
Parsing with Tree Des
riptions:a
onstraint{based approa
h�Denys Du
hier Stefan Thaterdu
hier�ps.uni-sb.de stth�
oli.uni-sb.deAbstra
tIn previous work [7, 8℄ it was shown that a
onstraint-based treatment of tree-des
riptions results in a simple and tra
table implementation. However, that ap-proa
h treated only the
onjun
tive fragment. Therefore it
ould not be dire
tlyapplied to parsing with tree des
ription-based grammars where lexi
al ambiguitygives rise to disjun
tion.In this paper, we extend the previous approa
h in two ways. First, we intro-du
e the formalism of `ele
trostati
 tree des
riptions', whi
h
ombines dominan
elogi
 with a notion of polarities and permits a
onvenient
hara
terization of ad-missible synta
ti
 stru
tures. Se
ond, we extend this idea to disjun
tive systemsof des
riptions suÆ
ient to a

ount for lexi
al ambiguities. Finally, we exhibit anen
oding that turns parsing into a
onstraint satisfa
tion problem (CSP) solvableby
onstraint programming.1 Introdu
tionTraditionally, syntax is about trees: phrase stru
ture trees. In
omputational syntaxhowever, it has variously been argued that des
riptions of trees o�er an alternative withsigni�
ant advantages. [11℄ shows that tree des
riptions support in
remental synta
ti
pro
essing; [16℄ uses them to provide a fully monotone treatment of uni�
ation-basedTree Adjoining Grammar; [12℄ �nds them ne
essary for
ombining semanti
 with syn-ta
ti
 under-spe
i�
ation; and [13℄ advo
ates their use for a uniform treatment of mod-i�
ation and
omplementation in a TAG-like framework.Common to all these proposals, is the idea that des
riptions permit a
ertain level ofunder-spe
i�
ation ne
essary for an adequate and elegant treatment of the phenomenaunder
onsideration. The under-spe
i�
ation is in two guises. First, node variables areused rather than nodes. In parti
ular, two distin
t node variables may refer to one andthe same node. Se
ond, arbitrary dominan
e statements are allowed (as opposed to onlystri
t dominan
e) and permit to under-spe
ify the stru
tural relation between two nodevariables and therefore, indire
tly, between the tree nodes these variables denote.�The resear
h presented in this paper was funded by the DFG in SFB{378, Proje
t C2 (LISA).
1

The tree des
riptions used by
omputational linguists are expressions in a tree logi
e.g. [2, 1℄: they are logi
al formulae whi
h, if
onsistent, are satis�ed by one and usuallymany more models in that logi
. These models are the synta
ti
 trees the linguist issear
hing for.In terms of pro
essing however, tree des
riptions are often treated as data-stru
turesand
ombined together using various
omposition operations. Under su
h a view, parsingis dealt with by means of standard te
hniques e.g. an Earley style parsing algorithm in[13℄ and automaton-based parsing in [3℄. The pri
e to pay is that node variables are nolonger variables: they are nodes whi
h under
ertain
ir
umstan
es
an be merged.Under the logi
al view on the other hand, variables are variables and parsing is amodel-generation problem: given a logi
al formula �, how
an we generate the minimalmodels that satisfy it? As [4℄ remarks, naive tableau-based approa
hes su
h as [14, 4℄
anlead to
ombinatorial explosion in the fa
e of disjun
tion inherent in the theory of trees.In fa
t, [9℄ shows that solving purely
onjun
tive des
riptions is NP-hard. In spite of thistheoreti
al result, pra
ti
al algorithms are needed to enumerate solutions as eÆ
ientlyas possible. In [7, 8℄ we des
ribed a
onstraint-based approa
h by en
oding into �niteset
onstraints. This te
hnique resulted in a simple and eÆ
ient implementation in the
on
urrent
onstraint programming language Oz [10, 15℄.In this paper, we build on the approa
h of [7, 8℄ and adapt it to parsing withdes
ription-based grammars. First, we introdu
e the formalism of `ele
trostati
 treedes
riptions', whi
h
ombines dominan
e logi
 with a notion of polarities and permitsa
onvenient
hara
terization of admissible synta
ti
 stru
tures. Se
ond, we extend theformal framework with a restri
ted form of disjun
tion to a

ount for lexi
al ambiguity,and introdu
e a
omputationally judi
ious notion of model. Third, we provide an en
od-ing, in the axiomati
 style, that turns a parsing problem into a
onstraint satisfa
tionproblem (CSP) solvable by
onstraint programming.Se
tion 2 presents and motivates the tree logi
 used for writing the grammar; itthen outlines a grammar fragment in that logi
. Se
tion 3 introdu
es the semanti
s oftree des
riptions and develops a formal model of our parsing framework. In parti
ular,Se
tion 3.3 extends the semanti
s to disjun
tive systems of des
riptions. Se
tion 4turns to the
omputational aspe
t and develops a
orresponding
onstraint model. Wepre
isely de�ne an en
oding s
heme that turns a problem expressed in our formal modelinto a CSP in our
onstraint model. Se
tion 5 dis
usses preliminary results obtainedwith our prototype implementation and outlines dire
tions of future development.2 Tree Des
ription GrammarLike lexi
alized tree adjoining grammar (LTAG) the basi

