
precisely expresses:

∀z y ⊳
∗ z → x ⊳

+ z

∀z z ⊳
∗ x → z ⊳

+ y

∀z z ⊥ x → z ⊥ y

The negation is somewhat simpler and states that no variableequal tox is abovey, and
no variable equal toy is belowx. Remember thatS1 ‖ S2 expresses thatS1 andS2 are
disjoint.

[[x ¬⊳
+ y]] ≡ Eqx ‖ Upy

∧ Eqy ‖ Downx

We can define the other cases similarly. Thus[[x ⊥ y]]:

[[x ⊥ y]] ≡ Eqdownx ⊆ Sidey
∧ Eqdowny ⊆ Sidex

4.3. Solving Dominance Constraints 33

and its negation[[x ¬⊥ y]]:

[[x ⊥ y]] ≡ Eqx ‖ Sidey
∧ Eqy ‖ Sidex

For the case[[x = y]] we first introduce notation. We writeNodex for the tuple defined
as follows:

Nodex ≡ 〈Eqx, Upx, Downx, Sidex, Equpx, Eqdownx, Daughtersx〉

whereDaughtersx = f(Nodex1
, . . . , Nodexn) when the constraintx : f(x1, . . . , xn)

occurs inφ (more about this when presenting the problem-specific constraints). Now
we can simply define[[x = y]] as:

[[x = y]] ≡ Nodex = Nodey

and its negation[[x ¬= y]] as:

[[x ¬= y]] ≡ Eqx ‖ Eqy

4.3.1.2 Well-Formedness Clauses

For every pair of variablesx andy, we introduce a finite domain variableRxy to denote
the relationshipx Rxy y that obtains between them.Rxy ∈ {=,⊳+,⊲+,⊥} and we
freely identify{=,⊳+,⊲+,⊥} with {1, 2, 3, 4}. In a solved form, everyRxy must be
determined.

In order to guarantee that a solved form is tree-shaped, for each pair of variablesx
andy, we consider the 4 mutually exclusive possibilities. For each possible relation
r ∈ {=,⊳+,⊲+,⊥} we state that eitherRxy = r and the corresponding characteristic
constraints[[x r y]] hold, orRxy 6= r and the constraints[[x ¬r y]] characteristic of the
negation hold.

Thus for each pair of variablesx andy, we stipulate that the following 4Well-Formedness
Clauseshold:

[[x = y]] ∧ Rxy = = or Rxy 6= = ∧ [[x ¬= y]]
[[x ⊳

+ y]] ∧ Rxy = ⊳
+ or Rxy 6= ⊳

+ ∧ [[x ¬⊳
+ y]]

[[x ⊲
+ y]] ∧ Rxy = ⊲

+ or Rxy 6= ⊲
+ ∧ [[x ¬⊲

+ y]]
[[x ⊥ y]] ∧ Rxy = ⊥ or Rxy 6= ⊥ ∧ [[x ¬⊥ y]]

These clauses are all of the formC1 or C2. This denotes adisjunctive propagatorand
is explained in the next section.

4.3.1.3 Disjunctive Propagator

In Logic Programming, the only method available for dealingwith complex disjunc-
tions is non-determinism. Thus, in Prolog, you would write:

C1 ; C2

34 Chapter 4. Dominance Constraints

and this would have the effect to first tryC1, and then on backtracking to tryC2. In
other words, in Prolog you must commit very early to exploring either one alternative
or the other.

Early commitment is a poor strategy in general. In many cases, it would be preferable
to delay this choice until e.g. sufficient information is known to reject one alternative
altogether. This is the intuition behind the disjunctive propagator:

C1 or C2

It is a propagator, not a choice point!C1 andC2 are arbitrary constraints: when one
of them becomes inconsistent with what is currently known (i.e. with the store of
basic constraints), then the propagator reduces to the other one. Thus, a disjunctive
propagator has the declarative semantics of sound logical disjunction (unlike Prolog’s
; operator which depends onnegation as failure) and the operational semantics given
by the rules below:

B ∧ C1 →∗ false
B ∧ (C1 or C2) → B ∧ C2

B ∧ C2 →∗ false
B ∧ (C1 or C2) → B ∧ C1

How is this possible? We have already explained that all computations operate over a
constraint store. We can go one better and allownestedconstraint stores. This idea is
indeed supported by Oz under the name ofComputation Spaces(see Section 6.4). The
disjunctive propagatorC1 or C2 creates 2 nested computation spaces - one in which
to executeC1 and one in which to (concurrently) executeC2 - and it monitors both
spaces. If an inconsistency is derived in the space where, say, C2 executes, then the
space whereC1 executes is simply merged with the current space, thuscommittingto
alternativeC1.

A disjunctive propagatorC1 or C2 allows to delay the choice between the two alter-
native in the hope that constraint propagation alone will beable to decide it. However,
this may fail to happen, in which case, to ensure completeness, we may have to non-
deterministically force the choice anyway. How can we achieve this?

The usual technique is to introduce aControl Variable, i.e. a finite domain variable
whose purpose is simply to allow to choose the alternative. For example, you might
write:

X=1 C1 or X=2 C2

Thus, if constraint propagation is unable to decide the disjunction either way, you can
non-deterministically either tryX=1 or try X=2. VariableX allows you tocontrol the
disjunction.

In the case of the well-formedness clauses, we already have the variablesRxy which
can serve this purpose.

4.4. Implementation 35

4.3.2 Problem-Specific Constraints

The well-formedness constraints guarantee that our solvedforms correspond to trees.
We now need additional constraints to guarantee that these trees actually satisfy our
descriptionφ. We shall achieve this by translating each literal inφ into a constraint as
explained below.

If the constraint is of the formx R y, then the translation is trivial in terms of the
variableRxy that we introduced earlier to denote the relationship betweenx andy:

Rxy ∈ R

If the constraint isx : f(x1, . . . , xn), then it is translated into the constraints below:

Downx = Eqdownx1
⊎ . . . ⊎ Eqdownxn

Equpx = Upxi
forall 1 ≤ i ≤ n

Daughtersx = f(Nodex1
, . . . , Nodexn)

Particularly important is the first constraint which statesthat the trees rooted at the
daughters are pairwise disjoint and that they exhaustivelyaccount for the variables
belowx.

4.3.3 Searching for Solved Forms

Given a descriptionφ, we transform it into the constraint satisfaction problem given
by the conjunction of the well-formedness constraints and the problem specific con-
straints. The CSP can be solved by searching for assignmentsto the variablesRxy

consistent with these constraints.

4.4 Implementation

In this section, we present the Oz functorDominance (file Dominance.oz) imple-
menting a solver as described in the preceding section. It exportssolutionPredicate

which can be used as follows:

{ExploreAll {Dominance .solutionPredicate Desc}}

whereDesc is a tree description in the form of a list where each element is of one of
the forms described below:

dom(X R Y)

whereX andY are both atoms naming variables, andR is an atom or list of atoms from
the seteq, above , below , side .

lab(X f(X1 ... Xn))

whereX andXi are atoms naming variables.

labeled(X)

whereX is an atom naming a variable. This is a new constraint not mentioned in our
abstract syntax but very convenient in practice: it simply states thatX must be identified
with some variable that is explicitly labeled in the input description.

36 Chapter 4. Dominance Constraints

36a 〈Dominance.oz 36a〉≡
functor

import FD FS

export SolutionPredicate

define

〈Dominance: SolutionPredicate36b〉
〈Dominance: MakeNode 36c〉
〈Dominance: characteristic constraints 37a〉
〈Dominance: well-formedness clauses37b〉
〈Dominance: Solver class37c〉
〈Dominance: utilities 39a〉

end

SolutionPredicate takes a tree description as argument and returns a procedureap-
propriate for encapsulated search. This procedure createsa solver object. This object
is only needed for converting the description into constraints and starting the search.

36b 〈Dominance: SolutionPredicate36b〉≡
fun { SolutionPredicate Desc}

proc { $ Info}

{New Solver init(Desc Info) _}

end

end

4.4.1 MakeNode

For each variablex in the description, we must create all the corresponding setvari-
ables required by the encoding. This is the purpose of functionMakeNode. It is invoked
as{MakeNode I Vars} whereI is the unique integer used to represent variablex and
Vars is a set variable representing the set of all variables occurring in the description.
The function returns a representation ofNodex in the form of a record.

36c 〈Dominance: MakeNode 36c〉≡
fun { MakeNode I Vars}

[Eq Down Up Side] = {FS .var .list .decl 4}

EqDown = {FS.union Eq Down}

EqUp = {FS.union Eq Up}

in

{FS .partition [Eq Down Up Side] Vars}

{FS .include I Eq}

node(

eq : Eq

down : Down

up : Up

side : Side

eqdown : EqDown

equp : EqUp

daughters : _)

end

4.4. Implementation 37

4.4.2 Characteristic Constraints

The constraints characteristic ofx r y or x ¬r y for eachr ∈ {=,⊳+,⊲+,⊥} can be
easily expressed in terms of the node representationsNodex andNodey.

37a 〈Dominance: characteristic constraints 37a〉≡
proc { Equal N1 N2} N1=N2 end

proc { NotEqual N1 N2}

{FS .disjoint N1 .eq N2.eq}

end

proc { Above N1 N2}

{FS .subset N2 .eqdown N1.down}

{FS .subset N1 .equp N2.up}

{FS .subset N1 .side N2 .side}

end

proc { NotAbove N1 N2}

{FS .disjoint N1 .eq N2.up}

{FS .disjoint N2 .eq N1.down}

end

proc { Disjoint N1 N2}

{FS .subset N1 .eqdown N2.side}

{FS .subset N2 .eqdown N1.side}

end

proc { NotDisjoint N1 N2}

{FS .disjoint N1 .eq N2.side}

{FS .disjoint N2 .eq N1.side}

end

4.4.3 Well-Formedness Clauses

ProcedureClauses creates the well-formedness clauses for the pair of variablesx and
y, whereN1 denotesNodex, N2 denotesNodey, and R denotesRxy. Note that we
identify = with 1, ⊳+ with 2, ⊲+ with 3, and⊥ with 4.

37b 〈Dominance: well-formedness clauses37b〉≡
proc { Clauses N1 N2 C}

thread or {Equal N1 N2} C=1 [] C\=:1 {NotEqual N1 N2} end end

thread or {Above N1 N2} C=2 [] C\=:2 {NotAbove N1 N2} end end

thread or {Above N2 N1} C=3 [] C\=:3 {NotAbove N2 N1} end end

thread or {Disjoint N1 N2} C=4 [] C\=:4 {NotDisjoint N1 N2} end end

end

4.4.4 Solver class

We use an object of classSolver to turn a description into a CSP. There is no over-
whelming reason to use an object: the author simply finds thatan OO-idiom is in
this case rather pleasant. In particular, it makes it easierto manipulate state (see e.g.
@counter attribute later).

37c 〈Dominance: Solver class37c〉≡

38 Chapter 4. Dominance Constraints

class Solver

〈Dominance: Solver class, attributes38a〉
〈Dominance: Solver class, init method38b〉
〈Dominance: Solver class, var2node method39b〉
〈Dominance: Solver class, lab method40a〉
〈Dominance: Solver class, dom method40b〉
〈Dominance: Solver class, labeled method41a〉
〈Dominance: Solver class, info method41b〉

end

4.4.4.1 Attributes

Each solver object has several attributes.@counter allows us to give each variable oc-
curring in the description a distinct integer to encode it.@var2int is a dictionary map-
ping each atom naming a variable to the corresponding integer encoding it.@int2node

is a dictionary mapping an integer encoding a variablex to the record representing
Nodex. @vars is a set variable representing the set of all variables occurring in the
description.@labs represents the subset of these variables that are explicitly labeled in
the description.@choices is a dictionary that allows us to map a pair of variablesx, y

to the correspondingRxy representing the relationship between them. SinceRyx is the
inverse ofRxy, we only need to represent one of them: we only representRxy when
x, y are respectively encoded by integersI ,J and I is larger thanJ. For simplicity,
we assume that there are fewer than 1000 variables in the description and use index
I *1000+J to retrieveRxy from @choices .

38a 〈Dominance: Solver class, attributes38a〉≡
attr counter:0 var2int int2node vars labs choices

4.4.4.2 init method

Theinit method initializes the attributes and then processes each literal of the descrip-
tion, creating the corresponding problem-specific constraints. A literal is processed
simply by invoking it as method on the solver object. The firsttime that variablex is
encountered, it is assigned a new integer to encode it and itscorrespondingNodex is
created. The nested loops create all well-formedness clauses for the variables encoun-
tered in the description. Finally, thefirst-fail distribution strategy is invoked to search
for consistent assignments to the variablesRxy.

