
The First-Order Theory of Subtype Constraints

ZHENDONG SU
University of California, Davis
and
ALEXANDER AIKEN
Stanford University
and
JOACHIM NIEHREN
INRIA Futurs, Lille
and
TIM PRIESNITZ
Universität des Saarlandes
and
RALF TREINEN
ENS de Cachan, CNRS and INRIA Futurs

We investigate the first-order theory of subtype constraints. We show that the first-order theory of
non-structural subtyping is undecidable, and we show that in the case where all constructors are
either unary or nullary, the first-order theory is decidable for both structural and non-structural
subtyping. Our results hold for both simple and recursive types. The undecidability result is shown

by a reduction from the Post’s Correspondence Problem, and the decidability result is shown by
a reduction to a decision problem on tree automata. In addition, we introduce the notion of a
constrained tree automaton to express non-structural subtype entailment. This work is a step

towards resolving long-standing open problems of the decidability of entailment for non-structural
subtyping.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory—seman-
tics,syntax; D.3.3 [Programming Languages]: Language Constructs and Features—constraints,polymorphism;
F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—program analysis; F.3.3
[Logics and Meanings of Programs]: Studies of Program Constructs—type structure; F.4.0 [Mathematical
Logic and Formal Languages]: Formal Languages; F.4.0 [Mathematical Logic and Formal Languages]:
Mathematical Logic

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: subtype constraints, type systems, tree automata, complexity

An earlier version [Su et al. 2002] of the paper was published in the Proceedings of the 29th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 203–216, January 2002.
Authors’ addresses: Zhendong Su, Department of Computer Science, University of California, Davis, CA
95616-8562. Alexander Aiken: Computer Science Department, Stanford University, Stanford, CA 94305-9025.
Joachim Niehren: Mostrare Project, INRIA Futurs, Lille, France. Tim Priesnitz: Programming Systems Lab,
Universiẗat des Saarlandes, Saarbrücken, Germany. Ralf Treinen: LSV, CNRS UMR 8643 and INRIA Futurs,
ENS de Cachan, 94235 Cachan Cedex, France.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–??.

2 · Su et al.

1. INTRODUCTION

In this paper we present the first decidability and undecidability results for the first-order
theory of subtyping.1 Before describing our results, we begin with a capsule history of
subtyping, which motivates the first-order theory of subtyping as an interesting topic to
study.

Since the original results of Mitchell [Mitchell 1991], type checking and type inference
for subtyping systems have received steadily increasing attention. The primary motivations
for studying these systems today are program analysis algorithms based on subtyping (see,
for example, [Aiken et al. 1994; Andersen 1994; Flanagan et al. 1996; Heintze 1994;
Marlow and Wadler 1997; Palsberg and Schwartzbach 1991; Shivers 1988]) and, more
speculatively, richer designs for typed languages ([Odersky and Wadler 1997]).

Subtyping algorithms invariably involve systems of subtype constraintsτ1 ≤ τ2, where
the τi are types that may contain type variables. There are two interesting questions we
can ask about a system of subtype constraintsC:

(1) DoesC have solutions (and what are they)?

(2) DoesC imply (or entail) another system of constraintsC ′? That is, is every solution
of C also a solution ofC ′?

For (1), the basic algorithms for solving many natural forms of subtype constraints are
by now quite well understood (e.g., see [Rehof 1998]). For (2), there has been much less
progress on subtype entailment, although entailment is as important as constraint resolution
in applications of subtyping. For example, a type-based program analysis extracts some
system of constraintsC from a program text; these constraints model whatever program
property is being analyzed. A client of the analysis (e.g., a program optimization system)
interacts with the analysis by asking queries: Does a particular constraintτ1 ≤ τ2 hold
in C? Or in other words, doesC entail τ1 ≤ τ2? As another example, in designing a
language with expressive subtyping relationships, checking type interfaces also reduces to
a subtype entailment problem. While no mainstream language has such expressive power
today, language researchers have encountered just this problem in designing languages
that blend ML-style polymorphism with object-oriented style subtyping, which leads to
polymorphic constrained types(see, again, discussion in [Odersky and Wadler 1997]).

There are two natural choices of subtype relation in the literature.Structural subtyping
requires that types have exactly the same shape—read as trees,τ1 ≤ τ2 cannot hold unless
the corresponding branches ofτ1 and τ2 are equal in length. For example ifa ≤ b in
the subtype ordering, thenC(a, a) ≤ C(b, b) for some covariant constructorC, but a 6≤
C(b, b). Non-structuralsubtyping has both a least type⊥ and a greatest type>, so that
⊥ ≤ τ ≤ > for any τ . More details on structural and non-structural subtyping can be
found in [Mitchell 1991; Amadio and Cardelli 1993; Kozen et al. 1993].

Despite extensive effort over many years, the exact complexity and even the decidability
of entailment is open for non-structural subtype constraints [Rehof 1998; Henglein and Re-
hof 1997; 1998; Flanagan and Felleisen 1997; Niehren and Priesnitz 1999; 2003; Trifonov
and Smith 1996; Aiken et al. 1997; Fähndrich and Aiken 1996; Pottier 1996; Marlow and
Wadler 1997; Pottier 2001]. As we show in Section 2, the natural versions of entailment

1This paper extends [Su et al. 2002] with a notion of constrained tree automata to express non-structural subtype
entailment and an undecidability result of the emptiness problem overgeneralconstrained tree automata (cf.
Section 5.3).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 3

and subtyping constrained types can be encoded easily in the first-order theory of subtyp-
ing, so to gain insight into and take a step towards resolving these difficult problems, we
study the full first-order theory in this paper.

The major contributions of this paper are summarized as follows:

—We show that the first-order theory of non-structural subtype constraints is undecidable
via a reduction from the Post’s Correspondence Problem (PCP). The result is shown
for both simple and recursive types (Theorems 3.8 and 3.10). The result holds also for
infinite trees. In addition, this result yields a technical separation of structural subtyping
and non-structural subtyping (Theorem 4.1).

—We show that the first-order theory of subtype constraints with unary function symbols is
decidable by an automata-theoretic construction. This result holds for all combinations
of the structural versus non-structural, and simple versus recursive cases (Theorem 5.10).

—The automata-theoretic construction bridges tree automata theory and subtyping prob-
lems, suggesting an alternative way of tackling the problems (see Section 5.3 for a dis-
cussion).

It was shown recently that the first-order theory of structural subtyping over simple types
is decidable [Kuncak and Rinard 2003]. The decidability of the full first-order theory of
structural subtyping over recursive types is open.

We first present background information on subtyping (Section 2), and show that the
first-order theory of non-structural subtyping entailment is undecidable (Section 3). Next
we give an automata-theoretic construction for subtype constraints and show that the first-
order theory of subtype constraints with unary function symbols is decidable (Section 5).
We then discuss related work (Section 6) and conclude (Section 7). An example encoding
of an entailment problem is given in Appendix A.

2. SUBTYPE CONSTRAINTS AND THEIR FIRST-ORDER THEORIES

We present an overview of subtyping systems and introduce the problems we consider in
this paper.

2.1 Preliminaries on Subtyping

Subtyping systems are generalizations of the usual equality-based type systems such as
the Hindley/Milner type system of ML [Milner 1978]. We consider the following type
language

τ ::= ⊥ | > | α | τ1 → τ2 | τ1 × τ2

where⊥ and> are the smallest and largest type respectively,α is chosen from a countable
set of type variablesV, → is the function type constructor, and× is the product type
constructor.

Types in this language form a lattice with the following ordering:

—⊥ ≤ τ ≤ >, for anyτ ;

—τ1 → τ2 ≤ τ ′1 → τ ′2 iff τ ′1 ≤ τ1 andτ2 ≤ τ ′2, for any typesτ1, τ2, τ ′1, andτ ′2;

—τ1 × τ2 ≤ τ ′1 × τ ′2 iff τ1 ≤ τ ′1 andτ2 ≤ τ ′2, for any typesτ1, τ2, τ ′1, andτ ′2.

This is thenon-structural orderingon types, since related types need not have the same
shape,e.g., ⊥ ≤ ⊥ → >. The corresponding notion ofstructural orderingrequires two

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · Su et al.

types to be related only if they have the same shape. In structural ordering, there is no
smallest or largest type.

Another dimension is whether a type language allowsrecursive types, i.e., infinite types
which are solutions to recursive type equations such asα = α → ⊥. Recursive types are
interpreted overregular trees, which are possibly infinite trees with finitely many subterms.
We also consider general infinite trees.

We writeT (F) to denote the set of finiteground types(types without variables), where
F is the alphabet

{⊥,>, · → ·, · × ·}

The setT (F ,V) denotes the set of all types built with variables drawn fromV.
A subtype constraintis an inequality of the formτ1 ≤ τ2. A subtype constraint system

is a finite set of subtype constraints. When clear from context, we drop “subtype” and just
say a constraint or a constraint system. For a constraint systemC, the type variables inC
are called thefree variablesof C, denoted fv(C).

A valuationρ is a function mapping type variablesV to ground typesT (F). A valuation
ρ is sometimes referred to as a ground substitution. As is standard, we extend valuations
homomorphically to substitutions fromT (F ,V) to T (F).

A valuationρ satisfiesa constraintτ1 ≤ τ2, writtenρ � τ1 ≤ τ2 if ρ(τ1) ≤ ρ(τ2) holds
in the latticeT (F). A valuationρ satisfiesa constraint systemC, written ρ � C, if ρ
satisfies all the constraints inC. A constraint systemC is satisfiableif there is a valuation
ρ such thatρ � C. The set of valuations satisfying a constraint systemC is thesolution
setof C, denoted byS(C). We denote byS(C) |E the set of solutions ofC restricted to a
set of variablesE. Thesatisfiability problemfor a constraint language is to decide whether
a given system of constraints is satisfiable. It is well-known that the satisfiability of a
constraint system can be decided in polynomial time by a test forconsistencyof the given
constraint set according to a set of syntactic rules [Palsberg and O’Keefe 1995; Pottier
1996; Kozen et al. 1994].

Corresponding to polymorphic type schemes in Hindley/Milner style type systems, poly-
morphic subtype systems have so-calledconstrained types, in which a type is restricted by
a system of constraints [Aiken and Wimmers 1993; Trifonov and Smith 1996; Aiken et al.
1997]. An ML style polymorphic type can be viewed as a constrained type with no con-
straints. For example,

α → β\{α ≤ int → int , int → α ≤ β}

is a constrained type. Letτ\C be a constrained type, and letρ be a satisfying valuation for
C. The ground typeρ(τ) is called ainstanceof τ\C.

There are a few important problems associated with constrained types in polymorphic
subtype systems.