omponent of a tree des
rip-tion grammar is a lexi
on that maps words to fragments of phrase stru
ture (elementarytrees). The task of parsing is to
ombine these fragments into a single
oherent tree.In order to a

ount for modi�
ation or movement phenomena it is often ne
essaryto insert one fragment into the middle of another one. In TAG this is a

omplished bythe non-monotoni
 operation of adjun
tion: A node is split into an upper and a lower2

part and a fragment is inserted into this hole. In our approa
h, we take up a di�erentidea. Sin
e we use des
riptions of trees there is no need to split a node. We
an alreadyprovide holes in the lexi
al fragments. Into these holes other fragments may be insertedin
rementally and monotoni
ally. (Fig 1) shows a small lexi
on. Des
ription �5
ontainsa hole between the vp nodes whi
h is bridged by a dominan
e link (the dotted line).Into this hole, we might insert, for example, the vp-modi�er �4.Another bene�t of using des
riptions is that one obtains greater
exibility: we donot require that the two nodes related by a dominan
e link be assigned the same symbol(
ategory), whi
h allows alternative analyses for e.g. extra
tion phenomena. Unlike inTAG, where the �ller-gap dependen
y is lo
alized to the verb, we provide lexi
al entriesfor topi
alized nps. For example, the lexi
al entry �1 for Who says that this tree
ana
t as a �ller of a senten
e gap (we use � to refer to the empty word).In this sense, our approa
h is
losely related to d-tree grammar (DTG) presented in[13℄. However, DTG distinguishes two di�erent tree
ombining operations
alled subser-tion and sister-adjun
tion. This distin
tion is motivated by linguisti

onsiderations: itmirrors the distin
tion between
omplementation and modi�
ation. Subsertion always
orresponds to
omplementation and sister-adjun
tion to modi�
ation. From a formalperspe
tive, this distin
tion is not ne
essary: modi�
ation phenomena
an equally wellbe treated by the subsertion operation. From a pra
ti
al point of view, the sister-adjun
tion operation has the disadvantage that it
hanges the arity of nodes and wouldmake an implementation less eÆ
ient. Therefore, we do not provide an operation that
orresponds to sister-adjun
tion.Another di�eren
e with traditional DTGs is that we de
orate nodes with polaritiesin order to
ontrol the way in whi
h tree des
riptions may
ombine: A � identi�es ahole, whi
h
an be thought of as an open valen
y, and a + identi�es a plug. Neutralnodes are de
orated with a 0 and are normally used for lexi
al nodes. Polarities o�era simple way to pre
isely
hara
terize the desired models, i.e. the synta
ti
 stru
turesli
ensed by the grammar.Su

essful parsing requires every hole to be plugged and every plug to be used.(Fig 2) illustrates the idea with a parse tree for the senten
e Who did Mary see. Thepairings of plugs with holes are indi
ated by dashed lines. As
an be seen from thisexample, we assume that the root of ea
h fragment has a positive polarity. Therefore,we must introdu
e an extra sentential root node with negative polarity in order to
an
elthe polarity of the topmost node.2.1 Ele
trostati
 Tree Des
riptionsWe now introdu
e a formal language for writing the elementary tree des
riptions of ourlexi
on. We assume three in�nite and disjoint sets Vars0, Vars+ and Vars� of variables(resp. neutral, positively and negatively
harged variables) and a latti
e L of labels. Anele
trostati
 tree des
ription is a formula of the form:� ::= x R y j x : hy1; : : : ; yni j x ` j �1 ^ �2
3

�1 : �2 : �3 : �4 :
b+ s

b0 np
b0 who b� s

b+ np8notsubj
b0 �

b+ aux
b0 did b+ np

b0 mary b+ vp
b� vp b0 adv

b0 yesterday�5 :
b+ s

b� aux b�npt[subj : +℄ b� vp
b+ vp

b0 V
b0 see b� np

s =def �
at : s �np =def �
at : np �: : :who =def �
at : wordstring : \who" �� =def �
at : wordstring : � �: : :notsubj =def � subj : � �Figure 1: Lexi
on entries for who, did, Mary, see and yesterday.where R is any boolean
ombination of =, �+, �+, �, � | where �+ represents stri
tdominan
e and � pre
eden
e | and expresses the relative position of x and y. R maybe formed a

