Parsing with Tree Descriptions:
a constraint—based approach*

Denys Duchier Stefan Thater
duchier@ps.uni-sh.de stth@coli.uni-sbh.de

Abstract

In previous work [7, 8] it was shown that a constraint-based treatment of tree-
descriptions results in a simple and tractable implementation. However, that ap-
proach treated only the conjunctive fragment. Therefore it could not be directly
applied to parsing with tree description-based grammars where lexical ambiguity
gives rise to disjunction.

In this paper, we extend the previous approach in two ways. First, we intro-
duce the formalism of ‘electrostatic tree descriptions’, which combines dominance
logic with a notion of polarities and permits a convenient characterization of ad-
missible syntactic structures. Second, we extend this idea to disjunctive systems
of descriptions sufficient to account for lexical ambiguities. Finally, we exhibit an
encoding that turns parsing into a constraint satisfaction problem (CSP) solvable
by constraint programming.

1 Introduction

Traditionally, syntax is about trees: phrase structure trees. In computational syntax
however, it has variously been argued that descriptions of trees offer an alternative with
significant advantages. [11] shows that tree descriptions support incremental syntactic
processing; [16] uses them to provide a fully monotone treatment of unification-based
Tree Adjoining Grammar; [12] finds them necessary for combining semantic with syn-
tactic under-specification; and [13] advocates their use for a uniform treatment of mod-
ification and complementation in a TAG-like framework.

Common to all these proposals, is the idea that descriptions permit a certain level of
under-specification necessary for an adequate and elegant treatment of the phenomena
under consideration. The under-specification is in two guises. First, node variables are
used rather than nodes. In particular, two distinct node variables may refer to one and
the same node. Second, arbitrary dominance statements are allowed (as opposed to only
strict dominance) and permit to under-specify the structural relation between two node
variables and therefore, indirectly, between the tree nodes these variables denote.

*The research presented in this paper was funded by the DFG in SFB-378, Project C2 (LISA).

The tree descriptions used by computational linguists are expressions in a tree logic
e.g. [2, 1]: they are logical formulae which, if consistent, are satisfied by one and usually
many more models in that logic. These models are the syntactic trees the linguist is
searching for.

In terms of processing however, tree descriptions are often treated as data-structures
and combined together using various composition operations. Under such a view, parsing
is dealt with by means of standard techniques e.g. an Earley style parsing algorithm in
[13] and automaton-based parsing in [3]. The price to pay is that node variables are no
longer variables: they are nodes which under certain circumstances can be merged.

Under the logical view on the other hand, variables are variables and parsing is a
model-generation problem: given a logical formula ¢, how can we generate the minimal
models that satisfy it? As [4] remarks, naive tableau-based approaches such as [14, 4] can
lead to combinatorial explosion in the face of disjunction inherent in the theory of trees.
In fact, [9] shows that solving purely conjunctive descriptions is NP-hard. In spite of this
theoretical result, practical algorithms are needed to enumerate solutions as efficiently
as possible. In [7, 8] we described a constraint-based approach by encoding into finite
set constraints. This technique resulted in a simple and efficient implementation in the
concurrent constraint programming language Oz [10, 15].

In this paper, we build on the approach of [7, 8] and adapt it to parsing with
description-based grammars. First, we introduce the formalism of ‘electrostatic tree
descriptions’, which combines dominance logic with a notion of polarities and permits
a convenient characterization of admissible syntactic structures. Second, we extend the
formal framework with a restricted form of disjunction to account for lexical ambiguity,
and introduce a computationally judicious notion of model. Third, we provide an encod-
ing, in the axiomatic style, that turns a parsing problem into a constraint satisfaction
problem (CSP) solvable by constraint programming.

Section 2 presents and motivates the tree logic used for writing the grammar; it
then outlines a grammar fragment in that logic. Section 3 introduces the semantics of
tree descriptions and develops a formal model of our parsing framework. In particular,
Section 3.3 extends the semantics to disjunctive systems of descriptions. Section 4
turns to the computational aspect and develops a corresponding constraint model. We
precisely define an encoding scheme that turns a problem expressed in our formal model
into a CSP in our constraint model. Section 5 discusses preliminary results obtained
with our prototype implementation and outlines directions of future development.

