
On Underspecified Processing of Dynamic Semantics

Alexander Koller, Joachim Niehren
University of the Saarland, Saarbrücken, Germany

{koller@coli|niehren@ps}.uni-sb.de

Abstract

We propose a new inference system which oper-
ates on underspecified semantic representations
of scope and anaphora. This system exploits
anaphoric accessibility conditions from dynamic
semantics to disambiguate scope ambiguities if
possible. The main feature of the system is
that it deals with underspecified descriptions di-
rectly, i.e. without enumerating readings.

1 Introduction

A particularly appealing aspect of underspeci-
fication (van Deemter and Peters, 1996; Reyle,
1993; Muskens, 1995; Pinkal, 1996; Bos, 1996)
is that it can in principle deal very efficiently
with local ambiguities – ambiguities which are
only due to lack of information at an interme-
diate stage of processing and go away by the
end of the analysis. An example for this effect
is (1): The scope ambiguity that is perceived
after processing the first sentence is no longer
present after the second one. This effect can
be explained in a framework of dynamic seman-
tics (Groenendijk and Stokhof, 1991; Kamp and
Reyle, 1993) by the fact that a wide-scope uni-
versal quantifier would make the indefinite inac-
cessible for anaphoric reference from the second
sentence.

(1) Every man loves a woman.
Her name is Mary.

In this paper, we show how this particular
type of local ambiguity can be processed effi-
ciently. The approach we propose employs de-
terministic inference rules that can exclude the
readings which violate anaphoric accessibility
conditions without enumerating them. These
rules operate directly on underspecified descrip-
tions and fully maintain underspecifiedness. We
also show how this behaviour can be captured
by constraint propagation in an existing imple-
mentation of tree descriptions using finite set
constraints (Duchier and Niehren, 2000; Koller
and Niehren, 2000; Duchier and Gardent, 1999).

More specifically, we introduce DPL struc-
tures, extended tree structures that encode for-
mulas of dynamic predicate logic (DPL) in much
the same way as Egg et al.’s (1998) lambda
structures encode λ-terms. Then we define a
constraint language for the description of DPL
structures, called CL(DPL), in analogy to Egg
et al.’s constraint langague for lambda struc-
tures (CLLS). We characterize those DPL struc-
tures in which all restrictions on anaphoric ac-
cessibility are obeyed by talking directly about
the syntactic structure of a DPL formula. This
is in contrast to the standard procedure in dy-
namic semantics, where the dynamic behaviour
is produced by the semantics of the logic; we do
not need to (and do not) talk about interpreta-
tion of DPL structures and model accessibility
by purely “static” means.

The paper is structured as follows. In Sec-
tion 2, we introduce DPL structures and tree
descriptions in the language CL(DPL). In Sec-
tion 3, we add syntactic restrictions on admis-
sible variable bindings to DPL structures and
present axioms that characterize these restric-
tions. In Section 4, we turn these axioms into
deterministic inference rules and combine them
with deterministic inference rules known from
an existing inference algorithm for dominance
constraints. We obtain a procedure that can do
the kind of underspecified reasoning described
above without enumerating readings. In Section
5, we sketch an implementation of our inference
system based on finite set constraint program-
ming. This implementation can be obtained by
adapting an existing implementation of a solver
for dominance constraints. Finally, we conclude
and point to further work in Section 6.

2 Tree Descriptions

In this section, we define the Constraint Lan-
guage for DPL structures, CL(DPL), a lan-
guage of tree descriptions which conservatively
extends dominance constraints (Marcus et al.,
1983; Rambow et al., 1995; Koller et al., 2000)
by variable binding constraints. CL(DPL) is
a close relative of the Constraint Language for

Lambda Structures (CLLS), presented in (Egg
et al., 1998). It is interpreted over DPL struc-
tures – trees extended by a variable binding
function which can be used to encode formulas
of dynamic (or static) predicate logic. We will
define DPL structures in two steps and then the
language to talk about them.