ording to the following grammar:R ::= = j �+ j �+ j � j � j R1 [R2 j R1 \R2 j :Rx : hy1; : : : ; yni states that x has the (yi) as immediate daughters. Finally, we writex ` (for ` 2 L) to indi
ate that x is labeled by `. The purpose of ` is to en
apsulateall the grammati
al features, su
h as
ategory or agreement. In this manner, they areabstra
ted out and we
an study the grammati
al framework independently of any spe-
i�

ommitment to these features. In this sense, our framework is parametrized by anarbitrary latti
e L of e.g. avms.In our examples we assume a produ
t of latti
es denoting avms with features
at,string and subj. Useful abbreviations, su
h as s and np, are de�ned in (Fig 1), wherewe follow the standard
onvention that >-valued1 features are omitted. Thus, label sdenotes the most general avm with value s at feature
at.The full language allows literals of the form 8(x: :y) ` and 9(x: :y) `. These are
alled insertion
onstraints whi
h are similar to the sele
tive and obligatory adjun
tion
onstraints in TAG: a universal insertion
onstraint 8(x: :y) ` requires that all nodesthat lie on the path properly between x and y are assigned a label
ompatible with `whereas an existential
onstraint 9(x: :y) ` requires the existen
e of su
h a node. Forexample, the universal insertion
onstraint in �1 requires that no node on the path be-tween the gap and the �ller is marked as subje
t, whi
h rules out
ertain ungrammati
al1We write > for the top, i.e. most general, element of a latti
e.4

b� s
b+ s

b0 np
b0 who b� s

b+ np
b0 �

b+ s
b� aux

b+ aux
b0 did b+ np

b0 maryb� np b� vp
b+ vp

b0 v
b0 see b� np

b s
bnp
bwho b s

baux
bdid bnp

bmary bvp
bv
b see bnp

b �Figure 2: Who did Mary see?x+1 sx02 npx03 who x�4 sx+5 np8notsubjx06 �
x+1 s x+1 : hx02; x�4 ix02 np x02 : hx03ix03 who x03 : hix�4 s x�4 �� x+5x+5 np x+5 : hx06ix06 � x06 : hi8(x�4 : : x+5) notsubjFigure 3: Lexi
al entry for topi
alized Who.
onstru
tions. In this paper, we shall not a

ount for insertion
onstraints, although thetreatment
an be extended simply.2.2 Lexi
on, Lexi
al EntriesLet us �rst explain how to formulate tree des
riptions in terms of ele
trostati
 formulae.Take, for example, the des
ription depi
ted in (Fig 3): Immediate dominan
e relations(solid lines) are formulated using x : hy1; : : : ; yni whereas dominan
e relations (dottedlines) are expressed using ��, whi
h is just an abbreviation for =[�+. Sin
e immediatedominan
e relations always
onstrain the ordering of the daughters, there is no need tomake expli
it use of the pre
eden
e relations � and � within the des
riptions of thelexi
al entries. However, they will be
ome important when we
ombine lexi
al trees tolarger trees.The polarities de
orating the variables in (Fig 3) should be viewed as part of theirname. They visually indi
ate whether the variable
omes from Vars+, Vars�, or Vars0.5

Sin
e these sets are disjoint, it is not possible for two o

urren
es of a variable to bede
orated with di�erent polarities.A lexi
al entry is an avm (or triple) that relates a string s, a des
ription � and anan
hor node variable x0 o

urring in �:24 string : sformula : �(x0)an
hor : x0 35The lexi
on is simply a set of lexi
al entries. We write attribute a

ess in fun
tionalnotation: for a lexi
al entry e, the fun
tions formula(e), an
hor(e) and string(e) returnthe values of the
orresponding attributes of e.2.3 Grammar FrameworkA lexi
alized tree des
ription grammar is a triple G = hL; E ;Si, where L is a latti
e oflabels, E is a set of lexi
al entries, and S 2 L is a start symbol.Parsing. As long as a tree des
ription grammar asso
iates ea
h word with exa
tly onedes
ription, it is straightforward to adapt the te
hnique of [7℄ for parsing: building aparse tree for an input senten
e w1 : : : wn
an be done simply by solving the
onstraint:� = n̂i=1 formula(ei) ^ n̂i=2 an
hor(ei�1) � an
hor(ei) ^ x�R S (1)where ei is the lexi
on entry for word wi and x�R 2 Vars� is the root node whi
h wepreviously argued must be introdu
ed in order to
an
el the polarity of the topmostnode. We assume that the formulae formula(ei) do not share variables and that x�R is afresh variable not o