—In practice, constrained types can be large and complicated. Thus it is important to sim-
plify the types [Pottier 1996; Marlow and Wadler 1997; Fähndrich and Aiken 1996] to
make the types and the associated constraints smaller. Type and constraint simplifica-
tion is related to the following decision problem ofconstraint entailment: A constraint
systemC entailsa constraintτ1 ≤ τ2, written C � τ1 ≤ τ2, if for every satisfying
valuationρ of C, we haveρ � τ1 ≤ τ2.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 5

—The notion ofexistential entailment, writtenC1 � ∃E.C2, is a more powerful notion of
entailment.2 The entailment holds if for every valuationρ � C1, there exists a valuation
ρ′ � C2 such thatρ andρ′ agree on variables fv(C2) \ E. We assume w.l.o.g. that
fv(C1) ∩ E = ∅. This notion is interesting because usually for a constrained type, we
are only interested in variables appearing in the type, and there are often many “internal”
variables in the constraints we may wish to eliminate. This notion of entailment allows
more powerful simplification and is likely to be more expensive.

—In polymorphic subtype systems, we may need to determine whether one constrained
type is a subtype of another constrained type [Trifonov and Smith 1996]. Letτ1\C1

andτ2\C2 be two constrained types. We wish to check whetherτ1\C1 ≤ τ2\C2 which
holds if for every instanceτ of τ2\C2, there exists an instance ofτ ′ of τ1\C1 such that
τ ′ ≤ τ . We assume w.l.o.g. thatC1 andC2 do not have any variables in common. In
addition, we can restrictτ1 andτ2 to variables because

τ1\C1 ≤ τ2\C2 iff α\(C1 ∪ {α = τ1}) ≤ β\(C2 ∪ {β = τ2})

whereα andβ are fresh variables not inC1 or C2.

Although extensive research has directed at these problems [Rehof 1998; Henglein and
Rehof 1997; 1998; Flanagan and Felleisen 1997; Niehren and Priesnitz 1999; 2003; Tri-
fonov and Smith 1996; Aiken et al. 1997; Fähndrich and Aiken 1996; Pottier 1996; Marlow
and Wadler 1997; Pottier 2001], their decidability has been open for many years. In this
paper, we present results on the first-order theory of subtype constraints, which we believe
is a step in resolving these open problems.

2.2 The First-Order Theory of Subtype Constraints

We first define thefirst-order theory of subtype constraints. First-order formulae w.r.t. to a
subtype language are:

f ::= true | t1 ≤ t2 | ¬f | f1 ∧ f2 | ∃x.f

wheret1 and t2 are type expressions andx is a first-order variable ranging over types.
Notice that we do not need equality because≤ is anti-symmetric.

As usual, for convenience, we also allow disjunction∨, implication → , and universal
quantification∀. We write t1 � t2 for ¬(t1 ≤ t2). A formula isquantifier freeif it has
no quantifiers. A formula is inprenex normal formif it is of the form Q1 . . . Qn.f where
Qi’s are quantifiers andf is a quantifier free formula. We adopt the usual notion of afree
variableand aclosedandopenformula.

We next show how the open entailment problems discussed in Section 2.1 fit in the
first-order theory of subtyping.

2.2.1 Entailment is in the∀-Fragment.The universal fragment consists of all the closed
formulae∀.f , where∀ consists of a set of universal quantifiers, andf is a quantifier free
formula.

The entailment problemC � x ≤ y is in the universal fragment. Notice thatC is a
conjunction of basic constraints and the entailmentC � x ≤ y holds iff the universal
formula∀x1, . . . , xn.(C → (x ≤ y)) is valid, where thexi’s are the variables free in
C ∪ {x ≤ y}.

2Existential entailment is also calledrestricted entailment, writtenC1 �E′ C2, whereE′ = fv(C2) \ E.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · Su et al.

2.2.2 Existential Entailment is in the∀∃-Fragment.The∀∃-fragment consists of all
the closed formulae∀∃.f , wheref is a quantifier free formula.

Existential entailmentC1 � ∃E.C2 is expressed by the following formula:

∀α1, . . . , αn.(C1 → ∃E.C2)

where theαi’s are the variables in fv(C1)∪(fv(C2)\E). Because we assume fv(C1)∩E =
∅, there is an equivalent formula in the∀∃-fragment

∀α1, . . . , αn.∃E.(C1 → C2)

2.2.3 Subtype Constrained Types is in the∀∃-Fragment.Let α\C1 andβ\C2 be con-
strained types. We expressα\C1 ≤ β\C2 as the formula

∀β1, . . . , βn.(C2 → ∃α1, . . . , αm.(C1 ∧ α ≤ β))

where theαi’s and βj ’s are the variables free inC1 and C2 respectively. BecauseC1

andC2 have disjoint sets of variables (see definition of constrained types above), this is
equivalent to

∀β1, . . . , βn.∃α1, . . . , αm.(C2 → (C1 ∧ α ≤ β))

In fact, we can show that subtype constrained types can be polynomially reduced to
existential entailment.

Proposition 2.1. Subtype constrained types is polynomially reducible to existential en-
tailment.

PROOF. We have the following equivalences:

α\C1 ≤ β\C2

⇔ { by defn. ofα\C1 ≤ β\C2 }

S(C2) |{β} ⊆ S(α ≤ β ∧ C1) |{β}

⇔ { by defn. of existential entailment withE = fv(C1) }

C2 � ∃E.(α ≤ β ∧ C1)

3. UNDECIDABILITY OF THE FIRST-ORDER THEORY OF NON-STRUCTURAL
SUBTYPING

In this section, we show that the first-order theory of non-structural subtyping is undecid-
able for any type language with a binary type constructor and the bottom element⊥ (or
dually, the top element>). The formula we exhibit is in the∃∀∃∀∃∀-fragment.

The proof is via a reduction from the Post’s Correspondence Problem (PCP) [Post 1946]
to a first-order formula of non-structural subtyping. Since PCP is undecidable [Post 1946],
the first-order theory of non-structural subtyping is undecidable as well. The proof follows
the framework of Treinen [Treinen 1992] and is inspired by the proof of undecidability of
the first-order theory of ordering constraints over feature trees [Müller et al. 2001].

Recall that an instance of PCP is a finite set of pairs of words〈li, ri〉 for 1 ≤ i ≤ n.
The words are drawn from the alphabet{1, 2}. The problem is to decide whether there is

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 7

f

 111

⊥ ⊥

f
1��� 11

1

f

 111
⊥

⊥ ⊥

f

 2000

⊥ f
1��� 00

0

f

 2000

⊥

⊥ f

��
� 2000

⊥ f
1��� 11

1

f

 111
⊥

⊥ ⊥
(a) The wordε. (b) The word1. (c) The word21221.

Fig. 1. Some example representations of words.

a non-empty finite sequence of indicess1 . . . sm (where1 ≤ si ≤ n for 1 ≤ i ≤ m) and
the sequence constitutes a pair of matched words:

ls1 · · · lsm = rs1 · · · rsm

where words are concatenated.
For non-structural subtyping, we consider both finite types and recursive types. We first

describe the subtype logic that we use. We consider any subtype language with at least a
bottom element⊥ and a binary type constructor. We show that for any such language, the
first-order theory of non-structural subtype entailment is undecidable.

For the rest of the paper, we consider the simple expression language:

τ ::= ⊥ | f(τ, τ)

wheref is covariant in both of its arguments. It is straightforward to modify our construc-
tion to allow type constructors with contravariant field(s) and with arity greater than two.

3.1 Representing Words as Trees

PCP is a word problem but types are trees. As a first step, we describe how to encode
words in{1, 2} using types.

3.1.1 Words asf -Spines.We first describe how to represent words over{1, 2} as trees
over a binary constructorf and the constant⊥. We usef -spinesto represent words.
Intuitively, anf -spine is simply a tree with a spine off ’s and all other positions labelled⊥.

Definition 3.1 (f -SPINE). A finite treet (in f and⊥) is anf -spine if there isexactly
one maximal pathwith labelsf . On this maximal path, a left child represents1 and a right
child represents2.

Example3.2. The empty wordε is represented by the termf(⊥,⊥). See Figure 1a.
The word1 is represented by the termf(f(⊥,⊥),⊥). See Figure 1b. The word21221 is
represented byf(⊥, f(f(⊥, f(⊥, f(f(⊥,⊥),⊥))),⊥)). See Figure 1c.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · Su et al.

f
1��� 00

0

f

 2000

⊥

⊥ f

 111

⊥ ⊥

f

��
� 2000

⊥ f
1��� 11

1

f
1��� 00

0 ⊥

f

 2000

⊥

⊥ f

 111

⊥ ⊥
(a) The word12. (b) The word2112 = 21 · 12.

Fig. 2. Tree prepending example.

3.1.2 Enforcing a Word Tree.We want to enforce with a first-order formula of subtype
constraints that a treet is anf -spine,i.e., that it represents a wordw. Any f -spinet satisfies
three properties:

(1) Onlyf and⊥ appear int (Lemma 3.3).

(2) There is exactly one maximal path off ’s (Lemma 3.4).

(3) t is not⊥ (because⊥ does not represent a word).

Lemma3.3. A treet contains onlyf and⊥ iff ∃x.((x ≤ f(x, x)) ∧ (t ≤ x)) holds.

PROOF. Supposet contains onlyf and⊥. Let h be the height oft, which is the length
of the longest branch oft. The full binary trees of heighth where all the leaves are labelled
⊥ and all the internal nodes are labelledf satisfiess ≤ f(s, s) andt ≤ s.

On the other hand, suppose for somes with s ≤ f(s, s), we havet ≤ s. It suffices to
show thats contains onlyf and⊥. For the sake of argument, assume on some shortest
pathπ from the root,s is labelled withg, i.e., every path strictly shorter thanπ is labelled
eitherf or ⊥. Now consider the pathπ in f(s, s). If π exists inf(s, s), then it must be
labelled eitherf or ⊥ in f(s, s). If π does not exist inf(s, s), then a prefix ofπ exists
in f(s, s) and must be labelled with⊥. In both cases, a contradiction is reached since
s ≤ f(s, s).

Lemma3.4. For any non-⊥ treet with f and⊥, there is exactly one maximal path of
f ’s iff the subtypes oft form a chain w.r.t.≤.

PROOF. If t has exactly one maximal path off ’s, then clearly all the subtypes oft form
a chain. On the other hand, ift has at least two maximal paths off ’s. The two subtypes of
t where we replacef by⊥ at the respective paths are incomparable.

Thus we can enforce a tree to represent a word. We shorthand the formula byword(t),
that is:

dom-closure(t) def= ∃x.((x ≤ f(x, x)) ∧ (t ≤ x))

chain(t) def= ∀t1, t2.(((t1 ≤ t) ∧ (t2 ≤ t)) → ((t1 ≤ t2) ∨ (t2 ≤ t1)))

word(t) def= dom-closure(t) ∧ chain(t) ∧ (t 6= ⊥)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 9

f

||
||

NNNNNNN

f

��
� ..