38b 〈Dominance: Solver class, init method38b〉≡
meth init (Desc Info)

var2int <- {NewDictionary}

int2node <- {NewDictionary}

vars <- {FS .var .decl}

labs <- {FS .var .decl}

choices <- {NewDictionary}

for D in Desc do { self D} end

{CloseSet @vars}

{CloseSet @labs}

{ self info(Info)}

for I in 1..@counter do

4.4. Implementation 39

for J in 1..(I -1) do

{Clauses @int2node .I @int2node .J @choices .(I *1000+J)}

end

end

{FD.distribute ff {Dictionary .items @choices}}

end

Note that@vars and@labs are initially completely underspecified. Whenever a new
variable is encountered, it is stated to be an element of@vars . Whenever a labeling
constraint is encountered, the labeled variable is stated to be an element of@labs .
When all literals have been processed, then all variables are known, and all explicitly
labeled variables as well:CloseSet is invoked on both@vars and@labs to state that
whatever is known to be in these sets sofar is really all thereis (i.e. the lower bound is
also the upper bound).

39a 〈Dominance: utilities 39a〉≡ 40c⊲

proc { CloseSet S}

{FS .var .upperBound {FS .reflect .lowerBound S} S}

end

4.4.4.3 var2node method

Whenever, in a literal, we encounter an atom naming a variable, we invoke method
var2node to make sure that this variable is already encoded and to retrieve the corre-
sponding node representation. If this is the first time we encounter this variablex, we
allocate for it a new integer and create a node representation Nodex for it. Further, we
also createRxy for all variablesy that were known sofar (i.e. all variables encoded by
integers smaller than the one encodingx).

39b 〈Dominance: Solver class, var2node method39b〉≡
meth var2node (X Node)

I = {Dictionary .condGet @var2int X unit}

in

if I ==unit then

I=(counter <-I) +1

in

{FS .include I @vars}

Node={MakeNode I @vars}

@var2int .X := I

@int2node .I := Node

for J in 1..(I -1) do

@choices .(I *1000+J) := {FD .int 1 #4}

end

else Node=@int2node .I end

end

4.4.4.4 lab method

This method translates a labeling literallab(X f(X1 ... Xn)) into the correspond-
ing problem-specific constraints (as described in Section 4.3.2). The last line states
that the variable named byX is an element of the set of labeled variables.

40 Chapter 4. Dominance Constraints

40a 〈Dominance: Solver class, lab method40a〉≡
meth lab (X R)

N = {self var2node(X $)}

in

N.daughters =

{Record .map R fun { $ Xi} { self var2node(Xi $)} end}

{FS .partition

{Record .map N.daughters

fun { $ Ni}

Ni .up = N.equp

Ni .eqdown

end}

N.down}

{FS .include @var2int .X @labs}

end

4.4.4.5 dom method

This method translates a dominance literaldom(X R Y) into the corresponding problem-
specific constraint (as described in Section 4.3.2). Remember that sinceRyx is the in-
verse ofRxy, we only represent one of them: we representRxy whenx, y are encoded
by I ,J andI >J.

40b 〈Dominance: Solver class, dom method40b〉≡
meth dom(X R Y)

{ self var2node(X _)}

{ self var2node(Y _)}

I = @var2int .X

J = @var2int .Y

in

if I ==J then 1::{Encode R}

elseif I >J then

@choices .(I *1000+J) ::{Encode R}

else

@choices .(J *1000+I) ::{Encode {Inverse R}}

end

end

Here is how to inverse and encode the symbolic representation of a dominance specifi-
cation.

40c 〈Dominance: utilities 39a〉+≡ ⊳39a

fun { Encode R}

case R

of eq then 1

[] above then 2

[] below then 3

[] side then 4

[] _|_ then {Map R Encode}

end

4.5. Application 41

end

fun { Inverse R}

case R

of eq then eq

[] above then below

[] below then above

[] side then side

[] _|_ then {Map R Inverse}

end

end

4.4.4.6 labeled method

This method translates a literallabeled(X) and forces the variable named byX to be
eventually identified with one of the explicitly labeled variables. We introduceI to
denote this explicitly labeled variable.

41a 〈Dominance: Solver class, labeled method41a〉≡
meth labeled (X)

N = {self var2node(X $)}

I = {FD .decl}

in

{FS .include I @labs}

{FS .include I N .eq}

end

4.4.4.7 labeled method

The sole purpose of this method is to assemble a representation of a solution. A so-
lution is represented by a tuple mapping integerI to Nodex for the variablex that I

encodes. Actually, not quite, as we also augmentNodex with an indication of the name
x of the variable (on featurevar).

41b 〈Dominance: Solver class, info method41b〉≡
meth info ($)

Int2var = {NewDictionary}

in

{ForAll {Dictionary .entries @var2int}

proc { $ V#I} Int2var .I := V end}

{Record .mapInd {Dictionary .toRecord o @int2node}

fun { $ I N}

{AdjoinAt N var Int2var .I}

end}

end

4.5 Application

In this section, we provide a small interactive application1 to test our solver for domi-
nance constraints. A window will appear as shown below and you can type the literals

1http://www.ps.uni-sb.de/~duchier/esslli-2000/DomDem o.oza

42 Chapter 4. Dominance Constraints

of a description in the text area. The literals shown in the picture correspond to the
example"every yogi has a guru".

When you have typed your literals, you can click onSolve and The Explorer window
pops up and displays the search tree for all solutions to yourdescription. For our
example, we get the expected 2 readings:

4.5.1 Implementation

The implementation is provided as functorDomDemo(file DomDemo.oz).

42a 〈DomDemo.oz 42a〉≡
functor

import

QTk at ’http://www.info.ucl.ac.be/people/ned/qtk/QTk.ozf’

4.5. Application 43

TkTools

Application

Compiler

Explorer

Dominance

define

TextBox

proc { Clear } {TextBox delete("1.0" "end")} end

proc { Solve }

Text = {TextBox getText("1.0" "end" $)}

in

try

Desc = {Compiler .virtualStringToValue ’[’ #Text #’]’ }

Pred = {Dominance .solutionPredicate Desc}

in

{Explorer .object all(Pred)}

catch _ then

{New TkTools .error

tkInit(master:Window text: ’error’) _}

end

end

proc { Quit } {Application .exit 0} end

Window={QTk .build

lr(text(height:20 width:50 bg:white handle:TextBox)

continue continue newline

button(text: ’Solve’ glue:ew action:Solve)

button(text: ’Clear’ glue:ew action:Clear)

button(text: ’Quit’ glue:ew action:Quit))}

{Window show}

end

44 Chapter 4. Dominance Constraints

5

Dependency Parsing

In this chapter, we will take a look at parsing in the framework of dependency gram-
mar. The chapter is called"Dependency Parsing"rather than, say,"Parsing with De-
pendency Grammars"because, for reasons of space/time, it is concerned only with
the creation of dependency trees for input sentences and notwith other issues, such
as word-order, which are also essential for determining grammaticality. Also cover-
age will be minimal and is only meant to illustrate the application of the techniques
presented here.

Dependency parsing is particularly interesting because itexhibits, in a very simple
way, 2 fundamental forms of ambiguity that commonly arise inparsing: lexical ambi-
guity and structural ambiguity, and allows to showcase convincingly constraint-based
techniques to effectively handle such ambiguities.

Maruyama [33] was the first to propose a complete treatment ofdependency grammar
as a CSP and described parsing as a process of incremental disambiguation. Harper
[23] continues this line of research and proposed several algorithmic improvements
within the MUSE CSP framework [25]. Menzel [35] [24] [36] advocates the use of
soft gradedconstraints for robustness in e.g. parsing spoken language. His proposal
turns parsing into a more expensive optimization problem, but adapts gracefully to
constraint violations.

The material in this chapter is based on our paper [8]. Our presentation has one no-
ticeable advantage over Maruyama’s in that it follows modern linguistic practice: the
grammar is specified by a lexicon and a collection of principles. The formulation in
this chapter is also a little simpler than the one in [8] because it takes advantage of the
newselection union constraint(see Section 5.4.6 and Section 6.9.4).

5.1 Overview

We hope that the fundamentals of DG are known to the reader. Wereview the basic
ideas only very briefly.

Contrary to phrase structure grammar, where parse trees consist mostly of non-terminal
nodes and words appear only as leaves, dependency grammar postulates no non-terminals:
words are in bijection with the nodes of the dependency tree.In other words, edges are
drawn directly between words. Thus a finite verb has typically an edge directed to its
subject, and another to its object.

46 Chapter 5. Dependency Parsing

Unlike traditional phrase structure trees, dependency trees usually allow crossing branches.
This makes dependency trees rather attractive for languages with free word order (e.g.
German), and for the representation of long distance dependencies. As an illustration,
consider the dependency tree shown below:

3

5 6

4 8

2 7

1

das Buch hat mir Peter versprochen zu lesen

subject

past_participle

zu_infinitive

determiner

zu

dative

object

Each box represents a node in the dependency tree. For ease ofreading, the words
are written at the bottom and for each one the corresponding node is indicated by
connecting it to the word by a vertical dotted blue line. Alsoeach box contains an
integer indicating the position of the word in the input. Thedirected edges of the
dependency tree are represented by red arrows. Each arrow islabeled to indicate the
type of the dependency, for example bysubject or zu_infinitive . We call such
labelsroles. These roles are purely syntactic and not to be confused e.g.with thematic
roles.

5.2 Formal Presentation

In this section, we briefly outline the formal presentation of dependency grammar pre-
sented in [8]. The basic idea is that each node of the dependency tree must be assigned
a lexical entry from the lexicon, and that certain principles of well-formedness must
be verified. For example, the lexical entry stipulates a valency, and the node must have
precisely the outgoing dependency edges that realize this valency.

A dependency grammar is a 7-tuple

〈Words, Cats, Args, Comps, Mods, Lexicon, Rules〉

Words a finite set of strings notating fully inflected forms of words.

Cats a finite set of categories such asn (noun),det (determiner), orvfin (finite verb).

Args a finite set of (what we call) agreement tuples such as<masc sing 3 nom >.

Comps a finite set ofcomplementroles, such assubject or zu_infinitive .

Mods a finite set ofmodifierroles, such asadj (adjectives), disjoint fromComps. We write
Roles= Comps⊎ Mods for the set of all types of roles.

5.2. Formal Presentation 47

Lexicon a finite set of lexical entries (see below).

Rules a finite family of binary predicates, indexed by role labels,expressing local grammat-
ical principles: for eachρ ∈ Roles, there isΓρ ∈ Rolessuch thatΓρ(w1, w2) charac-
terizes the grammatical admissibility of a dependency edgelabeledρ from motherw1

to daughterw2.

A lexical entry is an attribute value matrix (AVM) with signature:









string : Words
cat : Cats
agr : Agrs
comps : 2Comps









and we write attribute access in functional notation. Ife is a lexical entry, thenstring(e)
is the full form of the corresponding word,cat(e) is the category,agr(e) is the agree-
ment tuple, andcomps(e) the valency expressed as a set of complement roles.

5.2.1 Dependency Tree

We assume given a set of nodesV which for simplicity we identify with the set of
integers{1, . . . , n}, and a setE ⊆ V × V × Rolesof labeled directed edges between
these node.(V, E) is a directed graph, in the classical sense, with labeled edges. We
restrict our attention to finite graphs that are also trees.

A dependency tree is then defined as a pairT ≡ ((V, E), entry) of a tree as stipulated
above and a functionentry mapping each node inV to a lexical entry inLexicon.

5.2.2 Well-Formedness Principles

Not all dependency trees as described above are grammatically admissible. We now
describe the conditions of admissibility, aka well-formedness.

While we have identified nodes with integers, we still preferto write wi (and often
just w or w′) instead ofi to remind the reader that they correspond to words and to
distinguish them from other occurrences of integers that have no such interpretation.
We also writew

ρ
→ w′ to represent an edge labeledρ from motherw to daughterw′.

First, any complement required by a node’s valency must be realized precisely once:

∀w ∈ V, ∀ρ ∈ entry(w), ∃!w′ ∈ V, w
ρ
→ w′ ∈ E

Second, if there is an outgoing edge fromw, then it must be labeled by a modifier role
or by a complement role inw’s valency:

∀w
ρ
→ w′ ∈ E , ρ ∈ Mods∪ comps(entry(w))

Third, whenever there is an edgew
ρ
→ w′, then the grammatical conditionΓρ(w,w′)

for Γρ ∈ Rulesmust be satisfied inT :

∀w
ρ
→ w′ ∈ E , T |= Γρ(w,w′)

48 Chapter 5. Dependency Parsing

5.3 Improving Lexical Economy

Typically the same full form of a word corresponds to severaldistinct agreement tu-
ples. The preceding formal presentation simply assumed that there would be a distinct
lexical entry for each one of these tuples. In practice, thiswould not be very realistic.
Therefore, we are going to define licensed lexical entries interms of more economical
lexicon entries.

