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Abstract

The contribution of this paper is twofold. We present a new method for feasible cellular
frequency assignment, a hard combinatorial optimization problem from telecommunications.
Frequency assignment problems arise when a cellular radio network has to be established.
Given a number of base stations, the goal is to assign each a number of frequencies, subject
to given interference restrictions. We develop a transformation technique that allows for
approximate optimization of multiple criteria: First, the original problem is transformed,
thereby reducing the allowed number of distinct frequencies. In a second stage, the frequency
span is compressed. Both stages exploit the cell-structure of the problem formulation. Pre-
liminary experiments on randomized problems examine the effectiveness of the approach
with respect to both criteria.

As we proceed in solving the subproblems that arise, we identify certain key programming
abstractions (such as constraints, propagation and search). We argue that if these abstrac-
tions are supported by a programming language, they can greatly speed up the search for
an efficient algorithm. We exemplify certain aspects of the modelling in Oz, a higher-order
concurrent constraint language.

Keywords: cellular frequency assignment, constraints, search, Oz

1 Introduction

Frequency assignment problems arise when a cellular radio network has to be established. There
are many types of frequency assignment problems that may involve positioning radio transmitters
or allocating frequencies for an existing network of transmitters (see [8] for an overview). We
consider a problem that has been classified as ‘frequency constrained channel assignment problem’
[8] in a formulation that is structured according to transmitter cells [12, 3, 10]. In each cell, a base
station broadcasts a number of channels. Channels may interfere, thus their assigned frequencies
may require a minimal distance from one another. The problem consists of assigning a frequency
to each channel, subject to the interference constraints.

We will refer to this sort of frequency assignment problem as cell-oriented: Each cell contains
several channels and all interference constraints are stated on cells and apply to all the channels
within a cell. We present a two-stage approach with the objectives to first limit the number
of different frequencies in possible solutions (through frequency reuse) and second to assign
frequencies such that the resulting span will be small. Both stages operate on the cell structure



rather than on the channel structure. Like [12], we show that if the problem can be stated in
terms of cells with each cell requiring several frequencies, this cell structure can be exploited.

The paper is structured as follows. Section 2 gives a formalization of the problems being
solved. Section 3 presents iterative clique covering, a preprocessing stage which transforms the
problem, essentially by posting equality constraints for non-interfering channels. These addi-
tional constraints limit the number of different frequencies in the solutions. By operating on the
cell structure, the complexity is reduced from coloring a channel graph to coloring a cell graph,
which can significantly reduce the problem size. Section 4 presents the second stage, cell sequenc-
ing, which assigns frequencies to the preprocessed problem with the objective to minimize the
frequency span. The method is (theoretically) complete and avoids symmetries between channels
within one cell. Together, the two stages can approximately optimize both criteria. Figure 1
illustrates the scenario.

FAP preprocessing tran'iolgmed cell . solutions
sequencing

Figure 1: Two-stage approximate optimization for the frequency assignment problem (FAP).

For each stage, we identify key programming abstractions that were used for its implementa-
tion in the concurrent constraint language Oz [17, 16]. We argue that by providing abstractions
like constraints, propagation and search, constraint languages in general and Oz in particular
encourage the prototyping of new ideas.

2 Problem Formulation

We consider a type of frequency assignment problem that is stated in terms of transmission cells
[12, 3, 10, 8]. There are k cells in V' C IN. Each cell i contains n; channels (we also say cell i has
a demand of n; frequencies). The total number of channels is M = )", n;. Each channel [ from
cell ¢ is to be assigned a frequency f; from a global domain Dy, subject to given interference
limiting constraints defined on pairs of cells: The frequencies of two channels [ and m of cells 4
and j must be at least a given distance d;; apart, |fiy — fim| > dij, I =1...n;, m =1...nj;
we assume a symmetric k x k interference matrix D = (d;;). If there is no interference between
i and j then d;; = 0. Typically, co-site interference is d;; > 0. A triplet F' = (V, N, D) will be
called a frequency assignment problem (FAP) if V is a set of cells, N = (n;) is a demand vector
and D = (d;;) is an interference matrix. A solution of F' is an assignment of frequencies from
the domain Dy to all channels f;,i =1...k,1 =1...n; violating no interference constraints.