2.1 Tree Structures

For the definitions below, we assume a signature
Σ = {@|2, var|0,∀|1,∃|1,∧|2,man|1, like|2, . . .} of
node labels, each of which is equipped with a
fixed arity n ≥ 0. The labels ∧,¬,∀, . . . are the
first-order connectives. Node labels are ranged
over by f, g, a, b, and the arity of a label f is
denoted by ar(f); i.e. if f|n ∈ Σ then ar(f) = n.

Let N be the set of natural numbers n ≥ 1.
As usual, we write N

∗ for the set of words over
N, ε for the empty word, and ππ ′ for the con-
catenation of two words π, π ′ ∈ N

∗. A word π is
a prefix of π′ (written π ≤ π′) if there is a word
π′′ such that ππ′′ = π′.

A node of a tree is the word π ∈ N
∗ which

addresses the node. The empty word ε ∈ N
∗

is called the root node. A tree domain ∆ is a
nonempty, prefixed-closed subset of N

∗ which is
closed under the left-sibling relation.

Definition 2.1 A tree structure is a tuple
(∆, σ) consisting of a finite tree domain ∆ and
a total labeling function σ : ∆ → Σ such that
for all π ∈ ∆ and i ∈ N:

πi ∈ ∆ ⇔ 1 ≤ i ≤ ar(σ(π)).

We say that the nodes π, π1, . . . , πn are in the
labeling relationship π:f(π1, . . . , πn) iff σ(π) = f
and for each 1 ≤ i ≤ n, πi = πi. Similarly, we
say that a node π properly dominates a node
π′ and write π�

+π′ iff π is a proper prefix of
π′. We take π and π′ to be disjoint (π⊥π′) if
they are different and neither node dominates
the other. So any two nodes in a tree structure
are in one of the four relations = (equality), �

+,
�

+ (the inverse of �
+), or ⊥ . We shall also be

interested the combinations of these relations by
set operators: intersection, complementation,
union, and inversion. For instance, the dom-
inance relation �

∗ is defined as the union of
node equality and proper dominance = ∪�

+.
Finally, we define the ternary non-intervention
relation ¬(π�

∗π′
�

∗π′′) to hold iff it is not the
case that both π ≤ π′ and π′ ≤ π′′.

∧ •
∃ •
∧ •

woman •
var •

∀ •
⇒ •

man •
var •

love •
var • var •

name •
var • mary •

Figure 1: DPL structure for the meaning of (1).

2.2 DPL structures

Now we extend tree structures by variable
binding and obtain DPL structures. To this
end, we partition Σ into three sets: connec-
tives Σcon = {∀,∧,¬, . . .}, predicate symbols
Σpred = {man, likes, . . .}, and term symbols
Σterm = {var, peter,mother of, . . .} which sub-
sume the variable symbol var and function sym-
bols.

Definition 2.2 A DPL structure is a triple

(∆, σ, λ) consisting of a tree structure (∆, σ)
and a partial variable binding function λ : ∆
∆ which satisfies for all π, π′ ∈ ∆:

1. σ(π) ∈ Σcon then σ(πi) ∈ Σcon ∪ Σpred for
all πi ∈ ∆;

2. σ(π) ∈ Σpred∪Σterm then σ(πi) ∈ Σterm for
all πi ∈ ∆;

3. λ(π) = π′ then σ(π) = var and σ(π′) ∈
{∀,∃}.

DPL structures can be used to represent for-
mulas of first-order predicate logic. For in-
stance, the DPL structure in Fig. 1 represents
the (unique) meaning of (1). So far, however,
variables bound by a quantifier do not need to
be in any special position in a DPL structure; in
particular, not in its scope. To enforce scoping
as in static predicate logic, we could simpy add
the condition π′

�
∗π in condition 3 of Definition

2.2. We will define an appropriate counterpart
for DPL in Section 3 (properness).

Modeling variable binding with an explicit
binding function instead of variable names was
first proposed in (Egg et al., 1998). There, bind-
ing functions help to avoid a capturing problem
in the context of scope underspecification which
becomes most apparent in the presence of ellip-
sis. Here the binding function mainly gives us a
different perspective on variable binding which

R ::= �
+ | �+ | = | ⊥

| R ∪R | R ∩R | ¬R | R−1

ϕ ::= X:f(X1, . . . ,Xn) (f|n ∈ Σ)
| XRY
| ¬(X�

∗Y �
∗Z)

| λ(X)=Y
| ϕ ∧ ϕ′.

