
Figaro: Yet Another Constraint Programming LibraryMartin Henz, Tobias M�uller, Ng Ka BoonAbstratExisting libraries and languages for �nite domain onstraint programming usu-ally have depth-�rst searh (with branh and bound) built-in as the only searhalgorithm. Exeptions are the languages laire and Oz, whih support the pro-gramming of di�erent searh algorithms through speial purpose programming lan-guage onstruts. The goal of this work is to make abstrations for programmingsearh algorithms available in a language-independent setting.Figaro is an experimentation platform being designed to study non-standardsearh algorithms, di�erent memory poliies for searh (trailing vs opying), on-sisteny algorithms, failure handling and support for modeling. This paper fouseson the use and implementation of suh abstrations for investigating programmablesearh algorithms and memory poliies in a C++ onstraint programming library.1 IntrodutionLanguages and libraries for �nite-domain onstraint programming (CP(FD)) allow tosolve �nite-domain problems through exhaustive onstraint propagation, interleaved withnon-deterministi strengthening of a onstraint store, leading to the exploration of asearh tree.Languages for CP(FD) allow a semanti embedding of CP(FD)-spei� features.Prolog-based languages suh as CHIP [DVS+88℄ semantially embed depth-�rst searhby inheriting Prolog's resolution, and the languages laire [CL96℄ and Oz [Smo95℄ se-mantially embed more generi onstruts that allow to program searh algorithms otherthan depth-�rst searh. Libraries suh as PECOS [Pug92℄ and Ilog Solver [ILO97℄ areon�ned to general-purpose programming languages that do not provide suh support.We show in this work how to support programmable searh algorithms in a C++library by representing onstraint stores as data objets. We all the C++ library Figaro,sine its implementation reuses parts of the Mozart system [Moz99℄. The distinguishingfeature of Figaro from other libraries and systems is the relative addressing of propagatorsand variables in stores, whih allows a lean separation of tree searh algorithms fromsearh heuristis and supports both opying-based and trailing based searh.We present the design of Figaro by introduing stores, variables and propagators inSetion 2, the notion of searh trees in Setion 3, and searh algorithms in Setion 4.In I. de Castro Dutra, V. Santos Costa, G. Gupta, E. Pontelli, M. Carro, and P. Kasuk, editors,Workshop on Parallelism and Implementation Tehnology for Constraint Logi Programming, pages86{96, New Mexio State University, Las Crues, New Mexio, Deember 1999.1



Setion 5 shows how relative addressing allows to use opying-based searh in additionto trailing-based searh. Finally, Setion 6 desribes related work and further diretions.2 Variables and PropagatorsThe onstraint store in CP(FD) ontains the urrent domain of eah variable of theonstraint problem, i.e. the set of possible values it an take. For example, for theusual model of the n-queens problem, we introdue variables xi; 0 � i < n whose initialdomains f0; : : : ; n � 1g represent all possible rows in whih the queens of olumn i anbe positioned. In [HS99℄, searh algorithms use a data struture (alled \rooms" in thatpaper) representing a store. Suh a store data struture host variables and propagatorsand support searh. In an objet-oriented setting, is natural to introdue a lass store.The lass store is related to the built-in data type of spaes in Oz [Sh97℄ and thelass IlManager of Ilog Solver [ILO97℄ (for a omparison, see Setion 6). Variables areintrodued by requesting a new variable with initial domain from lo to hi from a store.lass store {private: ...publi:var newvar(int lo,int hi);var getlo(var v);var gethi(var v);...}; For the purpose of this disussion, let us assume that var is an abstrat data typewhose values represent variables. In Setion 5, we further disuss the var type.Using the store abstration, we an introdue variables for the n-queens problem asfollows. Here we employ vetors as provided by the Standard Template Library [SL95℄for C++.int main(int arg,har * argv[℄) {int n = atoi(argv[1℄); // number of queensstore * s = new store(); // reate new storevetor<var> vars(n); // delare variable vetorfor (int i=0;i<n;i++) // reate n variables;vars[i℄=s->newvar(0,n-1); // one for eah row...} The no-attak onstraints an be expressed using three onstraints that onstrainall variables in a given vetor to be pairwise distint modulo a given o�set. Thusgiven a vetor vars of n variables and a vetor o�set of n integers, the onstraintdistintO�set(vars; o�set) expresses that for every i and j, where 0 � i; j � n; i 6= j,the onstraint varsi + o�seti 6= varsj + o�setj holds. The implementation of the propa-gator distint_offset is taken from the C++ onstraint programming interfae of the2