We will refer to the interference cell graph G = (Vi, E), as the graph whose vertices Vi = V
are the transmission cells, and whose edges Eg are connecting cells. Cells {i,j} are connected
by an edge if they interfere (d;; > 0). The inverted cell graph is G = (Vg,Va x Vi \ Eg).

Sometimes, not all constraints are hard, but may be violated at a certain interference cost
[1, 3]. The first order problem is to find a complete assignment of frequencies to channels that
satisfies all hard constrains at minimum overall cost. If there exists a feasible assignment, i.e. a
complete assignment of zero cost, then the second order problem is to find a feasible assignment
that minimizes one of the following criteria [§]:

1. the frequency order (the number of distinct frequencies):
minimize | J{fa |i=1...k,l=1...n;}|

2. the frequency span: minimize max{fy |i=1... k,l=1...n;}
(without loss of generality we assume that frequency 1 is always assigned.)

We will only consider the second order problem here and present an approximation algorithm
for what has been called “the minimum span of a minimum-order feasible assignment” [8]. We
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Figure 2: Iterative clique-covering (1CC) as approximate minimization technique for the number
of distinct frequencies.

note that in some realistic formulations of the FAP [1], channels may have different domains, or
may have preassigned frequencies. Some of these additional constraints may be introduced at a
later stage of this work.

3 Reducing the Frequency Order

The traditional approach to minimizing the frequency order is to perform graph coloring on the
channel graph [19, 8, 3, 11]. Because each color can be identified with one frequency, the minimal
number of colors (the chromatic number of the graph) equals the minimal number of frequencies
needed. Coloring this channel graph, however, is non-trivial since there may be more than 150
vertices and the chromatic number may exceed 100.

Penotti and Boorstyn [12] have first recognized the close connection between the channel
graph and the cell graph and apply graph coloring of the cell graph to reduce the input problem.
Our approach similarly exploits the cell structure, however we use it for a transformation of the
problem. The approach iteratively identifies a group of non-interfering cells, picks one channel
from each cell of the group and posts equality for all those channels. This grouping of channels is
used to transform the original problem to a problem in which the number of different frequencies
is bounded above. The question is which cells should iteratively be grouped together so as to
result in a minimal number of distinct frequencies? We do not know of an optimal deterministic
grouping strategy but will present an approximation strategy that appears to do well in our
examples.

To find such a group of cells, the vertices of the interference cell graph can be colored, subject
to the constraints that two adjacent vertices be colored differently (since the cells interfere). This
equivalently amounts to partitioning the inverted cell graph G into a minimal number of cliques'.
The covering strategy shall be explained by means of an example. Figure 2 (a) shows an inverted
cell graph G of cells A through F. In G two vertices (cells) are connected by an edge if and only
if there is no interference between them. The numbers refer to the frequency demand for each
cell. We assume that channels within the same cell interfere, i.e. d;; > 0 (otherwise, they would
collapse). We start by partitioning G into a minimal number of cliques, the result of which is
shown in (b). Of this partition, a random largest clique is considered, say {A,B}. One channel
from each cell A and B is removed (thereby reducing the demands of A and B by one) and

LA clique in a graph is a completely connected subgraph.



the two channels are constrained to be equal. Then, the remaining graph is colored afresh, i.e.
all the cells in G still containing channels are partitioned into cliques. This time, there are two
minimal partitions: one that includes the clique {B, C, E}, and one that doesn’t. Thus, there are
different possible paths to complete the covering. Those steps of clique partitioning and posting
equality constraints for the largest clique are iterated until no more cells are left in the graph. In
this example, no matter which largest clique is picked in each step, the result will be (c). Each
clique corresponds to one frequency, and (c) happens to be optimal, i.e. all remaining solutions
have only four colors. In general, if some cells demand more than one channel, one can construct
examples for which 10Cc will not lead to an optimal solution, however it is not clear how often
such instances appear as practical problems. Because the above strategy will iteratively cover
the cell graph with cliques, we refer to it as iterative clique covering (1CC).