uring in any formula(ei).However, grammars for natural language typi
ally assign more than one des
riptionto a word, and the approa
h developed in [7℄ must be extended to allow disjun
tions oftree des
riptions.3 Formal ModelIn this se
tion, we develop the formal framework of our approa
h to parsing. Thesemanti
s of tree des
riptions are given by interpretation over �nite trees: we begin withde�nitions, where the intuition is to identify a node in a feature tree with the sequen
eof features that must be followed from the root to arrive at this node. In Se
tion 3.2 wemake pre
ise what a model is, and in Se
tion 3.3 we extend our a

ount to disjun
tivesystems of des
riptions.
6

3.1 Preliminary De�nitionsLet F be a set of symbols
alled features. An F -path is a �nite, possibly empty, sequen
eof features, i.e. a word of F �. We will use the letter � for paths and f for features, andwe write �1�2 for the
on
atenation of paths �1 and �2. We write � for the empty path.An F -feature tree T is a pre�x
losed set of F -paths, i.e. su
h that �f 2 T) � 2 T .The paths of a feature tree are also
alled nodes.If there exists a partial order � over F , a left-saturated F -feature tree is de�ned asan F -feature tree su
h that �f1 2 T) �f2 2 T (8f2 � f1). In a left saturated featuretree T , we
an de�ne the sets of nodes that are equal, below, above, to the left, and tothe right of a node � as follows:eq(�) = f�g (2)down(�) = f��0 2 T j �0 6= �g (3)up(�) = f�1 2 T j 9�2 6= � � = �1�2g (4)left(�) = f�0 2 T j 9�1; �2; �02; fi; fj fi � fj � = �1fj�2 �0 = �1fi�02g (5)right(�) = f�0 2 T j 9�1; �2; �02; fi; fj fi � fj � = �1fj�2 �0 = �1fi�02g (6)where fi � fj � fi � fj ^ fi 6= fj.An ordered tree is simply a left-saturated feature tree, where the features are positiveintegers. In an ordered tree T , we write � : h�1; : : : ; �ni to abbreviate the fa
t that �i 2 Tand �i = �i (1 � i � n) and �(n+ 1) 62 T .3.2 Models M j= �1 ^ �2 � M j= �1 ^ M j= �2 (7)M j= x R1 \R2 y � M j= x R1 y ^ M j= x R2 y (8)M j= x R1 [R2 y � M j= x R1 y _ M j= x R2 y (9)M j= x :R y � M j= x (= [�+ [�+ [� [� n R) y (10)yM j= x = y � I(x) = I(y) (11)M j= x�+ y � I(x) 2 up(I(y)) (12)M j= x�+ y � I(x) 2 down(I(y)) (13)M j= x � y � I(x) 2 left(I(y)) (14)M j= x � y � I(x) 2 right(I(y)) (15)M j= x : hy1; : : : ; yni � I(x) : hI(y1); : : : ; I(yn)i (16)M j= x ` � L(I(x)) v ` (17)Figure 4: Conditions for being a model of a des
riptionyin�x `n' is a di�eren
e operator, e.g. = [�+ [�+ [� [� n �+ [� =def = [�+ [�7

A model M = hT;L; Ii of an ele
trostati
 tree des
ription �
onsists of an orderedtree T , a labeling fun
tion L mapping nodes of T to elements of L, and an interpretationI mapping ea
h variable of � to a node in T . M is a model if it satis�es
onditions (7{17)in Figure 4, where `1 v `2 states that `1 is a spe
ialization of `2 in latti
e L.We will distinguish two important
lasses of models: free and saturated. In a freemodel, a node of T interprets at most 1 variable. In a saturated model, a node of Tinterprets either no variable, pre
isely one neutral variable, or pre
isely two variables, 1positive and 1 negative: every
harged variable is mated with an anti-variable. We writeM j=f � for a free model and M j=s � for a saturated model.In an elementary tree des
ription, the positive and negative
harges indi
ate theplugs and holes. They
onstrain the way in whi
h elementary trees may be plugged to-gether to form larger synta
ti

onstru
tions. Saturated models will serve to
hara
terize
ompleted parse trees.3.3 Disjun
tive Systems of Des
riptionsWe now demonstrate how the treatment developed for the
onjun
tive fragment
an beextended to handle ele
trostati
 tree des
riptions with a restri
ted form of disjun
tion.We only aim to a