Program 1 Constraints for the N-Queens Problemint main(int arg,har * argv[℄) {int n = atoi(argv[1℄); // number of queensstore * s = new store(); // reate new storevetor<var> vars(n); // delare variable vetorfor (int i=0;i<n;i++) // reate n variables;vars[i℄=s->newvar(0,n-1); // one for eah rowvetor<int> offset(n); // vetor for offsetfor (int i=0;i<n;i++) offset[i℄=0; // horizontal no-attakdistint_offset(s,vars,offset);for (int i=0;i<n;i++) offset[i℄=i; // diagonal-up no-attakdistint_offset(s,vars,offset);for (int i=0;i<n;i++) offset[i℄=n-i; // diagonal-down no-attakdistint_offset(s,vars,offset);...}Mozart system [MW97℄. Reusing Mozart's propagators signi�antly redues the imple-mentation e�ort for Figaro.In Figaro, onstraints are represented by lasses whih extend an abstrat lasspropagator. Propagators are reated with a given store, variables and auxiliary val-ues.lass distint_offset : publi propagator {publi:distint_offset(store * s, vetor<var>, vetor<int>);...}Using the lass distint_offset, the 5-queens problem an be expressed as in Pro-gram 1.The reation of propagators will immediately ompute the �xpoint with respet to allpropagators in the store, aording to the propagators' onsisteny algorithms. In thisproess, propagators may tell new domains for variables.The member funtion tell of stores allows to narrow the domain d1 of a given variablesuh that it ontains only values from the domain d2 passed to tell. If the intersetionof d1 and d2 is empty, a failure ours.store::tell(var v, int lo, int hi);If the intersetion of d1 and d2 is empty, a failure ours. Suh failures are ruial foronstraint programming, sine they allow to prune the searh tree. As a generi way toindiate failure to searh algorithms, failing tell operations raise the C++ exeptionFailure() (see disussion on C++ exeptions in Setion 6).
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3 Searh TreesUsually propagation alone does not suÆe to solve onstraint problems. Non-determini-sti searh is neessary, whih explores a searh tree in a top-down manner. From a nodeto a hild node, onstraints are added. At eah node, the �xpoint with respet to allpropagators is reahed before the resulting onstraint store is used to devise a suitableonstraint for a hild node. In that manner, searh trees are reated dynamially, ateah point exploiting the urrent information in the onstraint store. Searh trees arerepresented in Figaro using instanes of an abstrat lass node.lass node {publi:virtual node * hild(store *, int)=0;}; The member funtion hild of node is given an integer i and returns its ith hild.Often, searh trees are onstruted by �xing one variable v of a given set of variables toa value x in the left hild (i = 0) and exluding x from the domain of v in the right hild(i = 1). Suh a tree is alled enumeration tree. The lass in Program 2 represents naiveenumeration, where the variables of a given vetor are enumerated from left to right,starting with the smallest values in their domains.By reursively applying the hild funtion to it results, we are able to explore anenumeration tree. The tree subtree is returned when all variables are enumerated. Itan be used to plae another searh tree at the leaves of the enumeration tree, or toollet solutions. For example, the lass in Program 3 allows to display a solution to then-queens problem.Program 2 Naive Variable Enumerationlass naive : publi node {private:int idx; vetor<var> vars; node * subtree;publi:naive(vetor<var> vs,int i,node * t) : vars(vs), idx(i), subtree(t) {}node * hild(store * s, int i) {if (i==0) {s->tell(vars[idx℄,s->getlo(vars[idx℄),s->getlo(vars[idx℄));return(idx+1==vars.size() ? subtree : new naive(vars,idx+1,subtree));}else {s->tell(vars[idx℄,s->getlo(vars[idx℄)+1,s->gethi(vars[idx℄));return new naive(vars,idx,subtree);}}}; 4



Program 3 A Node Class for Printing Solutionslass queens_printer : publi node {publi:queens_printer(vetor<var> vs) {for (int j = 0; i < vs.size(); j++)out<<"ol: "<<vs[i℄<<"\nrow: "<<s->getlo(vs[i℄)<<"\n"; }node * hild(store * s, int i) {return NULL;}} Note that suh queens_printer nodes are leaves, beause their hild member fun-tion returns the NULL pointer. Thus, queens_printer nodes an be used as subtree ofenumeration trees.4 Programming Inferene AlgorithmsDuring the exploration of a searh tree, failure may our as a result of applying thehild funtion of a node. That means one of the deisions leading to the orrespondingnode was the wrong one. Unfortunately, after that deision was taken the store hashanged through reating variables and propagators and telling domains. In order toundo these hanges and trying an alternative, we introdue the following operations onstores.mark store::mark();void store::baktrak(mark m);The funtion store::mark returns a value that represents the urrent state of the store,and the funtion baktrak undoes all hanges done to the store sine the given markwas obtained. A searh algorithm using store::mark and store::baktrak is givenin Program 4.Program 4 First-solution Depth-�rst Searhnode * solve_one(store * s,node * t) {if (t == NULL) return t;int m = s->mark();try {return solve_one(s,t->hild(s,0));}ath (Failure) {s->baktrak(m);return solve_one(s,t->hild(s,1));}} Using this searh algorithm, we are �nally able to solve the n-queens problem asshown in Program 5. 5



