
Feasible Cellular Frequency AssignmentUsing Constraint Programming AbstractionsJoachim P. WalserProgramming Systems LabUniversit�at des SaarlandesGeb. 45, Postfach 15115066041 Saarbr�ucken, Germanywalser@ps.uni-sb.deAbstractThe contribution of this paper is twofold. We present a new method for feasible cellularfrequency assignment, a hard combinatorial optimization problem from telecommunications.Frequency assignment problems arise when a cellular radio network has to be established.Given a number of base stations, the goal is to assign each a number of frequencies, subjectto given interference restrictions. We develop a transformation technique that allows forapproximate optimization of multiple criteria: First, the original problem is transformed,thereby reducing the allowed number of distinct frequencies. In a second stage, the frequencyspan is compressed. Both stages exploit the cell-structure of the problem formulation. Pre-liminary experiments on randomized problems examine the e�ectiveness of the approachwith respect to both criteria.As we proceed in solving the subproblems that arise, we identify certain key programmingabstractions (such as constraints, propagation and search). We argue that if these abstrac-tions are supported by a programming language, they can greatly speed up the search foran e�cient algorithm. We exemplify certain aspects of the modelling in Oz, a higher-orderconcurrent constraint language.Keywords: cellular frequency assignment, constraints, search, Oz1 IntroductionFrequency assignment problems arise when a cellular radio network has to be established. Thereare many types of frequency assignment problems that may involve positioning radio transmittersor allocating frequencies for an existing network of transmitters (see [8] for an overview). Weconsider a problem that has been classi�ed as `frequency constrained channel assignment problem'[8] in a formulation that is structured according to transmitter cells [12, 3, 10]. In each cell, a basestation broadcasts a number of channels. Channels may interfere, thus their assigned frequenciesmay require a minimal distance from one another. The problem consists of assigning a frequencyto each channel, subject to the interference constraints.We will refer to this sort of frequency assignment problem as cell-oriented : Each cell containsseveral channels and all interference constraints are stated on cells and apply to all the channelswithin a cell. We present a two-stage approach with the objectives to �rst limit the numberof di�erent frequencies in possible solutions (through frequency reuse) and second to assignfrequencies such that the resulting span will be small. Both stages operate on the cell structure



rather than on the channel structure. Like [12], we show that if the problem can be stated interms of cells with each cell requiring several frequencies, this cell structure can be exploited.The paper is structured as follows. Section 2 gives a formalization of the problems beingsolved. Section 3 presents iterative clique covering , a preprocessing stage which transforms theproblem, essentially by posting equality constraints for non-interfering channels. These addi-tional constraints limit the number of di�erent frequencies in the solutions. By operating on thecell structure, the complexity is reduced from coloring a channel graph to coloring a cell graph,which can signi�cantly reduce the problem size. Section 4 presents the second stage, cell sequenc-ing , which assigns frequencies to the preprocessed problem with the objective to minimize thefrequency span. The method is (theoretically) complete and avoids symmetries between channelswithin one cell. Together, the two stages can approximately optimize both criteria. Figure 1illustrates the scenario.
