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Abstract

This course demonstrates how constraint programming casdubeffectively in practice,
for linguistic applications. It shows how many forms of aguity arising in computational
linguistic can be represented compactly and elegantlypamckssed efficiently with con-
straints. A key idea to derive the most benefit from constigiiopagation is that intended
models should be characterized as solution€aifistraint Satisfaction Problem{€SPs)
rather than defined inductively or in a generative fashion.

We examine several topics in detail: encodings of finite dosjaree descriptions using
dominance constraints, and parsing with dependency grastmeeach case, we present a
formal characterization of the problem as a CSP and illtestraw to derive a correspond-
ing constraint program. The course includes 4 completedotive applications written in
Oz, with full code supplied.

Through these programmatic vignettes the reader is exposth@ practice of constraint
programming withfinite domainandfinite setvariables, and introduced to some of the
more powerful types of constraints available today, suate#éied constraints, disjunctive
propagators, and selection constraints.
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Introduction

Constraints play an important role in the formulation of rdlinguistic theories. For
example HPSG and LFG are overtly constraint-based: theyprmearily concerned

with the formulation of general structural principles tligtermine the class of syn-
tactically well-formed entities, typically representesl lderarchical, possibly typed,
feature structures.

Yet, practical implementations are usually not driven betely aided by constraints.
For example implementations of HPSG typically only use taimss in the form of
type hierarchies and unification, but the backbone remainsmgtive (e.g. CFG).

The purpose of this course is to illustrate how constraiats ke put into the driver's
seat. We will shun merely constraint-aided approachessethave been adequately
presented by others in a Logic Programming setting. Insteaill focus on purely
constraint-based approaches, where computation is réedo@nstraint satisfaction.

While Prolog has proven to be a versatile implementatiotfgria for computational
linguistics, it encourages a view of computation as a nderd@nistic generative pro-
cess: typically a Prolog program specifies how to generatgeiao Regrettably, this
often leads to difficult problems of combinatorial explasio

In this course we wish to promote an alternative approaghlace model generation
by model elimination. We will look at problems where the slag models is known
before-hand and where constraints can be used to precisaltgaterize those which
are admissible solutions: i.e. constraints serve to efibeimon-admissible candidates.

This course is by no means anti-Prolog: it is pro-constsairindeed, many of the
techniques presented here are applicable to modern imptatiwss of Prolog that
support constraint libraries.

Some techniques, however, go beyond the capabilities oPaolpg system. This is
primarily because Prolog does not support encapsulati@omcurrency. In particu-
lar in does not support encapsulated speculative compngatiSuch notions where
explored in AKL [29], in the form e.g. of deep guards, but onbached their full

potential in Oz, in the form of computation spaces [53] [5%]e will use Oz as our
programming vehicle [61] [40].

The computational paradigm explored in this course, nagwhgurrent constraint pro-
gramming, is the result of a historical progression thahfge constraints an increas-
ingly important role in computations:
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Generate and Test: generate a candidate model and then verify that it solvegrittdem. Constraints

are used only as post-hoc filters. Combinatorial explosdearsomely uncontrolled.

Test and Generate: generation and filtering are interleaved. Constraintscslfyi remain passive but

are successful in pruning entire branches of the searcts t&bhnique is often based
on coroutined constraints usingeze (akageler ) introduced by Prolog II.

Propagate and Distribute: constraints are active and perform as much determinidécence as pos-

2a

sible. The generative aspect is reduced to the minimum: igtakdition strategy is
invoked to make a choice only when propagation is not suffidie resolve all ambi-
guities.

This progression results in increasingly smaller seambstr We can give an example
that illustrates the improvements. Suppose that we aretsegrfor solutions of the
equation2* A=B whereA andB denote integers between 0 and 9 inclusive. Let us first
consider agenerate and testolver written in Oz: it picks values for variablesandB

and only then checks whether these values satisfy the equati

Equation Solver: generate and test2a
proc {EquationSolverl Solution}
[A B] = Solution

Solution ::: 0#9
{FD. distribute naive Solution}
2* A=B

end

What you see above isreamed code chunkThis form of code presentation, in small
named chunks that are individually explained in the texts weneered by Donald
Knuth under the name dfiterate ProgrammingWe will use it constantly throughout
this course.

The generate and test approach produces the search tree ©98ishown below. Blue
circles represent choice points, red squares failed nadelsgreen diamonds solutions.

o O Epoer Jax

Explorer Move Search HNodes Hide Options |

a0

1

Time: 20ms (D99 5 W95 Depth: 19




Now let's turn to thetest and generatapproach: the equation is posted in its own
thread (i.e. the test is issued first) which suspends untill@evhas been chosen far
at which the corresponding value feican be computed.

3a (Equation Solver: test and generate3a
proc {EquationSolver2 Solution}
[A B] = Solution
in
Solution ::: 0#9
thread 2*A=B end
{FD. distribute naive Solution}
end

The test and generate approach produces the search tree &Bsshown below:

o O Epoer Jax

Explorer Move Search HNodes Hide Options |

Time: Oms (B9 <55 M5 Depth: 10

Finally, here is the real constraint programming way of smthe problem, using the
propagate and distributenethod. The equation is represented by a constraint:

3b (Equation Solver: propagate and distribute 3b
proc {EquationSolver3 Solution}
[A B] = Solution

Solution ::: 0#9

2*A=:B

{FD. distribute naive Solution}
end

The propagate and distribute approach produces the seaechftsize 9 below. Note
that this search tree contains no failed node.



Chapter 1. Introduction

o O o Jax

Explorer Move Search HNodes Hide Options |

Time: Oms (45 M0 Depth: §

When writing this course, my first priority was to demonsrabw constraints can be
used effectively in practice, for linguistic applicationas a result, for each topic, in
addition to the formal presentation, | also provide the egponding code. In each
case, you get a complete interactive application that youea, and whose code you
can study. For reasons of space, the printed version of thessealoes not contain
absolutely all the code, but almost. The online versionaiostabsolutely everything
and is available at:

http://www.ps.uni-sh.de/~duchier/esslli-2000/index. html

The online version also allows you to start the applicatiopglicking on appropriate
links. Since Oz code forms a large part of the diet in this seuthe reader is urgently
advised to become marginally familiar with Oz. We highlyaeuonend that you read
at leasfThe Oz Tutoridl [22]. The Mozart system (implementing Oz) comes with a lot
of online documentatich which is also available in Postscript or PHer printing.

http://www.mozart-0z.org/documentation/tutorial/ind ex.html
2http://www.mozart-0z.org/documentation/
Shttp://www.mozart-0z.org/download/print.cgi



Constraint Satisfaction Problems

Where constraint programming really shines is in solvingst@int satisfaction prob-
lems where constraint propagation very effectively helpsmimg the search space. In
this chapter, we explain how constraint satisfaction motd (henceforth CSPs) are
solved by means of constraint programming.

Much more is possible with constraint programming; in maitar, using the record
constraints (aka open feature structures) traditionallorfed by computational lin-
guists. However, record constraints do not lead to fornaratwith especially strong
constraint propagation. For 2 reasons: (1) record conssr@iannot represent nega-
tive information, (2) they only take effect when record stte appears (i.e. they are
passive). We entirely shun them in this course and emphasitead encodings using
integers and sets of integers that provide very strong diadesit constraint propaga-
tion.

2.1 Whatis a CSP?

A CSP is specified by a finite number of variables and a finite samof constraints
on these variables:
CSP = \Variables+ Constraints

A solution to a CSP is an assignment of values to the variatlels that the constraints
are satisfied.

The constraint programming approach to solving a CSP réste dollowing ideas:

e devise an explicit representation of the partial informatknown about the de-
sired assignment of values to variables

e improve this information through constraint propagation

2.2 Constraint-based Representation of Assignments

The types of problems that constraint programming is regolyd at are all about inte-
gers. This is where constraints are able to provide strodgefitient propagation.

Constraints involvind=inite Domainshave become a fairly standard tool of the trade.
More recently, constraints oRinite Sets(of integers) have appeared [20] [42] [41]
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and proven to be extremely expressive, especially for epdins in computational
linguistics [8] [9]. In this course, we will see many applicas of set constraints.

Thus, we will consider CSPs involving integer variablesitin ) and set variables
(written S). The fundamental idea of the constraint programming agpras to ex-
plicitly represent the partial information about the saugbsignment. For example,
we may not precisely know the value to be assigne] tmt we may know that it must
be either 2, 3, or 7. Thus we would wrifec {1, 2, 7}. The general form of the partial
information about the assignment to an integer variablbus:t

IeD

whereD is a domain, i.e. a given finite set of integers.

Similarly, we may not know precisely which set value to assma set variablé&, but
we may have some information about its lower and upper bo(irelsthe integers at
least, resp. at most, ifl). Thus we write:

Dy CSC Dy

2.2.1 Basic Constraints

This intuitive way, presented above, of capturing partiébimation about an assign-
ment can be formally presented as a logical systeiBasfic Constraints Its abstract
syntax is given by:

B = IeD | DCS|SCD | false| By ADBs

It is equipped with the following inference rules.

Weakening

IeD — JTeD whereD’ O D
DCS — D'CS whereD’ C D
SCD — ScD whereD’ O D

Strengthening
I eDiNI€E Dy — T eDiNDy
D1 CSADyCS DiUDy, C S
SCDIANSCDy — SCDiNDy
Contradiction
Iep

D CSASC Dy

|

— false

— false whereD; Z Do

Of course, after saturation with the above rules, for eacdlabte there is always a most
specific approximation of its assignment. For an integeiatsée I, this is the smallest

D such thatl € D. For a set variablé& there is a largest lower bourfd; C S and a
smallest upper bounl C Ds. In practice, these most specific basic constraints are the
only ones that the system needs to represent (all othersecdertved by weakening).
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Constraint Store A constraint programming system containg@nstraint store
which is the (saturated) set of basic constraints reprieggitiie partial information
currently known about the assignment.

store of
basic constraints

Determined Variables  We say that a variable @eterminedwhen its assignment
has been decided. For an integer variable D this happens when its domain
becomes a singleton. For a set variable C S C D, this happens when its lower
bound becomes equal to its upper bound.

2.3 Improving partial info by constraint propagation

Now we want the constraints of the CSP to take an active raldraprove the partial
information concerning the assignment. In particular, méver possible, they should
eliminate from consideration values that cannot lead tdu#tiso.

2.3.1 Non-Basic Constraints

A constraint programming system typically provides a riehaf non-basic constraints,
such as:

Equality

L=LorS =5
Ordering, e.g.

L <D

Arithmetic, e.g.

Il =2x% IQ

Set, e.g.

S1 C Sy subset
S1 || Sa disjointness
S3 =51 U Sy union
Membership, e.g.

I1esS

and many more. The operational semantics of each non-basstraint is specified by
a collection of inference rules.
For example, the disjointness constrasht|| S, corresponds to the two inference rules

below:

Sl”SQ/\Slng/\DQgSQ — Slng\DQ
S1||S2ADy CS1ANS2C Dy — Sy C Do\ Dy
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i.e. all elements known to be i cannot possibly be i8; and vice versa.

A challenge that must be faced by every user of a constraggramming system is
then to express a CSP’s constraints in terms of non-basistrednts available in the
system. Fortunately, Mozart has a very rich set of conggdsee [12]) that facilitate
the task.

2.4 Searching For Solutions

We find solutions of a CSP (i.e. assignments satisfying timstcaints) by alternating
steps ofpropagationanddistribution

2.4.1 Propagation

Propagation is saturation under deterministic inferentee basic inference rules as
well the inference rules corresponding to the non-basistraimts are applied repeat-
edly until a fix point is reached, i.e. until the partial infeation about the assignment
can no longer be improved. At this point, there are 3 possésl

1. falsewas derived, i.e. we have arrived at a contradiction andhitsiach of the
search must be abandoned since it cannot lead to a solution.

2. All variables are determined: the assignment is fullyvknaand satisfies the
constraints. This is a solution.

3. At least one variable is not yet determined. At this poiet need search and
non-deterministically apply a distribution rule.

propagation
—_—

2.4.2 Distribution

The purpose of a distribution step is to allow the search ¢zgrd by making a non-
deterministic choice.

Naive Strategy The naive distribution strategy for integer variables pieknon-
determined € D and non-deterministically infers eithér= min(D) or I # min(D).
For finding solutions ob* A=B with A and B integers between 0 and 9 inclusive, the
strategy produces the search tree below:
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o e Jax

Explorer Move Search HNodes Hide Options

Time: Oms (45 M0 Depth: §

Domain Splitting ~ Another strategy for integer variables is knowndasnain split-
ting. It picks a non-determined integer varialllee D, & Do, whereD;, Dy # () and
non-deterministically infers either € D, or I € Ds. For the same problera A=B
this strategy produces the search tree below:

o e Jax

Explorer Move Search HNodes Hide Options

Time: 10ms (D4 <5 M0 Depth: 4

Alternating Steps of Propagation and Distribution The picture below shows
a propagation step followed by a distribution step thatteiea@ branching point in
the search tree. The distribution strategy usedbimain splittingon variablel: each
branch investigates one half 66 domain:
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Efficient Encodings of Finite Domains

Ambiguity (lexical ambiguity, attachment ambiguity) is ajor source of combinato-
rial complexity. It is typically addressed by resorting toee form of disjunctive rep-
resentation. In this chapter, we are going to explain hovstaimt programming using
finite domainsallows the compact representation and efficient procegsitgmmon
types of disjunctive information.

3.1 Finite Domain Constraints

Finite domain (FD) constraints have become quite populdiaae widely supported. A
finite domain variabld denotes an integer. However, we may not know exactly which
integer. Typically we only know that it must be one of a finitewber of possibilities,
e.g. one of 1,2 or 7. This would be represented by a basic redmist

Ie{1,2,7

Suppose, we have a second FD variable {2,3,4}. If we unify themI = J, their
domains are intersected thus resulting in the conclugien J = 2. This technique
underlies the efficient treatment of agreement: éhcodes the agreement information
on one word and/ on another and the 2 words must agree, then the consfraint/
enforces this agreement.

3.2 Simple Example

As a simple example, lets consider a minuscule English ¢exiconsisting of the
words: a, the , man, men and just the information about whether the word is singu-
lar or plural. We are going to encode ‘singular’ as the integand ‘plural’ as the

integer 2.
decl are
Sing = 1
Plur = 2
Lexicon = o(a : [Sing]
the : [Sing Plur]
man : [Sing]

men : [Plur])
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Now, we can represent the ‘number’ information of a wadaly introducing a FD vari-
ablel and constraining its domain using the information in thédex. For example
for an occurrence of articlée , we could write:

decl are THE
THE : Lexicon . the

We can observe this variable in the browser [45] by invoKigwse THE} , and we
see:

Sl Oz Browser - 0O X
Browser Selection Options ] |
THE{ 142} |

= =]

l.e. THEIs bound to a FD variable whose domain just contains the émgetyand 2. We
can do the same for an occurrence of the wosd:

decl are MAN
MAN : Lexicon . man

{Browse MAN}

and we see:

LZenl 0z Browser -0 X
Browser Selection Options ®|
THE {142} |
1

el
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Finally we can impose the constraint that the determinert mgriee with the noun, i.e.
THE=MANand the display is updated as follows:

%‘“;—N - O X

Browser Selection Options

7|

= =]

The ambiguous number information of the determiner has Hsambiguated.