Figure 2: Syntax of CL(DPL)

is useful for defining properness of DPL struc-
tures.

2.3 The Constraint Language CL(DPL)

The syntax of CL(DPL) is defined in Fig-
ure 2. It provides constraints for all the
relations discussed above. There are label-
ing constraints X:f(X1, . . . ,Xn), expressive
combinations XRY of dominance constraints
with set operators (Duchier and Niehren,
2000; Cornell, 1994), non-intervention con-

straints ¬(X�
∗Y �

∗Z), and binding constraints
λ(X)=Y .

CL(DPL) is interpreted over DPL structures.
A variable assignment into a DPL structure M
is a total function from the set of variables of a
constraint to the domain of M. A pair (M, α)
of a DPL structure M and a variable assign-
ment α into M satisfies a constraint ϕ iff it
satisfies all of its atomic constraints; that is, if
the relation with the same symbol holds of the
nodes assigned to their arguments. We also call
the pair (M, α) a solution and M a model of ϕ.

Only some of the atomic constraints in
CL(DPL) are used in underspecified descrip-
tions – in particular, labeling, dominance, and
binding constraints; the other constraints are
helpful in processing the others. These three
types of constraints can be transparently dis-
played in constraint graphs. For instance, the
constraint graph in Fig. 3 represents a con-
straint describing the readings of example (1)
including the scope ambiguity. The nodes of
the graph stand for variables in the constraint;
labels and solid edges represent labeling con-
straints, dotted edges, dominance constraints,
and dashed arrows, binding constraints. In ad-
dition, the constraint graph represents an in-
equality constraint X¬=Y between each two
variables whose nodes carry a label. A con-
straint with the latter property is called overlap-

free. The intuition is that the solid-edge tree
fragments in the constraint graph must never
overlap properly in a solution.

3 Dynamic Semantics in CL(DPL)

The semantics of DPL is built in a way that
allows quantifiers to bind only variables in cer-
tain positions: inside their scopes and, if it is an
existential quantifier, from the left-hand sides
of conjunctions and implications into the right-
hand sides. In CL(DPL), we model this as a
purely syntactic restriction on the accessibility
of binders which we define as a structural prop-
erty of DPL structures. DPL structures which
have this property will be called proper.

A useful auxiliary concept for the definition
is that of an infimum of two nodes with respect
to the dominance relation �

∗, which constitutes
a lower semilattice because of the underlying
treeness of DPL structures. Furthermore, we
will use the standard DPL notions of internally

dynamic connectives Σdyn
con = {∧,⇒} and ex-

ternally static connectives Σstat
con = {¬,∀,⇒,∨}.

The semantics definition of DPL gives these two
groups special relevance for variable binding.

Now we can define proper DPL structures as
follows.

Definition 3.1 A DPL structure M is called
proper if for each node π of M on which λ is
defined, one of the following cases holds true
where µ is the infimum of π and λ(π).

1. µ = λ(π), or

2. λ(π) is labeled with ∃, µ1�
∗λ(π), µ2�

∗π, µ
is labeled with an internally dynamic con-
nective, and no node between µ1 and λ(π),
inclusively, is labeled with an externally
static connective.

