
Figaro: Yet Another Constraint Programming LibraryMartin Henz, Tobias M�uller, Ng Ka BoonAbstra
tExisting libraries and languages for �nite domain 
onstraint programming usu-ally have depth-�rst sear
h (with bran
h and bound) built-in as the only sear
halgorithm. Ex
eptions are the languages 
laire and Oz, whi
h support the pro-gramming of di�erent sear
h algorithms through spe
ial purpose programming lan-guage 
onstru
ts. The goal of this work is to make abstra
tions for programmingsear
h algorithms available in a language-independent setting.Figaro is an experimentation platform being designed to study non-standardsear
h algorithms, di�erent memory poli
ies for sear
h (trailing vs 
opying), 
on-sisten
y algorithms, failure handling and support for modeling. This paper fo
useson the use and implementation of su
h abstra
tions for investigating programmablesear
h algorithms and memory poli
ies in a C++ 
onstraint programming library.1 Introdu
tionLanguages and libraries for �nite-domain 
onstraint programming (CP(FD)) allow tosolve �nite-domain problems through exhaustive 
onstraint propagation, interleaved withnon-deterministi
 strengthening of a 
onstraint store, leading to the exploration of asear
h tree.Languages for CP(FD) allow a semanti
 embedding of CP(FD)-spe
i�
 features.Prolog-based languages su
h as CHIP [DVS+88℄ semanti
ally embed depth-�rst sear
hby inheriting Prolog's resolution, and the languages 
laire [CL96℄ and Oz [Smo95℄ se-manti
ally embed more generi
 
onstru
ts that allow to program sear
h algorithms otherthan depth-�rst sear
h. Libraries su
h as PECOS [Pug92℄ and Ilog Solver [ILO97℄ are
on�ned to general-purpose programming languages that do not provide su
h support.We show in this work how to support programmable sear
h algorithms in a C++library by representing 
onstraint stores as data obje
ts. We 
all the C++ library Figaro,sin
e its implementation reuses parts of the Mozart system [Moz99℄. The distinguishingfeature of Figaro from other libraries and systems is the relative addressing of propagatorsand variables in stores, whi
h allows a 
lean separation of tree sear
h algorithms fromsear
h heuristi
s and supports both 
opying-based and trailing based sear
h.We present the design of Figaro by introdu
ing stores, variables and propagators inSe
tion 2, the notion of sear
h trees in Se
tion 3, and sear
h algorithms in Se
tion 4.In I. de Castro Dutra, V. Santos Costa, G. Gupta, E. Pontelli, M. Carro, and P. Ka
suk, editors,Workshop on Parallelism and Implementation Te
hnology for Constraint Logi
 Programming, pages86{96, New Mexi
o State University, Las Cru
es, New Mexi
o, De
ember 1999.1