3.3 Encoding Products of Finite Domains

Our simple example hardly touched on the power of the tecinidt was not suffi-
ciently ambiguous. In a real application, agreement ire®lseveral features and not
just ‘number’. For example, German agreement involves tufea:

gender -> masculine,feminine,neutral

number -> singular,plural

person > 1,2,3

case -> nominative,accusative,dative,genitive

quantifier -> definite,indefinite,none

However these features do not vary independently. For ebathe determinegin is
singular , but may be eithemasculine or neutral . If it is masculine , then it has
nominative  case. Ifitisneutral then it may have caseminative  Or accusative

An elegant way to address the issue is, instead of insidtiagthe program preserve
the distinction of featuresfo merge them together into a compound ‘agreement’ tuple
that takes values in the cartesian product:

gender * number * person * case * quantifier

Next we notice that, since each dimension of the cartesiagiygt can take only finitely
many values, the cartesian product itself has finitely maaiyas. This means that we
can encode each tuple by a distinct integer and we can repr@sksjunction of tuples
by means of a finite domain.

actually we can recover this distinction easily as expldineSection 3.6.
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3.3.1 Establishing a bijection between tuples and integers

Considerp domainsD; throughD,,. Each domainD, has cardinality.,:

Dy = {vf, . ,vfw}
The cardinality of the cartesian produdf x --- x D, iS N =n; x --- x n,. We are
going to establish a bijection betweén x --- x D, and[1..N].

The idea is to partition the intervél..N] into n; equal subintervals: one for each
value inD;. Then to partition each subinterval inte subsubintervals: one for each
value inDs. Etc recursively.

Itis easy to capture this idea in a formula. Consider at(@lle 2, ... ,vfp). Accord-

127

ing to the recursive algorithm outlined above, it is assibtwethe following integer:

(11 —1) X (ng X N3 X -+ X ny)
+ (iz—l)X(?’L3X---an)

—+ (Z'p,1 — 1) X Ny
+ (ip — 1)
+ 1

Thus, given an indeX in the rangg1..N|, we can recover the corresponding tuple by
calling {Decodeint | -1 Divs Doms} , whereDivs is the list:

[ngxngx---xnp
ng X Xny

p
1]

andDomsis the list of domains, each one consisting of a list of valuBEse function
Decodelnt is implemented as follows:

14a (DomainProduct Decodelnt function 14a
fun {Decodelnt | Divs Doms}
case Divs #Doms
of nil #nil then nil
[1 (Div | Divs) #(Dom| Doms) then
Q =1 div Div
R = | nod Div

{Nth Dom Q+1} | {Decodeint R Divs Doms}

end
end

3.3.2 Implementation

In this section, we provide an Oz implementation of the emaptechnique described
above. Itis provided as classmainProduct exported by functoencode (file Encode.oz ).
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15a (Encode. 0oz 15a
functor
inport FD FS
export DomainProduct
define
DomainProduct Decodelnt function 14a
cl ass DomainProduct
DomainProduct features 15b
DomainProduct attributes 15c
DomainProduct init method 15d
DomainProduct encode methodi7a
DomainProduct decode method17b
end
end

3.3.2.1 Features and Attributes

EveryDomainProduct object is equipped with featurenge giving the rangé1. .N],
featureempty for the empty set, and featut@l for the set of all the integers in the
range:

15b (DomainProduct features 15b 18al>
feat range empty full

and also with attributesivisors ~ anddomains which are as described for function
Decodelnts . Attribute value2set is a dictionary mapping each valug, from some
domainD,, to the set of integers encoding the tuples in which thisevalecurs.

15¢ (DomainProduct attributes 15c
attr divisors domains value2set

3.3.2.2 Init Method

Theinit method is given a list of domains. Each domain is represednyetie list of
its values (these should be atoms or integershofainProduct  object is created as
follows:

declare O = {New DomainProduct init((D1 D2 ... Dph}

where eaclmi is a list of values representing a domain.

The initialization code constructs the majue2set by iterating through the integers
in the range[1..N]. For eachi in this range,Decodeint is invoked to obtain the
corresponding tuple (as a list of values). For each valirethis tuple,! is added to
the list of indices fotv. When we are done, these lists of indices are turned intm$ets
indices.

15d (DomainProduct init method 15d
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net h init (Domains)
Sizes = {Map Domains Length}

L1 = {Map Sizes fun {$ Size} _ #Size end}

N = {FoldR L1 fun {$ M¢N Accu} M=Accu N*Accu end 1}
Divs = {Map L1 fun {$ M} M end}

Val2Ints = {Dictionary . hew}

for 1 in 1..N do
Tuple = {Decodelnt | -1 Divs Domains}

for Vin Tuple do
{Dictionary . put Val2ints V
| | {Dictionary . condGet Val2ints V nil}}
end
end
divisors <- Divs
domains  <- Domains
DomainProduct init method, niceties 18b
for K in {Dictionary . keys Val2ints} do
Val2Ints . K := {FS . value . make Val2ints .K}
end
sel f.range = 1 #N
sel f.empty = FS. value . empty
sel f.full = {FS .value . make sel f.range}
value2set  <- Val2Ints
end

3.3.2.3 Encode Method

One we have createdtmmainProduct objectO, we can use it to turn specification
into a set of integers encoding the tuples correspondinbiscspecification. We want
to allow the user to write specifications with the followinlgs#ract syntax:

¢ w= vi|oAd oV
A tuple satisfies specificatiovf if it contains valuevf . It satisfiesp A ¢’ if it satisfies
both¢ and¢’. It satisfiesp Vv ¢/ if it satisfies eitheks or ¢'.

Instead of explicit connectives, we will simply allow a sifieation to consist of ar-
bitrarily nested lists, eventually bottoming out with ddm&alues. The outer level
is interpreted disjunctively, and each nesting switchesititerpretation of the con-
nective: thus the 2nd level is interpreted conjunctivehg 8rd disjunctively, etc. For
example, let us consider agreement information limitedisd gender and person. The
specification:

[[masc [1 3]] [fem 2]]
denotes the 3 tuplgsiasc 1] , [masc 3] , [fem 2] . However:

[[masc 1 3] [fem 2]]
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just denotegfem 2] since a tuple cannot contain batland2. The spec:
[[masc 1] fem]

denotes the 4 tuplgsiasc 1] , [fem 1] ,[fem 2] and[fem 3]

17a (DomainProduct encode method17a
net h encode (Desc $)
{sel f Disj(Desc $)}
end
nmet h Disj (Desc $)
case Desc
of _| _ then {FoldL Desc
fun {$ Accu Desc}
{FS. union Accu
{sel f Conj(Desc $)}}
end sel f. empty}
[T nil then self.empty
el se @alue2set . Desc end
end
net h Conj (Desc $)
case Desc
of _|_ then {FoldL Desc
fun {$ Accu Desc}
{FS. intersect Accu
{sel f Disj(Desc $)}}
end sel f. full}
[T nil  then self.full
el se @alue2set . Desc end
end

3.3.2.4 Decode Method

A DomainProduct objectomakes available 3 main decoding methods:

{O decode(l L)}
returns the list of tuples corresponding to the integers in the domain of Fitakée
.

{O decodeLo(S L)}
return the list. of tuples corresponding to the integers in the lower bourteofariable
S.

{O decodeHi (S L)}
idem for the upper bound.

17b (DomainProduct decode method17b
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net h decodelnt (I $)
{Decodelnt | -1 @livisors @omains}
end
nmet h decodeints (L $)
{Map L fun {$ I} { self decodelnt(l $)} end}
end
net h decode (I $)
{sel f decodelnts({FD . reflect .domlList I} $)}
end
net h decodeLo (S $)
{sel f decodelnts({FS .reflect .lowerBoundList S} $)}
end
nmet h decodeHi (S $)
{sel f decodelnts({FS .reflect . upperBoundList S} $)}
end

3.3.2.5 Niceties

Note that we can also use our abstraction in the degenerséewda@ere we compute
the product of just 1 domain. In that case, however, therehigeation between the

elements of the domain and the integers 1 to n of the encottihgns out to be often

convenient to be able to map an element of the domain to itegoonding integer

rather than to encode it into the singleton containing thegger. For this reason, we
add a featurevint  to the class:

18a (DomainProduct features 15b <15b
toint

For products of 2 or more domains, this feature is not usedsasitnply set touni t,
but for a 1-product it is a dictionary mapping each domaimelet to its corresponding
integer. Here is how we initialize the feature:

18b (DomainProduct init method, niceties 18b
case Domains of [Dom] then
Tolnt = {NewDictionary}

sel f.toint = Tolnt
for Kin Domdo
case Val2ints .K of [I] then
Tolnt . K =1
end
end
el se sel f.toint= unit end

3.4 Application to German Agreement

In this section we illustrate the technique with an appi@mato agreement of deter-
miner/adjective/noun in German. Agreement depends ofseoan gender, number
and person, but also on case, and on the determiner typeif@efimdefinite, none).
This leads us to define agreement information as a tuple ioattesian product:
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Gender * Number * Person * Case * Quantifier

We are going to develop a very small lexicon mapping wordsets ef tuples. Each
tuple will be encoded by an integer.

3.4.1 Lexicon

Our small lexicon is made available as functarallLexicon  (file SmallLexicon.oz ),
exportingGet andAgreement . Get takes a word as an argument and returns a finite
domain variable whose domain consists of the agreemermsdipt that word (or more
precisely, the integers encoding those tuplegjeement is aDomainProduct object

for the cartesian product of agreement information.

19a (Smal | Lexi con. oz 19a

funct or

i nport Encode FS

export Get Agreement

define

Agreement = {New Encode . domainProduct
init([[masc fem neut]

[sing plur]
[1 2 3]
[nom acc dat gen]
[def indef none]])}

Lexicon = {Dictionary . hew}

proc {Enter W Desc}
Lexicon . W := {Agreement encode(Desc $)}
end

proc {Get W I}

| 1 : Agreement . range

{FS . include | Lexicon . W}
end

SmallLexicon nouns 19b
SmallLexicon definite articles 20a
SmallLexicon indefinite articles 20b
SmallLexicon no article 20c
SmallLexicon adjectives 20d

end

We just enter the 4 forms dflannin the lexicon:

19b (SmallLexicon nouns 19b
{Enter mann [[masc 3 sing [nom acc dat]]]}
{Enter mannes [[masc 3 sing gen]]}
{Enter méanner [[masc 3 plur [nom acc gen]]]}
{Enter méannern [[masc 3 plur dat]]}
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Now all forms of the definite articlder/die/das

20a (SmallLexicon definite articles 20a
{Enter der [[def [[masc sing 3 nom]
[fem sing 3 [dat gen]]

[ plur 3 gen]]]l}
{Enter den [[def [[masc sing 3 acc]
[ plur 3 dat]]]]}

{Enter dem [[def [[[masc neut] sing 3 dat]][J}
{Enter des [[def [[[masc neut] sing 3 gen]]]]}
{Enter die [[def [[fem sing 3 [nom acc]]

[ plur 3 [nom acc]|]l]}
{Enter das [[def [[neut sing 3 [nom acc]]]]]}

All forms of the indefinite articlesin:

20b (SmallLexicon indefinite articles 20b

{Enter ein [[indef [[masc sing 3 nom]
[neut sing 3 [nom acc]]]]]}

{Enter einen [[indef [[masc sing 3 acc]]]]}
{Enter einem [[indef [[[masc neut] sing 3 dat]]]]}
{Enter eines [[indef [[[masc neut] sing 3 gen]]]l}
{Enter eine [[indef [[fem sing 3 [nom acc]]][]}
{Enter einer [[indef [[fem sing 3 [dat gen]]]]]}

A dummy entry for the absence of article:

20c (SmallLexicon no article 20c
{Enter ™no determiner* none}

And all forms of adjectiveschon

20d (SmallLexicon adjectives 20d
{Enter schéne [[none [nom acc] [fem plur]]
[def  sing [nom [acc [neut fem]]]]
[indef plur [nom acc]]]}
{Enter schodnen [[none [[masc sing [acc gen]]
[fem sing gen]
[plur dat]]]
[def  [plur dat gen [masc sing acc]]]
[indef sing [dat gen [masc acc]]]]}
{Enter schoner [[none [[masc sing nom]
[fem sing [dat gen]]
[plur gen]]]
[indef sing masc nom]j}
{Enter schodnes [[neut sing [nom acc] [indef none]]]}
{Enter schénem [[[masc neut] sing dat none]J}
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3.5 Application

In this section, we include a small interactive applicatiomallow you to test our im-
plementation of agreement. A window will appear as showowehnd you must select
one entry in each column, i.e. one article (or none, repteddsy therno determiner*

entry), one adjective, and one noun:

et Oz/0Tk Window

Then you click on thery button and a browser window pops up listing the possible

tuples for this agreement.

0O X

I .
e CH N Oz Browser

[ [masc sing 3 nom nconel ]

If no agreement is possible, the atermor is displayed instead.

3.5.1 Implementation
The implementation is provided as funct®naliTest (file SmallTest.0z

2la (Smal | Test. o0z 21a)=
funct or
i mport
QTk at http://www.info.ucl.ac.be/people/ned/qtk/QTk.ozf’
Application
SmallLexicon
Browser(browse:Browse)

2http://www.ps.uni-sb.de/~duchier/esslli-2000/SmallT est.oza

).
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define
DetBox AdjBox NounBox
DetWords = |
der den dem des die das
ein einen einem eines eine einer]
AdjWords = [schéne schdnen schdner schdnes schénem]
NounWords= [mann mannes manner mannern]
proc {Try}
{Browse
try
D = {Nth DetWords {DetBox get(firstselection:$)}}
A = {Nth AdjWords {AdjBox get(firstselection:$)}}
N = {Nth NounWords {NounBox get(firstselection:$)}}

{SmallLexicon . agreement
decode(
{SmallLexicon . get D}=
{SmallLexicon . get A}=
{SmallLexicon . get N} $)}
catch _ then error end}

end

Interface =

Ir(listbox(init:DetWords  glue:we exportselection: fal se handle:DetBox)
listbox(init:AdjWords  glue:we exportselection: fal se handle:AdjBox)
listbox(init:NounWords glue:we exportselection: fal se handle:NounBox)
newline
button(text: glue:we action:Try)
empty
button(text: glue:we

action: proc {$} {Application .exit 0}  end))
Window = {QTk. build Interface}
{Window show}
end

3.6 Projections

Consider now the problem of agreement between noun and/egtmbnoun: they must
agree in gender and number, but nothing else. How can we &xpgrteh agreement
condition, when gender and number have been combined witr é&tatures into one
DomainProduct ? What we need is to projectimmainProduct onto a subset of its
dimensions. In this section, we illustrate how this can bdeea®d using theelection
constraint.

The ideais that to each tuple N P C Q]in the cartesian product:
Gender * Number * Person * Case * Quantifier

we can associate a corresponding typleN] in the projection productender * Number.
In other words, there is a finite map from the integers enagpthie 1st product into the
integers encoding the 2nd product.
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3.6.1 Selection Constraint

In this section, we very briefly introduce the idea of the stébm constraint for finite
domains. It has the form:

I={Select .fd [I1 12 ... In] K}

wherel, 11, ...,In, K are all FD variables (possibly determined, i.e. integetty.
declarative semantics is that= | . Constraint propagation can affect bothand

K: if Ip cannot be equal to (i.e. their domains are disjoint), thenis removed from
the domain of. Furthermore, the domain of must be a subset of the union of the
domains ofip for p in the domain oK. To learn more about the selection constraint,
see Section 6.9 and also the treatment of dependency parsiiwgpter 5.

3.6.2 Partial Agreement

Consider now the selection constraint:
ProjectedAgreement={Select Cfd 1112 ... In] Agreement}

whenp encodes agreement tugle N P C Q] andip encodes the projected tuple
[G N]. The constraint above precisely implements the mapping figreement tuples
to projected tuples.

We make this particular projection facility available innfitor SmallPartial (file
SmallPartial.oz ), which exportsPartialAgreement (the projected product in-
volving only gender and number) ag@tPartialAgreement which is a function tak-
ing 2 input arguments that must partially agree and retgraaid partial agreement.