ount for disjun
tions arising from lexi
al ambiguity: for any givenword, we may need to
hoose, in the lexi
on, one of several possible lexi
al entries.We
onsider the following idealization of the problem: we are given n words, and ea
hmust
hoose 1 out of m des
riptions. We say that a disjun
tive system of ele
trostati
tree des
riptions is given by a matrix (�ij) and has the semanti
s:i=n̂i=1 j=m_j=1 �ij (18)The de�nition of a model
an be extended to disjun
tive matri
es of des
riptions byadding a fun
tion S whi
h maps the index of a row to an index of a sele
ted
olumn:hM;Si j= (�ij) � M j=s ^1�i�n�iS(i) (19)where �iS(i) is
alled the sele
ted disjun
t of row i.The task of parsing is thus to pi
k one des
ription in ea
h row of matrix (�ij) andto �nd a saturated model for the
onjun
tion of these des
riptions, i.e. to plug theseelementary trees together so as to leave no un�lled hole and no unused plug.If we further assume (a) that no two des
riptions in (�ij) have any variable in
om-mon, and (b) that ea
h �ij has at least one free model Mij , then ea
h non-sele
ted �ij
an be given this free model Mij . Both
onditions
an easily be met in the appli
a-tion to parsing. Condition (a) may be a
hieved by appropriately renaming variableswhen looking up a lexi
al entry. Condition (b) merely requires a des
ription to be \treeshaped."
8

We
an now de�ne the notion of a matrix model h(Mij); Si for (�ij):h(Mij); Si j= (�ij) � Mij j=f �ij j 6= S(i)^ M1S(1) = � � � =MnS(n) (=M)^ M j=s V1�i�n�iS(i) (20)In the following, we will assume that
onditions (a) and (b) are met, and we will restri
tour attention to the sear
h for matrix models. The advantage over simply looking for amodel that satis�es (19) is that we
an obtain stronger propagation: now the
onstraintsin all the des
riptions �ij must be satis�ed : : : but not ne
essarily in the same model.This is the tri
k! We have transformed a disjun
tive problem into a
onjun
tiveformulation: all
onstraints must be satis�ed : : : but not ne
essarily in the same model:the disjun
tive aspe
t has been shifted to how we partition the models.4 Constraint ModelWe now develop a
onstraint model for the formal framework of Se
tion 3: we introdu
evariables for the quantities and mappings it mentions, and formulate
onstraints onthem that pre
isely
apture the
onditions stipulated by the formal model. Followingour presentation in [8, 6℄, we des
ribe the te
hnique by means of an en
oding s
heme[[(�ij)℄℄ whi
h turns a matrix of des
riptions (�ij) into a CSP:[[(�ij)℄℄ = [[(�ij)℄℄0 ^ [[(�ij)℄℄1 (21)[[(�ij)℄℄0 produ
es the well-formedness
onstraints that ensure that solutions representminimal matrix models on tree domains, and [[(�ij)℄℄1 forms the additional
onstraintsrequired for them to be models of (�ij).4.1 RepresentationWe introdu
e variable S(i) 2 [1: :m℄ to indi
ate the
olumn sele
ted in row i, dom(Mij)for the set of variables whi
h is the domain of model Mij, and node(x) for the represen-tation of the interpretation I(x) of x.For ea
h variable x, we introdu
e the variables eq(x), down(x), up(x), left(x), right(x),eqdown(x), equp(x), side(x), daughters(x), mother(x), label(x), and de�ne node(x) as the11-tuple of these variables.4.2 Well-Formedness ConstraintsSele
tion Constraint. In [5℄, we introdu
ed the sele
tion
onstraintX = hV1; : : : ; Vni[I℄to indi
ate that X is equated with the Ith element in sequen
e hV1; : : : ; Vni.2 This
anbe very eÆ
iently implemented as a
onstraint that additionally provides
onstru
tivedisjun
tion semanti
s (lifting of information
ommon to all remaining alternatives).2X, V1, : : : , Vn, and I are all variables. 9

We write V for the domain of our saturated model, i.e. the variables in all sele
teddes
riptions: V = V1 [� � � [Vn (22)Vi = hvars(�i1); : : : ; vars(�im)i[S(i)℄ (23)We write Bij for the boolean indi
ating whether �ij is sele
ted, and make the
lassi
alidenti�
ation of false with 0 and true with 1. We write dom(Mij) for the domain of modelMij . Sin
e we require models to be minimal, dom(Mij) is either V if �ij is sele
ted orjust vars(�ij) otherwise: Bij � S(i) = j (24)dom(Mij) = hvars(�ij); V i[Bij + 1℄ (25)For ea
h variable x in �ij , we pose, for notational
onvenien
e:dom(x) = dom(Mij) (26)sel(x) = Bij (27)Further, eq(x), up(x), down(x), left(x), right(x) stand for the sets of variables whoseinterpretations are in the
orresponding positions relative to the interpretation of x, andwrite mates(x) for the other variables with the same interpretation:eq(x) = fxg ℄mates(x) (28)dom(x) = eqdown(x) ℄ up(x) ℄ side(x) (29)= equp(x) ℄ down(x) ℄ side(x) (30)As demonstrated in [8℄, expli
itly introdu
ing these intermediate results a�ords greaterpropagation: eqdown(x) = eq(x) ℄ down(x) (31)equp(x) = eq(x) ℄ up(x) (32)side(x) = left(x) ℄ right(x) (33)We write V for the set of all variables in the matrix:V =℄i;j vars(�ij) (34)We de�ne V0 = V \ Vars0, V+ = V \ Vars+ and V� = V \ Vars� for respe
tively theneutral, positive and negative variables in the matrix. A neutral variable has no mate(35). A
harged variable has at most one mate: it has one mate i� its des
ription issele
ted (36): (x 2 V0) jmates(x)j = 0 (35)(x 62 V0) jmates(x)j = sel(x) (36)10