Thus far, 1CC was described as preprocessing stage in a constraint satisfaction approach. Since
the span-compression technique in the subsequent stage prefers a plain cell structure as input
(with no equality constraints added), we will take a slightly different approach now. We describe
1CcC as a transformation on the cell graph that introduces new cells that contain combinations
of original channels. The solution of the original problem can be obtained by a simple inverse-
transformation.

Algorithm 1 Iierative clique covering (1CC)

Input: A frequency assignment problem F = (V,N, D), given by a non-empty set of cells V C
IN, a frequency demand vector N = (n;) and a symmetrical interference restriction matriz
D = (d;;) for pairs of cells.

Output: A transformed frequency assignment problem F= (V, N, f)), V C ‘7, D a sub-matriz of
D, and revised frequency demands N .

1. Initialize F with V,ﬁ,N as V,D and N. Let G = (Vi, Eg) be the interference cell graph
induced by F. Vi :=V,Eq = (eij), eij =1 iff dij > 0.

2. Find any minimal coloring of G, such that any two adjacent vertices are colored differ-

ently. This coloring directly induces a partition of the inverted graph G into cliques:
P={C,...,C,}.

3. Pick any mazimal clique Cy, from P (i.e. for any C; € P : |C;| < |Cp]). Combine
flp 1= minyec,, Ny channels from each cell of Cy, in a fresh cell p in V. Adjust the new
demands of all cells whose channels have moved: 7; := n; —ny, © € Cy,. Remove every cell
i from G whose frequency demand n; has become zero.

4. For the new cell p, define interference restrictions according to the mazimal restrictions of
all cells in Cp,: Fzxtend D, setting interference between p and any i # p to dy; 1= dip =
maxyec,, dyi- The co-site interference is dy,p := max,ec,, dyy-

5. If there are cells left in G, goto 2, else return F.

Remarks: Note that in the algorithm several channels are combined within a new cell in one
step. V will contain the new cells to hold channel combinations, plus all cells of V (some with
0-demands in N, if all channels have been moved to new cells).

Programming Abstractions For programming languages not supporting constraints, the 1¢C
algorithm may get fairly involved since it embeds graph coloring, for which elaborate techniques
are needed. On the other hand, its implementation in a constraint programming language like
CHIP [4] or Oz [17, 16] is straightforward because the necessary abstractions are provided. For



the graph-coloring task (2), our implementation uses the following abstractions: Inequality con-
straints are posted for interfering cells, and constraint propagation (arc consistency) is employed
as implemented in Oz’s Finite Domain module [13]. An off-the-shelf branch-and-bound search
algorithm is used together with a labelling strategy described in [5]. Node ordering was imple-
mented according to a first-fail heuristic. With these building blocks, efficient graph coloring for
graphs of moderate size is possible. The graph coloring can easily be embedded in the iterative
algorithm.

4 Compressing the Frequency Span

In this section we develop a method that is suited for finding frequency assignments with a
minimum frequency span. If there are a total of M channels to be assigned frequencies from a
domain {1,...,D;}, there are (D;)™ possible combinations (e.g. 50% ~ 10'°% for 64 channels
from a spectrum of span Dy = 50). One observation is that for a minimization of the frequency
span, many potential assignments will surely not be optimal because frequencies may still be
compressed. Additionally, many solutions are symmetrical because all channels within one cell
are equivalent. In the following, we will give a new approach to span minimization, which avoids
symmetries and many non-optimal solutions.

4.1 The Cell-Sequencing Approach

To reduce the search space, we will propose a problem encoding that is inspired from task ordering
in the job-shop scheduling domain [2]. In task ordering, the idea is the following: Rather than
directly assigning start times to the given tasks, one orders the tasks that are competing for
the same resource. Since a task ordering induces start times for the tasks, this is a constructive
approach. The encoding has been shown to greatly reduce search space size in the job-shop
scheduling domain [2, 15].