23a (Smal |l Partial .oz 23a
functor
i mport
Select at
SmallLexicon
Encode FS
export
PartialAgreement
GetPartialAgreement
define
PartialAgreement =
{New Encode . domainProduct
init([[masc fem neut]

[sing plur]]}
1#N = SmallLexicon . agreement . range

Projection = {Tuple . make o N}

for 1 in 1..N do
case {SmallLexicon . agreement decode(l $)}
of [[Gender Number _ _ ] t hen

S = {PartialAgreement encode([[Gender Number]] $)}
[J] = {FS .reflect .lowerBoundList S}
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Projection .1 = J

end

end

proc {GetPartialAgreement Al A2 P}
P = {Select .fd Projection Al}
P = {Select .fd Projection A2}

end

end

3.6.3 Application

Now we provide an applicatidnsimilar to the previous one, but where only partial
agreement is required (fiemallPartialTest.oz ).

24a (Smal | Parti al Test. o0z 24a
funct or
i nport
QTk at
Application
SmallLexicon
SmallPartial
Browser(browse:Browse)
define
Box1l Box2
Wordsl = [der den dem des die das]
Words2 = [mann mannes manner mannern
schone schdnen schoner schdnes schénem]
proc {Try}
{Browse
try
W1 = {Nth Wordsl {Boxl get(firstselection:$)}}

W2 = {Nth Words2 {Box2 get(firstselection:$)}}
in
{SmallPartial . partialAgreement
decode(

{SmallPartial . getPartialAgreement
{SmallLexicon . get W1}
{SmallLexicon . get W2}} $)}

catch _ then error end}

end

Interface =

Ir(listbox(init:Words1 glue:we exportselection: fal se handle:Box1)
listbox(init:Words2 glue:we exportselection: fal se handle:Box2)
newline
button(text: glue:we action:Try)
button(text: glue:we

action: proc {$} {Application .exit 0}  end))

3http://www.ps.uni-sh.de/~duchier/esslli-2000/SmallP artialTest.oza
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end

Window = {QTk. build Interface}
{Window show}



26

Chapter 3. Efficient Encodings of Finite Domains




Dominance Constraints

Trees are widely used for representing hierarchically miggad information, such as
syntax trees, first-order terms, or formulae representiegmnimgs. A tree can be re-
garded as a particular type of directed graph. A directegitgraa pair(V, E') where

V' is a set of vertices an&' a multiset of directed edges between them, i.e. a subset
of V x V. Aforest is an acyclic graph where all vertices have in-degat most 1. A
tree is a forest where there is precisely one vertex, cdtleddot, with in-degree 0; all
others have in-degree 1.

First-order terms, or finite constructor trees, are charagd by a further restriction:
each node is labeled by some construcfoof a signatureX:, and its out-edges are
labeled by integers from 1 to n, where n is the arity of the troctor. This can be
formalized as follows: we assume a signatdref function symbolsf, g, ..., each
equipped with an aritar(f) > 0. A finite constructor tree is then a trip(@, E, L)
where(V, E) defines a finite tree, anfl : V' — Y andL : E — N are labelings, and
such that for any vertex € V' there is exactly one outgoing edge with labkdbr each

1 < k < ar(L(v)) and no other outgoing edges.

Trees are often used to represent syntactic structure. ¥aonme, here is a possible
analysis of'beans, John likes everyday"

beans S\v

John
/ nl everyday

likes

or logical formulae representing meanings. For examples aee the simplified repre-
sentations of the two meanings of the ambiguous sentvesy yogi has a guru”

foral exist
yogi exist guru /@\'
guru has yogi has
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4.1 Descriptions of Trees

Since trees are a basic food group in the computational iBtigwliet, it is often very

convenient to be able to describe classes of trees withicgaeral structural proper-
ties. As mentioned earlier, a tree is typically specifiedpstonally by listing its edges,
i.e. by providing a relation of immediate dominance betweertices. This is often
too specific, hence the idea of also permitting the more eelaelation of (general)
dominance, which is simply the transitive closure of imnaéglidominance.

This makes it possible to express that some versteshould dominate another vertex
v, Which we writev; <1* v9, without having to commit to any specific detail. This
merely requires that, must occur below,, and allows arbitrary material to be in-
serted on the path between them. In other words, mathhE V_2/ is satisfied in
every model (tree) in which; denotes a proper ancestorgf

4.1.1 DTree Grammar

One application of tree descriptions is in the class of gramsmvhich here we will,
a bit loosely, generically call DTree grammars (DTGs) [686][[47] [16]. Where
Lexicalized Tree Adjoining Grammars (LTAGS) require thenrmaonotonic operation
of adjunction, DTGs instead support the monotonic inseriigo holesprovided by
dominance. For example, here is an elementary tree desaoripr a topicalized NP:

£
beans Alp

Note how the description introduces a dominahode (graphically represented by a
dotted line) between a sentence node S and a trace NP to hiompedisomewhere
below (i.e. to stand for the missing NP that was topicalized)

One main attraction of tree descriptions, is that it showdobssible to put together
several descriptions and then look for solution trees timatilsaneously satisfy all of
them. Parsing is one application: we would like to selechaléexicon one description
for each word and combine them into a syntax tree. Consideexample sentence
"beans, John likes everydaghd the following descriptions for each word:

S
N/ \l_s john lva/l\\(P lvP  AbV
beans N:P : everyday
€ INP
likes

A corresponding solution tree is shown below where the panitinating with the
description for the topicalized NBeans"are shown in red.
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beans S\v

John A \Y
NP everyday

likes €
4.1.2 Underspecified Semantic Representation

Semantic representations are typically expressed in the & higher-order logical

formulae [38] [18]. The semantic representation of a phragaiilt-up from the se-

mantic contributions of its parts. One advantage of treerif@sons in this context is

that they permit a certain amount of underspecification @efit to account for scope
ambiguity [44].

Consider again the sentenbevery yogi has a guru" It is ambiguous in the scope
of the existential quantifier associated wibru. If this quantifier takes wide scope,
then all yogis have the same guru. If it takes narrow scogiereit yogis may have
different gurus. This ambiguity can be succinctly exprdsgith the description shown
below:

forall 0 exists
yogi %m guru &7,

haS o

4.2 Dominance Constraints

We now present a formal language with which we can write tesedptions. This is
the language dbominance Constraints with Set Operatasdescribed in [15]. It has
the following abstract syntax:

¢ = xRy | x:f(r1...m0) | oA

where variables, y denote nodes angt C {=,<",>", L}. <™ represents proper
dominance and. disjointness. The constraintR y is satisfied when the relationship
that holds betweem andy is one inR. Thusx {=, L } y is satisfied either when and

y are equal, or when they denote nodes in disjoint subtreesviitdex <* y instead of
x {=, <"} y and generally omit braces when we can write a single symbol.

Consider again the scope ambiguity example:

forall 0 exists
yogi Ag@ guru &7

has oz
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It can be expressed as the following dominance constraint:

xg : forall(zq, z9)
A Yo : exists(y1, y2)
A x1:YOQi A xo <z
A yp:guUIU Ay <* 2
A z:has

4.2.1 Models of Dominance Constraints

A model of a dominance constraintis a pair(7, I) of a treel” and an interpretation
of I mapping variables of to nodes inT’, and such thap is satisfied. We write
(T, I) = ¢ to say thaw is satisfied by(7", I') and define it in the usual Tarskian way as
follows:

(T.I) Eong if(T,1) = pand(T,I) = ¢
(T,I) =x Ry if I(z)isinrelationr to I(y) in T, for somer € R

Solving dominance constraints is NP-hard. This was shognige.[31] by encoding

boolean satisfiability as a dominance problem. Howeverctivestraint-based tech-
nique first outlined in [11] has proven quite successful asldes practical problems
of arising e.g. in semantic underspecification very effitjenThe technique is for-

mally studied and proven sound and complete in [15]. An esitenof this technique

to handle general descriptions with arbitrary Boolean eatives was presented in
[10].

4.2.2 Solved Forms of Dominance Constraints

If a dominance constraint is satisfiable, it has infinitelynpnanodels; in particular, if
T is a solution ofp, then any tree that contaifisis also a solution. For example, here
are a few models of <* y:

N /Q

The problem is similar when solving equations on first-ortlgms. The equation
fla, X1, X5) = f(Y1,b,Y3) has infinitely many models, namely all first-order terms
of the form f(a, b, T') whereT is a first-order term. Instead of attempting to enumerate
all models, a solver returnsraost general unifier

X1=bY1=0a,Xo=Ys

A unifier is also known as solved form it represents a non-empty family of solutions.

For a dominance constraigt we are going to proceed similarly and search for solved
forms rather than for solution trees. The idea is that we sim@nt to arrange the
nodes interpreting the variables ¢fnto a tree shape.
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For our purpose, a solved form will make explicit the relagbip = r y that holds
between every two variables and y of the description: i.e. in a solved form €
{=,<",>T, L}. In[15], we show that it is possible to use less explicit sdiforms
while preserving completeness: the relationship betweamd y need not be fully
decided, but merely one af <* y or x ~<1* y. For simplicity of presentation, we will
only consider fully explicit solved forms, but, in practjdess explicit solved forms are
to be preferred since they require less search. In [15], wesghat the less explicit
solved forms may avoid an exponential number of choice point

4.3 Solving Dominance Constraints

A naive approach to search for solutions of a descripfi@gsto non-deterministically
fix the relationshipery between any two variables ¢fand then (1) verify that there are
trees corresponding to this configuration (i.e. essentildt the solved form has a tree-
shape), (2) verify that some of these trees also satisihhis algorithm is exponential.
But, many configurations do not correspond to trees, andonat satisfy. This is
where constraint propagation can prove very effectiveart deterministically rule out
configurations that cannot lead to admissible solutions.

Thus our approach will consist in formulating 2 sets of cidte

Well-formedness Constraints: these guarantee that a solved form has a tree-shape, t.&.hastree
solutions.

Problem-specific Constraints: these guarantee that a solved form actually satisfies thoeiplésn

4.3.1 Well-Formedness Constraints

Consider a solution tree for a descriptign Further consider the nodéode,, in that
tree, interpreting variable occurring in¢g. When observed from the vantage point of
this node, the nodes of the tree (hence the variables thatriterpret) are partitioned
into 4 regions:Node, itself, all nodes above, all nodes below, and all nodes tithe
(i.e. in disjoint subtrees).

Up

T

Eq,

Side, x/T\

Down,

The variables ofp are correspondingly partitioned: all variables that as® ahter-
preted byNode,, all variables interpreted by the nodes above, resp. betdw the
side. We introduce 4 variables to denote these sets:

Eq,, Up,, Down,, Side,
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Clearly,z is one of the variables interpreted Nypde,:
z € Eq,

Furthermore, as described above, these sets must formitgopaof the variables oc-
curring in¢:
Vars(¢) = Eq, W Up, ¥ Down, ¥ Side,

4.3.1.1 Characteristic Set Constraints

In order to formulate the constraints that will only licertsee-shaped solved forms,
we must first consider each individual case y for r € {=, <™, >", 1}. For each
caserry and its negation —ry, we will formulate characteristic constraints involving
the set variables that we introduced above.

Let's consider the case <™ y for which a solution looks as shown below:

For convenience, we define, for each variablehe additional set variabldsgdown,
andEqup, as follows:
Eqdown), = Eq, & Down,
Equp, = Eq, W Up,
We write [z <t y] for the constraint characteristic of caseat y and define it as
follows:
[xr<Ty] = Eqdown, C Down,
A Equp, < Up,
A Side, C Sidg,
l.e. all variables equal or beloware belowz, all variables equal or aboveare above
y, and all variables disjoint from: are also disjoint fromy. This illustrates how set
constraints permit to succinctly express certain pattefitsference. Namelfz <™ y/]
precisely expresses:
Ve y<*z—oaxz<dtz
Ve z2<*z— 2"y
Ve zlax — zly

The negation is somewhat simpler and states that no vaeglal tox is abovey, and
no variable equal tg is belowz. Remember that; || 52 expresses that; andS; are
disjoint.
[x-<Ty] = Eq, || Up,
A Eq, || Down,

We can define the other cases similarly. Thusl y]:

[« Ly] = Eqdown), C Sidg,
A Eqdowg C Side,
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and its negatiotfz —_L y]:

[« Ly] = Eq, || Sidg,
A Eq, || Side:
For the casdx = y] we firstintroduce notation. We writdode, for the tuple defined
as follows:
Node, = (Eq,,Up,,Down,,Side., Equp,, Eqdown,, Daughters)

whereDaughters = f(Node,,,...,Node,, ) when the constraint : f(z1,...,zy)
occurs ing (more about this when presenting the problem-specific cainss). Now
we can simply defingx = y] as:

[t=y] = Node, = Nodeg,
and its negatiofjz —= y] as:
[r-=y] = Eq,[Eq,
4.3.1.2 Well-Formedness Clauses

For every pair of variables andy, we introduce a finite domain variable,, to denote
the relationship: R, y that obtains between thenR,, € {=,<*,>", L} and we
freely identify {=, <™, >", L} with {1,2, 3,4}. In a solved form, eveng,, must be
determined.

In order to guarantee that a solved form is tree-shaped,dohn eair of variables:
andy, we consider the 4 mutually exclusive possibilities. Farhepossible relation

r € {=,<",>7, L} we state that eitheR,,, = r and the corresponding characteristic
constraintg[z r y] hold, or R,, # r and the constraintfc —r y| characteristic of the
negation hold.

Thus for each pair of variablesandy, we stipulate that the following Well-Formedness
Clauseghold:

[t=y] NRyy== OrRyy #= A [z-=1]
[t <T y] A Ry = <t or Ry # <t A [z~ 4]
[t > y] ARy =T 0r Ry #>F Az > y]
[t Ly] ANRyy=1 orRyy#L A [z—-Ly]

These clauses are all of the foxth or Cs. This denotes disjunctive propagatoand
is explained in the next section.

4.3.1.3 Disjunctive Propagator

In Logic Programming, the only method available for dealimith complex disjunc-
tions is non-determinism. Thus, in Prolog, you would write:

Cl; C2
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and this would have the effect to first tga, and then on backtracking to tg2. In
other words, in Prolog you must commit very early to explgréither one alternative
or the other.

Early commitment is a poor strategy in general. In many casesuld be preferable
to delay this choice until e.g. sufficient information is kmoto reject one alternative
altogether. This is the intuition behind the disjunctivegmgator:

Cl or C2

It is a propagator, not a choice pointil andc2 are arbitrary constraints: when one
of them becomes inconsistent with what is currently knowae. (iwith the store of
basic constraints), then the propagator reduces to the ottee Thus, a disjunctive
propagator has the declarative semantics of sound logigjaindtion (unlike Prolog’s

; operator which depends aregation as failurgand the operational semantics given
by the rules below:

BAC, —* false
B/\(Clong) —  BACy

BACy —* false
B/\(ClorCQ) — BACy

How is this possible? We have already explained that all edatjpns operate over a
constraint store We can go one better and allovestedconstraint stores. This idea is
indeed supported by Oz under the nam€ofmputation Spacgsee Section 6.4). The
disjunctive propagatoti or C2 creates 2 nested computation spaces - one in which
to executec1 and one in which to (concurrently) execute - and it monitors both
spaces. If an inconsistency is derived in the space wheyecsaxecutes, then the
space where1 executes is simply merged with the current space, dousmittingto
alternativeC1.

A disjunctive propagatoc1 or C2 allows to delay the choice between the two alter-
native in the hope that constraint propagation alone wikble to decide it. However,
this may fail to happen, in which case, to ensure completgrves may have to non-
deterministically force the choice anyway. How can we achihis?