Cxy = 1 ^ [[x = y℄℄3 _ Cxy 6= 1 ^ [[x 6= y℄℄3 (40)Cxy = 2 ^ [[x�+ y℄℄3 _ Cxy 6= 2 ^ [[x :�+ y℄℄3 (41)Cxy = 3 ^ [[x�+ y℄℄3 _ Cxy 6= 3 ^ [[x :�+ y℄℄3 (42)Cxy = 4 ^ [[x � y℄℄3 _ Cxy 6= 4 ^ [[x :� y℄℄3 (43)Cxy = 5 ^ [[x � y℄℄3 _ Cxy 6= 5 ^ [[x :� y℄℄3 (44)Cxy = 6 ^ [[x ? y℄℄3 _ Cxy 6= 6 ^ [[x :? y℄℄3 (45)Figure 5: Treeness
lausesEa
h positive (resp. negative) variable
an only be mated with a negative (resp. positive)variable. (x 2 V+) mates(x) � V� (37)(x 2 V�) mates(x) � V+ (38)We de�ne V + = V \Vars+ and V � = V \Vars� for respe
tively the positive and negativevariables in the saturated model. The mates of positive (resp. negative) variables form apartition of the negative (resp. positive) variables in the saturated model, and thereforein the matrix model sin
e variables have no mates in the free models of (Mij).V � = ℄x2V+mates(x) V + = ℄x2V�mates(x) (39)Treeness Constraint. Two nodes �1 and �2 in an ordered tree must stand in oneof 5 mutually ex
lusive relationships: �1 = �2, �1 �+ �2, �1 �+ �2, �1 � �2, �1 � �2.Thus, for any two variables x and y, either they are interpreted by the same modeland their interpretations stand in one of these relationships, or they are in distin
tmodels. We introdu
e variable Cxy 2 f1; 2; 3; 4; 5; 6g to expli
itly represent this
hoi
e,and axiomatize the options with the 6
lauses of (Fig 5). The translation [[℄℄3 is givenin (Fig 6).In logi
 programming, disjun
tion is given the operational semanti
s of a
hoi
e point.For the
lauses in (Fig 5), that would be inappropriate and would lead to disastrousperforman
e. Instead, we assume that ea
h
lause
an be implemented as one
onstraint:in Oz [10, 15℄, this is expressed using the or : : : [℄ : : : end
ombinator.We
an now state pre
isely the well-formedness
onstraint [[(�ij)℄℄0:[[(�ij)℄℄0 = (22; 39)î;j (24; 25)^x2V (28{33,35{38)^x;y2V (40{45) (57)
11

[[x = y℄℄3 = node(x) = node(y) (46)[[x 6= y℄℄3 = eq(x) k eq(y) (47)[[x�+ y℄℄3 = equp(x) � up(y) ^ down(x) � eqdown(y) (48)[[x�+ y℄℄3 = [[y �+ x℄℄ (49)[[x :�+ y℄℄3 = eq(x) k up(y) ^ eq(y) k down(x) (50)[[x :�+ y℄℄3 = eq(x) k down(y) ^ eq(y) k up(x) (51)[[x � y℄℄3 = eqdown(x) � left(y) ^ eqdown(y) � right(x) (52)[[x � y℄℄3 = [[y � x℄℄ (53)[[x :� y℄℄3 = [[y :� x℄℄ (54)[[x ? y℄℄3 = dom(x) k dom(y) (55)[[x :? y℄℄3 = dom(x) = dom(y) (56)Figure 6: translation [[℄℄34.3 Problem spe
i�

onstraintsWe now expli
ate how [[(�ij)℄℄1 forms the additional problem spe
i�

onstraints thatfurther limit the admissibility of well-formed solutions. The en
oding [[℄℄1 is given by
lauses (58{62). [[(�ij)℄℄1 = î;j [[�ij ℄℄1 (58)[[�1 ^ �2℄℄1 = [[�1℄℄1 ^ [[�2℄℄1 (59)A ni
e
onsequen
e of the introdu
tion of
hoi
e variables Cxy is that any dominan
e
onstraint x R y
an be translated as a restri
tion on the possible values of Cxy. Forexample, x �� y
an be en
oded as Cxy 2 f1; 2g. More generally:[[x R y℄℄1 = Cxy 2 [[R℄℄2 (60)where [[R℄℄2 turns an extended dominan
e relationship into a set of possible values forthe
hoi
e variable (see Fig 7, where we also allow x ? y to indi
ate that x and yare interpreted by di�erent models). For the labeling
onstraint x `, we assumean appropriate en
oding [[`℄℄4 su
h that uni�
ation of [[`℄℄4 and [[`0℄℄4 returns their mostgeneral
ommon spe
ialization [[` u `0℄℄4.[[x `℄℄1 = label(x) = [[`℄℄4 (61)
12