Intuitively, the first branch of the definition
corresponds to usual binding of variables inside
the scope of a quantifier. In the second branch,
the positions of the variable and the (existen-
tial) quantifier in the DPL structure are dis-
joint, and the quantifier is dominated by the
left child of the infimum. Then the infimum
must be labeled with an internally dynamic con-
nective, and there must be no externally static
connective between this node and the quantifier.
This restriction is what we are going to exploit

∧ • Z0

• Z1

∀ • X
⇒ • X1

man •
var •

• X2

∃ • Y
∧ • Y1

woman • Y2

var •

love • W
var • var •

• Y3

name • Z2

var • Z3 mary • Z4

Figure 3: Constraint graph for (1).

to capture the influence on scope. There is no
such restriction for the path between the infi-
mum and the variable.

Solutions of a constraint that violate the dy-
namic accessibility conditions are now excluded
simply by restricting the class of admissible so-
lutions to proper ones. As expected from the
linguistic intuition, only one solution of the run-
ning example (1) is proper: the one where “a
woman” is assigned wide scope (Fig. 1). The
other solution is not proper because the path
from the infimum (denoted by Z0 in Fig. 3) to
the antecedent contains a universal quantifier.

Properness of a DPL structure can be axiom-
atized syntactically: A DPL structure is proper
iff the CL(DPL) axioms (Dyn1) to (Dyn4) in
Fig. 4 are valid over it. The rule (Dyn1) forces
universal quantifiers to bind only variables in
their scopes, and the rules (Dyn2) to (Dyn4)
enforce properness of binding when a variable
is not in the scope of its binder.

4 Underspecified Reasoning

We next present a procedure for underspeci-
fied reasoning with dynamic semantics. The
goal is to narrow an underspecified description
such that improper DPL-structures are removed
from the solution set. Narrowing should apply
as soon as possible, so underspecifiedness can be
maintained and readings need not be enumer-
ated. We present an inference procedure that
can do this and go through two examples.

4.1 Inference Procedure

This inference procedure saturates a constraint
according to the rules in Figures 4 and 5; that
is, whenever a constraint contains the left-hand

side of a rule, it adds its right-hand side, until
no new conjuncts can be added. Fig. 4 contains
simply the properness axioms from the previ-
ous sections, turned into deterministic proof
rules. The rules in Fig. 5 are propagation rules
from Algorithm DO in (Duchier and Niehren,
2000), plus new rules for non-intervention con-
straints. Algorithm DO contains some addi-
tional rules, in particular distribution rules that
perform case distinctions, because DO is a com-
plete solver for dominance constraints with set
operators, which improves on (Duchier and Gar-
dent, 1999; Koller et al., 1998). We have omit-
ted the distribution rules here because we do
not want to perform case distinctions; by adding
them again, we could enumerate all proper so-
lutions, as Schiehlen (1997) does for UDRT.

The new rules (NonI1) and (NonI2) allow
to derive dominance information from non-
intervention constraints. As we will see, the
most interesting rule in Fig. 4 is (Dyn2),
which derives explicit non-intervention informa-
tion from the structural properties of dynamic
binding. Note that while the rules in Fig. 5
are sound over any DPL structure, those in Fig.
4 are only sound over proper DPL structures.
This is intended: Application of a properness
rule is supposed to exclude (improper) solutions.

4.2 Examples

The inference rules go a long way towards mak-
ing the effect of dynamic semantics on scope
explicit. Let us consider the running example
in Figure 3 to see how this works; we show how
to derive Y3�

∗X, which specifies the relative
quantifier scope.

First of all, we need to make the information

(Dyn1) λ(X)=Y ∧ Y :∀(Y ′) → Y �
∗X

(Dyn2) λ(X)=Y ∧ Z:f(Z1, Z2) ∧ Z1�
∗Y ∧ Z2�

∗X ∧W :g(W1, . . . ,Wn) → ¬(Z1�
∗W�

∗Y)

(f ∈ Σdyn
con , g|n ∈ Σstat

con)

(Dyn3) λ(X)=Y ∧ Z:f(Z1, . . . , Zn) ∧ Zi�
∗X ∧ Zj�

∗Y → false (f|n ∈ Σcon − Σdyn
con , i 6= j)

(Dyn4) λ(X)=Y ∧ Z:f(Z1, . . . , Zn) ∧ Zi�
∗X ∧ Zj�

∗Y → false (f|n ∈ Σ, i < j)

Figure 4: Properness axioms.