The usual technique is to introduceCantrol Variable i.e. a finite domain variable
whose purpose is simply to allow to choose the alternativa. eikample, you might
write:

X=1 C1 or X=2 C2

Thus, if constraint propagation is unable to decide thaudidjon either way, you can
non-deterministically either trx=1 or try X=2. Variable X allows you tocontrol the
disjunction.

In the case of the well-formedness clauses, we already haveatiablesiz,, which
can serve this purpose.
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4.3.2 Problem-Specific Constraints

The well-formedness constraints guarantee that our sdbreas correspond to trees.
We now need additional constraints to guarantee that tliese aictually satisfy our
descriptiong. We shall achieve this by translating each literapimto a constraint as
explained below.

If the constraint is of the formx R y, then the translation is trivial in terms of the
variable R, that we introduced earlier to denote the relationship betweandy:
R,y €R

If the constraintisc : f(x1,...,z,), thenitis translated into the constraints below:

Down, = Eqdown,, W... s Eqdown,
Equp, = Up,, forall1 <i<n
Daughters. = f(Node,,, ..., Node,, )

Particularly important is the first constraint which statieat the trees rooted at the
daughters are pairwise disjoint and that they exhaustigetyount for the variables
belowz.

4.3.3 Searching for Solved Forms

Given a descriptiorp, we transform it into the constraint satisfaction probleeg
by the conjunction of the well-formedness constraints dnredroblem specific con-
straints. The CSP can be solved by searching for assignreetite variables?,,
consistent with these constraints.

4.4 Implementation

donm(X RY)

lab(X f(X1 ...

| abel ed( X)

In this section, we present the Oz functmminance (file Dominance.oz ) imple-
menting a solver as described in the preceding sectionptréssolutionPredicate
which can be used as follows:

{ExploreAll {Dominance . solutionPredicate Desc}}

whereDesc is a tree description in the form of a list where each elemeof bne of
the forms described below:

wherex andy are both atoms naming variables, anid an atom or list of atoms from
the seteq, above , below , side .

Xn))

wherex andXi are atoms naming variables.

whereXx is an atom naming a variable. This is a new constraint not ioreed in our
abstract syntax but very convenient in practice: it simpdyes thak must be identified
with some variable that is explicitly labeled in the inpusdeption.
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36a

36b

Dom nance. 0z 36a

funct or
inport FD FS

export SolutionPredicate

defi ne

Dominance:
Dominance:
Dominance:
Dominance:
Dominance:
Dominance:

end

SolutionPredicate 36b
MakeNode 36¢

characteristic constraints 37a
well-formedness clauses7b
Solver class37c

utilities 39a

SolutionPredicate takes a tree description as argument and returns a procaghure
propriate for encapsulated search. This procedure craaeker object. This object
is only needed for converting the description into conetsaand starting the search.

Dominance: SolutionPredicate 36b
fun {SolutionPredicate Desc}

proc {$ Info}

{New Solver init(Desc Info) _}

end
end

4.4.1 MakeNode

36¢

For each variable: in the description, we must create all the correspondingasét
ables required by the encoding. This is the purpose of fanstakeNode. It is invoked

as{MakeNode | Vars}

wherel is the unique integer used to represent variatéed

Vars is a set variable representing the set of all variables occuin the description.
The function returns a representationNwde, in the form of a record.

Dominance: MakeNode 36¢
fun {MakeNode | Vars}
[Eq Down Up Side] = {FS .var .list .decl 4}
EqgDown = {FS. union Eq Down}
EqUp = {FS. union Eq Up}

{FS . partition [Eq Down Up Side] Vars}
{FS.include | Eq}

node(

€q
down
up
side
egdown
equp
daughters

end

: Eq

: Down

: Up

. Side

: EqDown
: EqUp
P
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4.4.2 Characteristic Constraints

The constraints characteristic ofr y or z —r y for eachr € {=, <", >, 1} can be
easily expressed in terms of the node representahlmig, andNods,.

37a (Dominance: characteristic constraints 37a
proc {Equal N1 N2} N1=N2 end
proc {NotEqual N1 N2}
{FS . disjoint N1 .eq N2.eq}
end
proc {Above N1 N2}
{FS. subset N2 .eqdown N1.down}
{FS. subset N1 .equp N2. up}
{FS. subset N1 .side N2 . side}
end
proc {NotAbove N1 N2}
{FS. disjoint N1 .eq N2.up}
{FS . disjoint N2 .eq N1. down}
end
proc {Disjoint N1 N2}
{FS. subset N1 .eqdown N2. side}
{FS. subset N2 .eqdown NL1. side}
end
proc {NotDisjoint N1 N2}
{FS . disjoint N1 .eq N2. side}
{FS. disjoint N2 .eq N1. side}
end

4.4.3 Well-Formedness Clauses

Procedureclauses creates the well-formedness clauses for the pair of vasabénd

y, whereN1 denotesNode,, N2 denotesNodg,, andR denotesR,,. Note that we

identify = with 1, < with 2, " with 3, and_L with 4.

37b (Dominance: well-formedness clause87b
proc {Clauses N1 N2 C}
thread or {Equal N1 N2} C=1
thread or {Above N1 N2} C=2
thread or {Above N2 N1} C=3
thread or {Disjoint N1 N2} C=4
end

444 Solver class

C\ =:1 {NotEqual
C\ =: 2 {NotAbove
C\ =: 3 {NotAbove
C\ =: 4 {NotDisjoint N1 N2}

N1 N2}
N2 N1}

end
end
end
end

We use an object of clas®lver to turn a description into a CSP. There is no over-
whelming reason to use an object: the author simply finds aha®O-idiom is in
this case rather pleasant. In particular, it makes it easieranipulate state (see e.g.

@ounter  attribute later).

37¢c (Dominance: Solver class37c

end
end
end
end
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cl ass Solver
Dominance: Solver class, attributes38a
Dominance: Solver class, init method38b
Dominance: Solver class, var2node metho®9b
Dominance: Solver class, lab method40a
Dominance: Solver class, dom methodiOb
Dominance: Solver class, labeled method1a
Dominance: Solver class, info method41b

end

4.4.4.1 Attributes

4442

Each solver object has several attributésunter  allows us to give each variable oc-
curring in the description a distinct integer to encodegitir2int  is a dictionary map-
ping each atom naming a variable to the corresponding intgmding it.@nt2node

is a dictionary mapping an integer encoding a variabl® the record representing
Node,. @ars is a set variable representing the set of all variables oiccuin the
description.@abs represents the subset of these variables that are explatitled in
the description@hoices is a dictionary that allows us to map a pair of variahbleg
to the corresponding,., representing the relationship between them. Sigeis the
inverse ofRR,,, we only need to represent one of them: we only repreBeptwhen
x,y are respectively encoded by integers) and! is larger thani. For simplicity,
we assume that there are fewer than 1000 variables in theiptest and use index
| *1000 +J to retrieveRR,, from @hoices .

38a (Dominance: Solver class, attributes38a
attr counter:0 var2int int2node vars labs choices
i nit method

38b

Theinit  method initializes the attributes and then processes éacd lof the descrip-
tion, creating the corresponding problem-specific coirdsa A literal is processed
simply by invoking it as method on the solver object. The fiirsie that variable: is
encountered, it is assigned a new integer to encode it amdritespondingNode, is
created. The nested loops create all well-formednesseddos the variables encoun-
tered in the description. Finally, tHst-fail distribution strategy is invoked to search
for consistent assignments to the variabigsg.

Dominance: Solver class, init method38b
met h init  (Desc Info)

var2int <- {NewnDictionary}
int2node  <- {NewDictionary}
vars <- {FS.var . decl}
labs <- {FS.var . decl}

choices <- {NewnDictionary}

for Din Desc do {self D} end
{CloseSet  @ars}

{CloseSet  @abs}

{sel f info(Info)}

for I in 1..@ounter do
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for Jin1..( -1) do
{Clauses @nt2node .| @nt2node .J @hoices . (I *1000 +J)}
end
end
{FD. distribute ff {Dictionary . items  @hoices}}
end

Note that@ars and@abs are initially completely underspecified. Whenever a new
variable is encountered, it is stated to be an eleme@at . Whenever a labeling
constraint is encountered, the labeled variable is statdabtan element oftabs .
When all literals have been processed, then all variabke&raoswn, and all explicitly
labeled variables as weltloseSet is invoked on both@ars and@abs to state that
whatever is known to be in these sets sofar is really all thefiee. the lower bound is
also the upper bound).

39a (Dominance: utilities 39a 40c>
proc {CloseSet S}
{FS. var . upperBound {FS .reflect .lowerBound S} S}
end

4.4.4.3 var2node method

Whenever, in a literal, we encounter an atom naming a vazjaké invoke method
var2node to make sure that this variable is already encoded and tevetthe corre-
sponding node representation. If this is the first time webanter this variable:, we
allocate for it a new integer and create a node representstide, for it. Further, we
also createl,,, for all variablesy that were known sofar (i.e. all variables encoded by
integers smaller than the one encodit)g

39b (Dominance: Solver class, var2node metho@9b
met h var2node (X Node)
| = {Dictionary .condGet @ar2int X unit}
in
if I==unit then
I=(counter <-1) +1

{FS. include | @ars}
Node={MakeNode | @ars}
@ar2int . X =1
@nt2node .| := Node

for Jin 1. .( -1) do
@hoices . (I *1000+J) := {FD .int 1 #4}

end
el se Node=@nt2node .| end
end
4.4.4.4 | ab method
This method translates a labeling litetad(x f(x1 ... Xn)) into the correspond-

ing problem-specific constraints (as described in Secti@?} The last line states
that the variable named byis an element of the set of labeled variables.
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40a (Dominance: Solver class, lab methodiOa
meth lab (X R)
N = {sel f var2node(X $)}
in
N. daughters =
{Record .map Rfun {$ Xi} { self var2node(Xi $)} end}
{FS. partition
{Record . map N daughters
fun {$ Ni}
Ni.up = N. equp
Ni . eqdown
end}
N. down}
{FS. include @ar2int . X @abs}
end

4.4.45 dommethod

This method translates a dominance litekah(X R Y) into the corresponding problem-
specific constraint (as described in Section 4.3.2). Rereethiat sinceR,, is the in-
verse ofR,,, we only represent one of them: we represept whenz, y are encoded
by, Jandi >J.

40b (Dominance: Solver class, dom methodiOb
nmeth dom(X R Y)
{sel f var2node(X )}
{sel f var2node(Y _)}
| = @ar2int .X
J = @ar2int .Y

if 1==3 then 1::{Encode R}
elseif I>J then
@hoices . (I *1000+J) : : {Encode R}
el se
@hoices . (J *1000+I) :: {Encode {Inverse R}}
end
end

Here is how to inverse and encode the symbolic representatia dominance specifi-
cation.

40c (Dominance: utilities 39a <139a
fun {Encode R}

case R
of eq t hen
[ above then
[1 below then
[ side then
[1 __ then {Map R Encode}
end

A W NP
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end
fun {Inverse R}
case R
of eq then eq
[] above then below
[1 below then above
[T side then side
[1 __ then {Map R Inverse}

end

4.4.4.6 | abel ed method

This method translates a literlabeled(X)  and forces the variable named kyo be
eventually identified with one of the explicitly labeled iailes. We introduce to
denote this explicitly labeled variable.

41a (Dominance: Solver class, labeled method 1a
met h labeled (X)
N = {sel f var2node(X $)}

| = {FD . decl}

in
{FS. include | @abs}
{FS.include I N .eq}

end

4447 | abel ed method

The sole purpose of this method is to assemble a representaitia solution. A so-
lution is represented by a tuple mapping intege¢o Node, for the variabler that|
encodes. Actually, not quite, as we also augnidade, with an indication of the name
x of the variable (on featurear ).

41b (Dominance: Solver class, info method41b
met h info ($)
Int2var = {NewnDictionary}
in

{ForAll {Dictionary . entries @ar2int}
proc {$ V#I} Int2var .1 =V end}
{Record . mapind {Dictionary .toRecord o @nt2node}
fun {$ | N}
{AdjoinAt N var Int2var 1}
end}
end

4.5 Application

In this section, we provide a small interactive applicatitmtest our solver for domi-
nance constraints. A window will appear as shown below andcgm type the literals

http:/www.ps.uni-sb.de/~duchier/esslli-2000/DomDem 0.0za
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of a description in the text area. The literals shown in treupe correspond to the
example'every yogi has a guru"

=N Oz/QTK Window - O

[1ah (0 forallixl =2))
lab (vl exists(yl v2))
lab (=1 wogi)

lab iyl guru)

lab (= has)

dom (%2 [eg abowe] =)
dom (v2 [eg abowe] =)
labeled (xi)

labeled (v2)

solve Clear Quit |

When you have typed your literals, you can clickswive and The Explorer window
pops up and displays the search tree for all solutions to gescription. For our
example, we get the expected 2 readings:

— - [ - 0O X

Explorer Move Search Hodes Hide Options |

el
==

1 =

Time: 210ms ()1 <>2 [0 Depth: 2

4.5.1 Implementation

The implementation is provided as functasmbDemdfile DomDemo.02).

42a (DomDemo.oz42a
functor
i mport
QTk at ’http://www.info.ucl.ac.be/people/ned/qtk/QTk.ozf’
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TkTools
Application
Compiler
Explorer
Dominance
define
TextBox
proc {Clear } {TextBox delete( )} end
proc {Solve }
Text = {TextBox getText( $)}
in
try
Desc = {Compiler . virtualStringToValue
Pred = {Dominance . solutionPredicate Desc}

{Explorer . object all(Pred)}
catch _ then
{New TkTools . error
tkinit(master:Window text: ) }
end
end
proc {Quit } {Application .exit 0} end
Window={QTk . build
Ir(text(height:20 width:50 bg:white handle:TextBox)
continue continue newline

button(text: glue:ew action:Solve)
button(text: glue:ew action:Clear)
button(text: glue:ew action:Quit))}

{Window show}
end

}
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Dependency Parsing

In this chapter, we will take a look at parsing in the framewof dependency gram-
mar. The chapter is calletDependency Parsingtather than, say,Parsing with De-
pendency Grammardecause, for reasons of space/time, it is concerned only wit
the creation of dependency trees for input sentences anditiobther issues, such
as word-order, which are also essential for determiningngnaticality. Also cover-
age will be minimal and is only meant to illustrate the apgtiicn of the techniques
presented here.

Dependency parsing is particularly interesting becausxfiibits, in a very simple
way, 2 fundamental forms of ambiguity that commonly arispansing: lexical ambi-
guity and structural ambiguity, and allows to showcase tmingly constraint-based
techniques to effectively handle such ambiguities.

Maruyama [33] was the first to propose a complete treatmedépéndency grammar
as a CSP and described parsing as a process of incrememtalbifigiation. Harper
[23] continues this line of research and proposed sevegalrigthmic improvements
within the MUSE CSP framework [25]. Menzel [35] [24] [36] ambates the use of
soft graded constraints for robustness in e.g. parsing spoken langudigeproposal
turns parsing into a more expensive optimization problent, dalapts gracefully to
constraint violations.

The material in this chapter is based on our paper [8]. Ousgmtion has one no-
ticeable advantage over Maruyama'’s in that it follows maodgrguistic practice: the
grammar is specified by a lexicon and a collection of priregpl The formulation in
this chapter is also a little simpler than the one in [8] beeaititakes advantage of the
newselection union constrair(see Section 5.4.6 and Section 6.9.4).

5.1 Overview

We hope that the fundamentals of DG are known to the readerreVlew the basic
ideas only very briefly.

