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Abstract

Much of linguistic theorizing nowadays is concerned with the for-
mulation of general structural principles that determine syntactically
well-formed entities. Yet, devising effective parsing mechanisms for
such axiomatic frameworks remains a stumbling block plagued by com-
binatorial explosion. We propose to take advantage of the axiomatic
nature of such frameworks to obtain constraint-based formulations. In
this fashion, we are able to achieve effective model elimination through
constraint propagation, thus drastically reducing the need for search.
We demonstrate this idea with a formal account of a dependency gram-
mar for german. The mathematical equations that we present have a
direct interpretation as constraints. Our approach was implemented
in the concurrent constraint programming language Oz and proved to
be surprisingly efficient.

Keywords: dependency parsing, formal grammars, concurrent con-
straint programming, inference, set constraints

1 Introduction

While overtly about parsing, this article more generally advocates and demon-
strates a radical approach to problems with challenging combinatorial com-

plexity. Traditionally, this complexity and the resulting combinatorial ex-

plosion have been addressed by attempts to devise better search strategies.

We believe that this is curing the symptom rather than the disease. Thus

our message takes the form of a truism too often overlooked:

The only effective way to deal with search is to do as little of
it as possible.



Having said that, what can we do about it? Search is a process of making
choices, thus to reduce search we need to drastically decrease the number
of choices that must be explicitly considered. This can be achieved through
inference. Let inference automatically decide necessary choices and eliminate
from consideration inconsistent ones.

For this to be possible, choices must be exposed to the inference mech-
anisms. For many parsing frameworks, such exposure is problematic, often
impossible. Chart parsing is a typical offender: the underlying idea is to try
all possible combination of adjacent edges. Fach combination is a choice; it
is generative; and has practically no influence on any other choice.

A radical approach, and the one which we demonstrate in the remainder
of the article, is to make all choices explicit and exposed to the inference
mechanisms. We abandon the generative view. We no longer build larger
partial parses by combination of smaller ones. Rather, we give a global
well-formedness condition that characterizes an admissible parse tree of the
input sentence and proceed to explicitate its models. In our approach, every
choice influences the entire partial model.

If this is beginning to sound familiar, it should. Much of linguistic theo-
rizing nowadays is concerned with the formulation of general structural prin-
ciples that determine syntactically well-formed entities. Yet, devising effec-
tive parsing mechanisms for such axiomatic frameworks remains a stumbling
block. This is especially the case for languages with free word order where
surface order is no longer a practical guide for search. As a consequence,
the field has maintained a schizophrenic disposition. Blackburn [Bla95] de-
scribed this duality as the “static” and “dynamic” perspectives:

... by a ‘dynamic’ perspective is meant a view that favours syntactic
explanations couched in terms of the construction, manipulation and
generation of structures. A ‘static’ perspective ... is one emphacising
theorising couched in terms of general structural principles governing
syntactically well-formed entities.

While linguistic theorising has become largely of the “static” persuasion,
parsing has remained, by and large, “dynamic.” We suggest that the very
axiomatic nature of “static” frameworks is the route to salvation. From
it we can obtain sufficiently strong inference to beat the combinatorial ex-
plosion of search. We propose to replace the generate and test flavor of
standard approaches with the constraint programming model of propagate
and distribute, thus achieving effective model elimination through a pow-
erful inference mechanism. To make this possible, we need constraints and
they can best be obtained from an axiomatic formulation.



That is what we demonstrate in this article. We develop a “static”
axiomatization of “admissible” dependency structures. We formulate this
mathematical account in such a way that it is especially well-suited for model
elimination through constraint propagation. We demonstrate how certain
notions, such as the yield, can be given an axiomatic treatment that permits
their natural involvement in constraint propagation. Our formulation also
illustrates the expressivity, elegance and economy to be gained with the use
of set constraints.

Further, our formulation has two very desirable properties: First, it has
a direct computational reading. Modulo minor details of syntax, it can
be regarded as a program in a concurrent constraint programming language
such as Oz. Second, the resulting program is remarkably effective. Inference
is so strong that typically the search tree enumerates all and only the valid
readings without any failure.