Se
tion 5 shows how relative addressing allows to use 
opying-based sear
h in additionto trailing-based sear
h. Finally, Se
tion 6 des
ribes related work and further dire
tions.2 Variables and PropagatorsThe 
onstraint store in CP(FD) 
ontains the 
urrent domain of ea
h variable of the
onstraint problem, i.e. the set of possible values it 
an take. For example, for theusual model of the n-queens problem, we introdu
e variables xi; 0 � i < n whose initialdomains f0; : : : ; n � 1g represent all possible rows in whi
h the queens of 
olumn i 
anbe positioned. In [HS99℄, sear
h algorithms use a data stru
ture (
alled \rooms" in thatpaper) representing a store. Su
h a store data stru
ture host variables and propagatorsand support sear
h. In an obje
t-oriented setting, is natural to introdu
e a 
lass store.The 
lass store is related to the built-in data type of spa
es in Oz [S
h97℄ and the
lass Il
Manager of Ilog Solver [ILO97℄ (for a 
omparison, see Se
tion 6). Variables areintrodu
ed by requesting a new variable with initial domain from lo to hi from a store.
lass store {private: ...publi
:var newvar(int lo,int hi);var getlo(var v);var gethi(var v);...}; For the purpose of this dis
ussion, let us assume that var is an abstra
t data typewhose values represent variables. In Se
tion 5, we further dis
uss the var type.Using the store abstra
tion, we 
an introdu
e variables for the n-queens problem asfollows. Here we employ ve
tors as provided by the Standard Template Library [SL95℄for C++.int main(int arg
,
har * argv[℄) {int n = atoi(argv[1℄); // number of queensstore * s = new store(); // 
reate new storeve
tor<var> vars(n); // de
lare variable ve
torfor (int i=0;i<n;i++) // 
reate n variables;vars[i℄=s->newvar(0,n-1); // one for ea
h row...} The no-atta
k 
onstraints 
an be expressed using three 
onstraints that 
onstrainall variables in a given ve
tor to be pairwise distin
t modulo a given o�set. Thusgiven a ve
tor vars of n variables and a ve
tor o�set of n integers, the 
onstraintdistin
tO�set(vars; o�set) expresses that for every i and j, where 0 � i; j � n; i 6= j,the 
onstraint varsi + o�seti 6= varsj + o�setj holds. The implementation of the propa-gator distin
t_offset is taken from the C++ 
onstraint programming interfa
e of the2



Program 1 Constraints for the N-Queens Problemint main(int arg
,
har * argv[℄) {int n = atoi(argv[1℄); // number of queensstore * s = new store(); // 
reate new storeve
tor<var> vars(n); // de
lare variable ve
torfor (int i=0;i<n;i++) // 
reate n variables;vars[i℄=s->newvar(0,n-1); // one for ea
h rowve
tor<int> offset(n); // ve
tor for offsetfor (int i=0;i<n;i++) offset[i℄=0; // horizontal no-atta
kdistin
t_offset(s,vars,offset);for (int i=0;i<n;i++) offset[i℄=i; // diagonal-up no-atta
kdistin
t_offset(s,vars,offset);for (int i=0;i<n;i++) offset[i℄=n-i; // diagonal-down no-atta
kdistin
t_offset(s,vars,offset);...}Mozart system [MW97℄. Reusing Mozart's propagators signi�
antly redu
es the imple-mentation e�ort for Figaro.In Figaro, 
onstraints are represented by 
lasses whi
h extend an abstra
t 
lasspropagator. Propagators are 
reated with a given store, variables and auxiliary val-ues.
lass distin
t_offset : publi
 propagator {publi
:distin
t_offset(store * s, ve
tor<var>, ve
tor<int>);...}Using the 
lass distin
t_offset, the 5-queens problem 
an be expressed as in Pro-gram 1.The 
reation of propagators will immediately 
ompute the �xpoint with respe
t to allpropagators in the store, a

ording to the propagators' 
onsisten
y algorithms. In thispro
ess, propagators may tell new domains for variables.The member fun
tion tell of stores allows to narrow the domain d1 of a given variablesu
h that it 
ontains only values from the domain d2 passed to tell. If the interse
tionof d1 and d2 is empty, a failure o

urs.store::tell(var v, int lo, int hi);If the interse
tion of d1 and d2 is empty, a failure o

urs. Su
h failures are 
ru
ial for
onstraint programming, sin
e they allow to prune the sear
h tree. As a generi
 way toindi
ate failure to sear
h algorithms, failing tell operations raise the C++ ex
eptionFailure() (see dis
ussion on C++ ex
eptions in Se
tion 6).
3