Contrary to phrase structure grammar, where parse tresgstarostly of non-terminal
nodes and words appear only as leaves, dependency gramstidafes no hon-terminals:
words are in bijection with the nodes of the dependency treether words, edges are
drawn directly between words. Thus a finite verb has typjcatl edge directed to its
subject, and another to its object.
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Unlike traditional phrase structure trees, dependenegtiusually allow crossing branches.

This makes dependency trees rather attractive for languaijle free word order (e.g.
German), and for the representation of long distance depenes. As an illustration,
consider the dependency tree shown below:

das Buch hat mir Peter versprochen zu lesen

Each box represents a node in the dependency tree. For easadofg, the words
are written at the bottom and for each one the correspondaug s indicated by
connecting it to the word by a vertical dotted blue line. Atsch box contains an
integer indicating the position of the word in the input. Tdieected edges of the
dependency tree are represented by red arrows. Each artabelsd to indicate the
type of the dependency, for example dpject  or zu_infinitive . We call such
labelsroles These roles are purely syntactic and not to be confusedvétythematic
roles.

5.2 Formal Presentation

Words
Cats
Args
Comps

Mods

In this section, we briefly outline the formal presentatidnlependency grammar pre-
sented in [8]. The basic idea is that each node of the depepndiere must be assigned
a lexical entry from the lexicon, and that certain principlte well-formedness must
be verified. For example, the lexical entry stipulates an@leand the node must have
precisely the outgoing dependency edges that realize dlesey.

A dependency grammar is a 7-tuple

(Words Cats Args, Comps Mods Lexicon, Rules

a finite set of strings notating fully inflected forms of words

a finite set of categories suchmagnoun),det (determiner), oxfin  (finite verb).
a finite set of (what we call) agreement tuples suchnassc sing 3 nom >.

a finite set ofcomplementoles, such asubject  Or zu_infinitive

a finite set ofmodifierroles, such asdj (adjectives), disjoint fromrComps We write
Roles= Compss Modsfor the set of all types of roles.
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Lexicon a finite set of lexical entries (see below).

Rules a finite family of binary predicates, indexed by role labebspressing local grammat-
ical principles: for eaclh € Roles there isI', € Rolessuch thafl",(w;,w;) charac-
terizes the grammatical admissibility of a dependency éalgeledy from motherw,
to daughterw,.

A lexical entry is an attribute value matrix (AVM) with signae:

string : Words
cat . Cats
agr . Agrs
comps : 2¢omps

and we write attribute access in functional notatior. iff a lexical entry, thestring(e)
is the full form of the corresponding wordat(e) is the categoryagr(e) is the agree-
ment tuple, angomps(e) the valency expressed as a set of complement roles.

5.2.1 Dependency Tree

We assume given a set of nodgswhich for simplicity we identify with the set of
integers{1,...,n}, and asef C V x V x Rolesof labeled directed edges between
these node(V, €) is a directed graph, in the classical sense, with labeleésdg/e
restrict our attention to finite graphs that are also trees.

A dependency tree is then defined as a fai= ((V, £), entry) of a tree as stipulated
above and a functioantry mapping each node ¥ to a lexical entry inLexicon

5.2.2 Well-Formedness Principles
Not all dependency trees as described above are gramrhatcahissible. We now
describe the conditions of admissibility, aka well-formesds.

While we have identified nodes with integers, we still prefemwrite w; (and often
just w or w') instead ofi to remind the reader that they correspond to words and to
distinguish them from other occurrences of integers thaé lm such interpretation.
We also writew - w’ to represent an edge labeledrom motherw to daughten’.

First, any complement required by a node’s valency must &lizesl precisely once:
Yw e V, Vp e entry(w), ' eV, w b uw €&

Second, if there is an outgoing edge framthen it must be labeled by a modifier role
or by a complement role in’s valency:

vw 5w € &, p e Modsu comps(entry(w))

Third, whenever there is an edge> w’, then the grammatical conditidn, (w, w’)
for I, € Rulesmust be satisfied i

Yw B w' € & T =T, (w,w)
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5.3 Improving Lexical Economy

Typically the same full form of a word corresponds to sevelislinct agreement tu-
ples. The preceding formal presentation simply assumedttbee would be a distinct
lexical entry for each one of these tuples. In practice, wuosld not be very realistic.
Therefore, we are going to define licensed lexical entrigerims of more economical
lexicon entries

Thus, instead of a featuegr mapping to a single agreement tuple, a lexicon entry has
a featureagrs mapping to a set of agreement tuples.

Although this is much less useful, we shall do the same fargmy information and
replace featureat mapping to a single category by a featuses mapping to a set of
categories.

Optional complements are another source of consideralilendancy in the lexicon.
Therefore, instead of modeling the valency by a single feattmps mapping to a set
of complement roles, we shall have 2 featuresips_req mapping to a set of required
complement roles, angbmps_opt mapping to a set of optional complement roles.

We now define the lexicon as a finite set@ficon entrieswhere a lexicon entry is an
AVM of the form:

word W
cats  C
agrs A
comps_req : R
comps opt : O

and thelexical entriedlicensed by the lexicon entry above are all AVMs of the form:

word W
cat Toc
agr Coa
comps : S
where

ceC

ac A
RCSCRUO

This simple formulation demonstrates how constraints a@mded to produce com-
pact representations of certain forms of lexical ambiguiigte that lexicon entries as
presented here do not support covariation of features:dh awcase, you still need to
expand into multiple lexicon entries. Covariation couldigabe added and supported
using the selection constraint, but | have never found tleel fier it: the most common

application for covariation is agreement, and we have dyredegantly taken care of it

by means of a product of finite domains.

5.4 Constraint Model

In this section, we develop a constraint model for the forfreahework of Section 5.2.
In essence, the constraint model is an axiomatization ofssilole dependency trees,
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but also has a reading as a constraint program. It is caydtuiinulated to take effec-
tive advantage of modern technological support for comgtpgogramming.

The approach is, as usual, a reduction to a CSP. We introcgui@bies to represent the
quantities and mappings mentioned in the formal model, anddlate constraints on
them that precisely capture the conditions that the forn@dehstipulates.

Our approach takes essential advantage of the intrfirstenessof the problem: (1)
a dependency tree has precisely one node for each word,d(® #ne finitely many
edges labeled with roles that can be drawn between n noddsy €ach word, there are
finitely many possible lexical entries. Thus the problenoigitk a set of edges and, for
each node, a lexical entry, such that (a) the result is a(fo@@one of the grammatical
conditions are violated. Viewed in this light, dependeneysing is a configuration
problem, and therefore it is no surprise that constraing@mming should be able to
address it very effectively.

5.4.1 Representation

We now introduce the most important variables in our coidtrmodel. Other vari-
ables will be introduced later in the course of developing axiomatization. As in
the formal model, a node is identified with the integer repnéiag the position of the
corresponding word in the input sentence.

5.4.1.1 Lexical Attributes

The formal model posited a functi@ntry to map a node to a lexical entry. Here, we
shall seek to eliminate the useafitry and use lexical attribute functions that operate
directly on the node rather than on the entry which it is asesig

word(w) = word(entry(w))
cat(w) = cat(entry(w))
agr(w) = agr(entry(w))

comps(w) = comps(entry(w))

In the constraint modetat(w) is a variable denoting the category of the lexical entry
assigned to node (similarly for the other attributes).

5.4.1.2 Daughter Sets

We need to represent labeled edges between nodes. Tradljtidghis is realized by
means of feature structures: each node is a feature steuatiet an edger > w' is
represented by the presence of a feapuoa w, such thatw.p = w’. This, however, is
a lousy idea when the goal is to take advantage of active r@anispropagation. The
problem is that, in the traditional view, features are pdftinctions: i.e.p is a partial
function from nodes to nodes (from now on, we will wrjtéw) instead ofw.p). It is
rather inconvenient to try to express constraintg@n) when it is not always defined!

However, a slight change of representation allows us to puirmto a total function.
Instead ofp(w) being either undefined or defined and denoting a node, wedenitte
a set of nodes. Now instead of being undefipgd) is simply empty. In the case
where it was originally defined, it now denotes a singletdn se
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Thus subject(w) denotes the set of subjects ©f empty except whem is a finite
verb, in which case it is a singleton. We say thabject(w) is adaughter sebf w, i.e.

a set of daughters. This idea has the second advantagenthddition to complements
(like subject), it also naturally accommodates modifieke (hdjectives)adj(w) is the

set of adjectives ofv. The difference is that a modifier daughter set may have any
number of elements instead of at most 1 for a complement deugét.

Formally, for each role € Roles we introduce a functiop such thap(w) is the set
of immediate daughters af whose dependency edge is labeled wpith

plw) = {u' | w5 €&}

in the constraint model(w) is a finite set variable.

5.4.1.3 Lexicon

We consider a functiomex mapping a full form of a word to the corresponding set
of lexicon entries, or rather, without loss of generalitye assume thdex returns a
sequence rather than a set, which allows us to identify dexentries by position in
this sequence:

lex(s) = (e € Lexicon| word(e) = s)

We will have to pick one entry in this sequence. For this psepwme introducentryindex(w)
to denote the position of the selected entry in the sequekzéned from the lexicon.

5.4.2 Lexical Constraints

In this section, we define precisely the constraints gomgrr@issignment of lexical
attributes. Consider the sequence of lexicon entries mdxdaiorw from the lexicon:

(e1,...,en) = lex(word(w))

let's write I for the position of the one that is selected out of this segeen

I = entryindex(w)
Abstractly, we can writd? to denote the selected entry and define it thus:

E = {e1,...,en)[]
The lexical attributes assigneddoare then obtained as explained in Section 5.3:
cat(w) € cats(E)
agr(w) € agrs(E)
comps_req(FE) C comps(w) C comps_req(F) Ucomps_opt(E)

However, for practical reasons of implementation, thedigle constraint cannot op-
erate on arbitrary AVMs, but is only provided for finite domsiand finite sets. This
means that we cannot use the selection constraint direatthe sequence of lexicon
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entries to obtairy. However, we only neefl to access its attributes, and we overcome
the limitation we pointed out by pushing attribute access ihe selection:

cats(w) = (cats(ey), ..., cats(e,))[I]

agrs(w) = (agrs(ey),...,agrs(en))[!]
comps_req(w) = (comps_req(ey),...,comps_req(e,))[I]
comps_opt(w) = (comps_opt(e;),...,comps_opt(e,))[I]

cat(w ecats( )

)
agr(w) € agrs(w)
comps_red(w) C comps(w) C comps_req(w) U comps_opt(w)

5.4.3 Valency Constraints
Every daughter set is a finite set of nodes in the tree:

Yw eV, Vp € Roles p(w) CV

The second principle of well-formedness requires that gptement daughter sgfw)
be non-empty only whep appears inw's valency. Additionally, the first principle
states that, when it is non-empty, the complement daugbtei(®) must be a single-

ton:
Vp € Comps
lp(w)] <1
A lpw)=1 = pecomps(w)

In practice, the equivalence above will be enforced usaified constraintsvhich are
explained in Section 6.8.

5.4.4 Role Constraints

For each rolep € Rolesthere is a corresponding binary predic&tg The third prin-
ciple of well-formedness requires that whenever the degeadtree contains an edge
w % w', then the grammatical conditidn, (w,w’) must hold in the tree. Therefore

the tree must satisfy the proposition below:
Vw,w' €V, Vp € Roles v’ € p(w) = T(w,w’)

In practice, the proposition will be enforced by creatingisjwhctive propagator for
each triple(w, w’, p):

w' € p(w) ATp(w,w') or w & p(w)

For illustration, let's consider some exampledgfw, w'’).

Subject. The subject of a finite verb must be either a noun or a prondunust
agree with the verb, and must have nominative case. We wote for the set of
agreement tuples with nominative case:

Fsubject(wvw,) = cat(w') € {n,pro }
A agr(w) = agr(w’)
A agr(w') € NOM
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Adjective.  An adjective may modify a noun and must agree with it:

Dagj(w, w') = cat(w) =n
A cat(w') = adj
A agr(w) = agr(w’)

5.4.5 Treeness Constraints

Our formal framework simply stipulated that models showdrees. In the constraint
model, we provide an explicit axiomatization of this notidntree is a directed acyclic
graph, where every node has a unique incoming edge, exaeptistinguished node,
called the root, which has none.

To support our axiomatization, we introduce two new vagabiother(w) anddaughters(w)
for each nodav. Again to avoid the problem thamother might be undefined at the
root, we make it denote a set:

mother(w) C V
daughters(w) C V

mother(w) denotes the set of motherswfanddaughters(w) the set of its immediate
daughters. To enforce that a node has at most one mother,sge po

|mother(w)| <1

The set of immediate daughterswis simply defined as the union of its daughter sets:

daughters(w) = | ] p(w)

pERoles
w is a mother ofw’ iff w’ is a daughter ofv:
w € mother(w’) = ' € daughters(w)

We could introduce a variable to denote the root, but insteadhtroduce the variable
ROOTSETto denote the singleton containing the root.

ROOTSETC V
|ROOTSET =1

Now, w is root iff it has no mother:
w € ROOTSET = |mother(w)| =0

So far, we have enforced that every node (except the rooti hiamsque mother, but it
could still have more than one incoming edge from the samé&enoWe can exclude
this case by stating that the daughter sets for all nodeshtegeith the root set form a
partition of the input words:

YV = ROOTSETW |4+ p(w)

weY
p € Roles

In order to guarantee well-formedness, we still need toreefacyclicity.
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5.4.6 Yield and Acyclicity

The vyield of a node is the set of nodes reachable through #msitive closure of
complement and modifier edges, i.e. by traversing 0 or mgpertéency edges. We
distinguish between yield arstrict yield and introduce the corresponding variables
yield(w) andyieldS(w). The strict yield ofw is the set of all descendents ofthat
can be reached by traversing 1 or more dependency edgesi€lth®fyw is obtained

by addingw to its strict yield. In order to enforce acyclicity, we musguire thatw
does not occur in its strict yield. Therefore it suffices tfimethe yield ofw as being
partitioned by{w} and its strict yield:

yield(w) = {w} @ yieldS(w)

It remains to define the strict yield. For this purpose, weoiltice a new member of
the family of selection constraints: tlselection union constraint

S =U(S1, ..., Su)[S

where all ofS, S;, Slare finite set variables. Its declarative semantics are:
S=Js
1€Sl

i.e. from the sequencésy, .. ., S, ), the sets occurring at all positions indicated3iy
are selected and their union is returned. See also SecBoh for further discussion
of the selection union constraint.

The strict yield ofw is simply the union of the yields of its daughters:
yieldS(w) = U(yield(w,), ..., yield(w,))[daughters(w)]

The use of the selection union constraint improves and #iepthe formulation in

[8].
5.4.7 Solving the CSP

We have now completely specified our constraint model. Th® @Sobtained by
collecting the constraints that its stipulates and thewisglin terms of its variables:
we need to look for assignments to the variables of the cainstmodel that satisfy its
constraints. Here is the simple strategy that we follow:

e First, determine assignments to the daughter set variablesther words, we
apply a distribution strategy on:

{p(w) | p € Roles w € V}

e Second, we make sure that a lexicon entry has really beertegf®r each word.
I.e. we apply a distribution strategy on:

{entryindex(w) | w € V}

This is sufficient to determine assignments to all variables



54 Chapter 5. Dependency Parsing

5.5 Implementation

In this section, we develop an Oz implementation of the caitdtmodel presented
in the preceding section. It consists of several functors r@uses functoEncode
developed in Chapter 3.