transformed cellpreprocessing solutionsFAPFAP

sequencingFigure 1: Two-stage approximate optimization for the frequency assignment problem (FAP).For each stage, we identify key programming abstractions that were used for its implementa-tion in the concurrent constraint language Oz [17, 16]. We argue that by providing abstractionslike constraints, propagation and search, constraint languages in general and Oz in particularencourage the prototyping of new ideas.2 Problem FormulationWe consider a type of frequency assignment problem that is stated in terms of transmission cells[12, 3, 10, 8]. There are k cells in V � IN. Each cell i contains ni channels (we also say cell i hasa demand of ni frequencies). The total number of channels is M =Pi ni. Each channel l fromcell i is to be assigned a frequency fil from a global domain Df , subject to given interferencelimiting constraints de�ned on pairs of cells: The frequencies of two channels l and m of cells iand j must be at least a given distance dij apart, jfil � fjmj � dij ; l = 1 : : : ni; m = 1 : : : nj ;we assume a symmetric k � k interference matrix D = (dij). If there is no interference betweeni and j then dij = 0. Typically, co-site interference is dii > 0. A triplet F = (V;N;D) will becalled a frequency assignment problem (FAP) if V is a set of cells, N = (ni) is a demand vectorand D = (dij) is an interference matrix. A solution of F is an assignment of frequencies fromthe domain Df to all channels fil; i = 1 : : : k; l = 1 : : : nk violating no interference constraints.We will refer to the interference cell graph G = (VG; EG), as the graph whose vertices VG = Vare the transmission cells, and whose edges EG are connecting cells. Cells fi; jg are connectedby an edge if they interfere (dij > 0). The inverted cell graph is �G = (VG; VG � VG nEG).Sometimes, not all constraints are hard , but may be violated at a certain interference cost[1, 3]. The �rst order problem is to �nd a complete assignment of frequencies to channels thatsatis�es all hard constrains at minimum overall cost. If there exists a feasible assignment , i. e. acomplete assignment of zero cost, then the second order problem is to �nd a feasible assignmentthat minimizes one of the following criteria [8]:1. the frequency order (the number of distinct frequencies):minimize jSffil j i = 1 : : : k; l = 1 : : : nigj2. the frequency span: minimize maxffil j i = 1 : : : k; l = 1 : : : nig(without loss of generality we assume that frequency 1 is always assigned.)We will only consider the second order problem here and present an approximation algorithmfor what has been called \the minimum span of a minimum-order feasible assignment" [8]. We
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2 2(c) An optimal clique cov-ering for �G. If a cell i de-mands ni channels, it iscovered ni times.Figure 2: Iterative clique-covering (icc) as approximate minimization technique for the numberof distinct frequencies.note that in some realistic formulations of the FAP [1], channels may have di�erent domains, ormay have preassigned frequencies. Some of these additional constraints may be introduced at alater stage of this work.3 Reducing the Frequency OrderThe traditional approach to minimizing the frequency order is to perform graph coloring on thechannel graph [19, 8, 3, 11]. Because each color can be identi�ed with one frequency, the minimalnumber of colors (the chromatic number of the graph) equals the minimal number of frequenciesneeded. Coloring this channel graph, however, is non-trivial since there may be more than 150vertices and the chromatic number may exceed 100.Penotti and Boorstyn [12] have �rst recognized the close connection between the channelgraph and the cell graph and apply graph coloring of the cell graph to reduce the input problem.Our approach similarly exploits the cell structure, however we use it for a transformation of theproblem. The approach iteratively identi�es a group of non-interfering cells, picks one channelfrom each cell of the group and posts equality for all those channels. This grouping of channels isused to transform the original problem to a problem in which the number of di�erent frequenciesis bounded above. The question is which cells should iteratively be grouped together so as toresult in a minimal number of distinct frequencies? We do not know of an optimal deterministicgrouping strategy but will present an approximation strategy that appears to do well in ourexamples.To �nd such a group of cells, the vertices of the interference cell graph can be colored, subjectto the constraints that two adjacent vertices be colored di�erently (since the cells interfere). Thisequivalently amounts to partitioning the inverted cell graph �G into a minimal number of cliques1.The covering strategy shall be explained by means of an example. Figure 2 (a) shows an invertedcell graph �G of cells A through F. In �G two vertices (cells) are connected by an edge if and onlyif there is no interference between them. The numbers refer to the frequency demand for eachcell. We assume that channels within the same cell interfere, i. e. dii > 0 (otherwise, they wouldcollapse). We start by partitioning �G into a minimal number of cliques, the result of which isshown in (b). Of this partition, a random largest clique is considered, say fA,Bg. One channelfrom each cell A and B is removed (thereby reducing the demands of A and B by one) and1A clique in a graph is a completely connected subgraph.