. f

zzzz
RRRRRRRRRR

ε ε f

��
�

??
??

? f

}}
}}

}
AA

AA
A

lsm
rsm f

��
�� @@

@@
@

...
@@

@@
@@

lsm−1 lsm
rsm−1rsm f

yy
yy

y
FFF

FF

f

yy
yy EE

EE ⊥

ls1 · · · lsm
rs1 · · · rsm

Fig. 3. A PCP solution viewed as a tree.

3.1.3 Prepending Trees.In the following discussion, we use words and trees that rep-
resent words interchangeably, since the context should make the distinction clear.

To construct a solution to a PCP instance, we need to concatenate words. Thus we want
to express with constraints that a wordw1 is obtained fromw2 by prependingw. We
express this with a family of predicatesprependw, one for each constant wordw. The
predicateprependw(t1, t2) is true if the word represented byt1 is obtained by prepending
w to the word fort2. Note that this is sufficient, because in PCP, the words are constant.
We define the predicate recursively:

prependε(t1, t2)
def= (t1 = t2)

prepend1w(t1, t2)
def= ∃t′.((t1 = f(t′,⊥)) ∧ prependw(t′, t2))

prepend2w(t1, t2)
def= ∃t′.((t1 = f(⊥, t′)) ∧ prependw(t′, t2))

Example3.5 (PREPENDING). We prepend the word21 onto the word12 (Figure 2a)
to get the word2112 (Figure 2b).

3.2 Reducing PCP to the First-Order Theory of Non-structural Subtyping

In this section, we describe how to reduce an instance of PCP to a first-order formula of
subtype constraints.

3.2.1 Outline of the Reduction.We construct a formula that accepts the representa-
tions of all the solutions of a PCP instance.

We first describe a solution to a PCP instance as a tree. Recall that a PCP instance P
consists ofn pairs of words〈l1, r1〉, . . . , 〈ln, rn〉, whereli, ri ∈ {1, 2}∗. A solutions =
s1 · · · sm to P is anon-emptyfinite sequence of indices 1 throughn, i.e., s ∈ {1, · · · , n}+,
such thatls1 · · · lsm = rs1 · · · rsm . One can represent a solutions as the treet shown
in Figure 3. In the treet, the values ofε, lsm

, rsm
, . . . , ls1 · · · lsm

, andrs1 · · · rsm
are

represented by their corresponding word trees. The tree is constructed as follows. We start
with the empty word pair〈ε, ε〉. At each step, we prepend a particular pair from the PCP
instance〈lsi , rsi〉 to the previous pair of words. At the end,ls1 · · · lsm = rs1 · · · rsm , i.e.,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · Su et al.

f

��
�

??
??

?

⊥ ...

��
� ??

??
?

⊥ f

��
�

==
==

=

f

��
�� //

/
...

��
� 22

22

wi w′
i ⊥ ⊥

f

��
�

::
::

⊥ ...

��
� ::

::

⊥ f

��
�

::
::

⊥ ...

��� 44
44

⊥ ⊥
(a) A branch. (b) The main spine.

Fig. 4. The branch of a solution tree.

we have found a solution to P. Notice that the solutions are constructed in the reverse order
because we use prepend instead of append.3

With this representation of PCP solutions as trees, we can reduce an instance of PCP to
the validity of a first-order formula of subtype constraints by expressing that there exists a
treet such that:

(1) The treet is of the particular form in Figure 3.(Section 3.2.2)
Our construction does not require the branches of the solution tree to be in the order
shown in Figure 3. Any order is fine (repetitions are also permitted).

(2) We have a valid PCP construction sequence.(Section 3.2.3)
Each left branchf(wi, w

′
i) is either the pair of empty words or there exists another left

branchf(wj , w
′
j) such thatprependlk

(wi, wj) andprependrk
(w′

i, w
′
j) for somek.

In addition, one of the left branches is of the formf(w,w) with w non-empty.4 This
ensures that we have a non-empty sequence.

We next express these requirements with first-order formulae of subtype constraints.

3.2.2 Correct Form of the Tree.To ensure the correct form of the treet, we require
that each left branch represents two words conjoined with the root labelled withf , i.e., we
havef(w,w′) for some trees representing wordsw andw′. In order to achieve this, we
construct trees of the form shown in Figure 4a, which is a branch of the tree representing a
PCP solution shown in Figure 3.

Let t be the tree representing a PCP solution. We cannot extract a branch directly from
t because subtype constraints cannot express removing something from a tree. However,
we observe that a branch is a supertype of themain spineshown in Figure 4b with some
additional properties, which we enforce separately. We first express the main spines of t.
Two properties are needed fors:

(1) The main spines is of the form shown in Figure 4b.
We simply requires ≤ f(⊥, s).

(2) The trees is a subtype oft and among all possible spines, it is the largest such tree.

3We use prepend because append is just not as convenient to express.
4We assume for any PCP instance,li 6= ri for anyi. Otherwise, the instance is trivially solvable.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 11

This is easily expressed as:

(s ≤ t) ∧ ∀x.(((x ≤ f(⊥, x)) ∧ (x ≤ t)) → (x ≤ s))

We introduce the shorthand thats is the main spine oft by:

spine(s, t) def=
(s ≤ f(⊥, s)) ∧ (s ≤ t)
(∀x.(((x ≤ f(⊥, x)) ∧ (x ≤ t)) → (x ≤ s)))

We observe that a branchb of t is a subtype oft and a proper supertype of the main spine
s with two additional properties:

(1) Exactly one left branch of the main spine is of the formf(wi, w
′
i).

(2) All the other left branches of the main spine are labelled with⊥.

We can express thatb is a proper supertype of the main spines by:

s < b
def= ((s ≤ b) ∧ (s 6= b))

We express (1) and (2) by observing thatb is amaximal treesuch that the set of all the
subtypes ofb that are proper supertypes of the main spines have auniqueminimal element,
i.e., the set{x | s < x ≤ b} has a unique minimal element. We useis-min(u, v, w) to
express thatu is the smallest element of the subtypes ofv that are proper supertypes ofw,
that is:

is-min(u, v, w) def=
(u ≤ v) ∧ (w < u) ∧
∀x.(((x ≤ v) ∧ (w < x)) → (u ≤ x))

In addition,uniq-min(u, w) expresses that all the subtypes ofu that are proper supertypes
w have auniqueminimal element, that is:

uniq-min(u, w) def= ∃x.is-min(x, u, w)

With that, we can express the requirements onb by the following formula:

branch(b, t) def=
(b ≤ t) ∧
∃s.(spine(s, t) ∧ (s < b) ∧ uniq-min(b, s)

∧ ∀x.((b < x ≤ t) → ¬uniq-min(x, s)))

We establish the correctness ofbranch(b, t) in Lemma 3.6.

Lemma3.6. A treeb is a branch oft as shown in Figure 4a iffbranch(b, t).

PROOF. It is straightforward to verify that ifb is a branch oft thenbranch(b, t). For the
other direction, assumebranch(b, t). Then we know thatb is a subtype oft and a proper
supertype of the main spines. Sinceuniq-min(b, s), i.e., all the subtypes ofb strictly
larger thans have a unique minimum,b cannot have two left sub-branches labelled with
f . Thusb must be a subtype of a branch. However, sinceb is the largest tree such that
uniq-min(b, s), it must be a branch.

3.2.3 Correct Construction of the Tree.The previous section describes how to extract
a branch of the treet. However, that is not sufficient, since we ultimately need the two
wordswi, w

′
i associated with a branch.

We must ensure that for each branch the two wordswi andw′
i are empty or are con-

structed from the words of another branchwj andw′
j by prependinglk andrk respectively,

for somek.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · Su et al.

f

��
�

??
??

?

⊥ ...

��
� ??

??
?

⊥ f

��
�

==
==

=

f

��
�� //

/
...

��
� 22

22

wi w′
i ⊥ ⊥

f

��
�

??
??

?

f

��
�� //

/
...

��
� >>

>>
>

wi w′
i f

��
�� //

/ f

��
�� <<

<<
<

wi w′
i f

��
�� //

/
...

��
� 22

22

wi w′
i ⊥ ⊥

(a) A branch. (b) An expanded branch.

Fig. 5. Extracting words from a branch.

For a branchb, we need to extract the two wordswi andw′
i. The trick is to duplicate the

non-⊥ left child of b to all the left children ofb preceding this non-⊥ child. In particular,
this would have the effect of duplicating the two words at the first child of the branch.

We give an example. Consider the branchb shown in Figure 5a. We would like to build
from b the expanded treeb′ shown in Figure 5b. If we can construct such a treeb′, then it is
easy to extract the two wordswi andw′

i simply by the constraint∃u.f(f(wi, w
′
i), u) = b′.

We now show how to constructb′ from b. Observe that the right child ofb′ is a subtype of
b′ itself, i.e., if we let b′ = f(u, v), thenv ≤ b′. In addition, observe that of all supertypes
of b, b′ is the smallest tree with this property. We write the shorthandrecurse(t1, t2) for
the formula:

recurse(t1, t2)
def= (t1 ≤ t2) ∧ ∃x1, x2.(t2 = f(x1, x2)) ∧ (x2 ≤ t2)

which says thatt1 is a subtype oft2 and the right child oft2 is a subtype oft2 itself. Now
we can express the duplication ofb to getb′ through the following formula:

dup-branch(b, b′) def= recurse(b, b′) ∧ ∀t.(recurse(b, t) → (b′ ≤ t))

We establish the correctness ofdup-branch(b, b′) in Lemma 3.7.

Lemma3.7. Letb be a branch oft. A treeb′ duplicates the non-⊥ sub-branch ofb (as
shown in Figure 5) iffdup-branch(b, b′).

PROOF. It is straightforward to verify that ifb′ duplicates the non-⊥ sub-branch of
b, thendup-branch(b, b′). For the other direction, assumedup-branch(b, b′′). Sinceb′

(shown in Figure 5b) meets the conditionrecurse(b, b′), by definition ofdup-branch we
haveb′′ ≤ b′. We also haveb ≤ b′′ becauserecurse(b, b′′) holds. With a simple induction
on the height of the left spine off ’s of b, we can show thatb′′ must be the same asb′. Thus,
b′′ duplicates the non-⊥ sub-branch ofb.