Program 5 Solving N-Queens with Figaroint main(int arg,har * argv[℄) {int n = atoi(argv[1℄);store * s = new store();vetor<var> vars(n);...try {solve_one(s,new naive(vars,0,new queens_printer(vars)));} ath (Failure) {printf("no solution\n");};} Note that in the exposition above, we used several simpli�ations to larify the de-sign underlying Figaro. Both enumeration and searh an be improved signi�antly byintroduing additional tests and member funtions. For instane, the reation of nodeobjets an be avoided, when hoosing the left hild node of an enumeration node byinrementing the idx member of the parent.5 Copying-Based Searh and Relative AddressingNote that in the previous setion the same store is passed between solve_one and hild.Searh is done entirely by trailing and baktraking, as in most onstraint programmingsystems. Shulte [Sh99℄ shows that opying-based searh as employed by the Mozartsystem, ombined with reomputation of spaes, an ompete with the performane oftrailing-based systems. To study the performane of memory poliies, it appears to beattrative to provide both opying and trailing in the same system. In order to supportopying-based searh, we use a suitable C++ opy onstrutor.lass store {...publi:store(onst &store);}For ombining opying and trailing-based searh, we propose that in the opy, all marksare removed and that no information is trailed in a store before the �rst mark is obtained.Sine we pass the store, on whih a node operates, expliitly to the store, it is straight-forward to use opying-based searh in our setup. We illustrate this using example oflimited disrepany searh (LDS), a searh algorithm proposed by Harvey and Gins-berg [HG95℄. LDS addresses the question how to avoid getting stuk in a small leftmostsubtree in the presene of a strong heuristi for building the searh tree. Let us assumethat a sript uses a heuristi whih generates binary nodes whose left hild are onsid-ered muh more likely to lead to a solutions than the right hild. Then the number ofdisrepanies of a solution is the number of right hildren in the path from the root tothe solution. LDS presribes to searh for solutions with a small number of disrepanies�rst. 6



Program 6 A Copying-based Searh Algorithm For Limited Disrepany Searhnode * probe(store * s,node * t,int d) {if (t==NULL) return t;if (d > 0) {store * s1 = new store(s);try {return probe(s,t->hild(s,1),d-1);}ath (Failure) {return probe(s1,t->hild(s,0),d);}} else return probe(s,t->hild(s,0),0);}void lds_one(store * s,node * t,int d) {try {return probe(s,t,d);}ath (Failure) {lds_one(s,t,d+1);}} The algorithm lds_one given in Program 6 searhes for a solution aording to LDS|assuming that a solution exists|with inreasing number of disrepanies, starting witha given d, typially 0. The auxiliary funtion probe returns a solution within a givennumber of disrepanies d, if suh a solution exists. Note that one the number of alloweddisrepanies has reahed 0, there is no need to make opies any longer. Instead, probedesends straight down towards a solution.In opying-based searh, tree desriptions will use var values that stem from allsof newvar on a store and apply operations suh as tell to opies of the store. Thusvariables must be invariant with respet to opying. We ahieve this invariane by usingas var values the relative address of the variable in the store data struture. In stores, adynami array keeps trak of variables, variables are represented by their indies in thisarray.#define var intThe same tehnique, we use for propagators; trail entries and propagator lists for vari-ables use relative addresses. Note that relative addressing makes opying partiularlyeasy, whereas absolute addressing as employed by the Mozart system and Ilog Solverneessitates reursive traversal of data strutures in stores.6 Diretions and PerspetivesThe design presented here has been inspired by a proposal for an ML library [HS99℄, inwhih data strutures for representing onstraint stores were alled rooms. The designpresented here has been used to develop a modular arhiteture for programming searhalgorithms [CHN00℄. In this arhiteture, aspets of searh algorithms suh as the mem-ory poliy, optimization, interativity and searh tree visualization an be programmedindependently. The goal to allow the programming of di�erent searh algorithms in a li-brary for �nite domain onstraint programming has been apparently reognized reentlyin the Ilog Solver library as briey mentioned in [LP99℄.7