the two channels are constrained to be equal. Then, the remaining graph is colored afresh, i. e.all the cells in �G still containing channels are partitioned into cliques. This time, there are twominimal partitions: one that includes the clique fB;C;Eg, and one that doesn't. Thus, there aredi�erent possible paths to complete the covering. Those steps of clique partitioning and postingequality constraints for the largest clique are iterated until no more cells are left in the graph. Inthis example, no matter which largest clique is picked in each step, the result will be (c). Eachclique corresponds to one frequency, and (c) happens to be optimal, i. e. all remaining solutionshave only four colors. In general, if some cells demand more than one channel, one can constructexamples for which icc will not lead to an optimal solution, however it is not clear how oftensuch instances appear as practical problems. Because the above strategy will iteratively coverthe cell graph with cliques, we refer to it as iterative clique covering (icc).Thus far, icc was described as preprocessing stage in a constraint satisfaction approach. Sincethe span-compression technique in the subsequent stage prefers a plain cell structure as input(with no equality constraints added), we will take a slightly di�erent approach now. We describeicc as a transformation on the cell graph that introduces new cells that contain combinationsof original channels. The solution of the original problem can be obtained by a simple inverse-transformation.Algorithm 1 Iterative clique covering (icc)Input: A frequency assignment problem F = (V;N;D), given by a non-empty set of cells V �IN, a frequency demand vector N = (ni) and a symmetrical interference restriction matrixD = (dij) for pairs of cells.Output: A transformed frequency assignment problem F̂ = (V̂ ; N̂ ; D̂); V � V̂ ; D a sub-matrix ofD̂, and revised frequency demands N̂ .1. Initialize F̂ with V̂ ; D̂; N̂ as V;D and N . Let G = (VG; EG) be the interference cell graphinduced by F . VG := V;EG = (eij); eij := 1 i� dij > 0.2. Find any minimal coloring of G, such that any two adjacent vertices are colored di�er-ently. This coloring directly induces a partition of the inverted graph �G into cliques:P = fC1; : : : ; Cng:3. Pick any maximal clique Cm from P (i. e. for any Ci 2 P : jCij � jCmj). Combinen̂p := minv2Cm n̂v channels from each cell of Cm in a fresh cell p in V̂ . Adjust the newdemands of all cells whose channels have moved: n̂i := n̂i� n̂p, i 2 Cm. Remove every celli from G whose frequency demand n̂i has become zero.4. For the new cell p, de�ne interference restrictions according to the maximal restrictions ofall cells in Cm: Extend D̂, setting interference between p and any i 6= p to d̂pi := d̂ip :=maxv2Cm d̂vi. The co-site interference is dpp := maxv2Cm dvv.5. If there are cells left in G, goto 2, else return F̂ .Remarks: Note that in the algorithm several channels are combined within a new cell in onestep. V̂ will contain the new cells to hold channel combinations, plus all cells of V (some with0-demands in N̂ , if all channels have been moved to new cells).Programming Abstractions For programming languages not supporting constraints, the iccalgorithm may get fairly involved since it embeds graph coloring, for which elaborate techniquesare needed. On the other hand, its implementation in a constraint programming language likeCHIP [4] or Oz [17, 16] is straightforward because the necessary abstractions are provided. For



the graph-coloring task (2), our implementation uses the following abstractions: Inequality con-straints are posted for interfering cells, and constraint propagation (arc consistency) is employedas implemented in Oz's Finite Domain module [13]. An o�-the-shelf branch-and-bound searchalgorithm is used together with a labelling strategy described in [5]. Node ordering was imple-mented according to a �rst-fail heuristic. With these building blocks, e�cient graph coloring forgraphs of moderate size is possible. The graph coloring can easily be embedded in the iterativealgorithm.4 Compressing the Frequency SpanIn this section we develop a method that is suited for �nding frequency assignments with aminimum frequency span. If there are a total of M channels to be assigned frequencies from adomain f1; : : : ; Dfg, there are (Df )M possible combinations (e. g. 5064 � 10108 for 64 channelsfrom a spectrum of span Df = 50). One observation is that for a minimization of the frequencyspan, many potential assignments will surely not be optimal because frequencies may still becompressed. Additionally, many solutions are symmetrical because all channels within one cellare equivalent. In the following, we will give a new approach to span minimization, which avoidssymmetries and many non-optimal solutions.4.1 The Cell-Sequencing ApproachTo reduce the search space, we will propose a problem encoding that is inspired from task orderingin the job-shop scheduling domain [2]. In task ordering, the idea is the following: Rather thandirectly assigning start times to the given tasks, one orders the tasks that are competing forthe same resource. Since a task ordering induces start times for the tasks, this is a constructiveapproach. The encoding has been shown to greatly reduce search space size in the job-shopscheduling domain [2, 15].Similarly, one can view the frequency assignment problem as the problem of sequencing cells.By a cell sequence, we mean a sequence of cells (c1; c2; : : :); ci 2 V . A cell sequence (c1; : : : ; cM )in