5.5.1 Demo Session

You can try the demo applicationlattp://www.ps.uni-sb.de/~duchier/esslli-2000/D

Note that in order to run the demo application, you will neddve packageogul:/duchier/select
installed at your site (see Section 5.5.5). When the demlicagipn starts, it pops up

a window with an entry box where you can type in a your inputt's_idustrate this

with the example sentence which which we started this chagiées Buch hat mir Peter
versprochen zu leserAfter you type in the sentence, click tirarse button and an
explorer window pops up showing you the search tree for asjide parses. You can

click on any node in this search tree to see a graphical disgléhe current state of

the corresponding, possibly partial, dependency tree.

el 07 Window <2= - O

szt

dative —— zu
chject | —— Z"

e

das buch hat mir peter versprochen zu lesen

P~ =

Quit "das huch hat mir peter versprachen zu lesen | Clear | Parse

<] I = ¢

=8 0z Explorer <2» - O X
Explorer Move 3Search Hodes Hide Options |

= [

Time: 90ms (1 <2 @0 Depih: 2

el
|

There are more possible solutions than you might expecplgibecause we have no
word order restrictions. This can be seen clearly if we @eéibely mix up the words
as indie der liebt Mann Frau
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EEEl Oz Window - O %
E:ﬂlect
det_def—
die der liebt mann frau /
I~ [=
Quit "die der lieht mann fray | Clear | Parse |

o] o: e A

Explorer Move Search Hodes Hide Options |

9

el
|

= [

Time: 50ms (0 <>1 @0 Depth: 1

Here is another example inspired by Reape’s article [#&}er hat mir versprochen,
dem Richter zu gestehen, die Tat begangen zu haben

B Oz Window <2 - 0O X
subJ,e.a&./ a5t
dati zu
dat.i zu
det "] vp_|
Db.Jiﬁ/F
det|
peter hat mir versprochen dem richter zu gestehen die tat begangen zu haben /
-l I
Quit (|peter hat mir versprochen dem richter 2u gestehen dis tat begangen zu haber| | Qear | Parse |
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e -l Oz Explorer <Z=

Explorer Move Search Hodes Hide Options

0o X

el

]

Time: 330ms D7 <& @0 Depth 4

9

552 Entry.oz

In this section, we develop modutetry (file Entry.oz ) whose purpose is to encode
lexicon entries. It imports modulencode which we developed in Section 3.3.2.

56a (Entry. oz 56a
funct or
i nport
Encode FS
export
Entry exports 56b
define
Entry domain products 56¢
Entry encoder of lexicon entry 58f
end

5.5.2.1 Agreement

This is the same notion of agreement as introduced in Se8tinlt involves gender,

number, person, case, and definiteness of quantifier.

56b (Entry exports 56b
Agreement

56¢ (Entry domain products 56c¢
Agreement = {New Encode . domainProduct
init([[masc fem neut]
[sing plur]
[1 23]
[nom acc dat gen]
[def indef none]])}

57a>

57b>
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5.5.2.2 Category

A word may have one of the following categories: nouf, (@ronoun fro ), infini-
tive verb (inf ), finite verb (fin ), past participlepast ), determiner det ), particle
(part , e.g. ‘zu’ in ‘zu lesen’), separable verb prefiplef , e.g. ‘ein’ in ‘einkaufen’,
i.e ‘ich kaufe ein”), adjectiveddj ), adverb édv), preposition frep , €.g. ‘mit’).

57a (Entry exports 56b <I56b 57ck>
Category
57b (Entry domain products 56c <56¢ 57d>

Category = {New Encode . domainProduct
init([[n pro vinf vfin vpast det part vpref adj adv prep]])}

5.5.2.3 Roles

We support the following types of complements: determider ), subject §ubject ),
nominative fominative , €.g. ‘er ist ein Mann’), objecbpject ), dative @ative ), zu
particle ¢u, e.g. ‘zu lesen’), separable verb prefixief , €.g. ‘ein’ in ‘ich kaufe ein’),
infinitive verb phrase with zuvp_zu , e.g. ‘ich verspreche zu lesen’), past participle
(vp_past , e.g. ‘ich habe gelesen’), infinitive verb phrase withouf\zuinf , e.g. ‘ich
will lesen’).

57¢ (Entry exports 56b <57a 57e>
ComplementRoles

57d (Entry domain products 56¢ <57b 571>
ComplementRoles = [det subject nominative object dative
zu vpref vp_zu vp_past vp_inf]

We also support the following types of modifiers: adjectiu (), adverb édv), prepo-
sitional noun phrasepf_np, e.g. ‘mit dem Buch’).

57e (Entry exports 56b <57¢ 57g>
ModifierRoles AllRoles

57f (Entry domain products 56c <57d 57h>
ModifierRoles = [adj adv pp_np]
AllRoles = {Append ComplementRoles ModifierRoles}

We can now express the domain of all roles, as well as compatsets of complement
roles and of modifier roles:

57g (Entry exports 56b <J57e 58al>
Roles Complements Modifiers

57h (Entry domain products 56c <57f 58b>
Roles = {New Encode . domainProduct init([AlIRoles])}
Complements = {Roles encode(ComplementRoles $)}
Modifiers = {Roles encode(ModifierRoles $)}



58 Chapter 5. Dependency Parsing

5.5.2.4 Verb Prefixes And Marks

In German, the same base verb can be modified by many possitilgrefixes, e.g.
‘einkaufen’, ‘abkaufen’, ‘auskaufen’, etc. In order to ggiod propagation, we also
need to encode the set of possible verb prefixes. Here we onlsider ‘ein’, but
you could add as many as you want. The treatment of separakbepvefixes is an
extension to the constraint model we presented earlieit laufairly straightforward.

58a (Entry exports 56b <579 58ck>
Vprefixes
58b (Entry domain products 56¢ <I57h 58d>

Vprefixes = {New Encode . domainProduct init([[ein]])}

Here are other aspects of verbs which we have not considerédre (1) a verb may
require either ‘haben’ or ‘sein’ as an auxiliary. (2) a seyde verb prefix is not always
separated (e.g. ‘einkaufen’). (3) the zu particle is notagisvseparated from the verb
(e.g. ‘einzukaufen’). In order to be able to represent thdegails in the lexicon, we
introduce a domain of marks:

58c (Entry exports 56b <58a 58el>
Marks
58d (Entry domain products 56¢ <I58b

Marks = {New Encode . domainProduct init([[zu vpref haben sein]])}

5.5.2.5 Encoder of Lexicon Entry

A lexicon entry is specified by a record where each featuresrtmp descriptor for the
corresponding domain product. A lexicon entry must haveastl featureats . All
other features are optional and the encoder provides theudbdefault value.

Featureagrs provides a descriptor for a set of agreement tuples. Thaitiefalue is
the set of all agreement tuples. Featuseps_req is a list of required complement
roles (default empty). Featuremps_opt is a list of optional complement roles (de-
fault empty).vpref is a list of verb prefixes (default empty) and indicates thatftll
form of the verb has one of these prefixesx is a list (default empty) of at most one of
haben or sein and indicates that the word is a form of one of these awéamarks

is a list of marks (default empty): this list contains if the particle is part of the word,
vpref if the separable prefix is not separateahen (resp.sein ) if it requires ‘haben’
(resp. ‘sein’) as an auxiliary.

function LexEncode takes a specifier for a lexicon entry and returns the corraspo
ing (encoded) lexicon entry. For simplicity in the parsée texicon entry contains
lower and upper bounds for the set of complements ratherttigasets of required and
optional complements.

58e (Entry exports 56b <I58¢
LexEncode

58f (Entry encoder of lexicon entry 58f
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fun

end

5.5.3 Lexicon. oz

{LexEncode Desc}

DescCat = Desc . cats

DescAgr = {CondSelect Desc agrs [nil]}
DescReq = {CondSelect Desc comps_req nil}
DescOpt = {CondSelect Desc comps_opt nil}
DescVpf = {CondSelect Desc vpref nil}
DescMrk = {CondSelect Desc marks nil}
DescAux = {CondSelect Desc aux nil}
%%

Cats = {Category encode(DescCat $)}
Agrs = {Agreement encode(DescAgr $)}
Regs = {Roles encode(DescReq $)}
Opts = {Roles encode(DescOpt $)}
Vpref = {Vprefixes encode(DescVpf $)}
Zmrks = {Marks encode(DescMrk $)}
Aux = {Marks encode(DescAux $)}

%%
CompsLo = Regs
CompsHi = {FS . union Regs Opts}

lex(cats . Cats
agrs 1 Agrs
comps_lo : CompsLo
comps_hi : CompsHi

vpref : Vpref
marks © Zmrks
aux : Aux)

FunctorLexicon (file Lexicon.oz ) imports moduleentry defined in the previous
section, and exports functiobet which takes an atom as an argument (representing
the full form of a word) and returns the corresponding listexdicon entries, or raises

exceptionunknownword(Word)

59a (Lexico
fun
imp
exp
def

Nn. oz 59
ctor
ort Entry
ort Get
i ne
Lexicon = {Dictionary . new}
proc {PUT Word Spec}
{Dictionary . put Lexicon Word
{Entry .lexEncode Spec} | {Dictionary
end
fun {Get Word}
try Lexicon . Word
catch _ then

if the word does not appear in the lexicon.

. condGet Lexicon Word nil}}
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rai se unknownword(Word) end

end
end

Lexicon entries 60a

end

5.5.3.1 Proper Names

In German, proper names may take a determiner: ‘der Petiégz’Maria’.

60a (Lexicon entries 60a

{PUT peter
lex(cats

agrs

comps_opt
{PUT peters
lex(cats

agrs

comps_opt
{PUT maria
lex(cats

agrs

comps_opt
{PUT marias
lex(cats

agrs

comps_opt

5.5.3.2 Pronouns

2 [n]
: [[masc sing 3 [nom acc dat]]]

© [det])}

2 [n]
: [[masc sing 3 gen]]

. [det])}

2 [n]
: [[fem sing 3 [nom acc dat]]]

. [det])}

2 [n]
. [[fem sing 3 gen]]
. [det])}

Here is a sample of pronoun entries:

60b (Lexicon entries 60a
{PUT ich
lex(cats
agrs
{PUT mich
lex(cats
agrs
{PUT mir
lex(cats
agrs
{PUT du
lex(cats
agrs
{PUT dich
lex(cats
agrs
{PUT dir
lex(cats
agrs

. [pro]
2 [[sing 1 nom]))}

. [pro]
: [[sing 1 acc]])}

. [pro]
: [[sing 1 dat]])}

. [pro]
> [[sing 2 nom]))}

. [pro]
: [[sing 2 acc]])}

: [pro]
: [[sing 2 dat]])}

60b>

<60a 6la>
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5.5.3.3 Common Nouns

We only show ‘Mann’ for illustration.

6la (Lexicon entries 60a

{PUT mann
lex(cats

agrs

comps_opt
{PUT mannes
lex(cats

agrs

comps_opt
{PUT manner
lex(cats

agrs

comps_opt
{PUT mannern
lex(cats

agrs

comps_opt

5.5.3.4 Determiners

: [n]

: [[masc 3 sing [nom acc dat]]]

© [det])}

o [n]

: [[masc 3 sing gen]]

. [det])}

2 [n]

. [[masc 3 plur [nom acc gen]]]

© [det])}

- [n]

. [[masc 3 plur dat]]
© [det])}

We only show 4 entries for illustration:

61b (Lexicon entries 60a
{PUT der
lex(cats
agrs

{PUT den
lex(cats
agrs

{PUT ein
lex(cats
agrs

{PUT einen
lex(cats

agrs

5.5.3.5 Verbs

. [det]

: [[def [[masc sing 3 nom]
[fem sing 3 [dat gen]]
[ plur 3 gen]]l])}

. [det]

. [[def [[masc sing 3 acc]
[ plur 3 dat]]l])}

. [det]

. [[indef [[masc sing 3 nom]
[neut sing 3 [nom acc]]]]])}

. [det]

. [[indef [[masc sing 3 acc][]])}

Here is a selection of verbal entries:

61lc (Lexicon entries 60a

<60b 61b>

<6la 61c>

<61b 63a>
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{PUT lieben
lex(cats
comps_opt
{PUT liebe
lex(cats
agrs
comps_req
comps_opt
{PUT geliebt
lex(cats
comps_opt
marks

{PUT laufen
lex(cats

comps_opt
{PUT laufe
lex(cats

agrs
{PUT gelaufen
lex(cats

marks

{PUT verspreche
lex(cats
agrs
comps_req
comps_opt
{PUT verspreche
lex(cats
agrs
comps_req
comps_opt

{PUT kaufen
lex(cats
comps_opt
{PUT kaufe
lex(cats
agrs
comps_req
comps_opt
{PUT gekauft
lex(cats
comps_opt
marks

{PUT einkaufen

o [vinf]

. [zu object])}

o [vfin]

: [[1 sing nom]]
: [subject]
. [object])}

. [vpast]

. [object]
. [haben])}

: [vinf]

s [zul}

o [vfin]

: [[2 sing nom]])}

. [vpast]

: [sein])}

o [vfin]

. [[1 sing nom]]
. [subject]
. [object dative])}

o [vfin]

: [[1 sing nom]]
. [subject vp_zu]
. [dative])}

o [vinf]

. [zu object dative])}

o [vfin]

. [[1 sing nom]]
: [subject]
. [object dative])}

. [vpast]

. [object dative]
. [haben])}



5.5. Implementation 63
lex(cats o [vinf]
comps_opt : [zu object dative]
marks . [vpref])}
{PUT einzukaufen
lex(cats o [vinf]
comps_opt . [object dative]
marks : [vpref zu))}
{PUT kaufe
lex(cats o [vfin]
agrs : [[ sing nom]]
vpref . [ein]
comps_req : [subject vpref]
comps_opt . [object dative])}
{PUT einkaufe
lex(cats o [vfin]
agrs : [[ sing nomi]
comps_req . [subject]
comps_opt . [object dative]
marks : [vpref])}
{PUT eingekauft
lex(cats . [vpast]
comps_opt . [object dative]
marks : [vpref])}
5.5.3.6 Auxiliaries
Auxiliaries can also be used as normal verbs:
63a (Lexicon entries 60a

{PUT haben
lex(cats
comps_opt
{PUT habe
lex(cats
agrs
comps_req
comps_opt

{PUT haben
lex(cats
aux
comps_opt
comps_req
{PUT habe
lex(cats
agrs
aux
comps_req

{PUT sein

: [vinf]

: [zu object])}

o [vfin]

: [[1 sing nom]]
. [subject]
. [object])}

: [vinf]

. [haben]
1 [zu]
: [vp_past])}

o [vfin]

. [[1 sing nom]]
. [haben]
. [subject vp_past])}

<6lc 64a>
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lex(cats
comps_opt
{PUT bin
lex(cats
agrs
comps_req
comps_opt

{PUT sein
lex(cats
aux
comps_opt
comps_req
{PUT bin
lex(cats
agrs
aux
comps_req

5.5.3.7 Modals

A taste of modal verbs.

64a (Lexicon entries 60a
{PUT wollen
lex(cats
comps_opt
{PUT wollen
lex(cats
comps_opt
comps_req
{PUT will
lex(cats
agrs
comps_req
comps_opt
{PUT will
lex(cats
agrs
comps_req

5.5.3.8 Adjectives

A sample of adjective entries:

64b (Lexicon entries 60a
{PUT schone
lex(cats
agrs

: [vinf]

. [zu nominative])}

o [vfin]

: [[1 sing nom]]
. [subject]
. [nominative])}

: [vinf]

. [sein]
 [zu]
: [vp_past])}

o [vfin]

: [[1 sing nom]]
. [sein]
. [subject vp_past])}

: [vinf]

. [zu object])}

: [vinf]

: [zu]

© [vp_inf])}

o [vfin]

2 [[[1 3] sing nom]]
: [subject]
. [object])}

o [vfin]

2 [[[1 3] sing nom]]
: [subject vp_inf])}

+ [ad]]

. [[none [nom acc] [fem plur]]

[def  sing [nom [acc [neut fem]]]]

<63a 64b>

<64a 65a>
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{PUT schonen
lex(cats
agrs

5.5.3.9 Miscellaneous

[indef plur [nom acc]]])}

: [ad]]

[[masc sing [acc gen]]

[fem sing gen]

[plur dat]]]
[def  [plur dat gen [masc sing acc]]]
[indef sing [dat gen [masc acc]]]])}

: [[none

Here: 1 verb prefix, 1 particle, 1 preposition, and 1 adverb:

65a (Lexicon entries 60a
{PUT ein
lex(cats
{PUT zu
lex(cats
{PUT mit
lex(cats
comps_req
{PUT heute
lex(cats

55.4 Ganma. oz

© [vpref])}

© [part])}

: [prep]

. [dative])}

: [adv])}

<64b

Functorcammdfile Gamma.oz) imports modulentry and exports a binary predicate

for each possible role.