Similarly, one can view the frequency assignment problem as the problem of sequencing cells.
By a cell sequence, we mean a sequence of cells (¢1,¢a,...),¢; € V. A cell sequence (¢1,...,car)
in which each cell i appears exactly n; times will be called satisfying.

A cell sequence induces a unique frequency assignment because for each occurrence of a cell,
an unassigned channel can be picked and be assigned a smallest possible frequency, subject to
the (hard) interference constraints (d;;). If the sequence is satisfying, the frequency assignment
will be complete. We now explain how an admissible frequency assignment? is induced by a cell
sequence. Let (c1,ca,...,¢) be the cell sequence thus far; we define the mapping F' to frequencies
inductively. Let F(c1) = fi = 1. Now let F(cy,ca,...,¢1) = (f1, f2,--., fi) be the frequencies
assigned to the cells up to this point. Let t; be the largest frequency that has been assigned
to cell 4, t; = maxi<j<i{fj | ¢; = i}; if ¢ is not in the sequence, let ¢; = 0 (0 being no valid
frequency). In the next step, cell ¢,y is to be assigned the smallest possible frequency obeying
the (hard) interference constraints with all other cells:

fiy1 = fg?gxk{ti +dii1 | dig41 > 0AL; > 0}

Any assignment of a greater frequency to cell ¢;;; would surely result in a non-optimal span
for the sequence (ci,...,¢4+1). Thus, many non-optimal assignments will be avoided by cell
sequencing. Another property of cell sequencing is that symmetries between channels within the
same cell are avoided, because any unassigned channel can be picked.

With cell sequencing, span optimization amounts to finding a satisfying cell sequence (¢, ..., )

for which the largest assigned frequency is minimal. Clearly, in each step one can only choose

2An admissible assignment is a mapping from f;; to IN, s =1...k,l=1...n;.



from all cells that are not yet satisfied. It is possible to show that there always exists a satisfying
sequence that results in an optimal span; the completeness prove will be given elsewhere.?

The Search Space With cell sequencing, a solution to the frequency assignment problem

consists of a permutation (¢, ¢a, ..., car),¢; € V. There are M = Zl<j<k n; channels, thus there
are (n1 nQM nk) cell permutations. The overall frequency domain does not affect the size of the

search space. To give an example, for 8 cells, each requiring 8 frequencies, there are % ~ 10°2

permutations — though considerably less than D} (~ 10'%® with Dy = 50), there are still too
many to be searched exhaustively.

Heuristics The remaining problem is to construct good satisfying cell sequences that will lead
to a small span. A heuristic approach we found to work well for our examples is small-frequencies-
high-demand-first: In each step, among the cells that have non-zero demands, choose a cell that
will result in the smallest new frequency. Ties are broken by considering the remaining demand,
and cells with higher demand are chosen first.*

Search Thus far, the approach is essentially greedy. However, we can extend it by introducing
choice points. At each point, there is choice between different cells, so the heuristic estimation
imposes an order of which choices to explore first. In addition to the local heuristic preference,
there is freedom in the global search strategy. In depth-first search one follows the heuristic all
the way down to a leaf, backtracking to the alternatives in the left corner of the tree. In contrast,
one can explore the search tree in more sophisticated ways: Harvey and Ginsberg [9] present an
intuitively appealing search strategy called limited discrepancy search (LDS): “The idea is that
a small number of wrong turns can be overcome by systematically searching all paths that differ
from the heuristic path in at most a small number of decision points, or ‘discrepancies’. Limited
discrepancy search is a backtracking algorithm that searches the nodes of the tree in increasing
order of such discrepancies.” LDS(0) follows the heuristic in all decisions. LDs(1) follows the
heuristic except once in the path, and so on. In our experiments we apply 1L.Ds(0) followed by
LDs(1), and report the number of probes down to a leaf.