which each cell i appears exactly ni times will be called satisfying .A cell sequence induces a unique frequency assignment because for each occurrence of a cell,an unassigned channel can be picked and be assigned a smallest possible frequency, subject tothe (hard) interference constraints (dij). If the sequence is satisfying, the frequency assignmentwill be complete. We now explain how an admissible frequency assignment2 is induced by a cellsequence. Let (c1; c2; : : : ; cl) be the cell sequence thus far; we de�ne the mapping F to frequenciesinductively. Let F (c1) = f1 = 1. Now let F (c1; c2; : : : ; cl) = (f1; f2; : : : ; fl) be the frequenciesassigned to the cells up to this point. Let ti be the largest frequency that has been assignedto cell i, ti = max1�j�lffj j cj = ig; if i is not in the sequence, let ti = 0 (0 being no validfrequency). In the next step, cell cl+1 is to be assigned the smallest possible frequency obeyingthe (hard) interference constraints with all other cells:fl+1 = max1�i�kfti + di;l+1 j di;l+1 > 0 ^ ti > 0gAny assignment of a greater frequency to cell cl+1 would surely result in a non-optimal spanfor the sequence (c1; : : : ; cl+1). Thus, many non-optimal assignments will be avoided by cellsequencing. Another property of cell sequencing is that symmetries between channels within thesame cell are avoided, because any unassigned channel can be picked.With cell sequencing, span optimization amounts to �nding a satisfying cell sequence (c1; : : : ; cM )for which the largest assigned frequency is minimal. Clearly, in each step one can only choose2An admissible assignment is a mapping from fil to IN, i = 1 : : : k; l = 1 : : : ni.



from all cells that are not yet satis�ed. It is possible to show that there always exists a satisfyingsequence that results in an optimal span; the completeness prove will be given elsewhere.3The Search Space With cell sequencing, a solution to the frequency assignment problemconsists of a permutation (c1; c2; : : : ; cM ); ci 2 V: There areM =P1�j�k nj channels, thus thereare � Mn1 n2 ��� nk� cell permutations. The overall frequency domain does not a�ect the size of thesearch space. To give an example, for 8 cells, each requiring 8 frequencies, there are 64!(8!)8 � 1052permutations { though considerably less than DMf (� 10108 with Df = 50), there are still toomany to be searched exhaustively.Heuristics The remaining problem is to construct good satisfying cell sequences that will leadto a small span. A heuristic approach we found to work well for our examples is small-frequencies-high-demand-�rst : In each step, among the cells that have non-zero demands, choose a cell thatwill result in the smallest new frequency. Ties are broken by considering the remaining demand,and cells with higher demand are chosen �rst.4Search Thus far, the approach is essentially greedy. However, we can extend it by introducingchoice points. At each point, there is choice between di�erent cells, so the heuristic estimationimposes an order of which choices to explore �rst. In addition to the local heuristic preference,there is freedom in the global search strategy. In depth-�rst search one follows the heuristic allthe way down to a leaf, backtracking to the alternatives in the left corner of the tree. In contrast,one can explore the search tree in more sophisticated ways: Harvey and Ginsberg [9] present anintuitively appealing search strategy called limited discrepancy search (lds): \The idea is thata small number of wrong turns can be overcome by systematically searching all paths that di�erfrom the heuristic path in at most a small number of decision points, or `discrepancies'. Limiteddiscrepancy search is a backtracking algorithm that searches the nodes of the tree in increasingorder of such discrepancies." lds(0) follows the heuristic in all decisions. lds(1) follows theheuristic except once in the path, and so on. In our experiments we apply lds(0) followed bylds(1), and report the number of probes down to a leaf.Relation to Existing Approaches Cell sequencing is related to an early assignment strategycalled frequency-exhaustive assignment [19, 7]. Cell sequencing contributes a new frequency-selection strategy (`holes' are not tried to �ll), and with search, it is (theoretically) an optimalmethod. It avoids symmetries and applies a recent search strategy, lds, which can compensatefor a small number of wrong heuristic decisions.Programming Abstractions It is fairly straightforward in any kind of language to imple-ment a greedy approach of the cell-sequencing strategy with a small-frequencies-�rst heuristic.However, as it comes to search, in conventional Prolog-based constraint languages (e. g. clp(FD),CHIP, Eclipse) one is limited to the built-in depth-�rst search strategies, and implementing otherstrategies is only possible by by-passing chronological backtracking. In conventional approachesin imperative, logic or functional languages one will merge the search strategy with the solvingalgorithm, and thus not have a clean separation.The concurrent constraint language Oz takes a di�erent approach in which search is orthogonalto the problem formulation [14]: One can generate choice points in a functional or constraintprogram, and in a separate module a search strategy takes responsibility to execute them in any3Note that with the icc preprocessing, completeness of cell-sequencing for the original problem is no longerguaranteed.4Other heuristics, e. g. the ones described in [7] have to be evaluated empirically at a later stage.