65b (Ganmme. 0z 65b
funct or
i nport FS
Entry(
category

. Category

agreement : Agreement

marks

. Marks

vprefixes : Vprefixes

)

export

Gamma exports 66b

defi ne

Gamma variables 66a
Gamma predicates 66¢

end

5.5.4.1 Variables

Here, we define some variables that will be used when writolgsrpredicates. For

example variabl€ATS_NPdenotes the encoding of the set of categafiesro]

CAT_DETdenotes the integer encoding categasy .

, and
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66a (Gamma variables 66a
CATS_NP = {Category encode([n pro] $)}
CATS_V = {Category encode([vfin vinf vpast] $)}
CATS_ NPV = {FSunion CATS NP CATS_V}
CAT_DET = Category . toint . det
CAT_PART = Category . toint . part
CAT_VPREF = Category . toint . vpref
CAT_VFIN = Category . toint . vfin
CAT_VINF = Category . toint . vinf
CAT_VPAST = Category . toint . vpast
CAT_N = Category . toint .n
CAT_ADJ = Category . toint . adj
CAT_ADV = Category . toint . adv
CAT_PREP = Category . toint . prep
AGRS_NOM = {Agreement encode([nom] $)}
AGRS_ACC = {Agreement encode(facc] $)}
AGRS_DAT = {Agreement encode([dat] $)}
MARK_ZU = Marks toint . zu
MARK_VPREF = Markstoint . vpref

5.5.4.2 Predicates

We will only show a few of the role predicates. For exampleylgiect must be a noun
or pronoun, must agree with its mother (the finite verb), angtnmave nominative

case.
66b (Gamma exports 66b 66d>
Subject
66c (Gamma predicates 66¢ 66e>
proc {Subject Mother Daughter}
{FS. include Daughter .cat CATS_NP}
Mother . agr = Daughter . agr
{FS. include Daughter .agr AGRS_NOM}
end
The ‘zu’ particle must have categopyrt , it must be the wordu, its mother should
not already contain a particle (as in ‘einkaufen’, i.e. ‘znzekaufen’ is illegal), its
mother should also not contain a verb prefix (i.e. ‘zu einkaufs illegal).
66d (Gamma exports 66b <I66b 67a>
Zu
66e (Gamma predicates 66¢ <I66¢ 67b>

proc {Zu Mother Daughter}
Daughter . cat=CAT_PART
Daughter . word =
{FS. exclude MARK_ZU

Mother . marks}
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{FS . exclude MARK_VPREF Mother . marks}
end

Now let’s consider a complement that is an infinitive VP withparticle. The predicate
simply states that the daughter must be an infinitive verbthatlitshaszu feature
must be true (i.e. equal to 1, as opposed to false, i.e. equyl tWe use this feature
to conveniently cover both the case when the daughter iseofdim ‘einzukaufen’
(i.e. zu attached) and ‘zu kaufen’ (i.e. zu separated). nEkeu feature is defined in
moduleParser .

67a (Gamma exports 66b <166d 67c>
Vp_zu
67b (Gamma predicates 66¢ <66e 67d>

proc {Vp_zu Mother Daughter}
Daughter . cat=CAT_VINF
Daughter . haszu=1

end

For and adjective edge, the mother must be a noun, the dawaghsaljective and they

must agree.
67c (Gamma exports 66b <672
Adj
67d (Gamma predicates 66¢ <67b

proc {Adj Mother Daughter}
Mother . cat=CAT_N
Daughter . cat=CAT_ADJ
Mother . agr=Daughter . agr
end

55.5 Parser.oz

FunctorParser (file Parser.oz ), imports modulesntry , Lexicon , and Gamma
defined previously, as well as modwelect . Module Select is neither part of this
application nor of the Mozart distribution. Rather it is &l rarty package provided
by me. Like all 3rd party packages, it is available through MMOGUL repository. In
order to run this application you need to download and ih#tal package known in
MOGUL by the idmogul:/duchier/select . See Section 6.9.1 for further detalils.

The module exports functiorarsePredicate ~ which takes a list of words (input
phrase) as argument and returns a predicate approprisgadapsulated search (i.e. as
an argument to e.@xploreAll ).

67e (Parser.oz 67e

http://www.mozart-oz.org/mogul/
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functor
i mport
FD FS
Entry(
category : Category
agreement : Agreement
roles : Roles
marks . Marks
allRoles : AllRoles
complementRoles:ComplementRoles)
Lexicon(get)
Gamma
Select(fs fd union) at ’'x-ozlib://duchier/cp/Select.ozf’
export
ParsePredicate
define
Parser variables 68a
Parser helper functions 68b
Parser MakeNode 69a
Parser ParsePredicate71a
end

5.5.,5.1 Variables And Helper Functions

A couple of variables and obvious helper functions to be uisd¢ide rest of the parser.

68a (Parser variables 68a
MARK_ZU = Marks toint . zu
CAT_VINF = Category . toint . vinf

68b (Parser helper functions 68b

fun {GetYield R} R.yield end
fun {GetCats R} R. cats end
fun {GetAgrs R} R. agrs end
fun {GetCompsLo R} R. comps_lo end
fun {GetCompsHi R} R. comps_hi end
fun {GetVpref R} R. vpref end
fun {GetMarks R} R. marks end
fun {GetAux R} R. aux end
fun {GetEntrylndex R} R. entryindex end

5.5.5.2 MakeNode

FunctionmMakeNode constructs all the representational support for a nodeutrcon-
straint model we introduced a lot of functions that map a nodeconstrained variable.
Here, we will simply represent a node as record with a fedureach function intro-
duced in the constraint model (and also some additionalifesfor convenience).

The function is invoked as
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69a

69b

{MakeNode Word | Allindices Entries RootSet}

whereword is an atom representing the full form of the wordis its position in the

input, Positions

is the set of all word positions in the input (1 to Ehtries

is the

list of lexicon entries for the word, armebotSet is a variable denoting the singleton
set containing the root (position) of the sentence.

Parser MakeNode 69a

fun {MakeNode Word | Positions Entries RootSet}
Parser MakeNode, attributes of selected lexicon entry69b
Parser MakeNode, attributes of word 70a

node(
isroot
word
index
entryindex
cat
agr
comps
vpref
marks
aux
yieldS
yield
dtrsets
daughters
mother
haszu
role

)

end

We initialize Entrylndex

: IS_ROOT

: Word
o

. Entrylndex

. CAT
. AGR
. COMPS

. E_VPREF

: E_MARKS
© E_AUX

: YIELDS
: YIELD
: DTRSETS
: DAUGHTERS

: MOTHER
: HAS_ZU

to range over the possible positions in the lisEefries

and then we use the selection constraint repeatedly torotftaivarious attributes of
the selected lexicon entry.

Parser MakeNode, attributes of selected lexicon entry69b

Entryindex Entrylndex

E_CATS
E_AGRS

= {Select .fs {Map
= {Select .fs {Map

E_COMPS_LO = {Select.fs {Map

E_COMPS_HI = {Select
E_VPREF = {Select
E_MARKS = {Select .
E_AUX = {Select

. fs
. fs

fs

. fs

{Map
{Map
{Map
{Map

We define category, agreement, and
straint model:

Entries
Entries
Entries
Entries
Entries
Entries
Entries

:: 1#{Length Entries}

GetCats } Entrylndex}
GetAgrs  } Entrylndex}
GetCompsLo} Entrylndex}
GetCompsHi} Entryindex}
GetVpref } Entrylndex}
GetMarks } Entrylndex}
GetAux } Entrylndex}

complement roles justpdaireed in the con-
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70a (Parser MakeNode, attributes of word 70a 70bl>
CAT CAT: Category .range {FS .include CAT E_CATS}
AGR AGR Agreement . range {FS .include AGR E_AGRS}
COMPS {FSsubset COMPS Roles . full}
{FS. subset COMPS E_COMPS_HI}
{FS . subset E_COMPS_LO COMPS}

For the daughter sets, we create a subrecord. Daughterrgelda on nodewwill
be accessible ag dirsets . R. Furthermore, iR is a complement role, the cardinality
of Wdtrsets . R must be 0 or 1, and it is 1 ifR is in the set of complement roles
stipulated by the valency:

70b (Parser MakeNode, attributes of word 70a <70a 70c>
DTRSETS = {List . toRecord o
{Map AllRoles
fun {$ R} R#{FS. subset $ Positions} end}}

for R in ComplementRoles do
{FS . reified .include Roles .toint .R COMPS}={FS card DTRSETS. R}
end

The set of immediate daughters can be computed as the unithre afaughter sets.
The yield can also be defined here, but the strict yield can lomiinitialized; it will be
properly constrained iRarsePredicate  after representations for all nodes have been
constructed.

70c (Parser MakeNode, attributes of word 70a <70b 70d>
DAUGHTERS = {FSunionN DTRSETS}
YIELDS = {FS. subset $ Positions}
YIELD = {FS . partition [{FS .value . singl 1} YIELDS]}

The mother set has cardinality at most 1, and the node is n@zisely when the
cardinality of the mother set is 0.

70d (Parser MakeNode, attributes of word 70a q70c 70e>
MOTHER = {FSsubset $ Positions} {FS . cardRange 0 1 MOTHER}
IS_ ROOT=({FS . card MOTHER}=: 0)
{FS. reified .include | RootSet}=IS_ROOT

Attribute W haszu is true iff the word has a zu particle attached or as a compiéeme
(this is an exclusive or). Furthermore, if this attributetrise, the word must be an
infinitive verb.

70e (Parser MakeNode, attributes of word 70a <70d
HAS_ZU HAS_ZU: 0#1
{FD. exor
{FS. reified .include MARK_ZU E_MARKS}
{FS. card DTRSETS. zu}
HAS zU}
{FD.impl HAS_ZU CAT=: CAT_VINF 1}
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5.5.5.3 ParsePredicate

FunctionParsePredicate ~ takes a list of atoms as argument representing the input
words and returns a predicate appropriate for encapsutetdh (e.g. as an argument
to ExploreAll ).

71a (Parser ParsePredicate71a
fun {ParsePredicate Words}
N = {Length Words}
WordEntriesPairs
= {Map Words fun {$ W} W{lLexicon .get W} end}
Positions = {FS . value . make 1#N}
Parser ParsePredicate, ParseTree€’1b

ParseTree
end

The search predicate applies exactly the distributioniegiias that we described.

71b (Parser ParsePredicate, ParseTree’1b
proc {ParseTree Nodes}
ParseTree create root set71c
ParseTree create nodes71d
ParseTree yields and role constraints7le
ParseTree global partition 72a

{FS. distribute naive AllIDtrSets}
{FD. distribute ff {Map Nodes GetEntrylndex}}
end

The root set (the set of roots) is a singleton:

71c ParseTree create root set71c
RootSet={FS . subset $ Positions}
{FS. cardRange 1 1 RootSet}

Nodes for each word are created by invoking functiGieNode.

71d (ParseTree create nodes/1d
I Nodes = {List . maplnd WordEntriesPairs
fun {$ | Word #Entries}
{MakeNode Word | Positions Entries RootSet}
end}

We can now collect the list of yields of all nodes, which altous to properly constrain
the strict yield of each node. For each nogeve consider every possible notias a
potential mother, and express the constraint that statés1ils a mother om iff Nis
a daughter ofa Furthermore, for each tripley, M R) whereR is an arbitrary role, we
impose a role constraint in the form of disjunctive propagat

71e (ParseTree yields and role constraints7le
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Yields = {Map Nodes GetYield}
for Nin Nodes do
N. yieldS = {Select . union Yields N . daughters}
for Min Nodes do
{FS . reified .include M .index N . mother}=
{FS. reified .include N .index M . daughters}
for Rin AllRoles do
t hread
or {FS.include N .index M .dtrsets .R}
N. role=R {Gamma . R M N}
[T {FS.exclude N .index M .dtrsets .R}
end
end
end
end
end

Finally, we impose the condition that the root set togethin the daughter sets of all
nodes form a partition of the input.

72a (ParseTree global partition 72a
AlIDtrSets =
RootSet |
{FoldL Nodes
fun {$ L N}
{Append {Record .toList N . dtrsets} L}
end nil}
{FS. partition AllDtrSets Positions}
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This chapter is intended to serve as a very short referente twoncepts of constraint
programming in general and the programmatic idioms of Ozartigular. Readers
are encouraged to consult the Mozart documentafionfurther reading material and
tutorial about the Oz language and the Mozart system.

6.1 Constraint Store

Logic Programming (henceforth LP) has the notion of a logidable which is either
free or bound to a value. Constraint Programming (hendefoR) has the more gen-
eral notion of a constrained variable, i.e. a variable thatd longer free, but whose
value is not yet fully determined. For example, we may haweftilowing partial
information about an integer variable

Ie{1,2,7

meaning thatl may take only one of these 3 values. Such a piece of informasio
called abasic constraint Thus, the LP idea of a set of bindings is replaced in CP by a
set of basic constraints which we call tbenstraint store

In LP, when a variable becomes bound to a value, this bindimgat subsequently be
changed (except on backtracking): only new bindings maydoe@ Similarly in CP,
the constraint store grows and the information therein awgs monotonically. For
example,l € {1,2,7} might improve to becomé € {1, 7}. When only one possible
value remains, e.gl € {7}, we say that the variable @eterminedand its value is 7,
which we also writel = 7.

In (concurrent) CP, computations operate over a sharedreamtsstore. The basic
operations araskandtell. A computation camaskwhether a basic constraint is entailed
(which happens when it or a stronger version of itakl to the store) or disentailed
(i.e. its negation is entailed). Tlesk operation blocks until sufficient information
has been concurrently accumulated in the store to answeyuingtion either way. A
computation cartell a basic constraint into the store (i.e. extend the store prawe
the information already in the store, or derive a contramigt The semantics adsk
give us dataflow synchronization for free. Consider theestaint:

*http://www.mozart-o0z.org/documentation/
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case L
of nil  then {P}
[T HT then {Q H T}
end
it asks whether=nil is entailed. As result, the statement blocks until theraffscsent
information to answer the question one way or the other. &ttpre, this means that
the statement blocks untilbecomes bound.
6.2 Constraint Variables

Of particular relevance to this course are finite domain (F&xjables and finite set
(FS) variables.

6.2.1 FD Variables

A FD variable denotes an integer out of a finite domain of possible valueghe
store, itis represented by a basic constraint of the form e.g

Ie€{1,2,7}
This is essentially a form of disjunction. Its declaratieenantics are simply:
I=1 v I=2 Vv I=T7

FD variables are a very economical and effective way to addcertain forms of am-
biguity arising in computational linguistics. Any finiteleection of values/objects can
be encoded as a finite domain: therefore an underspecifiaterteof this collection
can be represented by a FD variable. In Chapter 3, we illestings idea for agreement
in German.