(Trans) X�
∗Y ∧ Y �

∗Z → X�
∗Z

(Lab.Dom) X:f(. . . , Y, . . .) → X�
+Y

(NegDisj) X�
∗Z ∧ Y �

∗Z → X¬⊥Y
(Lab.Disj) X:f(. . . ,Xi, . . . ,Xj , . . .) → Xi⊥Xj where i < j

(Inter) XR1Y ∧ XR2Y → XRY if R1∩R2 ⊆ R
(Inv) XRY → Y R−1X

(Child.down) X�
+Y ∧X:f(X1, . . . ,Xn) ∧

∧n
i=1,i6=j Xi¬�

∗Y → Xi�
∗Y

(NegDom) X¬⊥Y ∧X ⊥Z → Z¬�
∗Y

(NonI1) ¬(X�
∗Y �

∗Z) ∧X�
∗Y → Y ¬�

∗Z
(NonI2) ¬(X�

∗Y �
∗Z) ∧ Y �

∗Z → X¬�
∗Y

Figure 5: Propagation rules for dominance and non-intervention constraints.

Z2�
∗Z3 explicit by application of (Lab.Dom)

and (Inter). In this instance, (Inter) is used as
a rule of weakening.

(Lab.Dom) Z2:∧(Z3, Z4) → Z2�
+Z3

(Inter) Z2�
+Z3 → Z2�

∗Z3

Now we can apply the rule (Dyn2) to the vari-
able binding constraint λ(Z3) = Y (drawn in
boldface in the graph) and the ∀ labeling con-
straint to derive a non-intervention constraint.

(Dyn2) Z0:∧(Z1, Z2) ∧ Z1�
∗X1 ∧ X:∀(X1)

∧ Z2�
∗Z3 ∧ λ(Z3) = Y

→ ¬(Z0�
∗X�

∗Y)

All that is left to do is to make the positive
dominance information contained in the new
non-intervention constraint explicit. As the
constraint also contains Z0�

∗X, we can apply
(NonI1) on the new non-intervention constraint
and derive X¬�

∗Y .

(NonI1) ¬(Z0�
∗X�

∗Y) ∧ Z0�
∗X → X¬�

∗Y

On the other hand, we can derive non-
disjointness of X and Y because (Trans),
(Lab.Dom), and (Inter) allow the derivation of
X�

∗W and Y �
∗W :

(NegDisj) X�
∗W ∧ Y �

∗W → X¬⊥Y

We can now combine all of our constraints for
X and Y with the intersection rule and obtain
Y �

∗X, which basically determines the order of
the two quantifiers:

(Inter) X¬�
∗Y ∧X¬⊥Y → Y �

∗X

By exploiting the fact that the constraint is
overlap-free (i.e. contains an inequality con-
straint for each two labeled variables), we can
even derive Y3�

∗X by repeated application of
the rules (Child.down), (Lab.Disj), (NegDisj),
and (NegDom). This means that we have fully
disambiguated the scope ambiguity by satura-
tion with deterministic inference rules.

Now let us consider a more complicated ex-
ample. Fig. 6 is the underspecified description
of the semantics of

(2) Every visitor of a company saw one of its
departments.

The constraint graph has five solutions, three
of which are proper. Unfortunately, the con-
straint language is not expressive enough to
describe these three solutions in a single con-
straint: Both X and Z can be either above or
below Y , even in a proper solution, but if X is
below Y , Z must be too, and if X is above Y , Z
must be anywhere below X (but may be above

∃ • X
∧ •

company •
var •

•

∀ • Y
⇒ •

∧ •
researcher •

var •

of •
var • var •

•
•

∃ • Z
∧ •

∧ •
of •

var •

see •
var • var •

var •
department •

var •

•

Figure 6: Constraint graph for (2).