programmable order. Alternatively, one of several prede�ned strategies can be chosen. Since Ozsupports programmable search [14], strategies like lds can be coded in Oz almost identically tothe original abstract formulation and subsequently be used o�-the-shelf. Di�erent strategies caneasily be compared experimentally, allowing for fast prototyping.5 Experimental ResultsIn this section we give preliminary experimental results for a sample of randomly generatedfrequency allocation problems. All instances are cell oriented, i. e. several channels are to beallocated within each cell. The appendix contains FAP2 and FAP5. At present, we are notable to compare our results with other approaches than a naive constraint propagation approach(described below) since we are not aware of other approaches that aim at minimizing bothfrequency order and span.problem M icc & sequencing lb lb span lds naiveinstance (order,span) order (untransf.) probes (order,span)FAP1 148 (95,145) 95 145 (2%) 13 (95,165)FAP2 165 (74,156) 69 146 (7%) 11 (97,192)FAP3 150 (86,137) 83 131 (5%) 12 (97,164)FAP4 161 (91,159) 90 146 (9%) 37 (95,178)FAP5 222 (122,274) 104 273 (0%) 2 (137,327)FAP6 222 (222,222) 222 222 (0%) 1Table 1: Experimental results for cellular frequency assignment on randomly generated problems,each 25 cells. Column 2 reports the number of channels (M), column 3 gives the results. Column4 reports lower bounds on the order, and column 5 gives span lower bounds and percent deviationfrom them (note that these bounds are computed for the untransformed problems). Column 6reports the number of lds(0)+lds(1) probes for the reported span, the last column gives the naiveresults. All execution CPU times in Oz-2.0 were around 40s for 40 lds-probes on a SPARCstation20 (502,160MB) except FAP5 and FAP6 with 110s.Problem Descriptions: Problem FAP1 originates from [10] and requires around 8000 distanceconstraints. All other problems were generated randomly. FAP1 and FAP2 are 70% and 80% andFAP3{5 are 85% constrained (percent of cell pairs interfering). FAP4 and 5 have an additionalclique built in that helps to increase the order lower bound. Instances 2 through 5 are available onthe Web at http://ps.uni-sb.de/~walser/fap/fap.html. Please note that without prior ICCtransformation, cell sequencing was able to �nd solutions 0-1% within the span lower bounds.Since there exists a tradeo� between minimal order and minimal span, in general one cannotexpect to achieve optimal results with respect to both criteria simultaneously.The naive strategy posts all distance constraints and applies a simple labelling strategy withbranch-and-bound search, the best solution in 10k nodes is reported. By chance, the naivepropagation yields the solution of FAP1 without any search.Lower Bounds: We computed the lower bound on the order following an idea reported in theCalma Euclid project [18]. A maximum clique is identi�ed in the cell interference graph andone frequency is allocated for each channel within the cells in the clique. The lower bound onthe span is essentially the �rst-level bound maxi(ni � 1) dii + 1 with additional consideration ifseveral connected cells had the same highest frequency demand.