We introduce a few shorthands next. The formulawordpair(w1, w2, b) expresses that for
a branchb of a solution tree,w1 andw2 are the pair of words associated with that branch:

wordpair(w1, w2, b)
def=

word(w1) ∧ word(w2) ∧
∃b′.(dup-branch(b, b′) ∧ ∃u.(f(f(w1, w2), u) = b′))

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 13

The formulaonestep(wi, w
′
i, wj , w

′
j) expresses a step in the PCP construction,i.e., the

concatenation of a pair of words onto the current pair. It says that the wordswi andw′
i are

obtained from the wordswj andw′
j by respectively prepending some wordslk andrk of

the PCP instance.

onestep(wi, w
′
i, wj , w

′
j)

def=
∨

1≤k≤n

(prependlk
(wi, wj) ∧ prependrk

(w′
i, w

′
j))

We can now express that the treet represents a solution of a PCP instance. Recall that
we must express that for eachwi andw′

i, eitherwi andw′
i are the empty words, or there

existwj andw′
j such thatprependlk

(wi, wj) andprependrk
(w′

i, w
′
j). Consider the PCP

instance P in which we have〈l1, r1〉, . . . , 〈ln, rn〉, whereli andri are words in{1, 2}. We
construct a first-order formulasolvable(P) which is valid iff P is solvable. The formula
expresses the existence of a tree representing a solution to P.

We introduce a few more shorthands. The formulaempty(w) tests whether a wordw
is ε. The formulaconstruct(w1, w2, b

′, t) ensures thatw1 andw2 are obtained from some
branchb′ of t by a one step construction. We usevalid-branch(b, t) for saying that the
wordsw1 andw2 are eitherε or are obtained by a construction step of PCP from another
branchb′. Finally, we use the formulaaccept-branch(b, t) to say that for some branch,
the two words associated with that branch are the same and not the empty wordsε.

empty(w) def= w = f(⊥,⊥)

construct(w1, w2, b
′, t) def=

branch(b′, t) ∧
∃w′

1, w
′
2.(wordpair(w′

1, w
′
2, b

′)∧onestep(w1, w2, w
′
1, w

′
2))

valid-branch(b, t) def=
(∃w1, w2.wordpair(w1, w2, b)
∧ ((empty(w1) ∧ empty(w2))

∨ ∃b′.construct(w1, w2, b
′, t)))

accept-branch(b, t) def= branch(b, t) ∧ ∃w.(wordpair(w,w, b) ∧ ¬empty(w))

The formulasolvable(P) now can be given as:

solvable(P) def= ∃t.(∀b.(branch(b, t) → valid-branch(b, t)) ∧ ∃b.accept-branch(b, t))

The correctness of the reduction from PCP to the first-order theory of subtype constraints
is established in Theorem 3.8.

Theorem3.8 (SOUNDNESS ANDCOMPLETENESS). A PCP instance P has a solution
iff the formulasolvable(P) is valid.

PROOF. It is easy to verify that if P has a solution, then any representation of the solution
sequence in terms of a treet shown in Figure 3 meets the requirement

∀b.(branch(b, t) → valid-branch(b, t)) ∧ ∃b.accept-branch(b, t)

On the other hand, suppose we have such at, then it is also easy to extract a solution
sequence fromt. Start with the branchbm such that the two words associated withbm are
the same. Sincebm is a branch and the two words are notε, there must be another branch
bm−1 such that we have a PCP construction step. This process must terminate, sincet is
a finite tree. This reasoning can be easily formalized with an induction on the number of
branches oft (or equivalently the size oft).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · Su et al.

f

}}
}} 99

9

f

 111
⊥

w w

f

ww
ww

w
EEE

EE

f

��
� 33

3 f

��� ==
=

w1 w2 f

 444
⊥

w1 w1

(a) Failed attempt one. (b) Failed attempt two.

Fig. 6. Failed attempts for recursive types.

3.3 Recursive Types

In this section, we show that the construction can be adapted to recursive types. Recall that
in recursive types, types are interpreted as regular trees overf and⊥.

To adapt our construction, notice that it is sufficient to restrict all the types (trees) to be
finite trees. That is, we need only express that a treet is finite.

It turns out that only the words we get from a branch oft must be finite. The other
trees in the construction can be infinite. For words, if we do not restrict them to be finite,
the existence of such a treet as in Figure 3 may not correspond to a solution to the PCP
problem. To see this, consider the PCP instance{〈11, 1〉}. Clearly, it has no solution.
However, consider the tree (f(f(w,w),⊥) shown in Figure 6a, wherew is the infinite
regular tree such thatw = f(w,⊥), i.e., the infinite word1ω.

One may wonder whether we can instead require that a construction step must use two
different branches, and that the words for the two branches are not the same at the re-
spective positions. This does not work either. Consider the PCP instance{〈ε, 1〉, 〈ε, 2〉},
which has no solution. Now consider the treef(f(w1, w2), f(f(w1, w1),⊥)) shown in
Figure 6b, wherew1 = f(w2,⊥) ∧ w2 = f(⊥, w1), i.e., w1 is the infinite word(12)ω

andw2 is the infinite word(21)ω.
We take the approach of restricting the words extracted from a branch to be finite. This

can be achieved by simply requiring that the set of proper subtypes ofw has alargest
element, i.e.,

has-max(w) def= ∃t.(t < w ∧ ∀t′.(t′ < w → t′ ≤ t)

Lemma3.9. A treet representing a word is finite iffhas-max(t).

PROOF. Let t be a word tree. Ift is finite, then the set of proper subtypes oft forms
a chain. The set is finite, and thus has a largest element. On the other hand, if the tree is
infinite, then all its proper subtypes are finite trees truncated fromt, i.e., the set of trees
representing the finite prefixes of word denoted byt (except⊥). This set forms an infinite
ascending chain, and thus it does not have a largest element.

We can now directly use the construction in Section 3, except we require in the formula
wordpair(w1, w2, b) thatw1 andw2 are finite:

wordpair(w1, w2, b)
def=

word(w1) ∧ word(w2) ∧ has-max(w1) ∧ has-max(w2) ∧
∃b′.(dup-branch(b, b′) ∧ ∃u.(f(f(w1, w2), u) = b′))

Thus, we have shown that the first-order theory of non-structural subtype constraints
over recursive types (and infinite trees) is undecidable.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 15

Theorem3.10. The first-order theory of non-structural subtype constraints over recur-
sive types (and infinite trees) is undecidable for any type language with a binary type
symbol and⊥.

PROOF. Follows from Lemma 3.9 and Theorem 3.8.

4. STRUCTURAL SUBTYPING: A COMPARISON

We show that the first-order theory of structural subtype constraints over the type language
overf and⊥ is decidable. This result provides a clear contrast between the expressiveness
of structural and non-structural subtyping. In addition, it provides another, and in some
sense more apparent, distinction between these two alternative interpretation of subtypes.
In fact, we show that the first-order theory of structural subtype constraints with a signature
containing one constant symbol is decidable.

Theorem4.1. The first-order theory of structural subtype constraints with a single con-
stant symbol is decidable for both simple and recursive types (and infinite trees).

PROOF. This can be easily shown by noticing that in a type language with only one
constant (i.e., ⊥), the subtype relation is the same as equality. Thus we can simply turn
any constraintt1 ≤ t2 into t1 = t2. Since the first-order theory of equality is decidable
both for finite and regular trees (and infinite trees) [Maher 1988], the theorem follows
immediately.

Recently, it is shown that the full first-order theory of finite structural subtyping over
arbitrary signatures is decidable [Kuncak and Rinard 2003]. This result, together with
our undecidability result, provides a further distinction of structural subtyping from non-
structural subtyping. However, at this point, an interesting open problem is the decidability
of the full first-order theory of structural subtyping over recursive types.

5. DECIDABILITY OF THE FIRST-ORDER THEORY OF SUBTYPING OVER
UNARY SYMBOLS

In this section, we show that if we restrict our type language to unary function symbols
and constants, the first-order theory is decidable. This result shows that the difficulty in the
whole first-order theory lies in binary type constructors. The idea of the proof is to reduce
the problem to the tree automata emptiness problem.

Note that word automata would suffice for encoding the case with unary function sym-
bols. However, because our approach is extensible to type languages over arbitrary signa-
tures for the existential or universal fragments (see Section 5.3), we present our results in
terms of tree automata.

5.1 Background on Tree Automata

We recall some definitions and results on tree automata.
Tree automata generalize word automata by accepting trees instead of words. LetF be

a ranked alphabet, and letFn denote the set of symbols of arityn.

Definition 5.1 (FINITE TREE). A finite treet over a ranked alphabetF is a mapping
from a prefix-closed set pos(t) ⊆ N∗ intoF . The set ofpositionspos oft satisfies

—pos(t) is nonempty and prefix-closed.
—For eachπ ∈ pos(t), if t(π) ∈ Fn, thenπi ∈ pos(t) iff 1 ≤ i ≤ n.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · Su et al.

Definition 5.2 (FINITE TREE AUTOMATA). A finite tree automaton(NFTA) over F
is a tuple

A = (Q,F , QF ,∆)

whereQ is a finite set ofstates, F is a finite set ofranked alphabet, QF ⊆ Q is a set of
final states, and∆ is a set oftransition rulesof the form

f(q1, . . . , qn) −→ q

wheren ≥ 0, f ∈ Fn, q, q1, . . . , qn ∈ Q.

The above defines abottom-up tree automaton, since an automaton starts at the leaves
and works up the tree inductively. Themove relationof a tree automatonA = (Q,F , QF ,∆)
can be defined as tree rewriting rulest −→

A
t′. We say thatt −→

A
t′ if t′ can be obtained

from t by replacingf(q1, . . . , qn) with q for somef(q1, . . . , qn) −→ q ∈ ∆. We denote
the reflexive and transitive closure of−→

A
by

∗−→
A

.

A term (or a tree) isacceptedby a NFTAA = (Q,F , QF ,∆) if t
∗−→
A

q for some final

stateq in QF .

Example5.3 (TREE AUTOMATON). Consider the automaton where

Q = {q, qf}
F = {a, b, f(·, ·)}

QF = {qf}

∆ =

 a −→ q
b −→ qf

f(q, qf) −→ qf


The automaton accepts the smallest tree languageL satisfying (1)b ∈ L, and (2) if

t ∈ L thenf(a, t) ∈ L. For example, it accepts the termf(a, b) since

f

��
� ///

a b

−→ f

��� ///

q b

−→ f

��� 222

q qf

−→ qf

Our goal is to use tree automata to encode the solutions of subtype constraints. The solu-
tions of a constraint system are ann-ary relation, associating with each type variable a com-
ponent in the relation. Thus, the solutions of a constraint system ofm variables can be rep-
resented as a set ofm-tuples of trees. For example, the tuple〈f(f(>,>),⊥), f(>, f(⊥,>))〉
is a solution to the constraintx ≤ y.

We use a standard encoding to represent tuples [Comon et al. 2002]. We first give an
example to illustrate how the encoding works. Consider tuples of words over the alphabet
{0, 1}. We can construct an automaton to accept the (encoding of) languageL of pairs
(w,w′) such that‖w‖ = ‖w′‖ (‖w‖ denotes the length of the wordw) andwi 6= w′

i for
1 ≤ i ≤ ‖w‖, i.e., we flip 0’s and1’s in w andw′. One possible encoding is to “stack”
the two words,i.e., put one on top of the other, and we consider the product alphabet

{00,
0
1,

1
0,

1
1}. With this encoding, we can easily construct an automaton that acceptsL, for

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 17

example, the automaton with one stateq andq is both initial and final, having transitions

(q, 01) −→ q and(q, 10) −→ q.