Y !). In other words, this constraint is an exam-
ple where the inference procedure is not strong
enough to narrow the description. In this case,
we must still resort to performing nondetermin-
istic case distinctions; at worst, the rules will
apply on solved forms of CL(DPL) constraints.

5 Processing with Finite Set
Constraints

This inference procedure fits nicely with an im-
plementation of dominance constraints based on
constraint programming (Marriott and Stuckey,
1998; Koller and Niehren, 2000) with finite
set constraints (Müller, 1999). Constraint pro-
gramming is a technology for solving combina-
toric puzzles efficiently. The main idea is to
replace “generate and test” by “propagate and
distribute”. Constraint propagation performs
deterministic inferences which prune the search
space, whereas distribution performs (nondeter-
ministic) case distinctions.

Duchier and Niehren (2000) show how to
implement a dominance constraint solver by
encoding dominance constraints as finite set
constraints and disjunctive propagators. This
solver does not handle non-intervention con-
straints, but we show here that they can be
added very naturally. The (Dyn) rules still have
to be implemented as saturation rules.

The idea of this implementation is to encode
a solution (M, α) of a dominance constraints by
introducing for each variable X in the constraint
and each relation symbol R ∈ {�+,�+,=, ⊥}
a finite set variable R(X). This variable is sup-
posed to denote the set of all variables denoting
nodes that are in the relation R to α(X):

R(X) = {Y ∈ V (ϕ) | (M, α) |= Y RX}

Dominance constraints can now be stated as

constraints over these set variables; examples
for set constraints are V ⊆ V ′ and V =
V1 ∪ V2. The new non-intervention constraint
¬(X�

∗Y �
∗Z) can be encoded as

Y ∈ �
+(X) ∪ ⊥(Z) ∪�

+(Z).

The builtin propagation for set constraints au-
tomatically implements the rules (NonI1) and
(NonI2). For instance, assume that X�

∗Y be-
longs to ϕ; then there will be a set constraint
Y /∈ �

+(X), so set constraint propagation will
derive Y ∈ ⊥(Z) ∪�

+(Z). This is the immedi-
ate encoding of Y⊥∪�

+Z, which is equivalent
to Y ¬�

∗Z.

6 Conclusion

In this paper, we have shown how a specific type
of local ambiguity, which is produced by the in-
teraction of intersentential anaphora and scope
ambiguities, can be processed efficiently in the
framework of underspecification. We have de-
fined DPL structures, which can be used to
model formulas of DPL, and proper DPL struc-
tures, in which variable binding must obey the
accessibility conditions of DPL. Finally, we have
shown how an underspecified description can be
narrowed to a description of its proper solutions,
sometimes without even partial enumeration of
readings, and integrated this operation into an
implementation of dominance constraints which
is based on finite set constraints.

Seen from the perspective of DPL, our defini-
tion of properness is purely syntactic and tech-
nically has nothing to do with dynamic seman-
tics. We could state such a definition because
the explicit variable binding functions gave us a
structure-independent handle on variable bind-
ing that excluded all forms of capturing. This
deviates from the standard perspective of indef-

inites changing the context, but has the advan-
tage of being extremely modular in that the ac-
cessibility conditions are factorized out explic-
itly. For instance, it is simple to represent the
meaning of “Bach-Peters sentences” by relaxing
these conditions; it should also be easy to adapt
our formalism to other frameworks of dynamic
semantics. Of course, the question of how to
interpret a DPL structure remains open.

Another open question is how the approach
presented here can be extended to higher-order
systems of dynamic semantics (e.g. Dynamic
Lambda Calculus (Kuschert, 1999)). In this
context, it could be worthwhile to restore the
distinction of variable binding and anaphoric
linking from CLLS.

Finally, it should be interesting to find other
classes of local ambiguity that lend themselves
to a treatment as presented here. So far, there
are not many related examples; one is lexical
ambiguity in parsing of dependency grammar,
as presented in (Duchier, 1999). However, we
believe that the work presented here provides
further illustration that underspecified process-
ing can go a long way towards efficient process-
ing of local ambiguities.