6 Conclusion and Future WorkWe have studied a cell oriented variant of the feasible frequency assignment problem. Our aimin this paper has been to present a two-stage approach that approximately optimizes the twocriteria frequency order and frequency span. We have shown a way how cell structure can beexploited, provided it is present in the encoding. By operating on cells rather than channels,the complexity can be reduced and symmetries and many non-optimal solutions can be avoided.For an implementation of the algorithms in a concurrent constraint language like Oz, we haveidenti�ed certain key programming abstractions. The intent was to show that these abstractions,if supported by a programming language, can lead to a clearer factorization of the problem (intoconstraints, propagation and search) and thus lead to shorter development times.In this paper we focussed on describing the assignment algorithms, so obviously much remainsto be done. First of all, one needs to evaluate the presented techniques on realistic problems,and competing algorithms have to be identi�ed for this problem class. Second, we would liketo examine theoretical properties of icc with the hope to identify a class of FAPs for whichthe transformation produces optimal order. Also, we would like to evaluate other heuristicspreviously reported in the literature [19, 7]. Additionally, one could model the problem in apure constraint approach by posting equality constraints in the �rst stage and constructingappropriate labelling strategies in the second. The hope would be that this formulation couldhandle additional constraints like pre-assigned frequencies. Last, extending cell sequencing tohandle soft constraints would be interesting. As cellular Radio suppliers are typically purchasinga band of frequencies [6] there is a cost introduced by the frequency span and a tradeo� existsbetween the overall interference (small span) and the cost (wide span). We expect that the cellsequencing approach extended with soft constraints could be used to vary this tradeo�.7 AcknowledgementsThis work was supported by a doctoral fellowship of the Deutsche Forschungsgemeinschaft (DFG)to the author (Graduiertenkolleg Kognitionswissenschaft). The author is grateful to J�org W�urtzand Mats Carlsson for helpful discussions and comments on earlier versions of this paper. Manythanks also to Martin M�uller, Joachim Niehren and Christian Schulte for helpful discussions ofthis work.References[1] Karen Aardal, C.A.J Hurkens, J.K. Lenstra, and S.R. Tiourine. An overview of algorithmicapproaches to frequency assignment problems, calma project. Technical report, Departmentof Mathematics and Computing Science, Eindhoven University of Technology, Eindhoven,The Netherlands, 1995.[2] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. ManagementScience, 35(2):164{176, 1989.[3] Mats Carlsson and Mats Grindal. Automatic frequency assignment for cellular telephonesusing constraint satisfaction techniques. In Proceedings of the Tenth International Confer-ence on Logic Programming, 1993.[4] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. Theconstraint logic programming language CHIP. In Proceedings of the International Conferenceon Fifth Generation Computer Systems, pages 693{702, Tokyo, Japan, 1988.
