
QTk { A Mixed Declarative/Procedural Approachfor Designing Executable User InterfacesDonatien Grolaux1, Peter Van Roy1, and Jean Vanderdonckt1Universit�e catholique de Louvain, B-1348 Louvain-la-Neuve, Belgiumfned, pvrg@info.ucl.ac.be, vanderdonckt@qant.ucl.ac.beWhen designing executable user interfaces, it is often advantageous to usedeclarative and procedural approaches together, each when most appropriate:{ A declarative approach can be used to de�ne widget types, their initial states,their resize behavior, and how they are nested to form each window. All thisinformation can be represented as a data structure. For example, widgetscan be records and the window structure is then simply a nested record.{ A procedural approach can be used when its expressive power is needed, i.e.,to de�ne most of the UI's dynamic behavior. For example, UI events triggercalls to action procedures and the application can change widget state byinvoking handler objects. Both action procedures and handler objects canbe embedded in the data structures used by the declarative approach.The QTk tool uses this mixed approach, tightly integrated with a programminglanguage that has extensive support for records and �rst-class procedures. Thispermits executable model-based UI design: the UI models are executed at run-time without any compilation. To be precise, each UI model is a record that istransformed at run-time to its QTk speci�cation, which is also a record.We demonstrate the e�ectiveness of this approach by writing a context-sensitive clock utility, FlexClock, that changes its view at run-time wheneverits window is resized. The utility is written in less than 400 lines. This includesfull de�nitions of a calendar widget, an analog clock widget, and 16 views. Eachview is de�ned as a record with three �elds. All 16 views including formattingutilities are written in 80 lines total. The mechanism for creating a running UIfrom these de�nitions is written in 60 lines. Here is the de�nition of one view:view(desc: label(handle:H bg:white glue:nswe)update: proc {$ T} {H set(text:{FormatTime T})} endarea: 40#10)The desc �eld is declarative; it de�nes the view's structure as a record. Hereit is a label widget with an embedded handler object referenced by H. Thehandler object is created by QTk when the widget is installed. The update �eldis procedural; it contains an embedded procedure that will be called once asecond with a time argument T to set the displayed time. The area �eld givesthe view's minimum width and height, used to select the best view at run-time.QTk uses tcl/tk as its underlying graphics subsystem. It is part of the MozartProgramming System, which implements the Oz language. For full informa-tion see http://www.info.ucl.ac.be/people/ned/flexclock. This research is sup-ported in Belgium by the PIRATES project, funded by the Walloon Region.