3 Sear
h TreesUsually propagation alone does not suÆ
e to solve 
onstraint problems. Non-determini-sti
 sear
h is ne
essary, whi
h explores a sear
h tree in a top-down manner. From a nodeto a 
hild node, 
onstraints are added. At ea
h node, the �xpoint with respe
t to allpropagators is rea
hed before the resulting 
onstraint store is used to devise a suitable
onstraint for a 
hild node. In that manner, sear
h trees are 
reated dynami
ally, atea
h point exploiting the 
urrent information in the 
onstraint store. Sear
h trees arerepresented in Figaro using instan
es of an abstra
t 
lass node.
lass node {publi
:virtual node * 
hild(store *, int)=0;}; The member fun
tion 
hild of node is given an integer i and returns its ith 
hild.Often, sear
h trees are 
onstru
ted by �xing one variable v of a given set of variables toa value x in the left 
hild (i = 0) and ex
luding x from the domain of v in the right 
hild(i = 1). Su
h a tree is 
alled enumeration tree. The 
lass in Program 2 represents naiveenumeration, where the variables of a given ve
tor are enumerated from left to right,starting with the smallest values in their domains.By re
ursively applying the 
hild fun
tion to it results, we are able to explore anenumeration tree. The tree subtree is returned when all variables are enumerated. It
an be used to pla
e another sear
h tree at the leaves of the enumeration tree, or to
olle
t solutions. For example, the 
lass in Program 3 allows to display a solution to then-queens problem.Program 2 Naive Variable Enumeration
lass naive : publi
 node {private:int idx; ve
tor<var> vars; node * subtree;publi
:naive(ve
tor<var> vs,int i,node * t) : vars(vs), idx(i), subtree(t) {}node * 
hild(store * s, int i) {if (i==0) {s->tell(vars[idx℄,s->getlo(vars[idx℄),s->getlo(vars[idx℄));return(idx+1==vars.size() ? subtree : new naive(vars,idx+1,subtree));}else {s->tell(vars[idx℄,s->getlo(vars[idx℄)+1,s->gethi(vars[idx℄));return new naive(vars,idx,subtree);}}}; 4



Program 3 A Node Class for Printing Solutions
lass queens_printer : publi
 node {publi
:queens_printer(ve
tor<var> vs) {for (int j = 0; i < vs.size(); j++)
out<<"
ol: "<<vs[i℄<<"\nrow: "<<s->getlo(vs[i℄)<<"\n"; }node * 
hild(store * s, int i) {return NULL;}} Note that su
h queens_printer nodes are leaves, be
ause their 
hild member fun
-tion returns the NULL pointer. Thus, queens_printer nodes 
an be used as subtree ofenumeration trees.4 Programming Inferen
e AlgorithmsDuring the exploration of a sear
h tree, failure may o

ur as a result of applying the
hild fun
tion of a node. That means one of the de
isions leading to the 
orrespondingnode was the wrong one. Unfortunately, after that de
ision was taken the store has
hanged through 
reating variables and propagators and telling domains. In order toundo these 
hanges and trying an alternative, we introdu
e the following operations onstores.mark store::mark();void store::ba
ktra
k(mark m);The fun
tion store::mark returns a value that represents the 
urrent state of the store,and the fun
tion ba
ktra
k undoes all 
hanges done to the store sin
e the given markwas obtained. A sear
h algorithm using store::mark and store::ba
ktra
k is givenin Program 4.Program 4 First-solution Depth-�rst Sear
hnode * solve_one(store * s,node * t) {if (t == NULL) return t;int m = s->mark();try {return solve_one(s,t->
hild(s,0));}
at
h (Failure) {s->ba
ktra
k(m);return solve_one(s,t->
hild(s,1));}} Using this sear
h algorithm, we are �nally able to solve the n-queens problem asshown in Program 5. 5