This idea can be extended to tree automata on tuples with “overlapping” of the terms.
For any finite ranked alphabetF , we defineFn = (F ∪ {]})n, where] is a new symbol
of arity 0. We consider only binary terms, since generaln-ary symbols can be simulated
with a linear number of binary symbols in the arity of the symbol. We define the arity of
the symbols as the maximum of the arities of the components,i.e., arity(f1, . . . , fn) =
max{arity(f1), . . . , arity(fn)}. Since] is of arity 0, the symbol(], . . . ,]) is of arity 0,i.e.,
a constant. We denote byFn

m the set of symbols inFn of arity m.
For example, considerF = {a, f(·, ·)}, wherea is a constant andf is a binary symbol.

ThenF2 is the set{aa, af, a], fa, ff, f],]a,]f,]]} andF2
2 is {af, fa, ff, f],]f}.

Example5.4 (TUPLE ENCODING). Consider the termst1 = f(f(>,>),⊥) andt2 =
f(>, f(⊥,>)). We show below how to encode the tuple〈t1, t2〉.

f

��
� 11

1

f

��
� 00

0 ⊥

> >

f

 00

0

> f

��
� 00

0

⊥ >

ff

uuu
uu III

II

f>
��
� 77

7 ⊥f

��
� 77

7

>] >]]⊥]>
(a) t1 (b) t2 (c) encoding of(t1, t2)

Definition 5.5 (TREE AUTOMATA ON TUPLES). LetF be a ranked alphabet. Afinite
tree automaton onn-tuplesoverF is a tree automatonA = (Q,Fn, QF ,∆) overFn

(defined above), whereQ is a finite set ofstates, QF ⊆ Q is a set offinal states, and∆ is
a set oftransition rulesof the form

f(q1, . . . , qm) −→ q

wheren ≥ 0, f ∈ Fn
m, q, q1, . . . , qm ∈ Q.

Example5.6 AUTOMATON ON TUPLES. Consider the automaton where

Q = {qf}
F = {a, f(·, ·)}

QF = {qf}

∆ =
{

aa −→ qf

ff(qf , qf) −→ qf

}
One can verify that this automaton accepts the tree language{(t, t) | t ∈ T (F)}.

Let t = (f1, . . . , fi, . . . , fn). Define ti = fi (the i-th componentof t) and t−i =
(f1, . . . , fi−1, fi+1, . . . , fn) (thei-th projectionof t).

We now define two important operations on relations, projection and cylindrification.

Definition 5.7 (PROJECTION ANDCYLINDRIFICATION). If R ⊆ T (F)n (n ≥ 1) and
1 ≤ i ≤ n, then thei-th projectionof R is the relationR−i ⊆ T (F)n−1 defined by

∀t1, . . . , tn ∈ T (F).(R−i(t1, . . . , tn−1) ⇔ ∃t ∈ T (F).R(t1, . . . , ti−1, t, ti, . . . , tn−1))
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · Su et al.

If R ⊆ T (F)n (n ≥ 0) and1 ≤ i ≤ n + 1, then thei-th cylindrificationof R is the
relationR+i ⊆ T (F)n+1 defined by

∀t, t1, . . . , tn ∈ T (F).(R+i(t1, . . . , ti−1, t, ti, . . . , tn) ⇔ R(t1, . . . , ti−1, ti, . . . , tn))

We summarize here results on tree automata that we use. More details can be found
in [Gécseg and Steinby 1984; Comon et al. 2002].

Theorem5.8 (DECIDABLE EMPTINESS). The emptiness problem for tree automata is
decidable. In fact, it can be decided in linear time in the size of the automaton.

Theorem5.9 (CLOSUREPROPERTIES). Tree automata are closed under intersection,
union, complementation, cylindrification, and projection.

One can view intersection as the equivalent of Boolean “and”∧, union as the Boolean
“or” ∨, complementation as the Boolean negation¬, projection as existential quantification
∃. Cylindrification is used to ensure that two automata represent solutions over a common
set of variables, so that their intersection can be taken.

5.2 A Decision Procedure for the Monadic Fragment

Recall that we consider a monadic signature in this section. We reduce the validity of
a formulaφ to the emptiness decision of a tree automaton. We proceed by structural
induction on the formulaφ. We assume the formula is normalized so that it uses only
the connectives∧, ¬, and∃. In addition, w.l.o.g., we assume the literals of the formula
are of the formx ≤ y, x = ⊥, x = >, andx = f(y). We first consider the cases with
quantifiers and boolean connectives:

∃x.φ Let A1 be the automaton forφ. We construct an automatonA for ∃x.φ by

taking the projection ofA1 w.r.t. thex component of the tuple.5

¬φ Let A1 be the automaton forφ. We construct an automatonA for ¬φ by com-
plementingA1.

φ1 ∧ φ2 LetA1 andA2 be the automata forφ1 andφ2. We constructA′1 andA′2 for
φ1 andφ2 by cylindrifyingA1 andA2 so thatA′1 andA′2 agree on all the components.
Then constructA for φ1 ∧ φ2 by intersectingA′1 andA′2.

The other cases are for the base predicates:

x = ⊥ We construct the automaton

A = ({qf},F1, {qf}, {⊥ −→ qf})

x = > We construct the automaton

A = ({qf},F1, {qf}, {> −→ qf})

x = f(y) We illustrate the construction for the case where there is one other unary
function symbolg in addition tof . The constants are⊥ and>. We construct the
following automaton

A = ({qf , qg, q⊥, q>, q]},F2, {qf},∆)

5Notice that only trees that are encodings of tuples of trees are considered during an automata projection.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 19

to accept all the pairs of(x, y) wherex = f(y). The transitions∆ is constructed
recursively. We useqs as the state in which we are expecting ans for thex-component
(i.e., the first component).
Here are the cases where we expect anf for thex component and in which we accept:

f⊥(q⊥) −→ qf

f>(q>) −→ qf

ff(qf) −→ qf

fg(qg) −→ qf

Here are the cases where ag is expected for thex component:

g⊥(q⊥) −→ qg

g>(q>) −→ qg

gf(qf) −→ qg

gg(qg) −→ qg

Here are the base cases:

⊥] −→ q⊥

>] −→ q>

One can easily show with an induction that the constructed automaton accepts the lan-
guage{(x, y) | x = f(y)}.
x ≤ y We illustrate the construction forf . We assumef is covariant in its argument.

The construction is easily extensible to the case with more function symbols, with func-
tion symbols of binary or greater arities, and with function symbols with contravariant
arguments.
Forα ≤ β to hold, we have the following cases:
—α is⊥;
—β is>;
—α = f(α1) andβ = f(β1), whereα1 ≤ β1.
We construct the automaton

A = ({ql, qr, qf},F2, {qf},∆)

The transition relation∆ is constructed in pieces. We first have the atomic cases where
α andβ are either⊥ or>:

⊥⊥ −→ qf

⊥> −→ qf

>> −→ qf

Then we have the cases whereα = ⊥ andβ = f(β1) or β = > andα = f(α1):

⊥f(ql) −→ qf

f>(qr) −→ qf

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · Su et al.

The stateql is used to signify that the left component can only be], i.e., the component
isn’t there. We still need to complete the right component. Forql, we have the rules:

]⊥ −→ ql

]> −→ ql

]f(ql) −→ ql

The case forqr is symmetric, and we have the rules:

⊥] −→ qr

>] −→ qr

f](qr) −→ qr

Finally we have the case whereα = f(α1) andβ = f(β1). In this case, we require the
subterms to be related. Thus we have the rule:

ff(qf) −→ qf

One can easily verify that the automaton indeed recognizes the solutions ofα ≤ β.

Thus the first-order theory of non-structural subtyping restricted to unary function sym-
bols is decidable. In addition, note that for structural subtyping, the only changes are in the
casex ≤ y, and can be easily expressed with tree automata. By using an acceptor model
for infinite trees and using top-down automata, we can easily adapt this construction for
infinite words.

Theorem5.10. The first-order theory of non-structural subtyping with unary function
symbols is decidable. This holds both for the finite and infinite words and for structural
subtyping as well.

PROOF. Follows immediately from the above construction and the properties of tree
automata.

To illustrate our construction, an example encoding of an entailment problem is given in
Appendix A.

5.3 Extending to Arbitrary Signatures

We now discuss the issues with extending the described approach to arbitrary signatures.
There are two related difficulties in extending our approach to the full first-order theory
over arbitrary signatures. First, although we can easily express the solutions tox ≤ y with
a standard tree automaton, we cannot express the solutions tox = f(y, z) with a standard
tree automaton for any binary symbolf , because the set{〈t1, t2, t3〉 | t1 = f(t2, t3)} is
not regular [Comon et al. 2002]. An extended form of tree automata on tuples is required,
which belongs to the class oftree automata on tuples with component-wise tests(TACT).
Such automata allow machines to test relationships between tuple components [Treinen
2000]. Because this class of tree automata is not closed under projection, it does not extend
to the full first-order theory. However, this class of automata is still interesting because it
can encode the existential or equivalently the universal fragments of the first-order theory.
Therefore, we can reduce non-structural subtype entailment to the emptiness problem over
a restricted class of TACT. We believe this reduction is a promising direction in resolving
the decidability of non-structural subtype entailment.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 21

5.3.1 Expressingx ≤ y over Arbitrary Signatures.We first show how to encode the
solutions tox ≤ y for the general case over arbitrary signatures. In particular, it is sufficient
to consider the case with a binary function symbol, sayf . Forx ≤ y to hold, we have the
following cases:

—x is⊥;

—y is>; or

—x = f(x1, x2) andy = f(y1, y2), andx1 ≤ y1 andx2 ≤ y2.