2 An Example of Constraint Propagation

Before diving into the outline our formal framework, let us illustrate on a
simple example how drastically inference achieved through constraint prop-
agation may reduce the search space. In particular, it will become clear
how negative information performs radical model elimination. Consider the
sentence:

die Frau liebt der Mann

It is clear to the reader that der Mann must be the subject and die Frau
the accusative object. Here is how constraint propagation arrives at this
conclusion.

1. liebt must be the root of the sentence since it is the only finite verb
2. der cannot be determiner for Frau since it comes after it

(a) therefore Mann is the only possible head for der
(b) as a consequence, die cannot also be determiner of Mann

(c) thus, only Frau can be head of die
3. due to the agreement constraint, der Mann must be nominative

(a) therefore Mann cannot be the accusative object of liebt

(b) the only role left for Mann is to be subject of liebt



(c) therefore, the only role left for Frau is to be object of liebt

The complete dependency structure for the sentence has been decided by
inference, without any need for search. This was achieved through model
elimination: after constraint propagation, only one single model was left.

np_a ubject
de de

die Frau liebt der Mann

3 How To Make This Happen

Our goal is to develop an approach in which inference may operate as illus-
trated above. This is achieved by computing explicitly with an underspeci-
fied representation of the dependency tree. The tree consists of a collection
of “nodes,” one per word in the sentence to be parsed, that are to be con-
nected by edges of immediate dominance. For each node, the value of its
features and the choice of its daughters are underspecified. Thus, at the
beginning of the parse, although we have in our hands all the parts that
need to be assembled together, there is much about them that is not fully
known, in particular how they are to be connected.

A classical approach would now attempt to build a parse tree by incre-
mentally connecting increasingly more nodes together, as if they were Lego
pieces. Our approach is more like carving, we start from a large amorphic
whole and let the shape emerge through the elimination of what cannot be
part of it. We apply up front all our axiomatic principles to the underspec-
ified representation, thus constraining the latter to admit only grammatical
instances. The job of inference is then to refine the underspecified values
in this representation by eliminating inconsistent choices and determining
necessary ones.

Of course, inference cannot always do the whole job and we may need
search. However, the intent of search is no longer to build the tree, rather
it is to explicitate the underspecified pieces of its representation. Every
decision permits further inference.



Our formalization is primarily formulated in terms of sets. Considerable
expressiveness accrues from the set theoretical setting, and we obtain an ax-
iomatization that is both elegant and economical. Further, it demonstrates
the advantages of recent developments in constraint programming: con-
straints over finite sets have very efficient implementations [MM97, Ger95].
Much like a logic variable is the underspecified representation of a term,
and a finite domain variable that of an integer, a finite set variable is the
underspecified representation of a set. All our choices will reside in the un-
derspecification of set variables. In this fashion, we achieve full exposure of
choices to the inference mechanisms.

In [DGY9], we already demonstrated the theoretical elegance and compu-
tational effectiveness of set constraints for solving dominance descriptions.
In the following, we shall do the same for dependency parsing. We believe,
however, that the scope of our methodology extends to other frameworks
such as HPSG, and especially to Dtree grammars.

4 Preliminaries

Consider the sentence “das Buch hat mir Peter versprochen zu lesen.”! It
has two syntactic analyses, one whose dependency tree is displayed in Fig-
ure 1 and in which Peter is the subject, and one in which Buch is the subject.
The efficiency of our approach may be appreciated with the observation that
it derives just these two readings and using only one choice point.

The example illustrates the sort of non-projective analysis with fronting,
scrambling and extraposition that is typical of german sentences. Figure 2
presents the same analysis in the form of a collection of attribute value ma-
trices (AvMs), where conventionally the boxed integers stand for coreference
indices.

In the following, we are going to turn our attention entirely to the study
of such collections of AvMs and to this question: “When can we say that
a set W of avMs forms a grammatically admissible dependency structure?”
We are going to spell out precisely the conditions under which the judgment
of admissibility holds.