Program 5 Solving N-Queens with Figaroint main(int arg
,
har * argv[℄) {int n = atoi(argv[1℄);store * s = new store();ve
tor<var> vars(n);...try {solve_one(s,new naive(vars,0,new queens_printer(vars)));} 
at
h (Failure) {printf("no solution\n");};} Note that in the exposition above, we used several simpli�
ations to 
larify the de-sign underlying Figaro. Both enumeration and sear
h 
an be improved signi�
antly byintrodu
ing additional tests and member fun
tions. For instan
e, the 
reation of nodeobje
ts 
an be avoided, when 
hoosing the left 
hild node of an enumeration node byin
rementing the idx member of the parent.5 Copying-Based Sear
h and Relative AddressingNote that in the previous se
tion the same store is passed between solve_one and 
hild.Sear
h is done entirely by trailing and ba
ktra
king, as in most 
onstraint programmingsystems. S
hulte [S
h99℄ shows that 
opying-based sear
h as employed by the Mozartsystem, 
ombined with re
omputation of spa
es, 
an 
ompete with the performan
e oftrailing-based systems. To study the performan
e of memory poli
ies, it appears to beattra
tive to provide both 
opying and trailing in the same system. In order to support
opying-based sear
h, we use a suitable C++ 
opy 
onstru
tor.
lass store {...publi
:store(
onst &store);}For 
ombining 
opying and trailing-based sear
h, we propose that in the 
opy, all marksare removed and that no information is trailed in a store before the �rst mark is obtained.Sin
e we pass the store, on whi
h a node operates, expli
itly to the store, it is straight-forward to use 
opying-based sear
h in our setup. We illustrate this using example oflimited dis
repan
y sear
h (LDS), a sear
h algorithm proposed by Harvey and Gins-berg [HG95℄. LDS addresses the question how to avoid getting stu
k in a small leftmostsubtree in the presen
e of a strong heuristi
 for building the sear
h tree. Let us assumethat a s
ript uses a heuristi
 whi
h generates binary nodes whose left 
hild are 
onsid-ered mu
h more likely to lead to a solutions than the right 
hild. Then the number ofdis
repan
ies of a solution is the number of right 
hildren in the path from the root tothe solution. LDS pres
ribes to sear
h for solutions with a small number of dis
repan
ies�rst. 6



Program 6 A Copying-based Sear
h Algorithm For Limited Dis
repan
y Sear
hnode * probe(store * s,node * t,int d) {if (t==NULL) return t;if (d > 0) {store * s1 = new store(s);try {return probe(s,t->
hild(s,1),d-1);}
at
h (Failure) {return probe(s1,t->
hild(s,0),d);}} else return probe(s,t->
hild(s,0),0);}void lds_one(store * s,node * t,int d) {try {return probe(s,t,d);}
at
h (Failure) {lds_one(s,t,d+1);}} The algorithm lds_one given in Program 6 sear
hes for a solution a

ording to LDS|assuming that a solution exists|with in
reasing number of dis
repan
ies, starting witha given d, typi
ally 0. The auxiliary fun
tion probe returns a solution within a givennumber of dis
repan
ies d, if su
h a solution exists. Note that on
e the number of alloweddis
repan
ies has rea
hed 0, there is no need to make 
opies any longer. Instead, probedes
ends straight down towards a solution.In 
opying-based sear
h, tree des
riptions will use var values that stem from 
allsof newvar on a store and apply operations su
h as tell to 
opies of the store. Thusvariables must be invariant with respe
t to 
opying. We a
hieve this invarian
e by usingas var values the relative address of the variable in the store data stru
ture. In stores, adynami
 array keeps tra
k of variables, variables are represented by their indi
es in thisarray.#define var intThe same te
hnique, we use for propagators; trail entries and propagator lists for vari-ables use relative addresses. Note that relative addressing makes 
opying parti
ularlyeasy, whereas absolute addressing as employed by the Mozart system and Ilog Solverne
essitates re
ursive traversal of data stru
tures in stores.6 Dire
tions and Perspe
tivesThe design presented here has been inspired by a proposal for an ML library [HS99℄, inwhi
h data stru
tures for representing 
onstraint stores were 
alled rooms. The designpresented here has been used to develop a modular ar
hite
ture for programming sear
halgorithms [CHN00℄. In this ar
hite
ture, aspe
ts of sear
h algorithms su
h as the mem-ory poli
y, optimization, intera
tivity and sear
h tree visualization 
an be programmedindependently. The goal to allow the programming of di�erent sear
h algorithms in a li-brary for �nite domain 
onstraint programming has been apparently re
ognized re
entlyin the Ilog Solver library as brie
y mentioned in [LP99℄.7