We construct the automaton

A = ({ql, qr, qf},F2, {qf},∆)

with the transition relation∆ constructed in pieces. First, we have the atomic cases where
x andy are either⊥ or>:

⊥⊥ −→ qf

⊥> −→ qf

>> −→ qf

Then we have the cases wherex = ⊥ andy is a product type, ory = > andx is a
product type:

⊥f(ql, ql) −→ qf

f>(qr, qr) −→ qf

Similar to our construction for the monadic fragment, the stateql is used to signify that the
left component can only be], i.e., the particular component is not there. We still need to
complete the right component. Forql, we have the rules:

]⊥ −→ ql

]> −→ ql

]f(ql, ql) −→ ql

The case forqr is symmetric, and we have the rules:

⊥] −→ qr

>] −→ qr

f](qr, qr) −→ qr

Finally we have the case where bothx andy are product types. In this case, we require the
corresponding subterms to be related by the subtype ordering. Thus we have the rule:

ff(qf , qf) −→ qf

It expresses the following structural decomposition rule:

f(τ1, τ2) ≤ f(τ ′1, τ
′
2) iff τ1 ≤ τ ′1 andτ2 ≤ τ ′2

One can easily verify that the automaton indeed recognizes the solutions tox ≤ y.
Because of the closure properties of tree automata, we can obtain an automaton repre-

sentation ofx � y by complementing the one constructed forx ≤ y. However, in order
to give an additional example, we show a direct construction forx � y. The automaton

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · Su et al.

construction is similar to the construction forx ≤ y. The reader is invited to verify the
following construction of the automaton

A = ({q, ql, qr, qf},F2, {qf},∆)

where∆ is given by the following transitions:

>⊥ −→ qf

>f(ql, ql) −→ qf

f⊥(qr, qr) −→ qf

ff(qf , q) −→ qf

ff(q, qf) −→ qf

]⊥ −→ ql

]> −→ ql

]f(ql, ql) −→ ql

⊥] −→ qr

>] −→ qr

f](qr, qr) −→ qr

⊥⊥ −→ q

⊥> −→ q

⊥f(ql, ql) −→ q

ff(q, q) −→ q

f⊥(qr, qr) −→ q

f>(qr, qr) −→ q

>⊥ −→ q

>f(ql, ql) −→ q

>> −→ q

The meaning of statesql andqr is the same as in the casex ≤ y. The stateq is used
to recognize all the possible pairs of terms. Notice that our construction can be easily
extended to handle contravariant type constructors.

5.3.2 Constrained Automata.Recall that the only type of literals not expressible with
standard tree automata is of the formx = f(y, z). Our idea is to separate the regular part of
subtype constraints (i.e., expressible with tree automata) and the non-regular part (i.e., not
expressible with tree automata). To achieve this, we introduce the notion of aconstrained
tree automaton, a special case of a tree automaton with component-wise tests [Treinen
2000] where tests can only be performed at the root of the tree being tested for acceptance.
Interested readers are referred to [Treinen 2000; Comon et al. 2002] for more details on
tree automata with tests.

Consider a tree automatonA on n-tuples over the ranked alphabetF . We name itsn
componentsx1, . . . , xn. We are interested in the following decision problem: GivenA
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 23

andC, whereC is a set of equations (i.e., unification constraints) overx1, . . . , xn andF ,
decide whether there exist treest1, . . . , tn such that:

(1) 〈t1, . . . , tn〉 is accepted byA.

(2) The valuationh with h(xi) = ti satisfiesC.

We call such an automaton with equations aconstrained automaton, and denote it by
〈A, C〉. Next, we give an example constrained automaton.

Example5.11 (CONSTRAINED AUTOMATA). Consider the automatonA where

Q = {qf}
F = {a, f(·, ·)}

QF = {qf}

∆ =
{

aa −→ qf

ff(qf , qf) −→ qf

}
and the set of equationsC = {x1 = f(x2, x2)}.

Notice that the constrained automaton〈A, C〉 does not accept any finite trees. However,
it does accept some infinite trees. For example, take bothx1 andx2 to be the complete
infinite tree,i.e., x1 = x2 = t, wheret is the unique solution tot = f(t, t).

5.3.3 Expressing Subtype Entailment with Constrained Automata.We now show how
to reduce subtype entailment (structural or non-structural, finite or recursive) to the empti-
ness problem for constrained automata.

Consider a subtype entailment problemC � x ≤ y. It holds if and only if the constraint

C ′ def= C ∧ x � y

does not have a solution, because each solution toC ′ corresponds to a witness to the non-
entailment ofC � x ≤ y. The idea is to use a constrained automaton to express all
the solutions to the constraintC ∧ x � y. Let C = {τ1 ≤ τ ′1, . . . , τn ≤ τ ′n}. Then
C is equivalent to the single constraintτ ≤ τ ′, whereτ = f(τ1, f(τ2, f(. . . , τn))) and
τ ′ = f(τ ′1, f(τ ′2, f(. . . , τ ′n))). For example, letC be the following set of constraints:

{x1 ≤ f(y1, f(z1,⊥)), f(>, y1) ≤ y2, f(⊥, z1) ≤ y1}

It is equivalent to the following constraint:

f(x1, f(f(>, y1), f(⊥, z1))) ≤ f(f(y1, f(z1,⊥)), f(y2, y1))

Next, we introduce two fresh type variablesx′ andy′. LetA be the tree automaton con-
structed for the constraintsx′ ≤ y′ andx � y. Now, consider the constrained automaton

〈A, {x′ = τ, y′ = τ ′}〉

It is obvious that〈A, {x′ = τ, y′ = τ ′}〉 is empty if and only ifC � x ≤ y.
This is a simple and straightforward reduction. There is a special property about the

constructed automaton for subtype entailment: The tree automata component consists of
an automaton with a bounded number of states. Next, we show that general constrained
automata emptiness is undecidable. The proof crucially relies upon the fact that the tree
automaton component has an unbounded number of states. Therefore, it is open whether
constrained automata emptiness is decidable if the associated tree automaton has a bounded

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · Su et al.

ffff

jjjjjjjj
WWWWWWWWWWW

ffff

ppp
pp SSSSSSS (1001)(100)(10011)(10011)

ffff

www
w NNNN (1)(10)(1001)(100)

⊥⊥ff

zzz
z GGG

G (ε)(ε)(1)(10)

]]⊥⊥]](ε)(ε)

Fig. 7. A solution to the PCP instance〈1, 10〉, 〈001, 0〉, 〈1, 11〉 viewed as a tuple tree.

number of states. Its decidability would imply the decidability of non-structural subtype
entailment.

5.3.4 Undecidability of the Constrained Automata Emptiness Problem.In this part,
we show that the emptiness problem for constrained automata is undecidable. Our result
holds for any signature with at least a binary (or larger arity) function symbolf(,) and
⊥. This again is the smallest signature for our result to hold. Indeed, one can show that
emptiness is decidable when only unary symbols and constants are allowed, which follows
from the decidability of the monadic fragment (cf. Section 5). Our proof of undecidability
of emptiness for constrained automata is through a reduction from PCP.

Recall the PCP problem. Let〈pi, qi〉 for 1 ≤ i ≤ n be a PCP instance withpi and
qi being words over 0 and 1. The problem is to decide whether there exists a non-empty
sequences1, . . . , sm with si ∈ [1, n], such thatps1 . . . psm

= qs1 . . . qsm
.

We adapt and simplify a proof of Treinen [Treinen 2001]. First, we recall from Sec-
tion 3.1.1 the encoding of a wordw over 0 and 1 with a treec(w) over the alphabet
{f(,),⊥}:

—c(ε) = f(⊥,⊥);
—c(0w) = f(c(w),⊥);
—c(1w) = f(⊥, c(w)).

A key step in our reduction is the encoding of solutions to a PCP instance as 4-tuples
of trees over the alphabet{f(,),⊥}. Certainly there are many possible encodings of PCP
solutions, however, we need one that can be recognized by a constrained automaton. We
explain our encoding with an example. Consider the PCP instance〈1, 10〉, 〈001, 0〉, 〈1, 11〉.
One solution for it is1.001.1 = 10.0.11 = 10011. We show how to encode this solution
with the tree in Figure 7. In our encoding, for a simpler presentation we use(w) to denote
the wordw’s corresponding tree representationc(w).

We now explain how to interpret our encoding in Figure 7 of the PCP solution. The
three subtrees(ε)(ε)(1)(10), (1)(10)(1001)(100), and(1001)(100)(10011)(10011) form
a sequence, which corresponds to the three steps in the PCP solution:

—(ε)(ε)(1)(10): appending〈1, 10〉 to 〈ε, ε〉;
—(1)(10)(1001)(100): appending〈001, 0〉 to 〈1, 10〉;
—(1001)(100)(10011)(10011): appending〈1, 11〉 to 〈1001, 100〉.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 25

To make sure that our encoding does correspond to a PCP solution, we also need to make
sure that the intermediate results are carried over from one step to the next,i.e., the third
and fourth components (underlined below) of a step must be the same as the first and
second components (underlined below) of the following step:

—From(ε)(ε)(1)(10) to (1)(10)(1001)(100);
—From(1)(10)(1001)(100) to (1001)(100)(10011)(10011).

Finally, because the third and fourth components of(1001)(100)(10011)(10011) are the
same, we indeed have a solution for the particular PCP instance.

Next, we show how to construct a constrained automaton to recognize all (and only) tree
encodingst of solutions to a PCP problem. We proceed with the following steps:

(Step 1) To enforce that each right subtree of the main spine oft corresponds to a valid
PCP construction step (with a standard tree automaton);

(Step 2) To enforce that the right-most subtree’s third and fourth components are the same
(with a standard tree automaton);

(Step 3) To enforce that the correct intermediate results are carried over from one step to
the next (with equality constraints).

Step 1. We construct an automatonA to accept all tree encodings of word tuples of the
form 〈w,w′, wpi, w

′qi〉 for somei, i.e.,

L(A) = {〈w,w′, v, v′〉 | ∃i.v = wpi ∧ v′ = w′qi}

This automaton is used to encode a single step in the PCP construction. For a particular
i, we construct two automataA1 andA2 to accept respectively all the tuples〈w,wpi〉 and
〈w′, w′qi〉. We can then constructA for the above defined tree language fromA1 andA2

because tree automata are closed under cylindrification, union, and intersection.
In particular, for the automatonA1 associated withpi = l1 . . . lk, wherelj∈{1..k} ∈

{0, 1}, we have the following set of transition rules (whenk > 0):

ff(rf , r⊥) −→ rf

ff(r⊥, rf) −→ rf

ff(r0, r⊥) −→ rf if l1 = 0
ff(r⊥, r0) −→ rf if l1 = 1

⊥f(r]⊥, r]⊥) −→ r0 if k = 1
⊥f(r1, r]⊥) −→ r0 if k > 1 andl2 = 0
⊥f(r]⊥, r1) −→ r0 if k > 1 andl2 = 1
]f(rj , r]⊥) −→ rj−1 if j > 1 andlj = 0
]f(r]⊥, rj) −→ rj−1 if j > 1 andlj = 1

⊥⊥ −→ r⊥
]⊥ −→ r]⊥
]⊥ −→ rk

Fork = 0 (i.e., pi = ε), we simply have:

ff(rf , r⊥) −→ rf

ff(r⊥, rf) −→ rf

ff(r⊥, r⊥) −→ rf

⊥⊥ −→ r⊥

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · Su et al.

In our construction, the only final state isrf .
We perform a similar construction for the automatonA2 that is associated with the

word qi. Then we can apply cylindrification and intersection to obtain an automaton that
constructs a PCP step with the particular pair〈pi, qi〉. We apply the same construction to
eachi to obtainn automata. With these automata as sub-automata, we can construct an
automatonA to accept the language that represents a PCP step,i.e., 〈w,w′, wpi, w

′qi〉 for
somei, which is achieved by taking the union of the tree automata for eachi.