Acknowledgments. This work was sup-
ported by the Deutsche Forschungsgemeinschaft
in the SFB 378. As always, we thank all mem-
bers of the SFB 378 project CHORUS at the
University of the Saarland. We are also grateful
to the participants at the Dagstuhl workshop on
Dynamic Semantics in February 1999 for com-
ments and discussions on an earlier version of
this paper.

References
Johan Bos. 1996. Predicate logic unplugged. In

Proceedings of the 10th Amsterdam Colloquium,
pages 133–143.

Thomas Cornell. 1994. On determining the consis-
tency of partial descriptions of trees. In Proceed-
ings of ACL.

Denys Duchier and Claire Gardent. 1999. A
constraint-based treatment of descriptions. In 3rd

Int. Workshop on Comp. Semantics, pages 71–85.
Denys Duchier and Joachim Niehren. 2000. Domi-

nance constraints with set operators. In 1st Int.
Conf. on Computational Logic, LNCS, July.

Denys Duchier. 1999. Axiomatizing dependency
parsing using set constraints. In Proc. of the 6th

M. on Mathematics of Language, pages 115–126.

Markus Egg, Joachim Niehren, Peter Ruhrberg,
and Feiyu Xu. 1998. Constraints over lambda-
structures in semantic underspecification. In joint
17th Int. Conf. on Comp. Ling. and 36th Ann.
Meet. of the ACL., pages 353–359.

Jeroen Groenendijk and Martin Stokhof. 1991. Dy-
namic predicate logic. Linguistics & Philosophy,
14:39–100.

Hans Kamp and Uwe Reyle. 1993. From Discourse
to Logic. Kluwer, Dordrecht.

Alexander Koller and Joachim Niehren. 2000. Con-
straint programming in computational linguistics.
In Proc. of the 8th CSLI Workshop on Logic, Lan-
guage, and Computation. CSLI Press. To appear.

Alexander Koller, Joachim Niehren, and Ralf
Treinen. 1998. Dominance constraints: Algo-
rithms and complexity. In 3rd Conf. on Logical
Asp. of Comp. Ling. To appear as LNCS in 2000.

Alexander Koller, Kurt Mehlhorn, and Joachim
Niehren. 2000. A polynomial-time fragment of
dominance constraints. In Proceedings of the 38th
ACL. To appear.

Susanna Kuschert. 1999. Dynamic Meaning and
Accomodation. Ph.D. thesis, Dept. of Computer
Science, University of the Saarland.

Mitchell P. Marcus, Donald Hindle, and Mar-
garet M. Fleck. 1983. D-theory: Talking about
talking about trees. In 21st Ann. Meet. of the
ACL, pages 129–136.

Kim Marriott and Peter J. Stuckey. 1998. Program-
ming with Constraints: An Introduction. MIT
Press.

Tobias Müller. 1999. Problem solving with finite set
constraints in Oz. A Tutorial. Documentation of
the Mozart system of Oz. www.mozart-oz.org.

R.A. Muskens. 1995. Order-Independence and Un-
derspecification. In J. Groenendijk, editor, Ellip-
sis, Underspecification, Events and More in Dy-
namic Semantics. DYANA Deliverable R.2.2.C.

Manfred Pinkal. 1996. Radical underspecification.
In Proceedings of the 10th Amsterdam Collo-
quium, pages 587–606.

Owen Rambow, K. Vijay-Shanker, and David Weir.
1995. D-Tree Grammars. In Proceedings of
ACL’95.

Uwe Reyle. 1993. Dealing with ambiguities by
underspecification: construction, representation,
and deduction. Journal of Semantics, 10:123–179.

Michael Schiehlen. 1997. Disambiguation of under-
specified discourse repesentation structures under
anaphoric constraints. In 2rd Int. Workshop. on
Computational Semantics, Tilburg.

Kees van Deemter and Stanley Peters. 1996. Se-
mantic Ambiguity and Underspecification. CSLI
Press.