In this article, for reasons of space, we focus on the expression of prin-
ciples of immediate dominance and say very little on the subject of word
order. However, our framework is especially well suited for the separate ex-

! Joachim Niehren proposes the following sentence, which exhibits the same structure,
but sounds more convincing to the german ear: “Genau diese Flasche Wein hat mir mein
Kommissiondr versprochen auf der Auktion zu ersteigern”
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das Buch hat mir Peter versprochen zu lesen

Figure 1: Dependency Tree With Crossing Edges

string : das string : Peter
index : 1 index : 5
cat : det cat ©n
agr : agr : (masc sing 3 nom)
comp [ ] comp [ ]
string : Buch
index : 9 string : versprochen
index : 6
cat © n m .
agr : (neut sing 3 acc) @ cat ' vpastd
: det : |1 : np-dat
comp [ e ] comp [vp_inf :
string : hat i
index : 3 string : zu
cat : vfin index = 7
agr : cat . part
comp l subject ] comp - { ]
vp_past ]
string : mir string : lesen
index : 4 index : 8

cat :  pro cat : vinf
. agr : (sing 3 dat) _ lzu : ]

comp [ ] comp

Figure 2: AVM Representation of Dependency Tree



pression of principles of linear precedence. In particular, our formulation in
terms of sets allows great expressivity. One example is (LP,), on page 13,
expressing a restriction on prenominal word order domains.

Our formal setting assumes the existence of a finite set C of categories
such as n for noun, det for determiner, or vfin for finite verb, of the finite
set A of all agreement tuples such as (masc sing 3 nom), of a finite set R
of complement role types such as subject or np_dat for dative noun phrase,
of a finite set M of modifier role types such a adj for adjectives, disjoint
from R.

4.1 Lexicon

We assume the existence of a lexicon whose purpose is to map a string,
representing the full form of a word, to a set of lexical entries. Each entry
e specifies a set of alternative categories cats(e), a set of alternative agree-
ment tuples agrs(e), a set of required complements [roles|(e) and a set of
permissible complements [roles](e).2

|roles]|(e) C [roles](e)

An optional complement role is in [roles](e) but not in [roles|(e). The set £
of lexical entries is then defined as consisting of those AvMs with signature:

cat . 2
agr 24
[roles] 2R
| roles| 2R

and the lexicon will be regarded as a function Lex : S — 2¢ from strings to
sets of lexical entries.

4.2 Lexical Nodes

We consider now a set W of AvMs that we call lexical nodes. Fach lexical
node is intended to correspond to a word in the sentence of which W is the
dependency analysis. Our first condition is that ¥V must be totally ordered.
The total order represents the linearization of the words in the sentence. In
Figure 2 this total order is encoded using the integer valued feature index.

Each lexical node w represents a word and is associated with the set of
lexical entries obtained for this full form from the lexicon:

Entries(w) = Lex(string(w))

2The notation [ | conventionally indicates an upper bound and | | a lower bound.



A lexical node w must realize one of its lexical entries. We call it the selected
entry for w and denote it by entry(w).

entry(w) € Entries(w)

In Section 5 we explicitate the conditions under which w is said to realize
its selected entry entry(w).

4.3 Complement sets

Consider p € R, a complement role type such as subject. It is traditionally
regarded as a partial function: p(w) is defined iff w has a complement of
type p. An important idea of our approach is to view p as a total function:
it denotes the set of all complements of w of type p. Thus, instead of being
undefined p(w) may simply denote the empty set.

5 Local Conditions

For each lexical node w, the lexicon supplied a collection of alternative lexical
entries. Precisely one must be selected and realized by w. This stipulation
induces strong local conditions on w and we explicitate them below.