2 Tree Description Grammar

Like lexicalized tree adjoining grammar (LTAG) the basic component of a tree descrip-
tion grammar is a lexicon that maps words to fragments of phrase structure (elementary
trees). The task of parsing is to combine these fragments into a single coherent tree.
In order to account for modification or movement phenomena it is often necessary
to insert one fragment into the middle of another one. In TAG this is accomplished by
the non-monotonic operation of adjunction: A node is split into an upper and a lower

part and a fragment is inserted into this hole. In our approach, we take up a different
idea. Since we use descriptions of trees there is no need to split a node. We can already
provide holes in the lexical fragments. Into these holes other fragments may be inserted
incrementally and monotonically. (Fig 1) shows a small lexicon. Description aj contains
a hole between the VP nodes which is bridged by a dominance link (the dotted line).
Into this hole, we might insert, for example, the VP-modifier ay.

Another benefit of using descriptions is that one obtains greater flexibility: we do
not require that the two nodes related by a dominance link be assigned the same symbol
(category), which allows alternative analyses for e.g. extraction phenomena. Unlike in
TAG, where the filler-gap dependency is localized to the verb, we provide lexical entries
for topicalized NpPs. For example, the lexical entry «y for Who says that this tree can
act as a filler of a sentence gap (we use € to refer to the empty word).

In this sense, our approach is closely related to d-tree grammar (DTG) presented in
[13]. However, DTG distinguishes two different tree combining operations called subser-
tion and sister-adjunction. This distinction is motivated by linguistic considerations: it
mirrors the distinction between complementation and modification. Subsertion always
corresponds to complementation and sister-adjunction to modification. From a formal
perspective, this distinction is not necessary: modification phenomena can equally well
be treated by the subsertion operation. From a practical point of view, the sister-
adjunction operation has the disadvantage that it changes the arity of nodes and would
make an implementation less efficient. Therefore, we do not provide an operation that
corresponds to sister-adjunction.

Another difference with traditional DTGs is that we decorate nodes with polarities
in order to control the way in which tree descriptions may combine: A — identifies a
hole, which can be thought of as an open valency, and a + identifies a plug. Neutral
nodes are decorated with a 0 and are normally used for lexical nodes. Polarities offer
a simple way to precisely characterize the desired models, i.e. the syntactic structures
licensed by the grammar.

Successful parsing requires every hole to be plugged and every plug to be used.
(Fig 2) illustrates the idea with a parse tree for the sentence Who did Mary see. The
pairings of plugs with holes are indicated by dashed lines. As can be seen from this
example, we assume that the root of each fragment has a positive polarity. Therefore,
we must introduce an extra sentential root node with negative polarity in order to cancel
the polarity of the topmost node.

2.1 Electrostatic Tree Descriptions

We now introduce a formal language for writing the elementary tree descriptions of our
lexicon. We assume three infinite and disjoint sets Vars®, Varst and Vars™ of variables
(resp. neutral, positively and negatively charged variables) and a lattice £ of labels. An
electrostatic tree description is a formula of the form:

¢ = zRylz:(yi,... . yn) |z L] d1 N o

ap Qs asg Qay

-+\s r AUX r NP /-+ VP
-@é e~ s 0 DID 0 MARY o< vP el aADV
| . YNOTSUBJ
o0 wHO -\+ NP o) YESTERDAY
.0 E
S =def [cat : s]
/ \ NP = cat : n
e def | p]
NPL
[subj : +] 0"’ VP WHO — cat : word
/ \ _ —def string : “who”
NP
. cat ;. word
0 SEE € Tdef string @ €
NOTSUBJ =g¢r | subj : —]

Figure 1: Lexicon entries for who, did, Mary, see and yesterday.

where R is any boolean combination of =, <™, >T, <, = — where <" represents strict
dominance and < precedence — and expresses the relative position of z and y. R may
be formed according to the following grammar:

R = =‘<+|>+|-<|>-‘RlUR2|R1ﬂR2|—IR

x : (y1,...,yn) states that x has the (y;) as immediate daughters. Finally, we write
x + £ (for £ € L) to indicate that z is labeled by ¢. The purpose of £ is to encapsulate
all the grammatical features, such as category or agreement. In this manner, they are
abstracted out and we can study the grammatical framework independently of any spe-
cific commitment to these features. In this sense, our framework is parametrized by an
arbitrary lattice £ of e.g. AVMs.