Thus, instead of a featureagr mapping to a single agreement tuple, a lexicon entry has
a featureagrs mapping to a set of agreement tuples.

Although this is much less useful, we shall do the same for category information and
replace featurecat mapping to a single category by a featurecats mapping to a set of
categories.

Optional complements are another source of considerable redundancy in the lexicon.
Therefore, instead of modeling the valency by a single feature comps mapping to a set
of complement roles, we shall have 2 features:comps_req mapping to a set of required
complement roles, andcomps_opt mapping to a set of optional complement roles.

We now define the lexicon as a finite set oflexicon entries, where a lexicon entry is an
AVM of the form:













word : W

cats : C

agrs : A

comps_req : R

comps_opt : O













and thelexical entrieslicensed by the lexicon entry above are all AVMs of the form:









word : W

cat : c

agr : a

comps : S









where
c ∈ C

a ∈ A

R ⊆ S ⊆ R ∪ O

This simple formulation demonstrates how constraints can be used to produce com-
pact representations of certain forms of lexical ambiguity. Note that lexicon entries as
presented here do not support covariation of features: in such a case, you still need to
expand into multiple lexicon entries. Covariation could easily be added and supported
using the selection constraint, but I have never found the need for it: the most common
application for covariation is agreement, and we have already elegantly taken care of it
by means of a product of finite domains.

5.4 Constraint Model

In this section, we develop a constraint model for the formalframework of Section 5.2.
In essence, the constraint model is an axiomatization of admissible dependency trees,

5.4. Constraint Model 49

but also has a reading as a constraint program. It is carefully formulated to take effec-
tive advantage of modern technological support for constraint programming.

The approach is, as usual, a reduction to a CSP. We introduce variables to represent the
quantities and mappings mentioned in the formal model, and formulate constraints on
them that precisely capture the conditions that the formal model stipulates.

Our approach takes essential advantage of the intrinsicfinitenessof the problem: (1)
a dependency tree has precisely one node for each word, (2) there are finitely many
edges labeled with roles that can be drawn between n nodes, (3) for each word, there are
finitely many possible lexical entries. Thus the problem is to pick a set of edges and, for
each node, a lexical entry, such that (a) the result is a tree,(b) none of the grammatical
conditions are violated. Viewed in this light, dependency parsing is a configuration
problem, and therefore it is no surprise that constraint programming should be able to
address it very effectively.

5.4.1 Representation

We now introduce the most important variables in our constraint model. Other vari-
ables will be introduced later in the course of developing our axiomatization. As in
the formal model, a node is identified with the integer representing the position of the
corresponding word in the input sentence.

5.4.1.1 Lexical Attributes

The formal model posited a functionentry to map a node to a lexical entry. Here, we
shall seek to eliminate the use ofentry and use lexical attribute functions that operate
directly on the node rather than on the entry which it is assigned:

word(w) ≡ word(entry(w))
cat(w) ≡ cat(entry(w))
agr(w) ≡ agr(entry(w))

comps(w) ≡ comps(entry(w))

In the constraint model,cat(w) is a variable denoting the category of the lexical entry
assigned to nodew (similarly for the other attributes).

5.4.1.2 Daughter Sets

We need to represent labeled edges between nodes. Traditionally, this is realized by
means of feature structures: each node is a feature structure and an edgew

ρ
→ w′ is

represented by the presence of a featureρ onw, such thatw.ρ = w′. This, however, is
a lousy idea when the goal is to take advantage of active constraint propagation. The
problem is that, in the traditional view, features are partial functions: i.e.ρ is a partial
function from nodes to nodes (from now on, we will writeρ(w) instead ofw.ρ). It is
rather inconvenient to try to express constraints onρ(w) when it is not always defined!

However, a slight change of representation allows us to turnρ into a total function.
Instead ofρ(w) being either undefined or defined and denoting a node, we let itdenote
a set of nodes. Now instead of being undefinedρ(w) is simply empty. In the case
where it was originally defined, it now denotes a singleton set.

50 Chapter 5. Dependency Parsing

Thussubject(w) denotes the set of subjects ofw: empty except whenw is a finite
verb, in which case it is a singleton. We say thatsubject(w) is adaughter setof w, i.e.
a set of daughters. This idea has the second advantage that, in addition to complements
(like subject), it also naturally accommodates modifiers (like adjectives):adj(w) is the
set of adjectives ofw. The difference is that a modifier daughter set may have any
number of elements instead of at most 1 for a complement daughter set.

Formally, for each roleρ ∈ Roles, we introduce a functionρ such thatρ(w) is the set
of immediate daughters ofw whose dependency edge is labeled withρ:

ρ(w) = {w′ | w
ρ
→ w′ ∈ E}

in the constraint modelρ(w) is a finite set variable.

5.4.1.3 Lexicon

We consider a functionlex mapping a full form of a word to the corresponding set
of lexicon entries, or rather, without loss of generality, we assume thatlex returns a
sequence rather than a set, which allows us to identify lexicon entries by position in
this sequence:

lex(s) = 〈e ∈ Lexicon | word(e) = s〉

We will have to pick one entry in this sequence. For this purpose we introduceentryindex(w)
to denote the position of the selected entry in the sequence obtained from the lexicon.

5.4.2 Lexical Constraints

In this section, we define precisely the constraints governing assignment of lexical
attributes. Consider the sequence of lexicon entries obtained forw from the lexicon:

〈e1, . . . , en〉 = lex(word(w))

let’s write I for the position of the one that is selected out of this sequence:

I = entryindex(w)

Abstractly, we can writeE to denote the selected entry and define it thus:

E = 〈e1, . . . , en〉[I]

The lexical attributes assigned tow are then obtained as explained in Section 5.3:

cat(w) ∈ cats(E)
agr(w) ∈ agrs(E)

comps_req(E) ⊆ comps(w) ⊆ comps_req(E) ∪ comps_opt(E)

However, for practical reasons of implementation, the selection constraint cannot op-
erate on arbitrary AVMs, but is only provided for finite domains and finite sets. This
means that we cannot use the selection constraint directly on the sequence of lexicon

5.4. Constraint Model 51

entries to obtainE. However, we only needE to access its attributes, and we overcome
the limitation we pointed out by pushing attribute access into the selection:

cats(w) = 〈cats(e1), . . . , cats(en)〉[I]
agrs(w) = 〈agrs(e1), . . . , agrs(en)〉[I]

comps_req(w) = 〈comps_req(e1), . . . , comps_req(en)〉[I]
comps_opt(w) = 〈comps_opt(e1), . . . , comps_opt(en)〉[I]

cat(w) ∈ cats(w)
agr(w) ∈ agrs(w)

comps_req(w) ⊆ comps(w) ⊆ comps_req(w) ∪ comps_opt(w)

5.4.3 Valency Constraints

Every daughter set is a finite set of nodes in the tree:

∀w ∈ V, ∀ρ ∈ Roles, ρ(w) ⊆ V

The second principle of well-formedness requires that a complement daughter setρ(w)
be non-empty only whenρ appears inw’s valency. Additionally, the first principle
states that, when it is non-empty, the complement daughter set ρ(w) must be a single-
ton:

∀ρ ∈ Comps
|ρ(w)| ≤ 1

∧ |ρ(w)| = 1 ≡ ρ ∈ comps(w)

In practice, the equivalence above will be enforced usingreified constraintswhich are
explained in Section 6.8.

5.4.4 Role Constraints

For each roleρ ∈ Rolesthere is a corresponding binary predicateΓρ. The third prin-
ciple of well-formedness requires that whenever the dependency tree contains an edge
w

ρ
→ w′, then the grammatical conditionΓρ(w,w′) must hold in the tree. Therefore

the tree must satisfy the proposition below:

∀w,w′ ∈ V, ∀ρ ∈ Roles, w′ ∈ ρ(w) ⇒ Γρ(w,w′)

In practice, the proposition will be enforced by creating a disjunctive propagator for
each triple(w,w′, ρ):

w′ ∈ ρ(w) ∧ Γρ(w,w′) or w′ 6∈ ρ(w)

For illustration, let’s consider some examples ofΓρ(w,w′).

Subject. The subject of a finite verb must be either a noun or a pronoun, it must
agree with the verb, and must have nominative case. We writeNOM for the set of
agreement tuples with nominative case:

Γsubject(w,w′) ≡ cat(w′) ∈ {n, pro }
∧ agr(w) = agr(w′)
∧ agr(w′) ∈ NOM

52 Chapter 5. Dependency Parsing

Adjective. An adjective may modify a noun and must agree with it:

Γadj(w,w′) ≡ cat(w) = n
∧ cat(w′) = adj
∧ agr(w) = agr(w′)

5.4.5 Treeness Constraints

Our formal framework simply stipulated that models should be trees. In the constraint
model, we provide an explicit axiomatization of this notion. A tree is a directed acyclic
graph, where every node has a unique incoming edge, except for a distinguished node,
called the root, which has none.

To support our axiomatization, we introduce two new variablesmother(w) anddaughters(w)
for each nodew. Again to avoid the problem thatmother might be undefined at the
root, we make it denote a set:

mother(w) ⊆ V
daughters(w) ⊆ V

mother(w) denotes the set of mothers ofw anddaughters(w) the set of its immediate
daughters. To enforce that a node has at most one mother, we pose:

|mother(w)| ≤ 1

The set of immediate daughters ofw is simply defined as the union of its daughter sets:

daughters(w) =
⋃

ρ∈Roles

ρ(w)

w is a mother ofw′ iff w′ is a daughter ofw:

w ∈ mother(w′) ≡ w′ ∈ daughters(w)

We could introduce a variable to denote the root, but insteadwe introduce the variable
ROOTSETto denote the singleton containing the root.

ROOTSET⊆ V
|ROOTSET| = 1

Now, w is root iff it has no mother:

w ∈ ROOTSET ≡ |mother(w)| = 0

So far, we have enforced that every node (except the root) hasa unique mother, but it
could still have more than one incoming edge from the same mother. We can exclude
this case by stating that the daughter sets for all nodes together with the root set form a
partition of the input words:

V = ROOTSET⊎
⊎

w ∈ V

ρ ∈ Roles

ρ(w)

In order to guarantee well-formedness, we still need to enforce acyclicity.

5.4. Constraint Model 53

5.4.6 Yield and Acyclicity

The yield of a node is the set of nodes reachable through the transitive closure of
complement and modifier edges, i.e. by traversing 0 or more dependency edges. We
distinguish between yield andstrict yield and introduce the corresponding variables
yield(w) andyieldS(w). The strict yield ofw is the set of all descendents ofw that
can be reached by traversing 1 or more dependency edges. The yield of w is obtained
by addingw to its strict yield. In order to enforce acyclicity, we must require thatw
does not occur in its strict yield. Therefore it suffices to define the yield ofw as being
partitioned by{w} and its strict yield:

yield(w) = {w} ⊎ yieldS(w)

It remains to define the strict yield. For this purpose, we introduce a new member of
the family of selection constraints: theselection union constraint:

S = ∪〈S1, . . . , Sn〉[SI]

where all ofS, Si, SI are finite set variables. Its declarative semantics are:

S =
⋃

i∈SI

Si

i.e. from the sequence〈S1, . . . , Sn〉, the sets occurring at all positions indicated bySI
are selected and their union is returned. See also Section 6.9.4 for further discussion
of the selection union constraint.

The strict yield ofw is simply the union of the yields of its daughters:

yieldS(w) = ∪〈yield(w1), . . . , yield(wn)〉[daughters(w)]

The use of the selection union constraint improves and simplifies the formulation in
[8].

5.4.7 Solving the CSP

We have now completely specified our constraint model. The CSP is obtained by
collecting the constraints that its stipulates and then solving in terms of its variables:
we need to look for assignments to the variables of the constraint model that satisfy its
constraints. Here is the simple strategy that we follow:

• First, determine assignments to the daughter set variables. In other words, we
apply a distribution strategy on:

{ρ(w) | ρ ∈ Roles, w ∈ V}

• Second, we make sure that a lexicon entry has really been selected for each word.
I.e. we apply a distribution strategy on:

{entryindex(w) | w ∈ V}

This is sufficient to determine assignments to all variables.

54 Chapter 5. Dependency Parsing

5.5 Implementation

In this section, we develop an Oz implementation of the constraint model presented
in the preceding section. It consists of several functors and reuses functorEncode

developed in Chapter 3.