Relation to Existing Approaches Cell sequencing is related to an early assignment strategy
called frequency-ezhaustive assignment [19, 7]. Cell sequencing contributes a new frequency-
selection strategy (‘holes’ are not tried to fill), and with search, it is (theoretically) an optimal
method. Tt avoids symmetries and applies a recent search strategy, L.Ds, which can compensate
for a small number of wrong heuristic decisions.

Programming Abstractions It is fairly straightforward in any kind of language to imple-
ment a greedy approach of the cell-sequencing strategy with a small-frequencies-first heuristic.
However, as it comes to search, in conventional Prolog-based constraint languages (e. g. clp(FD),
CHIP, Eclipse) one is limited to the built-in depth-first search strategies, and implementing other
strategies is only possible by by-passing chronological backtracking. In conventional approaches
in imperative, logic or functional languages one will merge the search strategy with the solving
algorithm, and thus not have a clean separation.

The concurrent constraint language Oz takes a different approach in which search is orthogonal
to the problem formulation [14]: One can generate choice points in a functional or constraint
program, and in a separate module a search strategy takes responsibility to execute them in any

3Note that with the 1cc preprocessing, completeness of cell-sequencing for the original problem is no longer
guaranteed.
40ther heuristics, e.g. the ones described in [7] have to be evaluated empirically at a later stage.



programmable order. Alternatively, one of several predefined strategies can be chosen. Since Oz
supports programmable search [14], strategies like LDS can be coded in Oz almost identically to
the original abstract formulation and subsequently be used off-the-shelf. Different strategies can
easily be compared experimentally, allowing for fast prototyping.

5 Experimental Results

In this section we give preliminary experimental results for a sample of randomly generated
frequency allocation problems. All instances are cell oriented, i.e. several channels are to be
allocated within each cell. The appendix contains FAP2 and FAP5. At present, we are not
able to compare our results with other approaches than a naive constraint propagation approach
(described below) since we are not aware of other approaches that aim at minimizing both
frequency order and span.

problem | M || 1cc & sequencing b Ib span LDS naive
instance (order,span) | order | (untransf.) | probes || (order,span)
FAP1 148 (95,145) 95 145 (2%) 13 (95,165)
FAP2 | 165 (74,156) | 69 | 146 (7%) 11 (97,192)
FAP3 150 (86,137) 83 131 (5%) 12 (97,164)
FAP4 | 161 (91,159) | 90 | 146 (9%) 37 (95,178)
FAP5 | 222 (122,274) | 104 | 273 (0%) 2 (137,327)
FAP6 | 222 (222,222) | 222 | 222 (0%) 1

Table 1: Experimental results for cellular frequency assignment on randomly generated problems,
each 25 cells. Column 2 reports the number of channels (M), column 3 gives the results. Column
4 reports lower bounds on the order, and column 5 gives span lower bounds and percent deviation
from them (note that these bounds are computed for the untransformed problems). Column 6
reports the number of LDS(0)+LDS(1) probes for the reported span, the last column gives the naive
results. All execution CPU times in Oz-2.0 were around 40s for 40 LDS-probes on a SPARCstation
20 (502,160MB) except FAP5 and FAP6 with 110s.

Problem Descriptions: Problem FAP1 originates from [10] and requires around 8000 distance
constraints. All other problems were generated randomly. FAP1 and FAP2 are 70% and 80% and
FAP3-5 are 85% constrained (percent of cell pairs interfering). FAP4 and 5 have an additional
clique built in that helps to increase the order lower bound. Instances 2 through 5 are available on
the Web at http://ps.uni-sb.de/ walser/fap/fap.html. Please note that without prior ICC
transformation, cell sequencing was able to find solutions 0-1% within the span lower bounds.
Since there exists a tradeoff between minimal order and minimal span, in general one cannot
expect to achieve optimal results with respect to both criteria simultaneously.

The naive strategy posts all distance constraints and applies a simple labelling strategy with
branch-and-bound search, the best solution in 10k nodes is reported. By chance, the naive
propagation yields the solution of FAP1 without any search.