5.1 Local conditions on complement sets

Let p be a complement role type such as subject or np_dat for dative object.
p(w) is the set of lexical nodes that are complement of w of type p. p(w)
contains at most one element:

pw) CW A [p(w)| <1

If p(w) is non-empty, the entry selected for w must be one that permits a

roles]

complement of type p. We write Entries(w) \L for the set of lexical entries

of w that permit a complement of type p:
Entries(w)|£’°'es1 = { e € Entries(w) | p € [roles](e) }
The condition just stated can be expressed as follows:
lp(w)| =1 = entry(w) € Entries(w)| ']

Conversely, if the selected entry is one that requires a complement of type
p, then p(w) must be non-empty. We write Entries(w)\,grOIESJ for the set of

lexical entries of w that require a complement of type p:

Entries(w)|5®) = { e € Entries(w) | p € [roles|(e) }



the converse condition becomes:
lp(w)| =1 <« entry(w) € Entries(w)\lgml‘ESJ

5.2 Local conditions on category

If ¢ is the category of w then the entry selected for w must be one that
permits c. We write Entries(w)|$®* for the set of entries permitting c:

Entries(w)|?®* = { e € Entries(w) | ¢ € cats(e) }
the condition is then:
VeeC c=cat(w) = entry(w) € Entries(w)|$**

Conversely, if e is the entry selected for w then the category of w must be
one of those permitted by e:

Ve € Entries(w) e =entry(w) = cat(w) € cats(e)

5.3 Local conditions on agreement

If a is the agreement tuple of w then the entry selected for w must be one
that permits a. We write Entries(w)|28" for the set of entries permitting a:

Entries(w)|28™ = { e € Entries(w) | a € agrs(e) }
the condition is then:
Vae A a=agr(w) = entry(w) € Entries(w)|38"

Conversely, if e is the entry selected for w then the category of w must be
one of those permitted by e:

Ve € Entries(w) e =-entry(w) = agr(w) € agrs(e)

5.4 Other local conditions

There are other types of local conditions. For example category specific con-
ditions, one example of which is (LP,), on page 13, expressing a restriction
on prenominal word order domains. For lack of space, we shall say no more
about them.



6 Static Axiomatization of Yields

The notion of yield of a lexical node, i.e. the set of lexical nodes reachable
through the transitive closure of immediate dominance edges (complements
and modifiers), is essential for the expression of grammatical principles. In a
generative framework, the yield of a node cannot be calculated until its full
dependency tree has been constructed. In this section, we exhibit a static
axiomatization of yields that fully exposes the underspecification of a yield
to the inference mechanisms.

We write daughters(w) for the set of immediate complements and modi-
fiers of w:

daughters(w) = U p(w)
PERUM

We are going to compute the yield of w in terms of contributions made to
it by all lexical nodes. We write contrib(w,w') for the contribution of w' to
the yield of w. If w’ is a daughter of w then it contributes its own yield else
nothing:

contrib(w, w'") C yield(w")

A w' € daughters(w) = contrib(w, w')
A w' ¢ daughters(w) = contrib(w, w')

= yield(w')
=

The strict yield of w is defined as the set of all lexical nodes that are strictly
below w in the dependency tree, and is given by the equation:

yieldl(w) = | contrib(w,w’)
w'eEW

The full yield of w is defined as the set of all lexical nodes in the dependency
tree rooted at w and is obtained by adding w to its own strict yield:

yield(w) = {w} Uyield!(w)

In order to enforce treeness and disallow circular dependencies, we simply
require that w must not appear in its own strict yield:

w ¢ yield!(w)

7 Global Conditions

A global condition involves more than just one lexical node. For example,
the head/daugther condition holds between every two nodes. The Sentence
partitioning condition, on the other hand, simultaneously involves all nodes.

10



Head /Daughter conditions. For any two lexical nodes w,w' € W and
any daughter role p € R U M, either w' is a daughter of w of type p or
it is not. If it is, it must additionally satisfy the role specific constraint
roleC(p, w,w'):

w' € p(w) = roleC(p,w,w’)

Among other things, this implication has the effect that w’ & p(w) can be
inferred as soon as it is discovered that roleC(p, w, w') is inconsistent, thereby
eliminating all models in which w' € p(w).

The role specific constraint is further developed in Section 8.