Figaro is urrently being implemented by reusing parts of the Mozart system. In par-tiular Mozart's sophistiated representation of domains and its propagation algorithmssuh as serialization and ummulative onstraints for sheduling appliations are beingreused. We hope by this, we an redue the development time of Figaro.Representing Constraint StoresSearh in Oz [Smo95℄ is programmable through the abstration of a spae [Sh97℄. Thestore abstration was inspired by spaes and shares with them the ability to manipulateonstraint stores together with their variables and propagators as data. However, spaesare tightly integrated into the language Oz suh that the spae with respet to whihvariables and propagators are introdued is kept impliit. In addition to variables andpropagators, spaes host threads. The programming of searh engines in Oz amountsto ommuniating and synhronizing with the threads of spaes. Due to the onurrentsetup, searh in Oz is based on loning of spaes, whereas our approah supports bothbaktraking and opy-based searh.In Ilog Solver [ILO97℄, onstraint stores are represented by instanes of the C++lass IlManager. The inremental building of the searh tree is supported through datastrutures, alled goals, whih are installed in manager objets. The separation of storesfrom node objets for searh in Figaro allows to leanly separate distribution from treesearh algorithms and supports opying-based searh well (see next setion).Memory PoliyRelative addressing of variables and propagators in stores in Figaro, whih is not presentin Ilog Solver, is the the key feature that allows to use opying-based searh in additionto trailing.Both opying-based and trailing-based searh an be ombined with reomputa-tion [Sh99℄. We hope that the exibility to use both memory poliies leads to in-teresting, possibly adaptive, and more eÆient ombinations of the two memory poliiesand reomputation.Another memory management issue is the reation of nodes, whih are in the pre-sented simpli�ed design not expliitly dealloated. We are urrently experimenting withsearh algorithms that expliitly dealloate nodes as well as with automati memorymanagement systems for C++.Consisteny AlgorithmsDi�erent onstraint programming languages and libraries use di�erent onsisteny algo-rithms, usually variants of AC3 and AC5. In pratie, the trade-o� between the twoseems to be to use more elaborate data strutures and redue pure omputation time(AC5) versus simpler data struture and redundant omputations (AC3). This trade-o�beomes interesting in the light of a widening gap between omputation speed and mem-ory aess speed in modern proessors. We hope to arry out pratial experiments ononsisteny algorithms with Figaro. 8



Representation of FailureAs in the ML design [HS99℄, we treated failure by exeptions in this paper. Anotherpossibility would be to let stores assume a failure state, when an exeption is enountered.This design issue is not settled yet and depends on pratial onsiderations suh as theeÆieny of exeption handling in C++ ompilers. Benhmarks will shed some light onthe eÆieny of the two mehanisms for failure.Modeling and Interfaing through Sripting LanguagesFigaro is designed as a C++ library for onstraint programming. Typially, the librarywill be linked to appliations that make use of onstraint programming for problem solv-ing. However, in some appliations the need for a more formal and exible formulation ofonstraint problems arises. This need is addressed in symboli programming languagesfor onstraint programming (Prolog-based, Oz, laire) and in modeling languages foronstraint programming suh as OPL [Hen99℄. To address this need, we provide a generiinterfae to sripting languages suh as Tl and Perl. In addition to modeling, the useof sripting languages aids the development of and experimentation with the library andimproves interoperability.AknowledgementsGert Smolka ollaborated on the development of the room onept and orrespondingabstrations in an ML setting, whih provided a blueprint for stores in Figaro. ChristianShulte helped us see the importane of indiret addressing and pointed out referenes.The projet bene�ted from a travel grant from the National University of Singapore(projet ReAllo) and the hosting of the third author by the Programming Systems Lab,Saarbr�uken.Referenes[CHN00℄ Tee Yong Chew, Martin Henz, and Ka Boon Ng. A toolkit for onstraint-based inferene engines. In Pratial Aspets of Delarative Languages, Se-ond International Workshop, PADL'00, Leture Notes in Computer Siene.Springer-Verlag, 2000. to appear.[CL96℄ Yves Caseau and Fran�ois Laburthe. CLAIRE: Combining objets and rulesfor problem solving. In Proeedings of the JICSLP'96 workshop on multi-paradigm logi programming. TU Berlin, 1996.[DVS+88℄ M. Dinbas, P. Van Hentenryk, H. Simonis, A. Aggoun, and T. Graf. Theonstraint logi programming language CHIP. In Proeedings InternationalConferene on Fifth Generation Computer Systems, pages 693{702, Tokyo,Japan, Deember 1988. Springer-Verlag.[Hen99℄ Pasal Van Hentenryk. The OPL Optimization Programming Language. TheMIT Press, Cambridge, MA, 1999.9
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