In our examples we assume a product of lattices denoting AvMs with features cat,
string and subj. Useful abbreviations, such as s and NP, are defined in (Fig 1), where
we follow the standard convention that T-valued! features are omitted. Thus, label S
denotes the most general AvM with value s at feature cat.

The full language allows literals of the form V(z..y) < £ and 3(z..y) + £. These are
called insertion constraints which are similar to the selective and obligatory adjunction
constraints in TAG: a universal insertion constraint V(z..y) < ¢ requires that all nodes
that lie on the path properly between z and y are assigned a label compatible with £
whereas an existential constraint 3(x..y) < ¢ requires the existence of such a node. For
example, the universal insertion constraint in o requires that no node on the path be-
tween the gap and the filler is marked as subject, which rules out certain ungrammatical

We write T for the top, i.e. most general, element of a lattice.

7
o/+ S - T T T T T == o S
a/ \ el /\\
NP 5 _>e~ AUX _—>e NP e~ VP
| ;- e r
o0 WHO T* NP et AUX et NP ﬂ/\éQ/P
Oé\e\ Y pID oV MARY T \% ;* NP
N
\\\ N SEE //

I /.s\
e WHO TmUX/TNP /-Q
*DID * MARY T v T NP
*SEE ¢
Figure 2: Who did Mary see?
+ + .0
zi s Ty 8 zy :(zy,my)
o Ty < NP 23 (z])
9 NP Ty S 23 + wHO 23 : ()
| ' VNOTSUBJ @] + 8 Ty <*xd
T3 WHO xd NP i Nz} (2D)
0 0.
\0 Ty € zg ()
Tg € V(z,..7d) NOTSUBJ

Figure 3: Lexical entry for topicalized Who.

constructions. In this paper, we shall not account for insertion constraints, although the
treatment can be extended simply.

2.2 Lexicon, Lexical Entries

Let us first explain how to formulate tree descriptions in terms of electrostatic formulae.
Take, for example, the description depicted in (Fig 3): Immediate dominance relations
(solid lines) are formulated using z : (y1,... ,yn) whereas dominance relations (dotted
lines) are expressed using <i*, which is just an abbreviation for =U <™. Since immediate
dominance relations always constrain the ordering of the daughters, there is no need to
make explicit use of the precedence relations < and > within the descriptions of the
lexical entries. However, they will become important when we combine lexical trees to
larger trees.

The polarities decorating the variables in (Fig 3) should be viewed as part of their
name. They visually indicate whether the variable comes from Vars*, Vars~, or Vars®.

Since these sets are disjoint, it is not possible for two occurrences of a variable to be
decorated with different polarities.

A lexical entry is an AVM (or triple) that relates a string s, a description ¢ and an
anchor node variable zg occurring in ¢:

string s
formula : ¢(xg)
anchor : xg

The lexicon is simply a set of lexical entries. We write attribute access in functional
notation: for a lexical entry e, the functions formula(e), anchor(e) and string(e) return
the values of the corresponding attributes of e.

2.3 Grammar Framework

A lexicalized tree description grammar is a triple G = (£, &, S), where L is a lattice of
labels, £ is a set of lexical entries, and S € L is a start symbol.

Parsing. Aslong as a tree description grammar associates each word with exactly one
description, it is straightforward to adapt the technique of [7] for parsing: building a
parse tree for an input sentence wj ... w, can be done simply by solving the constraint:

¢ = /\ formula(e;) A /\ anchor(e; 1) < anchor(e;) Az < S (1)
i=1 i=2

where e; is the lexicon entry for word w; and x € Vars™ is the root node which we
previously argued must be introduced in order to cancel the polarity of the topmost
node. We assume that the formulae formula(e;) do not share variables and that z, is a
fresh variable not occuring in any formula(e;).