Head condition. We write head(w) for the set of lexical nodes that are
heads of w. This set contains precisely one element, except in the case of
the root node, for which it is empty. We write ROOT for the distinguished
lexical node that is the root of the sentence.

head(w) CW A |head(w)| <1

head(w) =0 = w = ROOT

w is head of w' precisely when w' is a daughter of w:

w € head(w') = w' € daughters(w)

Sentence partitioning condition. Each lexical node is the daughter of
precisely one head, except for the root which has no head. Thus the sets
p(w) together with the root form a partition of the sentence:

W = {root} ¥ [H p(w)
PER
weW

Root condition. The root must be one of the lexical nodes in the sen-
tence:
ROOT € W

All words must be accounted for; i.e. the yield of the root must contain all
lexical nodes:
yield(ROOT) = W

Further, the root must be the main, hence finite, verb:

cat(ROOT) = vfin

11



The conditions given above capture fully the requirements to be met by the
root, but do not expose choices sufficiently to permit effective inference. We
know that the root must be picked in W, but the remaining conditions can
only be checked after the choice has been made. The generate and test trap
rears its ugly head again. Instead, we can unfold the root conditions for
each element of WW. In other words: for each w € W, it is either the root,
or it is not:

w = ROOT A |head(w)| = 0 A yield(w) = W A cat(w) = vfin
V  w # ROOT A head(w)| # 0

8 Role Specific Constraint

The role specific constraint roleC(p, w,w') may be expressed modularly as a
conjunction of clauses:

rOIeC(p, w, ’U)I) = Cdet A Csubject A Cadj AL,

We explicitate below some of these clauses. The examples given are intended
to be illustrative rather than normative. We extend no claim of linguistic
adequacy.

Determiner. The determiner of a noun must agree with its head and
occur left-most in the yield of the noun.

p=det = cat(w') = det (Caet)
A agr(w) = agr(w)
A w' = min(yield(w))

Subject. The subject of a finite verb must be either a noun or a pronoun,
it must agree with the verb in person and number, and must have nominative
case. We write NOM for the set of agreement tuples with nominative case
and pose NP = {n, pro}.

p = subject = cat(w') € NP (Csubject)

A agr(w') = agr(w)
A agr(w') € NOM

12



Adjective. An adjective may modify a noun and must agree with it:

p=adj = cat(w) =n (Caqj)
A cat(w') = adj
A agr(w) = agr(w')

Adjectives must be placed between the determiner (if any) and the noun.
Furthermore, and, for simplicity of presentation, ignoring the possibility of
PPs, nothing else is allowed to land between the determiner and the noun:

cat(w) =n = det(w) < adj(w) < {w} (LP,)
A convex(det(w) U adj(w) U {w})

In other words: determiners, adjectives and noun occur in this sequence and
form a convex set (i.e. without holes, thus forbidding insertions).

9 Conclusion

In this article, we contributed a formalization of grammatical admissibility
in the framework of dependency grammar. The set theoretic formulation is
both economical and arguably elegant. Also, it has a direct computational
reading as a concurrent constraint program. This program, thanks to pow-
erful inference support through constraint propagation, is also extremely
effective.

Further, we also demonstrated how to produce “static” axiomatizations
of notions (such as yield) that have traditionally received only “dynamic”
treatment, thus permitting their natural involvement in constraint propaga-
tion.

Although our presentation focussed on the formalization of principles
of immediate dominance, our framework is especially well-suited for the
expression of principles of linear precedence. Again, this benefit accrues
naturally from the use of set constraints. In particular, the rest of our
treatment (not presented here) includes an axiomatization of topological
fields.

The message we most wish to convey is that one effective way to overcome
combinatorial explosion is to take full advantage of axiomatic treatments to
obtain powerful inference. The declarative ideals of a grammatical frame-
work need not be compromised; on the contrary, they become a source of
efficiency.

We also hope to promote awareness of recent developments in constraint
programming. Set constraints, in particular, were shown in [DG99] and here
again, to be both a source of new expressivity and of surprising efficiency.
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