5.5.1 Demo Session

You can try the demo application athttp://www.ps.uni-sb.de/~duchier/esslli-2000/D
Note that in order to run the demo application, you will need to have packagemogul:/duchier/select

installed at your site (see Section 5.5.5). When the demo application starts, it pops up
a window with an entry box where you can type in a your input. Let’s illustrate this
with the example sentence which which we started this chapter: das Buch hat mir Peter
versprochen zu lesen. After you type in the sentence, click theParse button and an
explorer window pops up showing you the search tree for all possible parses. You can
click on any node in this search tree to see a graphical display of the current state of
the corresponding, possibly partial, dependency tree.

There are more possible solutions than you might expect, simply because we have no
word order restrictions. This can be seen clearly if we deliberately mix up the words
as indie der liebt Mann Frau:

5.5. Implementation 55

Here is another example inspired by Reape’s article [48]:Peter hat mir versprochen,
dem Richter zu gestehen, die Tat begangen zu haben.

56 Chapter 5. Dependency Parsing

5.5.2 Entry.oz

In this section, we develop moduleEntry (file Entry.oz) whose purpose is to encode
lexicon entries. It imports moduleEncode which we developed in Section 3.3.2.

56a 〈Entry.oz 56a〉≡
functor

import

Encode FS

export

〈Entry exports 56b〉
define

〈Entry domain products 56c〉
〈Entry encoder of lexicon entry 58f〉

end

5.5.2.1 Agreement

This is the same notion of agreement as introduced in Section3.3. It involves gender,
number, person, case, and definiteness of quantifier.

56b 〈Entry exports 56b〉≡ 57a⊲

Agreement

56c 〈Entry domain products 56c〉≡ 57b⊲

Agreement = {New Encode .domainProduct

init([[masc fem neut]

[sing plur]

[1 2 3]

[nom acc dat gen]

[def indef none]])}

5.5. Implementation 57

5.5.2.2 Category

A word may have one of the following categories: noun (n), pronoun (pro), infini-
tive verb (vinf), finite verb (vfin), past participle (vpast), determiner (det), particle
(part , e.g. ‘zu’ in ‘zu lesen’), separable verb prefix (vpref , e.g. ‘ein’ in ‘einkaufen’,
i.e ‘ich kaufe ein’), adjective (adj), adverb (adv), preposition (prep , e.g. ‘mit’).

57a 〈Entry exports 56b〉+≡ ⊳56b 57c⊲

Category

57b 〈Entry domain products 56c〉+≡ ⊳56c 57d⊲

Category = {New Encode .domainProduct

init([[n pro vinf vfin vpast det part vpref adj adv prep]])}

5.5.2.3 Roles

We support the following types of complements: determiner (det), subject (subject),
nominative (nominative , e.g. ‘er ist ein Mann’), object (object), dative (dative), zu
particle (zu , e.g. ‘zu lesen’), separable verb prefix (vpref , e.g. ‘ein’ in ‘ich kaufe ein’),
infinitive verb phrase with zu (vp_zu , e.g. ‘ich verspreche zu lesen’), past participle
(vp_past , e.g. ‘ich habe gelesen’), infinitive verb phrase without zu(vp_inf , e.g. ‘ich
will lesen’).

57c 〈Entry exports 56b〉+≡ ⊳57a 57e⊲

ComplementRoles

57d 〈Entry domain products 56c〉+≡ ⊳57b 57f⊲

ComplementRoles = [det subject nominative object dative

zu vpref vp_zu vp_past vp_inf]

We also support the following types of modifiers: adjective (adj), adverb (adv), prepo-
sitional noun phrase (pp_np , e.g. ‘mit dem Buch’).

57e 〈Entry exports 56b〉+≡ ⊳57c 57g⊲

ModifierRoles AllRoles

57f 〈Entry domain products 56c〉+≡ ⊳57d 57h⊲

ModifierRoles = [adj adv pp_np]

AllRoles = {Append ComplementRoles ModifierRoles}

We can now express the domain of all roles, as well as compute the sets of complement
roles and of modifier roles:

57g 〈Entry exports 56b〉+≡ ⊳57e 58a⊲

Roles Complements Modifiers

57h 〈Entry domain products 56c〉+≡ ⊳57f 58b⊲

Roles = {New Encode .domainProduct init([AllRoles])}

Complements = {Roles encode(ComplementRoles $)}

Modifiers = {Roles encode(ModifierRoles $)}

58 Chapter 5. Dependency Parsing

5.5.2.4 Verb Prefixes And Marks

In German, the same base verb can be modified by many possible verb prefixes, e.g.
‘einkaufen’, ‘abkaufen’, ‘auskaufen’, etc. In order to getgood propagation, we also
need to encode the set of possible verb prefixes. Here we only consider ‘ein’, but
you could add as many as you want. The treatment of separable verb prefixes is an
extension to the constraint model we presented earlier, butit is fairly straightforward.

58a 〈Entry exports 56b〉+≡ ⊳57g 58c⊲

Vprefixes

58b 〈Entry domain products 56c〉+≡ ⊳57h 58d⊲

Vprefixes = {New Encode .domainProduct init([[ein]])}

Here are other aspects of verbs which we have not considered earlier: (1) a verb may
require either ‘haben’ or ‘sein’ as an auxiliary. (2) a separable verb prefix is not always
separated (e.g. ‘einkaufen’). (3) the zu particle is not always separated from the verb
(e.g. ‘einzukaufen’). In order to be able to represent thesedetails in the lexicon, we
introduce a domain of marks:

58c 〈Entry exports 56b〉+≡ ⊳58a 58e⊲

Marks

58d 〈Entry domain products 56c〉+≡ ⊳58b

Marks = {New Encode .domainProduct init([[zu vpref haben sein]])}

5.5.2.5 Encoder of Lexicon Entry

A lexicon entry is specified by a record where each feature maps to a descriptor for the
corresponding domain product. A lexicon entry must have at least featurecats . All
other features are optional and the encoder provides the obvious default value.

Featureagrs provides a descriptor for a set of agreement tuples. The default value is
the set of all agreement tuples. Featurecomps_req is a list of required complement
roles (default empty). Featurecomps_opt is a list of optional complement roles (de-
fault empty).vpref is a list of verb prefixes (default empty) and indicates that the full
form of the verb has one of these prefixes.aux is a list (default empty) of at most one of
haben or sein and indicates that the word is a form of one of these auxiliaries.marks

is a list of marks (default empty): this list containszu if the particle is part of the word,
vpref if the separable prefix is not separated,haben (resp.sein) if it requires ‘haben’
(resp. ‘sein’) as an auxiliary.

function LexEncode takes a specifier for a lexicon entry and returns the correspond-
ing (encoded) lexicon entry. For simplicity in the parser, the lexicon entry contains
lower and upper bounds for the set of complements rather thanthe sets of required and
optional complements.

58e 〈Entry exports 56b〉+≡ ⊳58c

LexEncode

58f 〈Entry encoder of lexicon entry 58f〉≡

5.5. Implementation 59

fun { LexEncode Desc}

DescCat = Desc .cats

DescAgr = {CondSelect Desc agrs [nil]}

DescReq = {CondSelect Desc comps_req nil}

DescOpt = {CondSelect Desc comps_opt nil}

DescVpf = {CondSelect Desc vpref nil}

DescMrk = {CondSelect Desc marks nil}

DescAux = {CondSelect Desc aux nil}

%%

Cats = {Category encode(DescCat $)}

Agrs = {Agreement encode(DescAgr $)}

Reqs = {Roles encode(DescReq $)}

Opts = {Roles encode(DescOpt $)}

Vpref = {Vprefixes encode(DescVpf $)}

Zmrks = {Marks encode(DescMrk $)}

Aux = {Marks encode(DescAux $)}

%%

CompsLo = Reqs

CompsHi = {FS .union Reqs Opts}

in

lex(cats : Cats

agrs : Agrs

comps_lo : CompsLo

comps_hi : CompsHi

vpref : Vpref

marks : Zmrks

aux : Aux)

end

5.5.3 Lexicon.oz

FunctorLexicon (file Lexicon.oz) imports moduleEntry defined in the previous
section, and exports functionGet which takes an atom as an argument (representing
the full form of a word) and returns the corresponding list oflexicon entries, or raises
exceptionunknownword(Word) if the word does not appear in the lexicon.

59a 〈Lexicon.oz 59a〉≡
functor

import Entry

export Get

define

Lexicon = {Dictionary .new}

proc { PUT Word Spec}

{Dictionary .put Lexicon Word

{Entry .lexEncode Spec} |{Dictionary .condGet Lexicon Word nil}}

end

fun { Get Word}

try Lexicon .Word

catch _ then

60 Chapter 5. Dependency Parsing

raise unknownword(Word) end

end

end

〈Lexicon entries 60a〉
end

5.5.3.1 Proper Names

In German, proper names may take a determiner: ‘der Peter’, ‘die Maria’.

60a 〈Lexicon entries 60a〉≡ 60b⊲

{PUT peter

lex(cats : [n]

agrs : [[masc sing 3 [nom acc dat]]]

comps_opt : [det])}

{PUT peters

lex(cats : [n]

agrs : [[masc sing 3 gen]]

comps_opt : [det])}

{PUT maria

lex(cats : [n]

agrs : [[fem sing 3 [nom acc dat]]]

comps_opt : [det])}

{PUT marias

lex(cats : [n]

agrs : [[fem sing 3 gen]]

comps_opt : [det])}

5.5.3.2 Pronouns

Here is a sample of pronoun entries:

60b 〈Lexicon entries 60a〉+≡ ⊳60a 61a⊲

{PUT ich

lex(cats : [pro]

agrs : [[sing 1 nom]])}

{PUT mich

lex(cats : [pro]

agrs : [[sing 1 acc]])}

{PUT mir

lex(cats : [pro]

agrs : [[sing 1 dat]])}

{PUT du

lex(cats : [pro]

agrs : [[sing 2 nom]])}

{PUT dich

lex(cats : [pro]

agrs : [[sing 2 acc]])}

{PUT dir

lex(cats : [pro]

agrs : [[sing 2 dat]])}

5.5. Implementation 61

5.5.3.3 Common Nouns

We only show ‘Mann’ for illustration.

61a 〈Lexicon entries 60a〉+≡ ⊳60b 61b⊲

{PUT mann

lex(cats : [n]

agrs : [[masc 3 sing [nom acc dat]]]

comps_opt : [det])}

{PUT mannes

lex(cats : [n]

agrs : [[masc 3 sing gen]]

comps_opt : [det])}

{PUT männer

lex(cats : [n]

agrs : [[masc 3 plur [nom acc gen]]]

comps_opt : [det])}

{PUT männern

lex(cats : [n]

agrs : [[masc 3 plur dat]]

comps_opt : [det])}

5.5.3.4 Determiners

We only show 4 entries for illustration:

61b 〈Lexicon entries 60a〉+≡ ⊳61a 61c⊲

{PUT der

lex(cats : [det]

agrs : [[def [[masc sing 3 nom]

[fem sing 3 [dat gen]]

[plur 3 gen]]]])}

{PUT den

lex(cats : [det]

agrs : [[def [[masc sing 3 acc]

[plur 3 dat]]]])}

{PUT ein

lex(cats : [det]

agrs : [[indef [[masc sing 3 nom]

[neut sing 3 [nom acc]]]]])}

{PUT einen

lex(cats : [det]

agrs : [[indef [[masc sing 3 acc]]]])}

5.5.3.5 Verbs

Here is a selection of verbal entries:

61c 〈Lexicon entries 60a〉+≡ ⊳61b 63a⊲

62 Chapter 5. Dependency Parsing

{PUT lieben

lex(cats : [vinf]

comps_opt : [zu object])}

{PUT liebe

lex(cats : [vfin]

agrs : [[1 sing nom]]

comps_req : [subject]

comps_opt : [object])}

{PUT geliebt

lex(cats : [vpast]

comps_opt : [object]

marks : [haben])}

{PUT laufen

lex(cats : [vinf]

comps_opt : [zu])}

{PUT laufe

lex(cats : [vfin]

agrs : [[1 sing nom]])}

{PUT gelaufen

lex(cats : [vpast]

marks : [sein])}

{PUT verspreche

lex(cats : [vfin]

agrs : [[1 sing nom]]

comps_req : [subject]

comps_opt : [object dative])}

{PUT verspreche

lex(cats : [vfin]

agrs : [[1 sing nom]]

comps_req : [subject vp_zu]

comps_opt : [dative])}

{PUT kaufen

lex(cats : [vinf]

comps_opt : [zu object dative])}

{PUT kaufe

lex(cats : [vfin]

agrs : [[1 sing nom]]

comps_req : [subject]

comps_opt : [object dative])}

{PUT gekauft

lex(cats : [vpast]

comps_opt : [object dative]

marks : [haben])}

{PUT einkaufen

5.5. Implementation 63

lex(cats : [vinf]

comps_opt : [zu object dative]

marks : [vpref])}

{PUT einzukaufen

lex(cats : [vinf]

comps_opt : [object dative]

marks : [vpref zu])}

{PUT kaufe

lex(cats : [vfin]

agrs : [[1 sing nom]]

vpref : [ein]

comps_req : [subject vpref]

comps_opt : [object dative])}

{PUT einkaufe

lex(cats : [vfin]

agrs : [[1 sing nom]]

comps_req : [subject]

comps_opt : [object dative]

marks : [vpref])}

{PUT eingekauft

lex(cats : [vpast]

comps_opt : [object dative]

marks : [vpref])}

5.5.3.6 Auxiliaries

Auxiliaries can also be used as normal verbs:

63a 〈Lexicon entries 60a〉+≡ ⊳61c 64a⊲

{PUT haben

lex(cats : [vinf]

comps_opt : [zu object])}

{PUT habe

lex(cats : [vfin]

agrs : [[1 sing nom]]

comps_req : [subject]

comps_opt : [object])}

{PUT haben

lex(cats : [vinf]

aux : [haben]

comps_opt : [zu]

comps_req : [vp_past])}

{PUT habe

lex(cats : [vfin]

agrs : [[1 sing nom]]

aux : [haben]

comps_req : [subject vp_past])}

{PUT sein

64 Chapter 5. Dependency Parsing

lex(cats : [vinf]

comps_opt : [zu nominative])}

{PUT bin

lex(cats : [vfin]

agrs : [[1 sing nom]]

comps_req : [subject]

comps_opt : [nominative])}

{PUT sein

lex(cats : [vinf]

aux : [sein]

comps_opt : [zu]

comps_req : [vp_past])}

{PUT bin

lex(cats : [vfin]

agrs : [[1 sing nom]]

aux : [sein]

comps_req : [subject vp_past])}

5.5.3.7 Modals

A taste of modal verbs.

64a 〈Lexicon entries 60a〉+≡ ⊳63a 64b⊲

{PUT wollen

lex(cats : [vinf]

comps_opt : [zu object])}

{PUT wollen

lex(cats : [vinf]

comps_opt : [zu]

comps_req : [vp_inf])}

{PUT will

lex(cats : [vfin]

agrs : [[[1 3] sing nom]]

comps_req : [subject]

comps_opt : [object])}

{PUT will

lex(cats : [vfin]

agrs : [[[1 3] sing nom]]

comps_req : [subject vp_inf])}

5.5.3.8 Adjectives

A sample of adjective entries:

64b 〈Lexicon entries 60a〉+≡ ⊳64a 65a⊲

{PUT schöne

lex(cats : [adj]

agrs : [[none [nom acc] [fem plur]]

[def sing [nom [acc [neut fem]]]]

5.5. Implementation 65

[indef plur [nom acc]]])}

{PUT schönen

lex(cats : [adj]

agrs : [[none [[masc sing [acc gen]]

[fem sing gen]

[plur dat]]]

[def [plur dat gen [masc sing acc]]]

[indef sing [dat gen [masc acc]]]])}

5.5.3.9 Miscellaneous

Here: 1 verb prefix, 1 particle, 1 preposition, and 1 adverb:

65a 〈Lexicon entries 60a〉+≡ ⊳64b

{PUT ein

lex(cats : [vpref])}

{PUT zu

lex(cats : [part])}

{PUT mit

lex(cats : [prep]

comps_req : [dative])}

{PUT heute

lex(cats : [adv])}

5.5.4 Gamma.oz

FunctorGamma(file Gamma.oz) imports moduleEntry and exports a binary predicate
for each possible role.

65b 〈Gamma.oz 65b〉≡
functor

import FS

Entry(

category : Category

agreement : Agreement

marks : Marks

vprefixes : Vprefixes

)

export

〈Gamma exports 66b〉
define

〈Gamma variables 66a〉
〈Gamma predicates 66c〉

end

5.5.4.1 Variables

Here, we define some variables that will be used when writing roles predicates. For
example variableCATS_NPdenotes the encoding of the set of categories[n pro] , and
CAT_DETdenotes the integer encoding categorydet .

66 Chapter 5. Dependency Parsing

66a 〈Gamma variables 66a〉≡
CATS_NP = {Category encode([n pro] $)}

CATS_V = {Category encode([vfin vinf vpast] $)}

CATS_NPV = {FS.union CATS_NP CATS_V}

CAT_DET = Category .toint .det

CAT_PART = Category .toint .part

CAT_VPREF = Category .toint .vpref

CAT_VFIN = Category .toint .vfin

CAT_VINF = Category .toint .vinf

CAT_VPAST = Category .toint .vpast

CAT_N = Category .toint .n

CAT_ADJ = Category .toint .adj

CAT_ADV = Category .toint .adv

CAT_PREP = Category .toint .prep

AGRS_NOM = {Agreement encode([nom] $)}

AGRS_ACC = {Agreement encode([acc] $)}

AGRS_DAT = {Agreement encode([dat] $)}

MARK_ZU = Marks.toint .zu

MARK_VPREF = Marks.toint .vpref

5.5.4.2 Predicates

We will only show a few of the role predicates. For example, a subject must be a noun
or pronoun, must agree with its mother (the finite verb), and must have nominative
case.

66b 〈Gamma exports 66b〉≡ 66d⊲

Subject

66c 〈Gamma predicates 66c〉≡ 66e⊲

proc { Subject Mother Daughter}

{FS .include Daughter .cat CATS_NP}

Mother .agr = Daughter .agr

{FS .include Daughter .agr AGRS_NOM}

end

The ‘zu’ particle must have categorypart , it must be the wordzu , its mother should
not already contain a particle (as in ‘einkaufen’, i.e. ‘zu einzukaufen’ is illegal), its
mother should also not contain a verb prefix (i.e. ‘zu einkaufen’ is illegal).

66d 〈Gamma exports 66b〉+≡ ⊳66b 67a⊲

Zu

66e 〈Gamma predicates 66c〉+≡ ⊳66c 67b⊲

proc { Zu Mother Daughter}

Daughter .cat=CAT_PART

Daughter .word = ’zu’

{FS .exclude MARK_ZU Mother .marks}

5.5. Implementation 67

{FS .exclude MARK_VPREF Mother .marks}

end

Now let’s consider a complement that is an infinitive VP with zu particle. The predicate
simply states that the daughter must be an infinitive verb andthat its haszu feature
must be true (i.e. equal to 1, as opposed to false, i.e. equal to 0). We use this feature
to conveniently cover both the case when the daughter is of the form ‘einzukaufen’
(i.e. zu attached) and ‘zu kaufen’ (i.e. zu separated). Thehaszu feature is defined in
moduleParser .

67a 〈Gamma exports 66b〉+≡ ⊳66d 67c⊲

Vp_zu

67b 〈Gamma predicates 66c〉+≡ ⊳66e 67d⊲

proc { Vp_zu Mother Daughter}

Daughter .cat=CAT_VINF

Daughter .haszu=1

end

For and adjective edge, the mother must be a noun, the daughter an adjective and they
must agree.

67c 〈Gamma exports 66b〉+≡ ⊳67a

Adj

67d 〈Gamma predicates 66c〉+≡ ⊳67b

proc { Adj Mother Daughter}

Mother .cat=CAT_N

Daughter .cat=CAT_ADJ

Mother .agr=Daughter .agr

end

5.5.5 Parser.oz

FunctorParser (file Parser.oz), imports modulesEntry , Lexicon , and Gamma

defined previously, as well as moduleSelect . ModuleSelect is neither part of this
application nor of the Mozart distribution. Rather it is a 3rd party package provided
by me. Like all 3rd party packages, it is available through the MOGUL repository1. In
order to run this application you need to download and install the package known in
MOGUL by the idmogul:/duchier/select . See Section 6.9.1 for further details.

The module exports functionParsePredicate which takes a list of words (input
phrase) as argument and returns a predicate appropriate forencapsulated search (i.e. as
an argument to e.g.ExploreAll).

67e 〈Parser.oz 67e〉≡
1http://www.mozart-oz.org/mogul/

68 Chapter 5. Dependency Parsing

functor

import

FD FS

Entry(

category : Category

agreement : Agreement

roles : Roles

marks : Marks

allRoles : AllRoles

complementRoles:ComplementRoles)

Lexicon(get)

Gamma

Select(fs fd union) at ’x-ozlib://duchier/cp/Select.ozf’

export

ParsePredicate

define

〈Parser variables 68a〉
〈Parser helper functions 68b〉
〈Parser MakeNode 69a〉
〈Parser ParsePredicate71a〉

end

5.5.5.1 Variables And Helper Functions

A couple of variables and obvious helper functions to be usedin the rest of the parser.

68a 〈Parser variables 68a〉≡
MARK_ZU = Marks.toint .zu

CAT_VINF = Category .toint .vinf

68b 〈Parser helper functions 68b〉≡
fun { GetYield R} R.yield end

fun { GetCats R} R.cats end

fun { GetAgrs R} R.agrs end

fun { GetCompsLo R} R.comps_lo end

fun { GetCompsHi R} R.comps_hi end

fun { GetVpref R} R.vpref end

fun { GetMarks R} R.marks end

fun { GetAux R} R.aux end

fun { GetEntryIndex R} R.entryindex end

5.5.5.2 MakeNode

FunctionMakeNode constructs all the representational support for a node. In our con-
straint model we introduced a lot of functions that map a nodeto a constrained variable.
Here, we will simply represent a node as record with a featurefor each function intro-
duced in the constraint model (and also some additional features for convenience).

The function is invoked as

5.5. Implementation 69

{MakeNode Word I AllIndices Entries RootSet}

whereWord is an atom representing the full form of the word,I is its position in the
input, Positions is the set of all word positions in the input (1 to n),Entries is the
list of lexicon entries for the word, andRootSet is a variable denoting the singleton
set containing the root (position) of the sentence.

69a 〈Parser MakeNode 69a〉≡
fun { MakeNode Word I Positions Entries RootSet}

〈Parser MakeNode, attributes of selected lexicon entry69b〉
〈Parser MakeNode, attributes of word 70a〉

in

node(

isroot : IS_ROOT

word : Word

index : I

entryindex : EntryIndex

cat : CAT

agr : AGR

comps : COMPS

vpref : E_VPREF

marks : E_MARKS

aux : E_AUX

yieldS : YIELDS

yield : YIELD

dtrsets : DTRSETS

daughters : DAUGHTERS

mother : MOTHER

haszu : HAS_ZU

role : _

)

end

We initialize EntryIndex to range over the possible positions in the list ofEntries ,
and then we use the selection constraint repeatedly to obtain the various attributes of
the selected lexicon entry.

69b 〈Parser MakeNode, attributes of selected lexicon entry69b〉≡
EntryIndex EntryIndex ::1#{Length Entries}

E_CATS = {Select .fs {Map Entries GetCats } EntryIndex}

E_AGRS = {Select .fs {Map Entries GetAgrs } EntryIndex}

E_COMPS_LO = {Select .fs {Map Entries GetCompsLo} EntryIndex}

E_COMPS_HI = {Select .fs {Map Entries GetCompsHi} EntryIndex}

E_VPREF = {Select .fs {Map Entries GetVpref } EntryIndex}

E_MARKS = {Select .fs {Map Entries GetMarks } EntryIndex}

E_AUX = {Select .fs {Map Entries GetAux } EntryIndex}

We define category, agreement, and complement roles just as explained in the con-
straint model:

70 Chapter 5. Dependency Parsing

70a 〈Parser MakeNode, attributes of word 70a〉≡ 70b⊲

CAT CAT::Category .range {FS .include CAT E_CATS}

AGR AGR::Agreement .range {FS .include AGR E_AGRS}

COMPS {FS.subset COMPS Roles .full}

{FS .subset COMPS E_COMPS_HI}

{FS .subset E_COMPS_LO COMPS}

For the daughter sets, we create a subrecord. Daughter set for role R on nodeWwill
be accessible asW.dtrsets .R. Furthermore, ifR is a complement role, the cardinality
of W.dtrsets .R must be 0 or 1, and it is 1 iffR is in the set of complement roles
stipulated by the valency:

70b 〈Parser MakeNode, attributes of word 70a〉+≡ ⊳70a 70c⊲

DTRSETS = {List .toRecord o

{Map AllRoles

fun { $ R} R#{FS .subset $ Positions} end}}

for R in ComplementRoles do

{FS .reified .include Roles .toint .R COMPS}={FS.card DTRSETS.R}

end

The set of immediate daughters can be computed as the union ofthe daughter sets.
The yield can also be defined here, but the strict yield can only be initialized; it will be
properly constrained inParsePredicate after representations for all nodes have been
constructed.