However, grammars for natural language typically assign more than one description
to a word, and the approach developed in [7] must be extended to allow disjunctions of
tree descriptions.

3 Formal Model

In this section, we develop the formal framework of our approach to parsing. The
semantics of tree descriptions are given by interpretation over finite trees: we begin with
definitions, where the intuition is to identify a node in a feature tree with the sequence
of features that must be followed from the root to arrive at this node. In Section 3.2 we
make precise what a model is, and in Section 3.3 we extend our account to disjunctive
systems of descriptions.

3.1 Preliminary Definitions

Let F be a set of symbols called features. An F-path is a finite, possibly empty, sequence
of features, i.e. a word of F*. We will use the letter 7 for paths and f for features, and
we write w7y for the concatenation of paths 7; and mo. We write € for the empty path.

An F-feature tree T is a prefix closed set of F-paths, i.e. suchthat nf € T = w e T.
The paths of a feature tree are also called nodes.

If there exists a partial order < over F', a left-saturated F-feature tree is defined as
an F-feature tree such that nf1 € T = wfy € T (Vfy < f1). In a left saturated feature
tree T, we can define the sets of nodes that are equal, below, above, to the left, and to
the right of a node 7 as follows:

eq(m) = {m} (2)
down(r) = {nr' € T | 7' # €} (3)
up(m) ={m € T | Imy # € m=mma} (4)
left(m) = {n' € T'| Imy,mo, 75, fi, fj fi < fj m=mfjmy @ =mfimy} (5)
right(r) = {r' € T'| Imy, o, h, fi, [; fi = fj m=mfjma 7 =mfimy} (6)

where f; < f; = fi 2 fi Nfi # [

An ordered tree is simply a left-saturated feature tree, where the features are positive
integers. In an ordered tree T', we write 7 : (71, ... ,m,) to abbreviate the fact that m; € T
and T, =7mi (1<i<n)andzw(n+1)¢T.

3.2 Models
ME$Np2 = MEd AN MEd (7)
MExR NRyy = MEzRiy N MEzRyy (8)
MExzRIURyy = MEzRiyV MEzZRyy (9)
MErz-Ry = MEz(=U<tUDTU<U>\R)y (10)
Me=z=y = Iz)=1I() (11)
Misaty = I() € up(I(y) (12)
MEz>Ty = I(x) € down(I(y)) (13)
MEz<y = I(z)€left(I(y)) (14)
MEz»=y = I(z)€right(I(y)) (15)
ME=z:(y,....yn) = I(z): Iy) - I (yn)) (16)
MEzz+¢ = L(I(z)) C (17)

Figure 4: Conditions for being a model of a description

tinfix ¢\’ is a difference operator, e.g. =U <t UDTU<U> \ <P US> =g =UDT U

A model M = (T, L, I) of an electrostatic tree description ¢ consists of an ordered
tree T, a labeling function L mapping nodes of T" to elements of £, and an interpretation
I mapping each variable of ¢ to a node in T'. M is a model if it satisfies conditions (7-17)
in Figure 4, where /1 C /5 states that £; is a specialization of £y in lattice L.

We will distinguish two important classes of models: free and saturated. In a free
model, a node of T interprets at most 1 variable. In a saturated model, a node of T
interprets either no variable, precisely one neutral variable, or precisely two variables, 1
positive and 1 negative: every charged variable is mated with an anti-variable. We write
M =¢ ¢ for a free model and M =g ¢ for a saturated model.

In an elementary tree description, the positive and negative charges indicate the
plugs and holes. They constrain the way in which elementary trees may be plugged to-
gether to form larger syntactic constructions. Saturated models will serve to characterize
completed parse trees.

3.3 Disjunctive Systems of Descriptions

We now demonstrate how the treatment developed for the conjunctive fragment can be
extended to handle electrostatic tree descriptions with a restricted form of disjunction.
We only aim to account for disjunctions arising from lexical ambiguity: for any given
word, we may need to choose, in the lexicon, one of several possible lexical entries.