Lower Bounds: We computed the lower bound on the order following an idea reported in the
Calma Euclid project [18]. A maximum clique is identified in the cell interference graph and
one frequency is allocated for each channel within the cells in the clique. The lower bound on
the span is essentially the first-level bound max;(n; — 1) d;; + 1 with additional consideration if
several connected cells had the same highest frequency demand.



6 Conclusion and Future Work

We have studied a cell oriented variant of the feasible frequency assignment problem. Our aim
in this paper has been to present a two-stage approach that approximately optimizes the two
criteria frequency order and frequency span. We have shown a way how cell structure can be
exploited, provided it is present in the encoding. By operating on cells rather than channels,
the complexity can be reduced and symmetries and many non-optimal solutions can be avoided.
For an implementation of the algorithms in a concurrent constraint language like Oz, we have
identified certain key programming abstractions. The intent was to show that these abstractions,
if supported by a programming language, can lead to a clearer factorization of the problem (into
constraints, propagation and search) and thus lead to shorter development times.

In this paper we focussed on describing the assignment algorithms, so obviously much remains
to be done. First of all, one needs to evaluate the presented techniques on realistic problems,
and competing algorithms have to be identified for this problem class. Second, we would like
to examine theoretical properties of 1cC with the hope to identify a class of FAPs for which
the transformation produces optimal order. Also, we would like to evaluate other heuristics
previously reported in the literature [19, 7]. Additionally, one could model the problem in a
pure constraint approach by posting equality constraints in the first stage and constructing
appropriate labelling strategies in the second. The hope would be that this formulation could
handle additional constraints like pre-assigned frequencies. Last, extending cell sequencing to
handle soft constraints would be interesting. As cellular Radio suppliers are typically purchasing
a band of frequencies [6] there is a cost introduced by the frequency span and a tradeoff exists
between the overall interference (small span) and the cost (wide span). We expect that the cell
sequencing approach extended with soft constraints could be used to vary this tradeoff.

7 Acknowledgements

This work was supported by a doctoral fellowship of the Deutsche Forschungsgemeinschaft (DFQG)
to the author (Graduiertenkolleg Kognitionswissenschaft). The author is grateful to Jorg Wiirtz
and Mats Carlsson for helpful discussions and comments on earlier versions of this paper. Many
thanks also to Martin Miiller, Joachim Niehren and Christian Schulte for helpful discussions of
this work.

References

[1] Karen Aardal, C.A.J Hurkens, J.K. Lenstra, and S.R. Tiourine. An overview of algorithmic
approaches to frequency assignment problems, calma project. Technical report, Department
of Mathematics and Computing Science, Eindhoven University of Technology, Eindhoven,
The Netherlands, 1995.

[2] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. Management
Science, 35(2):164-176, 1989.

[3] Mats Carlsson and Mats Grindal. Automatic frequency assignment for cellular telephones
using constraint satisfaction techniques. In Proceedings of the Tenth International Confer-
ence on Logic Programming, 1993.

[4] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The
constraint logic programming language CHIP. In Proceedings of the International Conference
on Fifth Generation Computer Systems, pages 693 702, Tokyo, Japan, 1988.



[5]

Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solving large combinatorial
problems in logic programming. Journal of Logic Programming, 8:75 93, 1990.

Andreas Eisenblatter, 1996. Personal communication.

Andreas Gamst and Werner Rave. On Frequency Assignment in Mobile Automatic Tele-
phone Systems. In Proc. GLOBECOM, pages 309 315. IEEE, 1982.

William K. Hale. Frequency assignment: Theory and applications. In Proceedings of the
IEEE, volume 68, pages 1497 1514, 1980.

W.D. Harvey and M.L. Ginsberg. Limited discrepancy search. In Proceedings of IJCAI95,
pages 607-613, 1995.

Tlog. Ilog Solver User’s Manual, Version 3.0, 1994. ILOG SA, 9, rue de Verdun, BP 85,
F-94253 Gentilly CEDEX, France.

Antoon Kolen and Stan van Hoesel. A constraint satisfaction approach for the radio link
frequency assignment problem. Technical report, University of Limburg, 1996.