70c 〈Parser MakeNode, attributes of word 70a〉+≡ ⊳70b 70d⊲

DAUGHTERS = {FS.unionN DTRSETS}

YIELDS = {FS .subset $ Positions}

YIELD = {FS .partition [{FS .value .singl I} YIELDS]}

The mother set has cardinality at most 1, and the node is root precisely when the
cardinality of the mother set is 0.

70d 〈Parser MakeNode, attributes of word 70a〉+≡ ⊳70c 70e⊲

MOTHER = {FS.subset $ Positions} {FS .cardRange 0 1 MOTHER}

IS_ROOT=({FS .card MOTHER}=:0)

{FS .reified .include I RootSet}=IS_ROOT

Attribute W.haszu is true iff the word has a zu particle attached or as a complement
(this is an exclusive or). Furthermore, if this attribute istrue, the word must be an
infinitive verb.

70e 〈Parser MakeNode, attributes of word 70a〉+≡ ⊳70d

HAS_ZU HAS_ZU::0#1

{FD.exor

{FS .reified .include MARK_ZU E_MARKS}

{FS .card DTRSETS.zu}

HAS_ZU}

{FD.impl HAS_ZU CAT=:CAT_VINF 1}

5.5. Implementation 71

5.5.5.3 ParsePredicate

FunctionParsePredicate takes a list of atoms as argument representing the input
words and returns a predicate appropriate for encapsulatedsearch (e.g. as an argument
to ExploreAll).

71a 〈Parser ParsePredicate71a〉≡
fun { ParsePredicate Words}

N = {Length Words}

WordEntriesPairs

= {Map Words fun { $ W} W#{Lexicon .get W} end}

Positions = {FS .value .make 1#N}

〈Parser ParsePredicate, ParseTree71b〉
in

ParseTree

end

The search predicate applies exactly the distribution strategies that we described.

71b 〈Parser ParsePredicate, ParseTree71b〉≡
proc { ParseTree Nodes}

〈ParseTree create root set71c〉
〈ParseTree create nodes71d〉
〈ParseTree yields and role constraints71e〉
〈ParseTree global partition 72a〉

in

{FS .distribute naive AllDtrSets}

{FD.distribute ff {Map Nodes GetEntryIndex}}

end

The root set (the set of roots) is a singleton:

71c 〈ParseTree create root set71c〉≡
RootSet={FS .subset $ Positions}

{FS .cardRange 1 1 RootSet}

Nodes for each word are created by invoking functionMakeNode.

71d 〈ParseTree create nodes71d〉≡
!Nodes = {List .mapInd WordEntriesPairs

fun { $ I Word #Entries}

{MakeNode Word I Positions Entries RootSet}

end}

We can now collect the list of yields of all nodes, which allows us to properly constrain
the strict yield of each node. For each nodeN, we consider every possible nodeMas a
potential mother, and express the constraint that states that M is a mother orN iff N is
a daughter ofM. Furthermore, for each triple(N,M,R) whereR is an arbitrary role, we
impose a role constraint in the form of disjunctive propagator.

71e 〈ParseTree yields and role constraints71e〉≡

72 Chapter 5. Dependency Parsing

Yields = {Map Nodes GetYield}

for N in Nodes do

N.yieldS = {Select .union Yields N .daughters}

for M in Nodes do

{FS .reified .include M .index N .mother}=

{FS .reified .include N .index M .daughters}

for R in AllRoles do

thread

or {FS .include N .index M .dtrsets .R}

N.role=R {Gamma .R M N}

[] {FS .exclude N .index M .dtrsets .R}

end

end

end

end

end

Finally, we impose the condition that the root set together with the daughter sets of all
nodes form a partition of the input.

72a 〈ParseTree global partition 72a〉≡
AllDtrSets =

RootSet |

{FoldL Nodes

fun { $ L N}

{Append {Record .toList N .dtrsets} L}

end nil}

{FS .partition AllDtrSets Positions}

6

Constraint Programming Bestiary

This chapter is intended to serve as a very short reference tothe concepts of constraint
programming in general and the programmatic idioms of Oz in particular. Readers
are encouraged to consult the Mozart documentation1 for further reading material and
tutorial about the Oz language and the Mozart system.

6.1 Constraint Store

Logic Programming (henceforth LP) has the notion of a logic variable which is either
free or bound to a value. Constraint Programming (henceforth CP) has the more gen-
eral notion of a constrained variable, i.e. a variable that is no longer free, but whose
value is not yet fully determined. For example, we may have the following partial
information about an integer variableI:

I ∈ {1, 2, 7}

meaning thatI may take only one of these 3 values. Such a piece of information is
called abasic constraint. Thus, the LP idea of a set of bindings is replaced in CP by a
set of basic constraints which we call theconstraint store.

In LP, when a variable becomes bound to a value, this binding cannot subsequently be
changed (except on backtracking): only new bindings may be added. Similarly in CP,
the constraint store grows and the information therein improves monotonically. For
example,I ∈ {1, 2, 7} might improve to becomeI ∈ {1, 7}. When only one possible
value remains, e.g.I ∈ {7}, we say that the variable isdeterminedand its value is 7,
which we also writeI = 7.

In (concurrent) CP, computations operate over a shared constraint store. The basic
operations areaskandtell. A computation canaskwhether a basic constraint is entailed
(which happens when it or a stronger version of it istold to the store) or disentailed
(i.e. its negation is entailed). Theask operation blocks until sufficient information
has been concurrently accumulated in the store to answer thequestion either way. A
computation cantell a basic constraint into the store (i.e. extend the store or improve
the information already in the store, or derive a contradiction). The semantics ofask
give us dataflow synchronization for free. Consider the statement:

1http://www.mozart-oz.org/documentation/

74 Chapter 6. Constraint Programming Bestiary

case L

of nil then {P}

[] H|T then {Q H T}

end

it asks whetherL=nil is entailed. As result, the statement blocks until there is sufficient
information to answer the question one way or the other. In practice, this means that
the statement blocks untilL becomes bound.

6.2 Constraint Variables

Of particular relevance to this course are finite domain (FD)variables and finite set
(FS) variables.

6.2.1 FD Variables

A FD variableI denotes an integer out of a finite domain of possible values. In the
store, it is represented by a basic constraint of the form e.g.:

I ∈ {1, 2, 7}

This is essentially a form of disjunction. Its declarative semantics are simply:

I = 1 ∨ I = 2 ∨ I = 7

FD variables are a very economical and effective way to address certain forms of am-
biguity arising in computational linguistics. Any finite collection of values/objects can
be encoded as a finite domain: therefore an underspecified element of this collection
can be represented by a FD variable. In Chapter 3, we illustrate this idea for agreement
in German.

6.2.2 FS variables

A FS variableS denotes a finite set of integers. In the store it is represented by a basic
constraint providing information about lower and upper bounds:

{1, 7} ⊆ S ⊆ {1, 4, 5, 7}

Again, this a form of disjunction:S may take as value any set that contains at least
1 and 7, and at most 1, 4, 5 and 7. Sets are incredibly useful in computational lin-
guistic applications: (1) they permit elegant and succinctaxiomatizations, (2) these
axiomatizations are also efficient constraint programs.

6.3 Constraints And Propagators

A constraint which is more complicated than basic constraints cannot be directly repre-
sented in the store. Instead it is represented by a propagator. A propagator is a concur-
rent agent that observes the store and tries to improve the information in it according

6.4. Encapsulation And Computation Spaces 75

to the semantics of the constraint it represents. A propagator has the declarative se-
mantics of the constraint it represents and operational semantics that are described by
inference rules.

As an example, consider thedisjointnessconstraintS1 ‖ S2. Its declarative semantics
is that it is satisfied only in models whereS1 andS2 denote disjoint sets. The oper-
ational semantics of the propagator can be specified by the following two inference
rules:

S1 ‖ S2 ∧ i ∈ S1 → i 6∈ S2

S1 ‖ S2 ∧ i ∈ S2 → i 6∈ S1

i.e. if an integeri is known to be inS1 then it must be excluded fromS2, and recip-
rocally. A propagator is supposed to notice as soon as possible whether its constraint
is entailed by the store. For example, if the upper bounds ofS1 andS2 are disjoint,
then the sets are necessarily disjoint. In such a case, the propagator disappears since
its constraint is satisfied and it will no longer be able to improve the information in the
store.

6.4 Encapsulation And Computation Spaces

In traditional LP and CP, new bindings and constraints appear and take effect globally.
Oz supports a much more general idea: encapsulation. In Oz, the constraint store is an
explicit 1st-class object and is called acomputation space[58] [56] [53] [55]. A com-
putation space is a place where computations run and their constraints are accumulated.
Every computation (also called a thread) issituated: it takes place (is encapsulated) in
a specific computation space. You can have multiple computation spaces, each with
different computations and different constraints.

Oz also supports an even more powerful idea: computation spaces can be nested. Since
a computation space is a 1st class object in Oz, it is possiblefor a thread running
in spaceS1 to create a new computation spaceS2. In this case,S2 is situated, and
therefore nested, inS1. The semantics of nested computation spaces requires that
if S2 is nested inS1, then all basic constraints ofS1 are inherited, i.e. visible, inS2.
However, whenever a thread running inS2 tellsa basic constraint, this only takes effect
in S2 but does not affect its parentS1.

Furthermore, it is possible to ask whether the spaceS2 is failed (i.e. an inconsistency
was derived), or entailed (i.e. all its basic constraints are also present inS1). Thus,
by creating a nested spaceS2 to run a constraintC, and then by asking whetherS2 is
entailed or disentailed, you can discover whether a non-basic constraintC is entailed or
contradicted. For example, the condition statement below is implemented in terms of
this facility:

cond C then {P} else {Q} end

A new spaceS2 is created to runC, and the statement simply asks whetherS2 is entailed
or disentailed. The statement blocks until there is sufficient information to answer the
question. Nested computation spaces are used in a similar fashion to implement the
disjunctive propagator.

The fact that computation spaces are 1st class values makes it possible to program
search in Oz itself (see next section) and also to write tools, like the Explorer [52]

76 Chapter 6. Constraint Programming Bestiary

[54], that allow you to interactively explore the search tree and inspect the state of the
constraints at any node in this tree.

6.5 Search

A major application domain for CP, and the only one that we look at in this course, is
to solveconstraint satisfaction problems(CSPs); i.e. to find assignment of values to
variables such that a collection of constraints is satisfied.

The whole advantage of CP for solving CSPs rests on constraint propagation: let prop-
agators improve the information in the store until no further improvement is possible
(i.e. a fix point is reached). To improve the information in the constraint store means
to reduce the number of possible values for each variable. This effectively reduces the
search tree since after propagation there are fewer possible assignments to consider.

In fact, to solve a CSP, we proceed by alternating steps of propagation and distribution.
If propagation is not sufficient to determine values for all variables, we may pick a
variableX that is not yet determined, non-deterministically pick a value v from the set
of those that remain after propagation, and assign it to the variable, i.e. tell the basic
constraintX=v. X=v is new information, and again we let propagation derive as many
improvements from it as possible. The non-deterministic cycle is repeated until all
variables are determined.

In the preceding explanation, we postulated a non-deterministic process. This is stan-
dard in most LP and CP systems: a basic constraintX=v is non-deterministically chosen
and added to the same global store. It may be removed and another one chosen on back-
tracking. Oz, however, offers an alternative. Since computation spaces are 1st class,
we can make a copy and addX=v in the copy. This way, we don’t have to backtrack on
failure, we can just throw away the failed copy; we still havethe original, and we can
make another copy to try a different constraint, sayX=a.

Thanks to this powerful idea, search in Oz is not built-in as in Prolog; instead it is
programmed in Oz itself. The reader interested in how various search algorithms can
be programmed in Oz is advised to read [53]. Search in Oz is guided by adistribution
strategy. A distribution strategy is invoked when it is necessary to perform a distribu-
tion step. It is responsible for choosing a constraintC (for exampleX=v above). The
search engine then creates 2 copies of the current space: in the first copy it adds con-
straintC and in the second copy it adds¬C. Thus, for above example, one branch of
the search would explore the consequences ofX = v and the other ofX 6= v.

The Mozart system offers rich libraries with predefined search engines and distribution
strategies that cover most of the usual cases. The reader is strongly advised to read [57]
which is an introduction to constraint programming in Oz. For some advanced topics,
see also [58] [56] [53] [55].

6.6 Search Predicates

A typical way to solve a CSP in Oz, is to express this CSP as a predicate and invoke
the Explorer [52] [54] with this predicate as an argument.