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APPENDIX { Problems FAP2 and FAP5A FAP2%%%% FAP2 -- completely random%% Parameters: <cells> <maxdemand> <mindemand> <maxinterference>%% <addclique> <constrainedness>%% {RandomFap 25 10 3 2 0.8 Distances Demand}%%NbCells = 25Demand = demand(9 10 7 8 5 6 3 4 9 10 7 8 5 6 3 4 9 10 7 8 5 6 3 4 9)Distances = o(o(16 1 1 2 1 1 1 2 0 1 1 1 1 2 1 2 0 2 0 1 2 1 2 2 2)o(1 16 0 2 0 1 1 2 1 1 1 0 1 2 1 2 2 0 2 1 2 0 2 2 2)o(1 0 16 0 2 1 0 0 1 1 0 2 1 2 1 0 2 1 2 1 2 2 2 2 2)o(2 2 0 16 0 1 2 0 1 1 2 2 0 2 1 1 2 0 0 0 2 2 2 0 0)o(1 0 2 0 16 1 2 2 1 1 0 2 2 2 1 1 2 2 0 2 2 2 2 1 1)o(1 1 1 1 1 16 2 2 1 1 1 2 2 2 1 1 2 2 0 2 2 0 2 1 1)o(1 1 0 2 2 2 16 2 1 0 1 2 2 2 1 1 2 2 1 2 2 1 2 1 1)o(2 2 0 0 2 2 2 16 1 0 1 2 2 2 1 0 2 0 1 2 2 1 2 1 0)o(0 1 1 1 1 1 1 1 16 1 1 2 2 2 1 2 2 1 1 2 2 1 0 1 2)o(1 1 1 1 1 1 0 0 1 16 1 0 2 0 1 2 2 1 0 2 2 1 0 1 2)o(1 1 0 2 0 1 1 1 1 1 16 1 2 1 1 2 2 1 0 0 2 1 2 1 0)o(1 0 2 2 2 2 2 2 2 0 1 16 2 1 1 2 2 1 1 1 0 0 0 1 1)o(1 1 1 0 2 2 2 2 2 2 2 2 16 1 1 2 0 1 1 1 1 2 1 1 1)o(2 2 2 2 2 2 2 2 2 0 1 1 1 16 0 0 1 1 1 1 1 0 1 1 1)o(1 1 1 1 1 1 1 1 1 1 1 1 1 0 16 1 1 1 1 1 1 1 1 1 1)o(2 2 0 1 1 1 1 0 2 2 2 2 2 0 1 16 0 1 1 0 1 1 1 1 1)o(0 2 2 2 2 2 2 2 2 2 2 2 0 1 1 0 16 1 1 0 1 0 1 1 0)o(2 0 1 0 2 2 2 0 1 1 1 1 1 1 1 1 1 16 1 0 1 2 0 1 2)o(0 2 2 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 16 2 1 2 2 0 2)o(1 1 1 0 2 2 2 2 2 2 0 1 1 1 1 0 0 0 2 16 1 2 2 0 2)o(2 2 2 2 2 2 2 2 2 2 2 0 1 1 1 1 1 1 1 1 16 2 2 1 0)o(1 0 2 2 2 0 1 1 1 1 1 0 2 0 1 1 0 2 2 2 2 16 2 0 0)o(2 2 2 2 2 2 2 2 0 0 2 0 1 1 1 1 1 0 2 2 2 2 16 2 2)o(2 2 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 2 16 2)o(2 2 2 0 1 1 1 0 2 2 0 1 1 1 1 1 0 2 2 2 0 0 2 2 16))B FAP5%%%% FAP5 -- Random with additional 7-clique%% {RandomFap 25 19 3 2 7 0.8 Distances Demand}%%NbCells = 25Demand = demand(14 14 3 3 13 12 7 3 5 3 7 16 11 8 4 10 18 6 7 5 13 9 16 9 6)Distances = o(o(16 2 1 1 2 2 1 0 2 1 2 0 1 1 2 1 2 2 2 1 2 1 2 2 1)o(2 16 2 2 1 1 2 1 2 0 2 0 1 1 2 0 2 2 2 1 2 0 2 2 1)o(1 2 16 1 2 2 1 1 2 2 0 1 1 1 2 0 2 2 2 1 2 2 2 2 1)o(1 2 1 16 1 1 2 1 2 0 1 1 0 1 2 1 2 0 2 1 2 2 2 2 1)o(2 1 2 1 16 2 1 1 2 1 1 1 2 1 0 1 2 1 2 1 2 0 2 2 1)o(2 1 2 1 2 16 2 1 2 1 1 1 0 1 1 1 0 0 2 1 0 1 2 0 1)o(1 2 1 2 1 2 16 0 0 1 1 1 0 1 1 1 1 2 2 1 0 1 0 1 1)o(0 1 1 1 1 1 0 16 1 1 0 1 2 1 0 1 1 0 2 0 0 1 1 1 1)o(2 2 2 2 2 2 0 1 16 0 0 1 2 1 2 1 1 1 2 2 1 1 0 1 0)o(1 0 2 0 1 1 1 1 0 16 1 1 2 1 2 1 0 1 2 2 1 1 2 1 0)o(2 2 0 1 1 1 1 0 0 1 16 1 2 1 2 1 2 1 2 2 1 1 2 1 0)o(0 0 1 1 1 1 1 1 1 1 1 16 0 1 0 1 2 1 2 2 1 1 2 1 2)o(1 1 1 0 2 0 0 2 2 2 2 0 16 0 1 0 0 0 2 2 1 1 2 0 2)o(1 1 1 1 1 1 1 1 1 1 1 1 0 16 1 2 1 2 2 2 1 1 2 2 2)o(2 2 2 2 0 1 1 0 2 2 2 0 1 1 16 2 1 0 2 2 1 0 2 2 2)o(1 0 0 1 1 1 1 1 1 1 1 1 0 2 2 16 0 0 2 2 1 2 2 0 2)o(2 2 2 2 2 0 1 1 1 0 2 2 0 1 1 0 16 2 2 2 1 2 0 1 2)o(2 2 2 0 1 0 2 0 1 1 1 1 0 2 0 0 2 16 0 2 1 2 1 1 0)o(2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 16 2 1 2 0 0 1)o(1 1 1 1 1 1 1 0 2 2 2 2 2 2 2 2 2 2 2 16 1 2 2 2 1)o(2 2 2 2 2 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 16 2 2 0 1)o(1 0 2 2 0 1 1 1 1 1 1 1 1 1 0 2 2 2 2 2 2 16 2 1 1)o(2 2 2 2 2 2 0 1 0 2 2 2 2 2 2 2 0 1 0 2 2 2 16 1 1)o(2 2 2 2 2 0 1 1 1 1 1 1 0 2 2 0 1 1 0 2 0 1 1 16 1)o(1 1 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2 0 1 1 1 1 1 1 16))