Step 2. In the next step, we construct an automaton to accept all the tuples〈w1, w2, w, w〉,
with the same third and fourth components. We first construct the following automaton to
accept all the pairs of equal words〈w,w〉:

⊥⊥ −→ sf

ff(sf , sf) −→ sf

wheresf is the only state and also the final state. By applying cylindrification twice on
this automaton, we get an automaton that accepts the language〈w1, w2, w, w〉. Taking the
intersection of this automaton with the automatonA constructed in the previous step, we
getA′.

Step 3. In this final step, in order to ensure that our encoding does correspond to a PCP
solution, we need to make sure the intermediate results are carried over from one step to
the next correctly. The main difficulty is to enforce this requirement with constraints at the
root of the tree. In fact, it is surprising this can be achieved at all. To see what we need to
enforce, consider again the example in Figure 7. Letx,y,u,andv corresponds to the first,
second, third, and fourth components respectively. Notice thatu = f(x, c(10011)) and
v = f(y, c(10011)), wherec(10011) denotes the tree encoding of the word10011. On the
other hand, notice that in general, if we requireu = f(x,w) andv = f(y, w) for somew,
thenx,y, u, andv does meet our third requirement.

Here is how our construction works. We construct an automaton withA andA′ as its
sub-automata. Here are the transition rules:

]]⊥⊥ −→ t]⊥
]]ff(t]⊥, t]⊥) −→ t]f
⊥⊥ff(t]⊥, t]f) −→ t0

ffff(t0, rf) −→ t0 for every final staterf of A
ffff(t0, sf) −→ t for every final statesf of A′

wheret is the only accepting state. We then cylindrify this automaton to add a fifth com-
ponent to obtain our final automatonAP . It accepts our encoding in Figure 7. The tree
where nodes are labelled with their corresponding states is given in Figure 8.

We name the five components ofAP with the variablesx,y,u,v, andw. The equal-
ity constraint component of our constrained automaton consists of two equations:u =
f(x,w) andv = f(y, w). This step completes our reduction from PCP to the constrained
automata emptiness problem. One can verify the correctness of our construction,i.e., the
PCP instanceP is solvable if and only ifL(AP) is not empty.

Theorem5.12 (SOUNDNESS ANDCOMPLETENESS). The PCP instanceP is solvable
iff there is a tuple of trees〈x, y, u, v, w〉 ∈ L(AP) and satisfies the unification constraints
u = f(x,w) andv = f(y, w).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 27

t ffff

jjjjjjjjj
QQQQQQ

t0 ffff

nnnnn
TTTTTTT

sf m

t0 ffff

qqqq PPPPP
rf (1)(10)(1001)(100)

t0 ⊥⊥ff

sss
s LLLL

rf (ε)(ε)(1)(10)

t]⊥]]⊥⊥ t]f]](ε)(ε)

Fig. 8. The solution tree in Figure 7 labelled with state information, wherem stands for the word tree
(1001)(100)(10011)(10011).

6. RELATED WORK

There are a few previous results on constraint simplification regarding subtype and set
constraints. Henglein and Rehof consider the problem of subtype constraint entailment of
the formC � α ≤ β, whereC is a constraint set with subtype constraints andα andβ are
type variables [Henglein and Rehof 1997; 1998]. The types are constructed from a finite
lattice of base elements with the function (→) and product (×) constructors. They prove
the following results:

(1) Structural subtype entailment over finite types is coNP-complete [Henglein and Rehof
1997].

(2) Structural subtype entailment over recursive types is PSPACE-complete [Henglein and
Rehof 1998].

(3) Non-structural subtype entailment over finite types is PSPACE-hard [Henglein and
Rehof 1998].

(4) Non-structural subtype entailment over recursive types is PSPACE-hard [Henglein and
Rehof 1998].

Niehren and Priesnitz consider the problem of non-structural subtype entailment. They
show that a natural subproblem is PSPACE-complete [Niehren and Priesnitz 1999] and
characterize non-structural subtype entailment over the signature{f(,),⊥,>} with so-
called P-automata [Niehren and Priesnitz 2003]. They leave open the decidability of non-
structural subtype entailment for this particular signature. Furthermore, it is not known
whether this approach can be extended to work on arbitrary signatures.

Niehrenet al. consider the entailment problem ofatomic set constraints, a restricted
class of set constraints without union and intersections and interpreted over the Herbrand
universe. They show entailment of the formC � α ⊆ β is PSPACE-complete for atomic
set constraints [Niehren et al. 1999]. Flanagan and Felleisen consider the problem of sim-
plifying a variant of atomic set constraints. They show existential entailmentC1 � ∃E.C2

for this class of constraints is decidable (in exponential time) by reducing existential en-
tailment to regular tree grammar containment and PSPACE-hard by a reduction from non-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · Su et al.

deterministic finite state automata containment [Flanagan and Felleisen 1997]. They do
not give an exact characterization of the complexity of the problem.

Entailment problems for conditional equality constraints [Steensgaard 1996] (a weaker
form of non-structural subtype constraints) are studied in [Su and Aiken 2001]. Both
entailment and existential entailment are PTIME-complete. This is in contrast to a simple
extension, for which existential entailment is coNP-complete.

A few researchers consider semantic notions for subtype constraint simplification. The
most powerful one is the notion ofobservational equivalencedefined in [Trifonov and
Smith 1996]. Intuitively, observational equivalence says that from the analysis point of
view replacing one constraint set with an equivalent one does not change the observable
behavior of the constraint system. A similar notion is used in [Pottier 1996] for simplifying
subtype constraints.

There is also related work in term rewriting and constraint solving over trees in gen-
eral [Comon and Treinen 1994; Comon 1990]. The work in this paper is inspired by work
in this area. Maher shows the first-order theory of finite trees, infinite trees, and rational
trees is decidable by giving a complete axiomatization [Maher 1988]. Many researchers
consider various order relations among trees, similar to the subtype orders. Venkataraman
study the first-order theory of subterm ordering over finite trees. The existential fragment
is shown to be NP-complete and the∃∀-fragment to be undecidable [Venkataraman 1987].
Müller et al. study the first order theory of feature trees and show it undecidable [Müller
et al. 2001]. Comon and Treinen show the first-order theory of lexicographic path or-
dering is undecidable [Comon and Treinen 1997]. Automata-theoretic constructions are
used to obtain decidability results for many theories. Büchi uses finite word automata to
show the decidability of WS1S and S1S [Büchi 1960]. Finite automata are also used to
construct alternative proofs of decidability of Presburger arithmetic [Wolper and Boigelot
1995; Boudet and Comon 1996], and Rabin’s decidability of WS2S and S2S are based on
tree automata [Rabin 1969].

7. CONCLUSION

In this paper, we have shown that the first-order theory of non-structural subtype con-
straints is undecidable via a reduction from the Post’s Correspondence Problem (PCP).
Our result holds both for finite and infinite trees and for any type signature with at least
one binary type constructor and a least element⊥. This result yields a technical separation
of structural subtyping and non-structural subtyping. We have also shown that the first-
order theory of subtype constraints with unary function symbols is decidable. To express
subtype entailment over arbitrary signatures, we have introduced the class of constrained
tree automata. Our automata-theoretic construction bridges automata theory and subtyping
problems, which provides an alternative approach to tackle these problems. We consider
this work a step towards resolving the longstanding open questions about subtyping. The
most outstanding problems are the decidability of non-structural subtype entailment and
subtyping constrained types.

Acknowledgments

This research was supported in part by the National Science Foundation grant No. CCR-
0085949 and NASA Contract No. NAG2-1210.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 29

REFERENCES

A IKEN , A. AND WIMMERS, E. 1993. Type inclusion constraints and type inference. InProceedings of the 1993
Conference on Functional Programming Languages and Computer Architecture. Copenhagen, Denmark, 31–
41.

A IKEN , A., WIMMERS, E., AND LAKSHMAN , T. 1994. Soft typing with conditional types. InProceedings of
the 21th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 163–173.

A IKEN , A., WIMMERS, E., AND PALSBERG, J. 1997. Optimal representations of polymorphic types with
subtyping. InProceedings of 3rd International Symposium on Theoretical Aspects of Computer Software
(TACS’97). 47–76.

AMADIO , R. AND CARDELLI , L. 1993. Subtyping recursive types.ACM Transactions on Programming Lan-
guages and Systems 15,4, 575–631.

ANDERSEN, L. 1994. Program analysis and specialization for the C programming language. Ph.D. thesis, DIKU,
University of Copenhagen. DIKU report 94/19.

BOUDET, A. AND COMON, H. 1996. Diophantine equations, Presburger arithmetic and finite automata. In
Proceedings of Trees in Algebra and Programming (CAAP’96). Lecture Notes in Computer Science, vol.
1059. Springer-Verlag, 30–43.

BÜCHI, J. 1960. Weak second order logic and finite automata.Z. Math. Logik, Grundlag. Math. 5, 66–62.

COMON, H. 1990. Solving symbolic ordering constraints.International Journal of Foundations of Computer
Science 1,4, 387–411.

COMON, H., DAUCHET, M., GILLERON, R., JACQUEMARD, F., LUGIEZ, D., TISON, S.,
AND TOMMASI , M. 2002. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata .

COMON, H. AND TREINEN, R. 1994. Ordering constraints on trees. InColloquium on Trees in Algebra and Pro-
gramming, S. Tison, Ed. Lecture Notes in Computer Science, vol. 787. Springer Verlag, Edinburgh, Scotland,
1–14.

COMON, H. AND TREINEN, R. 1997. The first-order theory of lexicographic path orderings is undecidable.
Theoretical Computer Science 176, 67–87.

FÄHNDRICH, M. AND A IKEN , A. 1996. Making set-constraint based program analyses scale. InFirst Workshop
on Set Constraints at CP’96. Cambridge, MA. Available as Technical Report CSD-TR-96-917, University of
California at Berkeley.

FLANAGAN , C. AND FELLEISEN, M. 1997. Componential set-based analysis. InProceedings of the 1997 ACM
SIGPLAN Conference on Programming Language Design and Implementation.

FLANAGAN , C., FLATT, M., KRISHNAMURTHI, S., WEIRICH, S.,AND FELLEISEN, M. 1996. Catching bugs
in the web of program invariants. InProceedings of the 1996 ACM SIGPLAN Conference on Programming
Language Design and Implementation. 23–32.

GÉCSEG, F. AND STEINBY, M. 1984.Tree Automata. Akademiai Kiado.

HEINTZE, N. 1994. Set based analysis of ML programs. InProceedings of the 1994 ACM Conference on LISP
and Functional Programming. 306–17.