6.6. Search Predicates 77

{ExploreAll SimpleProblem}

We explain now how to write such a predicate. It always follows the same pattern.

declare

proc { SimpleProblem Solution}

%% declare variables

X Y

in

%% representation of solution

Solution = [X Y]

%% pose constraints of CSP

X::1#9

Y::1#9

X+2*Y =: 7

%% distribution strategy

{FD.distribute ff [X Y]}

end

SimpleProblem is a predicate that defines what is aSolution : a solution is a list
[X Y] of two integers satisfying the equationX+2*Y =: 7. It invokes the prede-
fined distribution strategy{FD.distribute ff [X Y]} , whereff meansfirst-fail i.e.
‘choose the variable with the fewer remaining possible values, and then try each one
of these values in increasing order’.

{ExploreAll SimpleProblem} produces the following search tree in the Explorer:

clicking on the first green diamond (a solution) shows the following in the browser:

78 Chapter 6. Constraint Programming Bestiary

We can also click on the second blue circle (a choice point) toobserve the partial
information at that point:

For a thorough tutorial on constraint programming in Oz, we recommend again to read
[57].

6.7 Disjunctive Propagator

In Oz, a disjunctive propagator has the form:

or C1 [] C2 end

and its declarative semantics is simply that of disjunction. In LP, the only method
available for dealing with complex disjunctions of that kind is non-determinism. Thus
in Prolog, you would would write:

6.7. Disjunctive Propagator 79

C1 ; C2

Operationally, this means: first tryC1 and if that fails backtrack and tryC2 instead.
This has several drawbacks: (1) it is not sound (failure to proveC is not the same as
proving¬C), (2) it forces the computation to commit immediately to exploring either
one alternative or the other.

Early commitment is a poor strategy. It is often preferable to delay a choice until suf-
ficient information is available to reject one of the alternatives. This is the intuition
underlying the disjunctive propagator:or C1 [] C2 end is a propagator not a choice
point. It blocks until eitherC1 or C2 becomes inconsistent with respect to the current
store of basic constraints: at that point, the propagatorcommits, i.e. reduces to, the
remaining alternative. In this way, a disjunctive propagator has the declarative seman-
tics of sound logical disjunction, unlike Prolog’s; operator which implements merely
negation as failure. The operational semantics are given by the rules below, whereB
represents the current basic constraints:

B ∧ C1 →∗ false
B ∧ (C1 or C2) → B ∧ C2

B ∧ C2 →∗ false
B ∧ (C1 or C2) → B ∧ C1

This is realized by taking advantage of nested computation spaces. A disjunctive prop-
agatoror C1 [] C2 end creates 1 nested space to runC1 and another to runC2 and
constantly monitors their status (either entailed or failed). When for example the space
runningC1 is discovered to be failed, then the disjunctive propagatorcommits to the
other space, i.e. itmergesthe contents of the space runningC2 with the current space.
When this is done the propagator disappears (we also say thatit reduces).

A disjunctive propagator blocks until it reduces. This is why, in Oz programs, dis-
junctive propagators are usually spawned in their own thread to allow the rest of the
computation to proceed. In effect, this makes a disjunctivepropagator into a concurrent
agent:

thread or C1 [] C2 end end

A disjunctive propagator commits to one alternative only when the other becomes in-
consistent. But, when neither becomes willingly inconsistent, it is often necessary, in
the interest of completeness, to non-deterministically enumerate the alternatives. This
can easily be achieved by introducing acontrol variableX:

or X=1 C1 [] X=2 C2 end

We can now apply a distribution strategy on FD variableX to force exploration of the
alternatives. In a typical program, you might often invoke first a distribution strategy on
the variables of the CSP, and then a second distribution strategy on the control variables
to make sure for the sake of completeness that all disjunctions have been decided:

%% distribute on the variables of the CSP

{FD.distribute ff [I1 I2 I3]}

%% distribute on the control variables

{FD.distribute ff [X1 X2]}

80 Chapter 6. Constraint Programming Bestiary

6.8 Reified Constraints

There are often cases when, instead of imposing a constraintC, we want to speak
(and possibly constrain) its truth value. Let’s take an example from Chapter 5: the
cardinality of a daughter setρ(w) is at most 1, and it is 1 iffρ is required byw’s
valency, i.e ifρ ∈ comps(w). Let b1 stand for the truth value of|ρ(w)| = 1 andb2

stand for the truth value ofρ ∈ comps(w):

b1 ≡ |ρ(w)| = 1
b2 ≡ ρ ∈ comps(w)

The well-formedness condition mentioned above is expressed simply byb1 = b2.

For the purpose of this section, we will writeB ≡ C to represent a reified constraint,
whereB is a FD variable representing the truth value of constraintC: 0 means false, 1
means true. The operational semantics are as follows:

• if C is entailed thenB = 1 is inferred

• if C is inconsistent thenB = 0 is inferred

• if B = 1 is entailed, thenC is imposed

• if B = 0 is entailed, then¬C is imposed

For example, here is how reified constraints can express thatexactly one ofC1, C2,
andC3 must hold:

B1 ≡ C1

B2 ≡ C2

B3 ≡ C3

B1 + B2 + B3 = 1

Similarly, here is how to expressC1 ⇒ C2:

B1 ≡ C1

B2 ≡ C2

B1 ≤ B2

The astute reader may wonder ‘why do we need a new concept? can’t we express
reified constraints in terms of disjunctive propagators?’.Indeed,B ≡ C can also be
written:

or B=1 C [] B=0 ~C end

where somehow~C is intended to represent the negation ofC. What makes reified
constraints attractive is that they are much more efficient.A disjunctive propagator
needs to create 2 nested spaces, but a reified constraint doesn’t need any.

In the libraries of the Mozart system, many constraints are also available as reified
constraints (but not all). For example:

{FS .reified .include I S B}

B represents the truth value of{FS .include I S} . If B=0, the reified constraint re-
duces to{FS .exclude I S} .

6.9. Selection Constraints 81

6.9 Selection Constraints

The selection constraint is based on the intuitive notion ofselecting theIth element
out of a sequence of values. We write it abstractly as follows:

X = 〈Y1, . . . , Yn〉[I]

The notation〈Y1, . . . , Yn〉[I] was chosen to be reminiscent of array access, i.e. sub-
scripting. The declarative semantics is simply:

X = YI

that is: X is equated with theIth variable in the sequence〈Y1, . . . , Yn〉. However,
unlike functional selection which would block untilI is known and then select the
appropriate element, the above is a constraint that affectsboth X andI. If X = Yk

is inconsistent, thenk is removed from the domain ofI. Conversely, the information
aboutX can be improved by lifting the information common to allYi at positions that
are still in the domain ofI. We will explain this in more detail later.

The idea of the selection constraint was first introduced by [6], but the sequence was
restricted to integer values. In [8], I introduced a more general form that accepts ho-
mogeneous sequences of either FD variables or FS variables and has a very efficient
implementation.

Of particular interest to the linguist is the fact that the selection constraint can express
covariant assignments:

X = 〈X1, . . . ,Xn〉[I]
Y = 〈Y1, . . . , Yn〉[I]

These two selection constraints share the same selectorI and can be regarded as real-
izing thedependent(or named) disjunctions shown below ([34], [7], [19], [21]) both
labeled with nameI:

(X = X1 ∨ . . .∨ X = Xn)I
(Y = Y1 ∨ . . .∨ Y = Yn)I

Notational variants of dependent disjunctions have been used to concisely express co-
variant assignment of values to different features in feature structures. The selection
constraint provides the same elegance, but additionally affords the benefits of efficient
and effective constraint propagation.

6.9.1 Select Package

The selection constraint is not part of the Mozart distribution, rather it is a 3rd party
package provided by me. Like all Mozart 3rd party packages, it is available from the
MOGUL repository2 in which it is known by idmogul:/duchier/select . In order
to be able to use it, you must download and install it: this is made very easy. From
the repository, you will be able to downloadduchier-select-1.4.1.tgz or
whatever the name is for the most recent version of the package. To install it, simply
execute the following sequence of instructions at a shell:

2http://www.mozart-oz.org/mogul/

82 Chapter 6. Constraint Programming Bestiary

tar zxf duchier-select-1.4.1.tgz

cd duchier-select-1.4.1

./configure

make

make install

Once installed, the package is available through URIx-ozlib://duchier/cp/Select.ozf .
For example, in a functor you can import it as follows:

functor

import Select at ’x-ozlib://duchier/cp/Select.ozf’

...

end

and in the interactive OPI, you might obtain it as follows:

declare [Select] = {Module .link [’x-ozlib://duchier/cp/Select.ozf’]}

Unfortunately, the package needs at least Mozart version 1.1.1 which is not yet of-
ficially released. You can get the current development version of Mozart from our
anonymous CVS server (see the Mozart site3 for information on how to do this). Sup-
posing you have obtained a copy of the mozart sources from theCVS server and that
this copy resides in~/mozart , here is what to do to build and install the Mozart
system. Execute the following sequence of steps in a shell:

cd ~

mkdir build-mozart

cd build-mozart

~/mozart/configure

make

make install

You can install in a non-standard place either by using an option at configuration time:

~/mozart/configure --prefix=$OTHERDIR

or by using an argument at installation time:

make install PREFIX=$OTHERDIR

6.9.2 FD Selection Constraint

The selection constraint exists in a version where the sequence contains only FD vari-
ables. It is exported on featurefd of moduleSelect :

X={Select .fd [X1 ... Xn] I}

3http://www.mozart-oz.org/

6.9. Selection Constraints 83

Here is how the information aboutX can be improved by this constraint. SinceX must
ultimately be identified with oneXi , its domain is at most the union of their domains
(it cannot take other values than they can). More precisely,its domain is at most the
union of the domains of theXi s at positions that are still in the domain ofI (i.e. that
may still be selected). In other words, ifI ∈ D, andXi ∈ Di, then

X ∈
⋃

i∈D

Di

6.9.3 FS Selection Constraint

The selection constraint exists also in a version where the sequence contains only FS
variables. It is exported on featurefs of moduleSelect :

X={Select .fs [X1 ... Xn] I}

Again the information aboutX can be improved by propagation. The upper bound ofX

is at most the union of the upper bounds of theXi s for i in the domain ofI . The lower
bound ofX is at least the intersection of the lower bounds of theXi s for i in the domain
of I . In other words, ifI ∈ D andDi ⊆ Xi ⊆ D′

i, then:

⋂

i∈D

Di ⊆ X ⊆
⋃

i∈D

D′
i

6.9.4 FS Selection Union Constraint

The selection union constraint is the latest arrival in thisfamily of constraints. It is
exported on featureunion of moduleSelect . All its variables are sets and we write it
abstractly as follows:

S = ∪〈S1, . . . , Sn〉[SI]

and concretely thus:

S={Select .union [S1 ... Sn] SI}

Its declarative semantics is simply:

S =
⋃

i∈SI

Si

Again the information aboutS can be improved as follows. IfDi ⊆ Si ⊆ D′
i and

D ⊆ SI⊆ D′, then:
⋃

i∈D

Di ⊆ S ⊆
⋃

i∈D′

D′
i

84 Chapter 6. Constraint Programming Bestiary

Bibliography

[1] Ernst Althaus, Denys Duchier, Alexander Koller, Kurt Mehlhorn, Joachim
Niehren, and Sven Thiel. An efficient algorithm for the dominance problem.
Submitted, 2000.

[2] Ralf Backofen, James Rogers, and K. Vijay-Shankar. A first-order axiomatisation
of the theory of finite trees.Journal of Logic, Language and Information, 1995.

[3] P. Blackburn, C. Gardent, and W. Meyer-Viol. Talking about trees. InProceed-
ings of EACL’93, Utrecht, 1993.

[4] Johan Bos. Predicate logic unplugged. InProceedings of the 10th Amsterdam
Colloquium, pages 133–143, 1996.

[5] Tom Cornell. On Determinning the Consistency of PartialDescriptions of Trees.
In Proceedings of ACL’94, pages 129–136, 1994.

[6] Mehmet Dincbas, Pascal Van Hentenryck, Helmut Simonis,Abderrahamane Ag-
goun, Thomas Graf, and F. Berthier. The constraint logic programming language
CHIP. InProceedings of the International Conference on Fifth Generation Com-
puter Systems FGCS-88, pages 693–702, Tokyo, Japan, December 1988.

[7] Jochen Dörre and Andreas Eisele. Feature logic with disjunctive unification. In
COLING-90, volume 2, pages 100–105, 1990.

[8] Denys Duchier. Axiomatizing dependency parsing using set constraints. InSixth
Meeting on Mathematics of Language, pages 115–126, Orlando, Florida, July
1999.

[9] Denys Duchier. Set constraints in computational linguistics – solving tree de-
scriptions. InWorkshop on Declarative Programming with Sets (DPS’99), pages
91–98, September 1999.