We consider the following idealization of the problem: we are given n words, and each
must choose 1 out of m descriptions. We say that a disjunctive system of electrostatic
tree descriptions is given by a matrix (¢;;) and has the semantics:

bij (18)

The definition of a model can be extended to disjunctive matrices of descriptions by
adding a function S which maps the index of a row to an index of a selected column:

(M,S) = (¢5) = MeEes N\ dis) (19)

1<i<n

where ¢;5(;) is called the selected disjunct of row 1.

The task of parsing is thus to pick one description in each row of matrix (¢;;) and
to find a saturated model for the conjunction of these descriptions, i.e. to plug these
elementary trees together so as to leave no unfilled hole and no unused plug.

If we further assume (a) that no two descriptions in (¢;;) have any variable in com-
mon, and (b) that each ¢;; has at least one free model M;;, then each non-selected ¢;;
can be given this free model M;;. Both conditions can easily be met in the applica-
tion to parsing. Condition (a) may be achieved by appropriately renaming variables
when looking up a lexical entry. Condition (b) merely requires a description to be “tree
shaped.”

We can now define the notion of a matrix model ((M;;), S) for (¢;;):

((Mij),S) E (¢ij) = Mij Fr ¢ij j # S(i) (20)
N Mgqy == Mysm (=M)
AN MEs N disa
1<i<n

In the following, we will assume that conditions (a) and (b) are met, and we will restrict
our attention to the search for matrix models. The advantage over simply looking for a
model that satisfies (19) is that we can obtain stronger propagation: now the constraints

in all the descriptions ¢;; must be satisfied ... but not necessarily in the same model.
This is the trick! We have transformed a disjunctive problem into a conjunctive
formulation: all constraints must be satisfied ... but not necessarily in the same model:

the disjunctive aspect has been shifted to how we partition the models.

4 Constraint Model

We now develop a constraint model for the formal framework of Section 3: we introduce
variables for the quantities and mappings it mentions, and formulate constraints on
them that precisely capture the conditions stipulated by the formal model. Following
our presentation in [8, 6], we describe the technique by means of an encoding scheme
[(#i;)] which turns a matrix of descriptions (¢;;) into a CSP:

[(#i)] = [(¢ij)]0 A [(¢i5)]a (21)

[(#ij)]o produces the well-formedness constraints that ensure that solutions represent
minimal matrix models on tree domains, and [(¢;;)]1 forms the additional constraints
required for them to be models of (¢;;).

4.1 Representation

We introduce variable S(i) € [1..m] to indicate the column selected in row 4, dom(M;;)
for the set of variables which is the domain of model M;;, and node(z) for the represen-
tation of the interpretation I(x) of .

For each variable z, we introduce the variables eq(z), down(z), up(z), left(z), right(z),
eqdown (), equp(z), side(z), daughters(z), mother(z), label(z), and define node(z) as the
11-tuple of these variables.

4.2 Well-Formedness Constraints

Selection Constraint. In [5], we introduced the selection constraint X = (Vi,... , V,)[I]
to indicate that X is equated with the Ith element in sequence (Vi,...,V,).? This can
be very efficiently implemented as a constraint that additionally provides constructive
disjunction semantics (lifting of information common to all remaining alternatives).

X, Vi, ..., Vy, and I are all variables.

We write V for the domain of our saturated model, i.e. the variables in all selected
descriptions:

V=W1Nu---uV, (22)
Vi = (vars(¢it), ... ,vars(¢im))[S(i)] (23)
We write B;; for the boolean indicating whether ¢;; is selected, and make the classical
identification of false with 0 and true with 1. We write dom(M;;) for the domain of model
M;;. Since we require models to be minimal, dom(M;;) is either V' if ¢;; is selected or
just vars(¢;;) otherwise:

Bij = S(i) = (24)
dom(M;;) = (vars(¢i;), V)[Bij +1] (25)

For each variable = in ¢;;, we pose, for notational convenience:
dom(z) = dom(M;;) (26)
sel(a:) == Bij (27)