Finally, the immediate dominan
e
onstraint x : hy1; : : : ; yni requires a more
ompli
atedtreatment:[[x : hy1; : : : ; yni℄℄1 = daughters(x) = hnode(y1); : : : ; node(yn)i^ down(x) = eqdown(y1) ℄ � � � ℄ eqdown(yn)^ equp(x) = up(y1) = � � � = up(yn)^1�i�n mother(yi) = node(x)^1�i�n left(yi) = left(x) ℄ U1�j<i eqdown(yj)^1�i�n right(yi) = right(x) ℄ Ui<j�n eqdown(yj)
(62)

[[R1 \R2℄℄2 = [[R1℄℄2 \ [[R2℄℄2 [[=℄℄2 = f1g [[�℄℄2 = f4g (63)[[R1 [R2℄℄2 = [[R1℄℄ [[[R2℄℄2 [[�+℄℄2 = f2g [[�℄℄2 = f5g (64)[[:R℄℄2 = f1; 2; 3; 4; 5; 6g n [[R℄℄2 [[�+℄℄2 = f3g [[?℄℄2 = f6g (65)Figure 7: Relationship en
oding [[R℄℄24.4 Solving the CSPThe minimal models of (�ij)
an be found by enumerating the assignments to the se-le
tion variables (S(i))i and the
hoi
e variables (Cxy)x;y2V
onsistent with [[(�ij)℄℄. Inpra
ti
e, we have used a �rst-fail labeling strategy.4.5 En
oding ParsingWe explain now how the task of parsing a senten
e s1 : : : sn
an be turned into a matrixproblem as shown in (66), plus some additional
onstraints.0BBB� x�R S true : : : true�11 : : : : : : : : : : �1m...�n1 : : : : : : : : : : �nm 1CCCA (66)Row 1
orresponds to the extra root variable that
an
els the polarity of the top nodeon the parse tree: only the 1st
olumn is relevant; others are simply �lled with distin
tinstan
es of the trivial tree, true = x0 >, where > is the top of latti
e L. Constraint(67) is added to ensure that only the real root variable is sele
ted:S(1) = 1 (67)
13

Row i+1
orresponds to word si. We assume a fun
tion Lex(s) mapping a word to a setof lexi
al entries. Row i + 1
onsists of all formula(eij) for eij 2 Lex(si). The row maybe padded on the right with instan
es of true, and
onstraint (68) is added:1 � S(i+ 1) � jLex(si)j (68)Finally pre
eden
e
onstraints must be imposed between an
hor variables for distin
twords. x = an
hor(ei1j1)y = an
hor(ei2j2)i1 < i2 9=;) Cxy 2 [[� [?℄℄2 (69)The CSP for the parsing problem is given by the en
oding [[℄℄ of the matrix above,together with all additional
onstraints stipulated by (67{69).5 Preliminary Results And Future WorkThe ideas des
ribed in the pre
eding se
tions have been implemented in the resear
hprototype Linda in the
on
urrent
onstraint programming language Oz [15, 10℄, whi
hsupports
onstraints over �nite domains and �nite sets of integers. The primary
om-ponents of Linda are a grammar for a small fragment of English and a parser for treedes
ription grammars.The grammar
overs just a small fragment of English in
luding topi
alization andrelative
lauses. The degree of lexi
al ambiguity is less than four, i.e. there are at mostfour lexi
al entries asso
iated with a word in the lexi
on. We plan to extend the
overageof the grammar, in parti
ular we are interested in
ertain
oordination phenomena.Experimental results indi
ate that the parser performs well for unambiguous gram-mars: propagation is fast and yields shallow sear
h trees. For ambiguous grammars likethe one mentioned above the sear
h trees are also shallow, but propagation is mu
h moreexpensive. Thus our prototype parser serves as a proof of
on
ept, but is not yet eÆ
ientenough for pra
ti
al parsing.The eÆ
ien
y of our implementation is primarily a�e
ted by the following two
on-siderations: (a) in order to a