R. J. Pennotti and R. R. Boorstyn. Channel assignment for cellular mobile telecommuni-
cation systems. In Proc. National Telecommunications Conf., Dallas, pages 16.5 1 16.5 53,
1976.

C. Schulte, G. Smolka, and J. Wiirtz. Encapsulated search and constraint programming in
Oz. In Second Workshop on Principles and Practice of Constraint Programming, Lecture
Notes in Computer Science, vol. 874. Springer, 1994.

Christian Schulte and Gert Smolka. Encapsulated search in higher-order concurrent con-
straint programming. In Logic Programming: Proceedings of the 1994 International Sympo-
sium, pages 505-520. MIT-Press, 1994.

S. F. Smith and C. C. Cheng. Slack based heuristics for constraint satisfaction scheduling.
In Proceedings of the Eleventh National Conference on Artificial Intelligence, pages 139 144,
1993.

G. Smolka and R. Treinen, editors. DFKI Oz Documentation Series, 1994. Available on
paper or via WWW from http://ps-www.dfki.uni-sb.de/oz/.

Gert Smolka. The Oz programming model. In Computer Science Today, Lecture Notes in
Computer Science, vol. 1000, pages 324-343. Springer-Verlag, Berlin, 1995.

Sergey Tiourine, Cor Hurkens, and Jan Karel Lenstra. Combinatorial lower bounds for the
rifap. Technical report, T.U. Eindhoven and Delft RLFAP Groups, 1996.

J.A. Zoellner and C.L. Beall. A breakthrough in spectrum conserving frequency assignment
technology. In IEEE Trans. on Electromagnetic Compatibility, volume EMC-19(3), pages
313 319, 1977.



APPENDIX — Problems FAP2 and FAP5

A FAP2

hh

FAP2 -- completely random
Parameters:

hh

<cells> <maxdemand> <mindemand> <maxinterference>

<addclique> <constrainedness>

{RandomFap 25 10 3 2 0.8 Distances Demand}

hh

25

NbCells

demand(9 10 7 8 566 349 107 856 349 107 856 349)
0(o(16112111201111212020121222)

Demand

Distances

0(11602011211101212202120222)
0(10160210011021210212122222)
0(22016012011220211200022200)
0(10201612211022211220222211)
o(11111162211122211220220211)
0(11022216210122211221221211)
0(22002221610122210201221210)
0o(01111111161122212211221012)
0(11111100116102012210221012)
0(11020111111612112210021210)
0(10222222201162112211100011)
0(11102222222216112011112111)
0(22222222201111600111110111)
o(11111111111110161111111111)
0(22011110222220116011011111)
0(02222222222201101611010110)
0(20102220111111111161012012)
0(02200011100111111116212202)
0(11102222220111100021612202)
0(22222222222011111111162210)
0(10222011111020110222216200)
0(22222222002011111022221622)
0(22201111111111111100102162)
0(22201110220111110222002216))

B FAP5

FAP5 -- Random with additional 7-clique

hh

{RandomFap 25 19 3 2 7 0.8 Distances Demand}

hh

25

NbCells

demand(14 14 3 3 13 127 3 563 7 16 11 8 4 10 18 6 7 5 13 9 16 9 6)

0(o(16 211221021201121222121221)

Demand

Distances

0(21622112120201120222120221)
0(12161221122011120222122221)
0(12116112120110121202122221)
0(21211621121112101212120221)
0(21212162121110111002101201)
0(12121216001110111122101011)
0(01111101611012101102001111)
0(22222201160012121112211010)
0(10201111016112121012211210)
0(22011110011612121212211210)
0(00111111111160101212211212)
0(11102002222016010002211202)
o(11111111111101612122211222)
0(22220110222011162102210222)
0(10011111111102216002212202)
0(22222011102201101622212012)
0(22201020111102002160212110)
0(22222222222222222016212001)
0(11111110222222222221612221)
0(2222200011111111111116220 1)
0(10220111111111022222216211)
0(22222201022222220102221611)
0(22222011111102201102011161)
0(11111111000222222011111116))