6.2.2 FS variables

6.3

A FS variableS denotes a finite set of integers. In the store it is repreddnte basic
constraint providing information about lower and upper s

(1,7} €5 C {1,4,5,7)

Again, this a form of disjunction:S may take as value any set that contains at least

land 7, and at most 1, 4, 5 and 7. Sets are incredibly usefudrimpatational lin-
guistic applications: (1) they permit elegant and succaxgbmatizations, (2) these
axiomatizations are also efficient constraint programs.

Constraints And Propagators

A constraint which is more complicated than basic consisaiannot be directly repre-
sented in the store. Instead it is represented by a propadgapropagator is a concur-
rent agent that observes the store and tries to improve thariation in it according
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to the semantics of the constraint it represents. A propadets the declarative se-
mantics of the constraint it represents and operationahséos that are described by
inference rules.

As an example, consider tliisjointnessconstraintS; || So. Its declarative semantics
is that it is satisfied only in models whefs and S, denote disjoint sets. The oper-
ational semantics of the propagator can be specified by ffefog two inference

rules:
51”52/\i651 — i &8

Sl||52/\i652 — ¢85

i.e. if an integeri is known to be inS; then it must be excluded fror$i,, and recip-
rocally. A propagator is supposed to notice as soon as pgesstiether its constraint
is entailed by the store. For example, if the upper boundS,aind S, are disjoint,
then the sets are necessarily disjoint. In such a case, tpagator disappears since
its constraint is satisfied and it will no longer be able toiioye the information in the
store.

6.4 Encapsulation And Computation Spaces

In traditional LP and CP, new bindings and constraints apaed take effect globally.
Oz supports a much more general idea: encapsulation. Irh@®zponstraint store is an
explicit 1st-class object and is calledcamputation spacgs8] [56] [53] [55]. A com-
putation space is a place where computations run and thestraints are accumulated.
Every computation (also called a threadyituated it takes place (is encapsulated) in
a specific computation space. You can have multiple compuatapaces, each with
different computations and different constraints.

Oz also supports an even more powerful idea: computatiorespgzan be nested. Since

a computation space is a 1st class object in Oz, it is pos#ibla thread running

in spacesi to create a new computation spage In this casesz2 is situated, and
therefore nested, i31. The semantics of nested computation spaces requires that
if S2 is nested ins1, then all basic constraints ofl. are inherited, i.e. visible, ig2.
However, whenever a thread runningsintells a basic constraint, this only takes effect

in S2 but does not affect its pareat.

Furthermore, it is possible to ask whether the spares failed (i.e. an inconsistency
was derived), or entailed (i.e. all its basic constraints @so present iis1). Thus,
by creating a nested spase to run a constraint, and then by asking whethee is
entailed or disentailed, you can discover whether a noiclocasstraintC is entailed or
contradicted. For example, the condition statement befoimplemented in terms of
this facility:

cond C then {P} else {Q} end

A new spaces2 is created to rue, and the statement simply asks whethers entailed
or disentailed. The statement blocks until there is sufiiicieformation to answer the
question. Nested computation spaces are used in a sinshiofato implement the
disjunctive propagator.

The fact that computation spaces are 1st class values miagessible to program
search in Oz itself (see next section) and also to write tdiks the Explorer [52]
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[54], that allow you to interactively explore the searcleteand inspect the state of the
constraints at any node in this tree.

6.5 Search

A major application domain for CP, and the only one that weklabin this course, is
to solveconstraint satisfaction problem(€SPs); i.e. to find assignment of values to
variables such that a collection of constraints is satisfied

The whole advantage of CP for solving CSPs rests on conspaipagation: let prop-

agators improve the information in the store until no furtimprovement is possible

(i.e. afix point is reached). To improve the information ie tonstraint store means
to reduce the number of possible values for each variablis. &ifectively reduces the

search tree since after propagation there are fewer pessBlgnments to consider.

In fact, to solve a CSP, we proceed by alternating steps glagation and distribution.
If propagation is not sufficient to determine values for atigbles, we may pick a
variablex that is not yet determined, non-deterministically pick luga from the set
of those that remain after propagation, and assign it to ghiele, i.e. tell the basic
constraintx=v. X=v is new information, and again we let propagation derive asyma
improvements from it as possible. The non-deterministicleys repeated until all
variables are determined.

In the preceding explanation, we postulated a non-detéstitirprocess. This is stan-
dard in most LP and CP systems: a basic constrainis non-deterministically chosen
and added to the same global store. It may be removed andeanotd chosen on back-
tracking. Oz, however, offers an alternative. Since comrut spaces are 1st class,
we can make a copy and addv in the copy. This way, we don’t have to backtrack on
failure, we can just throw away the failed copy; we still haélwe original, and we can
make another copy to try a different constraint, gay.

Thanks to this powerful idea, search in Oz is not built-in m$rolog; instead it is
programmed in Oz itself. The reader interested in how vargmrarch algorithms can
be programmed in Oz is advised to read [53]. Search in Oz geguby adistribution
strategy A distribution strategy is invoked when it is necessaryadqm a distribu-
tion step. It is responsible for choosing a constrdinffor examplex=v above). The
search engine then creates 2 copies of the current spadee fingt copy it adds con-
straintC' and in the second copy it addg”. Thus, for above example, one branch of
the search would explore the consequenceX e v and the other oX = v.

The Mozart system offers rich libraries with predefined se@&ngines and distribution
strategies that cover most of the usual cases. The readmmgly advised to read [57]
which is an introduction to constraint programming in Ozr §ome advanced topics,
see also [58] [56] [53] [55].

6.6 Search Predicates

A typical way to solve a CSP in Oz, is to express this CSP asdiqate and invoke
the Explorer [52] [54] with this predicate as an argument.
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{ExploreAll SimpleProblem}
We explain now how to write such a predicate. It always foBdhe same pattern.

decl are

proc {SimpleProblem  Solution}
%% declare variables
XY

%% representation of solution
Solution = [X Y]

%% pose constraints of CSP
X0 1#9

Y:: 1#9

X+2*Y = 7

%% distribution strategy
{FD. distribute ff [X Y]}
end

SimpleProblem is a predicate that defines what issalution : a solution is a list
[X Y] of two integers satisfying the equation2*Yy = 7. It invokes the prede-
fined distribution strateg§FD. distribute ff [X Y]} , Whereff meandirst-fail i.e.
‘choose the variable with the fewer remaining possible esjand then try each one
of these values in increasing order’.

{ExploreAll SimpleProblem} produces the following search tree in the Explorer:

= o: Exporer o X

Explorer Move Search Hodes Hide Options

b

= [

Time: Oms @32 >3 @0 Depth: 3

clicking on the first green diamond (a solution) shows thfaihg in the browser:
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I - - 0O X

Browser Selection Options

|

k. | -

We can also click on the second blue circle (a choice poindhserve the partial
information at that point:

Sl 0z - O X

Browser Selection Optlions

.|

k. | ]

For a thorough tutorial on constraint programming in Oz, a@mmend again to read
[57].

6.7 Disjunctive Propagator
In Oz, a disjunctive propagator has the form:
or Cl1 [] C2 end

and its declarative semantics is simply that of disjunctidn LP, the only method
available for dealing with complex disjunctions of thatdiis non-determinism. Thus
in Prolog, you would would write:
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cL ; C2

Operationally, this means: first tig1 and if that fails backtrack and trg2 instead.
This has several drawbacks: (1) it is not sound (failure tv@”' is not the same as
proving =C), (2) it forces the computation to commit immediately to lexing either
one alternative or the other.

Early commitment is a poor strategy. It is often preferabléelay a choice until suf-
ficient information is available to reject one of the altdivies. This is the intuition
underlying the disjunctive propagatar. C1 [] C2 end is a propagator not a choice
point. It blocks until eitheic1 or C2 becomes inconsistent with respect to the current
store of basic constraints: at that point, the propagedonmits i.e. reduces tothe
remaining alternative. In this way, a disjunctive propagdias the declarative seman-
tics of sound logical disjunction, unlike Prolog’soperator which implements merely
negation as failure The operational semantics are given by the rules belowrenbie
represents the current basic constraints:

BAC, —* false
B/\(ClorCQ) —  BACOy

BACy —* false
B/\(ClorCQ) — BACy

This is realized by taking advantage of nested computapianes. A disjunctive prop-
agatoror C1 [] C2 end creates 1 nested space to mhand another to ru2 and
constantly monitors their status (either entailed or éjil&Vhen for example the space
running C1 is discovered to be failed, then the disjunctive propagetonmits to the
other space, i.e. inergeshe contents of the space runniagwith the current space.
When this is done the propagator disappears (we also sal thdtices.

A disjunctive propagator blocks until it reduces. This isywim Oz programs, dis-
junctive propagators are usually spawned in their own thteaallow the rest of the
computation to proceed. In effect, this makes a disjungiire@agator into a concurrent
agent:

thread or C1[] C2 end end

A disjunctive propagator commits to one alternative onlyewlthe other becomes in-
consistent. But, when neither becomes willingly incomsistit is often necessary, in
the interest of completeness, to non-deterministicallynegrate the alternatives. This
can easily be achieved by introducinga@ntrol variableX:

or X=1Cl1 [] X=2 C2 end

We can now apply a distribution strategy on FD variabl® force exploration of the
alternatives. In atypical program, you might often invokstfa distribution strategy on
the variables of the CSP, and then a second distributiotegiran the control variables
to make sure for the sake of completeness that all disjumetiave been decided:

%% distribute on the variables of the CSP
{FD. distribute ff [I1 12 13]}

%% distribute on the control variables
{FD. distribute ff [X1 X2]}
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6.8 Reified Constraints

There are often cases when, instead of imposing a consttaimie want to speak
(and possibly constrain) its truth value. Let's take an gxanfrom Chapter 5: the
cardinality of a daughter set(w) is at most 1, and it is 1 iffp is required byw’s
valency, i.e ifp € comps(w). Let b, stand for the truth value dp(w)| = 1 andbs
stand for the truth value of € comps(w):

lp(w)] =1
p € comps(w)

b1
by

The well-formedness condition mentioned above is expdesisaply byb; = b,.

For the purpose of this section, we will wrifeé = C to represent a reified constraint,
whereB is a FD variable representing the truth value of constr@n® means false, 1
means true. The operational semantics are as follows:

e if Cis entailed therB = 1 is inferred
e if C isinconsistent thel® = 0 is inferred
e if B = 1is entailed, ther is imposed

e if B = 0is entailed, themC is imposed

For example, here is how reified constraints can expressiatly one ofC;, Cs,
andC3 must hold:

BlzCl
BQECQ
BgECg

By +By+Bs=1
Similarly, here is how to express; = Cs:

BlzCl
BQECQ
By < By

The astute reader may wonder ‘why do we need a new concept? weamexpress
reified constraints in terms of disjunctive propagatordtdeed,B = C can also be
written:

or B=1 C[] B=0 ~C end

where somehow-C is intended to represent the negationc@fWhat makes reified
constraints attractive is that they are much more efficigaisjunctive propagator
needs to create 2 nested spaces, but a reified constraimttdoeesd any.

In the libraries of the Mozart system, many constraints dse available as reified
constraints (but not all). For example:

{FS . reified .include | S B}

B represents the truth value ¢fS . include | S} . If B=0, the reified constraint re-
duces tgFs. exclude | S}
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6.9 Selection Constraints

The selection constraint is based on the intuitive notiosedécting thelth element
out of a sequence of values. We write it abstractly as follows

X = (Yi,.... V)]

The notation(Y7, ..., Y, )[I] was chosen to be reminiscent of array access, i.e. sub-
scripting. The declarative semantics is simply:

X =Y

that is: X is equated with thdth variable in the sequend@?,...,Y,). However,
unlike functional selection which would block untilis known and then select the
appropriate element, the above is a constraint that affeatts X and/. If X = Y},

is inconsistent, thek is removed from the domain df. Conversely, the information
aboutX can be improved by lifting the information common to Hjlat positions that
are still in the domain of . We will explain this in more detail later.

The idea of the selection constraint was first introduced@ylut the sequence was
restricted to integer values. In [8], | introduced a moreayahform that accepts ho-
mogeneous sequences of either FD variables or FS variatdekas a very efficient
implementation.

Of particular interest to the linguist is the fact that theesBon constraint can express
covariant assignments:

X = (X1,..., X)[I]

Y =(Y1,...,Y)[I]

These two selection constraints share the same selketadl can be regarded as real-
izing thedependen{or named disjunctions shown below ([34], [7], [19], [21]) both
labeled with namd

(X=X; V...v X=X,
(YZYl V...V Y:Yn)[

Notational variants of dependent disjunctions have beed tsconcisely express co-
variant assignment of values to different features in feagtructures. The selection
constraint provides the same elegance, but additiondlbydsf the benefits of efficient
and effective constraint propagation.

6.9.1 sel ect Package

The selection constraint is not part of the Mozart distitout rather it is a 3rd party
package provided by me. Like all Mozart 3rd party packagss,available from the

MOGUL repository in which it is known by idmogul:/duchier/select . In order
to be able to use it, you must download and install it: this &devery easy. From
the repository, you will be able to downloatlichier-select-1.4.1.tgz or

whatever the name is for the most recent version of the packag install it, simply
execute the following sequence of instructions at a shell:

2http://www.mozart-0z.org/mogul/
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tar zxf duchier-select-1.4.1.tgz
cd duchier-select-1.4.1
Jconfigure

make

make install

Once installed, the package is available through KBzlib://duchier/cp/Select.ozf
For example, in a functor you can import it as follows:

functor
i nport Select at

end
and in the interactive OPI, you might obtain it as follows:
decl are [Select] = {Module link [ 1}

Unfortunately, the package needs at least Mozart versibi vhich is not yet of-
ficially released. You can get the current development warsif Mozart from our
anonymous CVS server (see the Mozart>site information on how to do this). Sup-
posing you have obtained a copy of the mozart sources fror@W server and that
this copy resides in-/mozart , here is what to do to build and install the Mozart
system. Execute the following sequence of steps in a shell:

cd ~
mkdir build-mozart
cd build-mozart
~/mozart/configure
make
make install
You can install in a non-standard place either by using alo@it configuration time:
~/mozart/configure --prefix=30THERDIR
or by using an argument at installation time:
make install PREFIX=$0THERDIR

6.9.2 FD Selection Constraint

The selection constraint exists in a version where the segueontains only FD vari-
ables. Itis exported on featute of modulesSelect :

X={Select .fd [X1 ... Xn] I}

3http://ww.mozart-0z.org/
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Here is how the information abowtcan be improved by this constraint. Sincenust
ultimately be identified with ong&i , its domain is at most the union of their domains
(it cannot take other values than they can). More precigslyjomain is at most the
union of the domains of thgi s at positions that are still in the domainiofi.e. that
may still be selected). In other words,life D, andX; € D;, then

X e U D;
€D

6.9.3 FS Selection Constraint

The selection constraint exists also in a version where e¢qegence contains only FS
variables. It is exported on featuie of moduleSelect :

X={Select .fs [X1 ... Xn] I}

Again the information about can be improved by propagation. The upper bound of
is at most the union of the upper bounds of e fori in the domain of . The lower
bound ofx is at least the intersection of the lower bounds ofithefori in the domain
of I . In other words, iff € D andD; C X; C D/, then:

(DicxclD;

€D €D
6.9.4 FS Selection Union Constraint

The selection union constraint is the latest arrival in faimily of constraints. It is
exported on featurenion of moduleSelect . All its variables are sets and we write it
abstractly as follows:

S =U(S1,...,S,)[S]

and concretely thus:
S={Select .union [S1 ... Sn] S}

Its declarative semantics is simply:
S=1Js
iesl
Again the information abou$ can be improved as follows. Ib; C S; C D! and

D C SIC D/, then:
U D;CSC U D!
€D €D’
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