Further, eq(z), up(z), down(z), left(x), right(z) stand for the sets of variables whose
interpretations are in the corresponding positions relative to the interpretation of z, and
write mates(z) for the other variables with the same interpretation:

eq(z) = {z} W mates(z) (
dom(z) = eqdown(z) W up(z) W side(x) (

—
w NN
o © oo
~— ~— ~—

= equp(z) W down(z) W side(z)

As demonstrated in [8], explicitly introducing these intermediate results affords greater
propagation:

eqdown(z) = eq(z) W down(z) (31)
equp(z) = eq(z) & up(z) (32)
side(z) = left(x) Wright(z) (33)

We write V for the set of all variables in the matrix:
V = |4 vars(eij) (34)
1,J
We define V° = VN Vars®, V* = VN VarsT™ and V- = VN Vars~ for respectively the
neutral, positive and negative variables in the matrix. A neutral variable has no mate
(35). A charged variable has at most one mate: it has one mate iff its description is
selected (36):
(z € V") |mates(z)| =0 (35)
(z ¢ V°) |mates(z)| = sel(z) (36)

10

CY=1A[z=vy]s V C#1 A [z#Yy]3 (40)
CW=2A[z<Tyls V C#2 A [z-<" g3 (41)
CW=3 A [z>Tyls V CY£3 A [z->Ty]; (42)
CW =4 Afz<yls V CV#4 A [z-=yls (43)
CW=5A[z=yls V C¥#5 A [z-=yls (44)
CW=6A[zLlyls V C¥#£6 A [z-Ly]s (45)

Figure 5: Treeness clauses

Each positive (resp. negative) variable can only be mated with a negative (resp. positive)
variable.

(z e V) mates(z) C V™ (37)
(xeVT) mates(z) C VT (38)

We define VT = VN Vars™ and V— = VN Vars™ for respectively the positive and negative
variables in the saturated model. The mates of positive (resp. negative) variables form a
partition of the negative (resp. positive) variables in the saturated model, and therefore
in the matrix model since variables have no mates in the free models of (M;;).

V™= |4+ mates(z) VT = [+ mates(z) (39)

Treeness Constraint. Two nodes m; and 79 in an ordered tree must stand in one
of 5 mutually exclusive relationships: m = w9, m <" w9, m DT 79, M < W, M = To.
Thus, for any two variables z and y, either they are interpreted by the same model
and their interpretations stand in one of these relationships, or they are in distinct
models. We introduce variable C*¥ € {1,2,3,4,5,6} to explicitly represent this choice,
and axiomatize the options with the 6 clauses of (Fig 5). The translation [¢]3 is given
in (Fig 6).

In logic programming, disjunction is given the operational semantics of a choice point.
For the clauses in (Fig 5), that would be inappropriate and would lead to disastrous
performance. Instead, we assume that each clause can be implemented as one constraint:
in Oz [10, 15], this is expressed using the or ... [] ... end combinator.

We can now state precisely the well-formedness constraint [(¢;;)]o:

[(#i)]0 = (22,39) (57)
A(24,29)
A (28-33,35-38)
eV
A (40-45)
T,yeVy

11

[t =y]s = node(z)= node(y) (46)

[#yls = eq(z) | eqa(y) (47)

[z <" yls = equp(z) Cup(y) A down(z) D eqdown(y) (48)
[z>ty]s = [y<t 2] (49)
[-<"yls = ea(z) | up(y) A eq(y) || down(z) (50)
[>T yls = eqa(z) | down(y) A eq(y) | up(z) (51)
[t <y]s = eqdown(z) C left(y) A eqdown(y) C right(z) (52)

[z =yls = [y=4] (53)

[z =>=yls = [y-<x] (54)
[z Lyls = dom(z) | dom(y) (55)

[xt ~Ly]s = dom(z) = dom(y) (56)

Figure 6: translation []3

4.3 Problem specific constraints

We now explicate how [(¢;;)]i forms the additional problem specific constraints that
further limit the admissibility of well-formed solutions. The encoding []; is given by
clauses (58-62).