ount for lexi
al ambiguity we must introdu
e a formof disjun
tion whi
h makes inferen
e noti
eably weaker than in the purely
onjun
tivefragment. Sin
e propagation a

omplishes less, e�e
tive sear
h depends more on a gooddistribution strategy for the
hoi
e variables Cxy. Up to now, we have used a simple�rst-fail strategy, but we plan to work on more \
lever" strategies. (b) the treeness
onstraints (see Figure 5) impose a quadrati
 number of
onstraints, whi
h are imple-mented in Linda by a quadrati
 number of propagators. In order to improve eÆ
ien
y,we plan to develop spe
ialized
onstraint te
hnology, in parti
ular we intend to repla
ethe quadrati
 number of individual propagators by a single global propagator. This hasbeen done su

essfully for the
onjun
tive fragment des
ribed in [7, 8℄.However, it remains to be seen whether su
h improvements will suÆ
e to allow ourapproa
h to s
ale to realisti
 grammars and longer senten
es. A systemati
 evaluationhas yet to be done. 14

6 Con
lusionIn this paper we have shown that the
onstraint-based treatment of tree des
riptionspresented in [7, 8℄
an be adapted for parsing with tree-des
riptions. First, we introdu
eda grammar framework for tree des
ription grammars and a tree logi
 used for writingthe tree des
riptions. Se
ond, we spe
i�ed the semanti
s for this tree logi
 and extendedit to a

ommodate a restri
ted form of disjun
tion suÆ
ient to handle lexi
al ambiguity.Third, we presented a
onstraint model where we explain how to en
ode parsing problemsinto CSPs. Finally, we des
ribed preliminary results obtained with our Linda prototypeand outlined dire
tions for future development.A
knowledgments: we are grateful to Claire Gardent for initiating and
o-supervisingthis proje
t and for getting the present paper started.Referen
es[1℄ Ralf Ba
kofen, James Rogers, and K. Vijay-Shankar. A �rst-order axiomatisationof the theory of �nite trees. Journal of Logi
, Language and Information, 1995.[2℄ P. Bla
kburn, C. Gardent, and W. Meyer-Viol. Talking about trees. In Pro
eedingsof EACL'93, Utre
ht, 1993.[3℄ J. Carroll, N. Ni
olov, O. Shaumyan, M. Smets, and D. Weir. The LexSys Proje
t.In Pro
eedings of the 4th TAG+ workshop, Philadelphia, 1998.[4℄ Thomas L. Cornell. Des
ription Theory, Li
ensing Theory and Prin
iple-BasedGrammard. PhD thesis, UCLA, 1992.[5℄ Denys Du
hier. Axiomatizing dependen
y parsing using set
onstraints. In SixthMeeting on Mathemati
s of Language (MOL6), Orlando, Florida, July 1999.[6℄ Denys Du
hier. Set
onstraints in
omputational linguisti
s { solving tree des
rip-tions. InWorkshop on De
larative Programming with Sets (DPS'99), Paris, Septem-ber 1999.[7℄ Denys Du
hier and Claire Gardent. A
onstraint-based treatment of des
riptions.In Pro
eedings of IWCS-3, Tilburg, 1999.[8℄ Denys Du
hier and Joa
him Niehren. Solving dominan
e
onstraints with �nite set
onstraint programming, 1999.[9℄ Alexander Koller, Joa
him Niehren, and Ralf Treinen. Dominan
e
onstraints:Algorithms and
omplexity. In Pro
eedings of the Third Conferen
e on Logi
alAspe
ts of Computational Linguisti
s, Grenoble, 1998.[10℄ The Mozart Consortium. The Mozart Programming System, 1998.http://www.mozart-oz.org/. 15

[11℄ M.P.Mar
us, D. Hindle, and M.M.Fle
k. Talking about talking about trees. InPro
eedings of the 21st Annual Meeting of the Asso
iation for Computational Lin-guisti
s, Cambridge, MA, 1983.[12℄ R.A. Muskens and E. Krahmer. Des
ription Theory, LTAGs and Underspe
i�edSemanti
s. In Fourth International Workshop on Tree Adjoining Grammars andRelated Frameworks, pages 112{115, Philadelphia, PA, 1998. Institute for Resear
hin Cognitive S
ien
e.[13℄ Owen Rambow, K. Vijay-Shanker, and David Weir. D{Tree Grammars. In Pro-
eedings of ACL'95, 1995.[14℄ James Rogers and K. Vijay-Shanker. Reasoning with des
riptions of trees, 1992.[15℄ Gert Smolka. The Oz Programming Model. In Computer S
ien
e Today, volume1000 of LNCS, pages 324{343, 1995.[16℄ K. Vijay-Shankar. Using des
riptions of trees in a tree-adjoining grammar. Com-putational Linguisti
s, (18):481{518, 1992.

16