HENGLEIN, F. AND REHOF, J. 1997. The complexity of subtype entailment for simple types. InProceedings of
the 12th Annual IEEE Symposium on Logic in Computer Science (LICS). 352–361.

HENGLEIN, F. AND REHOF, J. 1998. Constraint automata and the complexity of recursive subtype entailment.
In Proceedings of the 25th International Colloquium on Automata, Languages, and Programming (ICALP).
616–627.

KOZEN, D., PALSBERG, J.,AND SCHWARTZBACH, M. 1993. Efficient recursive subtyping. InProceedings of
the 20th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 419–428.

KOZEN, D., PALSBERG, J., AND SCHWARTZBACH, M. 1994. Efficient inference of partial types.Journal of
Computer and System Sciences (JCSS) 49,2, 306–324.

KUNCAK , V. AND RINARD , M. 2003. Structural subtyping of non-recursive types is decidable. InProceedings
of the 18th Annual IEEE Symposium on Logic in Computer Science (LICS). 96–107.

MAHER, M. 1988. Complete axiomatizations of the algebras of the finite, rational and infinite trees. InProceed-
ings of the Third IEEE Symposium on Logic in Computer Science. Computer Society Press, Edinburgh, UK,
348–357.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · Su et al.

MARLOW, S. AND WADLER, P. 1997. A practical subtyping system for Erlang. InProceedings of the Interna-
tional Conference on Functional Programming (ICFP ’97). 136–149.

M ILNER, R. 1978. A theory of type polymorphism in programming.Journal of Computer and System Sci-
ences 17,3 (Dec.), 348–375.

M ITCHELL , J. 1991. Type inference with simple types.Journal of Functional Programming 1,3, 245–285.

M ÜLLER, M., NIEHREN, J.,AND TREINEN, R. 2001. The first-order theory of ordering constraints over feature
trees.Discrete Mathematics and Theoretical Computer Science 4,2 (Sept.), 193–234.

NIEHREN, J., MÜLLER, M., AND TALBOT, J. 1999. Entailment of atomic set constraints is pspace-complete. In
Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science (LICS). 285–294.

NIEHREN, J. AND PRIESNITZ, T. 1999. Entailment of non-structural subtype constraints. InAsian Computing
Science Conference. Number 1742 in LNCS. Springer, 251–265.

NIEHREN, J. AND PRIESNITZ, T. 2003. Non-structural subtype entailment in automata theory.Information and
Computation 186,2. Special Issue of TACS 2001.

ODERSKY, M. AND WADLER, P. 1997. Pizza into Java: Translating theory into practice. InProceedings of the
24th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Paris, France,
146–159.

PALSBERG, J. AND O’K EEFE, P. 1995. A type system equivalent to flow analysis.ACM Transactions on
Programming Languages and Systems 17,4, 576–599.

PALSBERG, J. AND SCHWARTZBACH, M. 1991. Object-oriented type inference. InProceedings of the ACM
Conference on Object-Oriented programming: Systems, Languages, and Applications. 146–161.

POST, E. 1946. A variant of a recursively unsolvable problem.Bull. of the Am. Math. Soc. 52.

POTTIER, F. 1996. Simplifying subtyping constraints. InProceedings of the 1996 ACM SIGPLAN International
Conference on Functional Programming (ICFP ’96). 122–133.

POTTIER, F. 2001. Simplifying subtyping constraints: a theory.Information & Computation 170,2 (Nov.),
153–183.

RABIN , M. 1969. Decidability of second-order theories and automata on infinite trees.Transactions of the
American Mathematical Society 141, 1–35.

REHOF, J. 1998. The complexity of simple subtyping systems. Ph.D. thesis, DIKU.

SHIVERS, O. 1988. Control flow analysis in Scheme. InProceedings of the 1988 ACM SIGPLAN Conference on
Programming Language Design and Implementation. 164–174.

STEENSGAARD, B. 1996. Points-to analysis in almost linear time. InProceedings of the 23rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 32–41.

SU, Z. AND A IKEN , A. 2001. Entailment with conditional equality constraints. InProceedings of European
Symposium on Programming. 170–189.

SU, Z., AIKEN , A., NIEHREN, J., PRIESNITZ, T., AND TREINEN, R. 2002. The first-order theory of subtyp-
ing constraints. InProceedings of the 29th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 203–216.

TREINEN, R. 1992. A new method for undecidability proofs of first order theories.Journal of Symbolic Compu-
tation 14,5 (Nov.), 437–457.

TREINEN, R. 2000. Predicate logic and tree automata with tests. InFoundations of Software Science and
Computation Structures, J. Tiuryn, Ed. Vol. LNCS 1784. Springer, 329–343.

TREINEN, R. 2001. Undecidability of the emptiness problem of reduction automata with component-wise tests.
Available athttp://www.lsv.ens-cachan.fr/˜treinen/publications.html .

TRIFONOV, V. AND SMITH , S. 1996. Subtyping constrained types. InProceedings of the 3rd International Static
Analysis Symposium. 349–365.

VENKATARAMAN , K. 1987. Decidability of the purely existential fragment of the theory of term algebras.
Journal of the ACM 34,2 (Apr.), 492–510.

WOLPER, P. AND BOIGELOT, B. 1995. An automata-theoretic approach to presburger arithmetic constraints. In
Static Analysis Symposium. 21–32.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 31

A. AN EXAMPLE

We give an example in this section to demonstrate our automata construction in Sec-
tion 5. Consider the alphabetF = {⊥,>, g(·)}. We want to decide the entailment
{x ≤ g(y), g(x) ≤ y} � x ≤ y.

This entailment holds. We reason with a proof by contradiction. Suppose the entailment
does not hold. Then there exist two treest1 andt2 such that (1)t1 ≤ g(t2) andg(t1) ≤ t2;
and (2)t1 � t2. Chooset1 andt2 to be trees such that‖t1‖ + ‖t2‖ is minimized. Notice
thatt1 = g(t′1) andt2 = g(t′2) for somet′1 andt′2, otherwise,t1 andt2 cannot witness the
non-entailment. However, then we haveg(t′1) ≤ g(g(t′2)), i.e., t′1 ≤ g(t′2) andg(g(t′1)) ≤
g(t′2), i.e., g(t′1) ≤ t′2. Furthermore,t′1 � t′2 sincet1 = g(t′1) � g(t′2) = t2. Thus,t′1 and
t′2 also witness the non-entailment, a contradiction.

We demonstrate that the entailment holds with the technique presented in this paper.
After flattening the constraints, we consider the equivalent entailment

{x′ = g(x), y′ = g(y), x ≤ y′, x′ ≤ y} � x ≤ y

The above entailment is equivalent to deciding whether the constraints{x′ = g(x), y′ =
g(y), x ≤ y′, x′ ≤ y, x � y} are unsatisfiable.

We construct an automaton for each of the five constraints:

x′ = g(x) Consider the automaton where

Q = {q1, q2, qf}
F = {⊥,>, g(·)}2

QF = {qf}

∆ =


]⊥ −→ q1

⊥g(q1) −→ qf

]> −→ q2

>g(q2) −→ qf

gg(qf) −→ qf



The first component is forx, and the second component is forx′.

y′ = g(y) This is the same automaton as forx′ = g(x), with the first component for

y and the second component fory′.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · Su et al.

x ≤ y′ Consider the automaton where

Q = {q1, q2, qf}
F = {⊥,>, g(·)}2

QF = {qf}

∆ =



⊥⊥ −→ qf

⊥> −→ qf

>> −→ qf

]⊥ −→ q1

]> −→ q1

]g(q1) −→ q1

⊥g(q1) −→ qf

⊥] −→ q2

>] −→ q2

g](q2) −→ q2

g>(q2) −→ qf

gg(qf) −→ qf


The first component is forx, and the second component is fory′.

x′ ≤ y This is the same automaton as forx ≤ y′, with the first component forx′ and
the second component fory.

x � y Consider the automaton where

Q = {q1, q2, qf}
F = {⊥,>, g(·)}2

QF = {qf}

∆ =



>⊥ −→ qf

]⊥ −→ q1

]> −→ q1

]g(q1) −→ q1

>g(q1) −→ qf

⊥] −→ q2

>] −→ q2

g](q2) −→ q2

g⊥(q2) −→ qf

gg(qf) −→ qf


The first component is forx, and the second component is fory.

Now we apply cylindrification to the automata above.6 We use the following shorthand
for transition rules:

f1(f2 | f3)(q) −→ q′

6Before applying cylindrification, we need to make these automata complete. Because of space limitations and
the tediousness of the construction, we simply use the original automata to illustrate how cylindrification works.
The basic construction is the same regardless whether the automata are complete or not.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints · 33

is a shorthand for the two rules:

f1f2(q) −→ q′

f1f3(q) −→ q′

Forx′ = g(x), consider the automaton where

Q = {q1, q2, qf}
F = {⊥,>, g(·)}4

QF = {qf}

∆ =



/* derived from]⊥ −→ q1 */
](] | ⊥ | >)⊥(] | ⊥ | >) −→ q1

]g⊥(] | ⊥ | > | g)(q1) −→ q1

]g⊥(] | ⊥ | > | g)(q2) −→ q1

]g⊥(] | ⊥ | > | g)(qf) −→ q1

](] | ⊥ | >)⊥g(q1) −→ q1

](] | ⊥ | >)⊥g(q2) −→ q1

](] | ⊥ | >)⊥g(qf) −→ q1

/* derived from⊥g(q1) −→ qf */
⊥g(q1) −→ qf

⊥(] | ⊥ | > | g)g(] | ⊥ | > | g)(q1) −→ qf

/* derived from]> −→ q2 */
](] | ⊥ | >)>(] | ⊥ | >) −→ q2

]g>(] | ⊥ | > | g)(q1) −→ q2

]g>(] | ⊥ | > | g)(q2) −→ q2

]g>(] | ⊥ | > | g)(qf) −→ q2

](] | ⊥ | >)>g(q1) −→ q2

](] | ⊥ | >)>g(q2) −→ q2

](] | ⊥ | >)>g(qf) −→ q2

/* derived from>g(q2) −→ qf */
>(] | ⊥ | > | g)g(] | ⊥ | > | g)(q2) −→ qf

/* derived fromgg(qf) −→ qf */
g(] | ⊥ | > | g)g(] | ⊥ | > | g)(qf) −→ qf


This automaton is obtained from the automaton forx′ = g(x) above by applying cylin-

drification twice. The tuples are ordered byx, y, x′, andy′, i.e., the first component
corresponds tox, the second component corresponds toy, and so on.

The remaining four constraints{y′ = g(y), x ≤ y′, x′ ≤ y, x � y} are treated in
the same manner. Finally, we can construct the intersection of the five automata obtained
through cylindrification and verify that the language accepted by the intersection is empty.
With that, we can conclude that the entailment does indeed hold. We leave the remaining
construction to the reader.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