[6i) = Algih (58)
(]
[p1 Ag2]i = [l A [g2n (59)

A nice consequence of the introduction of choice variables C*¥ is that any dominance
constraint x R y can be translated as a restriction on the possible values of C*¥. For
example, z <* y can be encoded as C*¥ € {1,2}. More generally:

[xRyli = C" €[R] (60)

where [R]y turns an extended dominance relationship into a set of possible values for
the choice variable (see Fig 7, where we also allow z | y to indicate that z and y
are interpreted by different models). For the labeling constraint z <+ ¢, we assume
an appropriate encoding [£]4 such that unification of [¢]4 and [¢']4 returns their most
general common specialization [¢ M £']4.

[z €], = label(z) =[¢]4 (61)

12

Finally, the immediate dominance constraint x : (y1, ... ,y,) requires a more complicated
treatment:

[z: (y1,.. . syn))1 = daughters(z) = (node(y1),... ,node(y,)) (62)
A down(z) = eqdown(y;) W - - - W eqdown(y,,)
A equp(z) = up(y1) = - = up(yn)
1</i\<n mother(y;) = node(z)
A left(y;) = left(z) & 1 eqdown(y;)
1<i<n 1<j<i
A right(y;) = right(z) & ¢} eqdown(y;)
=0 1<j<n
[R1N Ra]2 = [Ri]2 N [Ra]2 [=]. = {1} [<]2 = {4} (63)
[R1 U Ro]o = [Ra] U [Ro]2 [<*T2 = {2} [-]2 = {5} (64)
[-R]2 ={1,2,3,4,5,6} \ [R]2 [>712 = {3} [L]e = {6} (65)

Figure 7: Relationship encoding [R]s

4.4 Solving the CSP

The minimal models of (¢;;) can be found by enumerating the assignments to the se-
lection variables (S(7)); and the choice variables (C*Y), ,cy consistent with [(¢;;)]. In
practice, we have used a first-fail labeling strategy.

4.5 Encoding Parsing

We explain now how the task of parsing a sentence sy ... s, can be turned into a matrix
problem as shown in (66), plus some additional constraints.

Tp < S true ... true
D11 e D1m

11 | 1 (66)
I Drm

Row 1 corresponds to the extra root variable that cancels the polarity of the top node
on the parse tree: only the 1st column is relevant; others are simply filled with distinct
instances of the trivial tree, true = z° < T, where T is the top of lattice £. Constraint
(67) is added to ensure that only the real root variable is selected:

S(1) =1 (67)

13

Row i+ 1 corresponds to word s;. We assume a function Lex(s) mapping a word to a set
of lexical entries. Row i + 1 consists of all formula(e;;) for e;; € Lex(s;). The row may
be padded on the right with instances of true, and constraint (68) is added:

1< S(i+1) < |Lex(si)| (68)

Finally precedence constraints must be imposed between anchor variables for distinct
words.

x = anchor(e;, j,)
y = anchor(e;,j,) p = C™ e [<U L] (69)
11 < 19
The CSP for the parsing problem is given by the encoding [] of the matrix above,
together with all additional constraints stipulated by (67-69).

5 Preliminary Results And Future Work

The ideas described in the preceding sections have been implemented in the research
prototype LINDA in the concurrent constraint programming language Oz [15, 10], which
supports constraints over finite domains and finite sets of integers. The primary com-
ponents of LINDA are a grammar for a small fragment of English and a parser for tree
description grammars.

The grammar covers just a small fragment of English including topicalization and
relative clauses. The degree of lexical ambiguity is less than four, i.e. there are at most
four lexical entries associated with a word in the lexicon. We plan to extend the coverage
of the grammar, in particular we are interested in certain coordination phenomena.

Experimental results indicate that the parser performs well for unambiguous gram-
mars: propagation is fast and yields shallow search trees. For ambiguous grammars like
the one mentioned above the search trees are also shallow, but propagation is much more
expensive. Thus our prototype parser serves as a proof of concept, but is not yet efficient
enough for practical parsing.