Figaro is 
urrently being implemented by reusing parts of the Mozart system. In par-ti
ular Mozart's sophisti
ated representation of domains and its propagation algorithmssu
h as serialization and 
ummulative 
onstraints for s
heduling appli
ations are beingreused. We hope by this, we 
an redu
e the development time of Figaro.Representing Constraint StoresSear
h in Oz [Smo95℄ is programmable through the abstra
tion of a spa
e [S
h97℄. Thestore abstra
tion was inspired by spa
es and shares with them the ability to manipulate
onstraint stores together with their variables and propagators as data. However, spa
esare tightly integrated into the language Oz su
h that the spa
e with respe
t to whi
hvariables and propagators are introdu
ed is kept impli
it. In addition to variables andpropagators, spa
es host threads. The programming of sear
h engines in Oz amountsto 
ommuni
ating and syn
hronizing with the threads of spa
es. Due to the 
on
urrentsetup, sear
h in Oz is based on 
loning of spa
es, whereas our approa
h supports bothba
ktra
king and 
opy-based sear
h.In Ilog Solver [ILO97℄, 
onstraint stores are represented by instan
es of the C++
lass Il
Manager. The in
remental building of the sear
h tree is supported through datastru
tures, 
alled goals, whi
h are installed in manager obje
ts. The separation of storesfrom node obje
ts for sear
h in Figaro allows to 
leanly separate distribution from treesear
h algorithms and supports 
opying-based sear
h well (see next se
tion).Memory Poli
yRelative addressing of variables and propagators in stores in Figaro, whi
h is not presentin Ilog Solver, is the the key feature that allows to use 
opying-based sear
h in additionto trailing.Both 
opying-based and trailing-based sear
h 
an be 
ombined with re
omputa-tion [S
h99℄. We hope that the 
exibility to use both memory poli
ies leads to in-teresting, possibly adaptive, and more eÆ
ient 
ombinations of the two memory poli
iesand re
omputation.Another memory management issue is the 
reation of nodes, whi
h are in the pre-sented simpli�ed design not expli
itly deallo
ated. We are 
urrently experimenting withsear
h algorithms that expli
itly deallo
ate nodes as well as with automati
 memorymanagement systems for C++.Consisten
y AlgorithmsDi�erent 
onstraint programming languages and libraries use di�erent 
onsisten
y algo-rithms, usually variants of AC3 and AC5. In pra
ti
e, the trade-o� between the twoseems to be to use more elaborate data stru
tures and redu
e pure 
omputation time(AC5) versus simpler data stru
ture and redundant 
omputations (AC3). This trade-o�be
omes interesting in the light of a widening gap between 
omputation speed and mem-ory a

ess speed in modern pro
essors. We hope to 
arry out pra
ti
al experiments on
onsisten
y algorithms with Figaro. 8



Representation of FailureAs in the ML design [HS99℄, we treated failure by ex
eptions in this paper. Anotherpossibility would be to let stores assume a failure state, when an ex
eption is en
ountered.This design issue is not settled yet and depends on pra
ti
al 
onsiderations su
h as theeÆ
ien
y of ex
eption handling in C++ 
ompilers. Ben
hmarks will shed some light onthe eÆ
ien
y of the two me
hanisms for failure.Modeling and Interfa
ing through S
ripting LanguagesFigaro is designed as a C++ library for 
onstraint programming. Typi
ally, the librarywill be linked to appli
ations that make use of 
onstraint programming for problem solv-ing. However, in some appli
ations the need for a more formal and 
exible formulation of
onstraint problems arises. This need is addressed in symboli
 programming languagesfor 
onstraint programming (Prolog-based, Oz, 
laire) and in modeling languages for
onstraint programming su
h as OPL [Hen99℄. To address this need, we provide a generi
interfa
e to s
ripting languages su
h as T
l and Perl. In addition to modeling, the useof s
ripting languages aids the development of and experimentation with the library andimproves interoperability.A
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