[10] Denys Duchier. A model-eliminative treatment of quantifier-free tree descrip-
tions. In D. Heylen, A. Nijholt, and G. Scollo, editors,Algebraic Methods in
Language Processing, AMILP 2000, TWLT 16, Twente Workshop on Language
Technology (2nd AMAST Workshop on Language Processing), pages 55–66,
Iowa City, USA, May 2000. Universiteit Twente, Faculteit Informatica.

[11] Denys Duchier and Claire Gardent. A constraint-based treatment of descriptions.
In H.C. Bunt and E.G.C. Thijsse, editors,Third International Workshop on Com-
putational Semantics (IWCS-3), pages 71–85, Tilburg, NL, January 1999.

[12] Denys Duchier, Leif Kornstaedt, Tobias Müller, Christian Schulte, and Pe-
ter Van Roy. System Modules. Mozart Consortium, 1999. ftp://ftp.mozart-
oz.org/pub/mozart/latest/print/reference/SystemModules.ps.gz.

86 Chapter 6. Constraint Programming Bestiary

[13] Denys Duchier, Leif Kornstaedt, and Christian Schulte. Applica-
tion Programming. Mozart Consortium, 1999. ftp://ftp.mozart-
oz.org/pub/mozart/latest/print/tutorial/ApplicationProgramming.ps.gz.

[14] Denys Duchier, Leif Kornstaedt, and Christian Schulte. The Oz
Base Environment. Mozart Consortium, 1999. ftp://ftp.mozart-
oz.org/pub/mozart/latest/print/reference/BaseEnvironment.ps.gz.

[15] Denys Duchier and Joachim Niehren. Dominance constraints with set operators.
In Proceedings of the First International Conference on Computational Logic
(CL2000), LNCS. Springer, July 2000.

[16] Denys Duchier and Stefan Thater. Parsing with tree descriptions: a constraint-
based approach. InSixth International Workshop on Natural Language Under-
standing and Logic Programming (NLULP’99), pages 17–32, Las Cruces, New
Mexico, December 1999.

[17] M. Egg and K. Lebeth. Semantic underspecification and modifier attachment
ambiguities. In J. Kilbury and R. Wiese, editors,Integrative Ansätze in der Com-
puterlinguistik (DGfS/CL ’95), pages 19–24. Seminar für Allgemeine Sprachwis-
senschaft, Düsseldorf, 1995.

[18] Markus Egg, Joachim Niehren, Peter Ruhrberg, and FeiyuXu. Constraints over
lambda-structures in semantic underspecification. InProceedings of the 17th
International Conference on Computational Linguistics and 36th Annual Meeting
of the Association for Computational Linguistics (COLING/ACL’98), pages 353–
359, Montreal, Canada, August 1998.

[19] Dale Gerdemann.Parsing and Generation of Unification Grammars. PhD thesis,
University of Illinois, 1991.

[20] Carmen Gervet. Set Intervals in Constraint-Logic Programming: Definition
and Implementation of a Language. PhD thesis, Université de France-Compté,
September 1995. European Thesis.

[21] John Griffith. Modularizing contexted constraints. InCOLING-96, 1990.

[22] Seif Haridi and Nils Franzén.The Oz Tutorial. Mozart Consortium, 1999.
ftp://ftp.mozart-oz.org/pub/mozart/latest/print/tutorial/Oz.ps.gz.

[23] Mary P. Harper, Stephen A. Hockema, and Christopher M. White. Enhanced con-
straint dependency grammar parsers. InProceedings of the IASTED International
Conference on Artificial Intelligence and Soft Computing, Honolulu, Hawai USA,
August 1999.

[24] Johannes Heinecke, Jürgen Kunze, Wolfgang Menzel, andIngo Schröder. Elim-
inative parsing with graded constraints. InProceedings of the Joint Conference
COLING-ACL, pages 526–530, 1998.

[25] Randall A. Helzerman and Mary P. Harper. MUSE CSP: An extension to the
constraint satisfaction problem.Journal of Artificial Intelligence Research, 1,
1993.

6.9. Selection Constraints 87

[26] Martin Henz. Don’t be puzzled! InProceedings of the Workshop on Constraint
Programming Applications, in conjunction with the Second International Confer-
ence on Principles and Practice of Constraint Programming (CP96), Cambridge,
Massachusetts, USA, August 1996.

[27] Martin Henz. Objects for Concurrent Constraint Programming, volume 426 of
The Kluwer International Series in Engineering and Computer Science. Kluwer
Academic Publishers, Boston, November 1997.

[28] Martin Henz.Objects in Oz. PhD thesis, Universität des Saarlandes, Fachbereich
Informatik, Saarbrücken, Germany, June 1997.

[29] Sverker Janson.AKL - A Multiparadigm Programming Language. Sics disserta-
tion series 14, uppsala theses in computing science 19, Uppsala University, June
1994.

[30] Alexander Koller and Joachim Niehren. Scope underspecification and processing.
Reader for the European Summer School on Logic Language and Information.,
July 21 1999.

[31] Alexander Koller, Joachim Niehren, and Ralf Treinen. Dominance constraints:
Algorithms and complexity. InProceedings of the Third Conference on Logical
Aspects of Computational Linguistics, Grenoble, 1998.

[32] M.P. Marcus. Deterministic parsing and description theory. In P. Whitelock,
M.M. Wood, H.L. Somers, R. Johnson, and P. Bennett, editors,Linguistic Theory
and Computer Applications. Academic Press, 1987.

[33] Hiroshi Maruyama. Constraint dependency grammar. Research Report RT0044,
IBM Research, Tokyo, March 1990.

[34] John T. Maxwell and Ronald M. Kaplan. An overview of disjunctive constraint
satisfaction. InProceedings of the Internation Workshop on Parsing Technolo-
gies, pages 18–27, 1989.

[35] Wolfgang Menzel. Constraint satisfaction for robust parsing of spoken language.
Journal of Experimental and Theoretical Artificial Intelligence, 10(1):77–89,
1998.

[36] Wolfgang Menzel and Ingo Schröder. Decision procedures for dependency pars-
ing using graded constraints. InProceedings of the COLING-ACL98 Workshop
“Processing of Dependency-based Grammars”, 1998.

[37] Tobias Müller. Problem Solving with Finite Set Con-
straints in Oz. Mozart Consortium, 1999. ftp://ftp.mozart-
oz.org/pub/mozart/latest/print/tutorial/FiniteSetProgramming.ps.gz.

[38] Richard Montague. The proper treatment of quantification in ordinary English. In
R. Thomason, editor,Formal Philosophy. Selected Papers of Richard Montague.
Yale University Press, New Haven, 1974.

[39] M.P.Marcus, D. Hindle, and M.M.Fleck. Talking about talking about trees. In
Proceedings of the 21st Annual Meeting of the Association for Computational
Linguistics, Cambridge, MA, 1983.

88 Chapter 6. Constraint Programming Bestiary

[40] Martin Müller, Tobias Müller, and Peter Van Roy. Multi-paradigm programming
in Oz. In Donald Smith, Olivier Ridoux, and Peter Van Roy, editors,Visions for
the Future of Logic Programming: Laying the Foundations fora Modern succes-
sor of Prolog, Portland, Oregon, 7 December 1995. A Workshop in Association
with ILPS’95.

[41] Tobias Müller. Solving set partitioning problems withconstraint programming. In
Proceedings of the Sixth International Conference on the Practical Application
of Prolog and the Forth International Conference on the Practical Application
of Constraint Technology – PAPPACT98, pages 313–332, London, UK, March
1998. The Practical Application Company Ltd.

[42] Tobias Müller and Martin Müller. Finite set constraints in Oz. In François Bry,
Burkhard Freitag, and Dietmar Seipel, editors,13. Workshop Logische Program-
mierung, pages 104–115, Technische Universität München, 17–19 September
1997.

[43] R.A. Muskens and E. Krahmer. Description Theory, LTAGsand Underspeci-
fied Semantics. InFourth International Workshop on Tree Adjoining Grammars
and Related Frameworks, pages 112–115, Philadelphia, PA, 1998. Institute for
Research in Cognitive Science.

[44] J. Niehren, M. Pinkal, and P. Ruhrberg. A uniform approach to underspecification
and parallelism. InProceedings ACL’97, pages 410–417, Madrid, 1997.

[45] Konstantin Popov.The Oz Browser. Mozart Consortium, 1999. ftp://ftp.mozart-
oz.org/pub/mozart/latest/print/tools/Browser.ps.gz.

[46] Owen Rambow, K. Vijay-Shanker, and David Weir. D–Tree Grammars. InPro-
ceedings of ACL’95, 1995.

[47] Owen Rambow, K. Vijay-Shanker, and David Weir. D-tree grammars. InPro-
ceedings of ACL’95, pages 151–158, MIT, Cambridge, 1995.

[48] Mike Reape. Domain union and word order variation in german. In John Ner-
bonne, Klaus Netter, and Carl Pollard, editors,German in Head-Driven Phrase
Structure Grammar, number 46. CSLI Publications, 1994.

[49] J. Rogers and K. Vijay-Shanker. Obtaining trees from their descriptions: An
application to tree-adjoining grammars.Computational Intelligence, 10:401–421,
1994.

[50] James Rogers and K. Vijay-Shanker. Reasoning with descriptions of trees, 1992.

[51] Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. Semantic founda-
tions of concurrent constraint programming. InConference Record of the Eigh-
teenth Annual ACM Symposium on Principles of Programming Languages, pages
333–352, Orlando, Florida, January 21–23, 1991. ACM SIGACT-SIGPLAN,
ACM Press. Preliminary report.

[52] Christian Schulte. Oz Explorer: A visual constraint programming tool. In Lee
Naish, editor,Proceedings of the Fourteenth International Conference onLogic
Programming, pages 286–300, Leuven, Belgium, July 1997. The MIT Press.

6.9. Selection Constraints 89

[53] Christian Schulte. Programming constraint inferenceengines. In Gert Smolka,
editor, Proceedings of the Third International Conference on Principles and
Practice of Constraint Programming, volume 1330 ofLecture Notes in Computer
Science, pages 519–533, Schloß Hagenberg, Austria, October 1997. Springer-
Verlag.

[54] Christian Schulte. Oz Explorer - Visual Constraint Program-
ming Support. Mozart Consortium, 1999. ftp://ftp.mozart-
oz.org/pub/mozart/latest/print/tools/Explorer.ps.gz.

[55] Christian Schulte. Programming deep concurrent constraint combinators. In En-
rico Pontelli and Vítor Santos Costa, editors,Practical Aspects of Declarative
Languages, Second International Workshop, PADL 2000, volume 1753 ofLec-
ture Notes in Computer Science, pages 215–229, Boston, MA, USA, January
2000. Springer-Verlag.

[56] Christian Schulte and Gert Smolka. Encapsulated search in higher-order concur-
rent constraint programming. In Maurice Bruynooghe, editor, Logic Program-
ming: Proceedings of the 1994 International Symposium, pages 505–520, Ithaca,
New York, USA, November 1994. MIT-Press.

[57] Christian Schulte and Gert Smolka. Finite Domain Constraint Pro-
gramming in Oz. Mozart Consortium, 1999. ftp://ftp.mozart-
oz.org/pub/mozart/latest/print/tutorial/FiniteDomainProgramming.ps.gz.

[58] Christian Schulte, Gert Smolka, and Jörg Würtz. Encapsulated search and con-
straint programming in Oz. In A.H. Borning, editor,Second Workshop on Prin-
ciples and Practice of Constraint Programming, Lecture Notes in Computer Sci-
ence, vol. 874, pages 134–150, Orcas Island, Washington, USA, May 1994.
Springer-Verlag.

[59] Gert Smolka. A calculus for higher-order concurrent constraint programming
with deep guards. Research Report RR-94-03, Deutsches Forschungszentrum für
Künstliche Intelligenz, Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany,
February 1994.

[60] Gert Smolka. A foundation for higher-order concurrentconstraint programming.
In Jean-Pierre Jouannaud, editor,1st International Conference on Constraints in
Computational Logics, Lecture Notes in Computer Science, vol. 845, pages 50–
72, München, Germany, 7–9 September 1994. Springer-Verlag.

[61] Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor,Computer
Science Today, Lecture Notes in Computer Science, vol. 1000, pages 324–343.
Springer-Verlag, Berlin, 1995.

[62] Gert Smolka. Problem solving with constraints and programming. ACM Com-
puting Surveys, 28(4es), December 1996. Electronic Section.

[63] K. Vijay-Shankar. Using descriptions of trees in a tree-adjoining grammar.Com-
putational Linguistics, (18):481–518, 1992.