The efficiency of our implementation is primarily affected by the following two con-
siderations: (a) in order to account for lexical ambiguity we must introduce a form
of disjunction which makes inference noticeably weaker than in the purely conjunctive
fragment. Since propagation accomplishes less, effective search depends more on a good
distribution strategy for the choice variables C*Y. Up to now, we have used a simple
first-fail strategy, but we plan to work on more “clever” strategies. (b) the treeness
constraints (see Figure 5) impose a quadratic number of constraints, which are imple-
mented in LINDA by a quadratic number of propagators. In order to improve efficiency,
we plan to develop specialized constraint technology, in particular we intend to replace
the quadratic number of individual propagators by a single global propagator. This has
been done successfully for the conjunctive fragment described in [7, 8].

However, it remains to be seen whether such improvements will suffice to allow our
approach to scale to realistic grammars and longer sentences. A systematic evaluation
has yet to be done.

14

6 Conclusion

In this paper we have shown that the constraint-based treatment of tree descriptions
presented in [7, 8] can be adapted for parsing with tree-descriptions. First, we introduced
a grammar framework for tree description grammars and a tree logic used for writing
the tree descriptions. Second, we specified the semantics for this tree logic and extended
it to accommodate a restricted form of disjunction sufficient to handle lexical ambiguity.
Third, we presented a constraint model where we explain how to encode parsing problems
into CSPs. Finally, we described preliminary results obtained with our LINDA prototype
and outlined directions for future development.

Acknowledgments: we are grateful to Claire Gardent for initiating and co-supervising
this project and for getting the present paper started.

References

[1] Ralf Backofen, James Rogers, and K. Vijay-Shankar. A first-order axiomatisation
of the theory of finite trees. Journal of Logic, Language and Information, 1995.

[2] P. Blackburn, C. Gardent, and W. Meyer-Viol. Talking about trees. In Proceedings
of EACL’93, Utrecht, 1993.

[3] J. Carroll, N. Nicolov, O. Shaumyan, M. Smets, and D. Weir. The LexSys Project.
In Proceedings of the 4th TAG+ workshop, Philadelphia, 1998.

[4] Thomas L. Cornell. Description Theory, Licensing Theory and Principle-Based
Grammard. PhD thesis, UCLA, 1992.

[5] Denys Duchier. Axiomatizing dependency parsing using set constraints. In Sizth
Meeting on Mathematics of Language (MOLG), Orlando, Florida, July 1999.

[6] Denys Duchier. Set constraints in computational linguistics — solving tree descrip-
tions. In Workshop on Declarative Programming with Sets (DPS’99), Paris, Septem-
ber 1999.

[7] Denys Duchier and Claire Gardent. A constraint-based treatment of descriptions.
In Proceedings of IW(CS-3, Tilburg, 1999.

[8] Denys Duchier and Joachim Niehren. Solving dominance constraints with finite set
constraint programming, 1999.

[9] Alexander Koller, Joachim Niehren, and Ralf Treinen. Dominance constraints:
Algorithms and complexity. In Proceedings of the Third Conference on Logical
Aspects of Computational Linguistics, Grenoble, 1998.

[10] The Mozart Consortium. The Mozart Programming System, 1998.
http://www.mozart-oz.org/.

15

[11]

[12]

M.P.Marcus, D. Hindle, and M.M.Fleck. Talking about talking about trees. In
Proceedings of the 21st Annual Meeting of the Association for Computational Lin-
guistics, Cambridge, MA, 1983.

R.A. Muskens and E. Krahmer. Description Theory, LTAGs and Underspecified
Semantics. In Fourth International Workshop on Tree Adjoining Grammars and
Related Frameworks, pages 112-115, Philadelphia, PA, 1998. Institute for Research
in Cognitive Science.

Owen Rambow, K. Vijay-Shanker, and David Weir. D-Tree Grammars. In Pro-
ceedings of ACL’95, 1995.

James Rogers and K. Vijay-Shanker. Reasoning with descriptions of trees, 1992.

Gert Smolka. The Oz Programming Model. In Computer Science Today, volume
1000 of LNCS, pages 324-343, 1995.

K. Vijay-Shankar. Using descriptions of trees in a tree-adjoining grammar. Com-
putational Linguistics, (18):481-518, 1992.

16

