The First-Order Theory of Subtype Constraints

ZHENDONG SU

University of California, Davis
and

ALEXANDER AIKEN
Stanford University

and

JOACHIM NIEHREN

INRIA Futurs, Lille

and

TIM PRIESNITZ

Universitat des Saarlandes
and

RALF TREINEN

ENS de Cachan, CNRS and INRIA Futurs

We investigate the first-order theory of subtype constraints. We show that the first-order theory of
non-structural subtyping is undecidable, and we show that in the case where all constructors are
either unary or nullary, the first-order theory is decidable for both structural and non-structural
subtyping. Our results hold for both simple and recursive types. The undecidability result is shown
by a reduction from the Post’s Correspondence Problem, and the decidability result is shown by
a reduction to a decision problem on tree automata. In addition, we introduce the notion of a
constrained tree automaton to express non-structural subtype entailment. This work is a step
towards resolving long-standing open problems of the decidability of entailment for non-structural
subtyping.

Categories and Subject Descriptors: D.Ridgramming Language$: Formal Definitions and Theory-seman-
tics,syntaxD.3.3 [Programming Language$: Language Constructs and Featuremnstraints,polymorphism
F.3.2 Logics and Meanings of Program§ Semantics of Programming Languagegregram analysisF.3.3
[Logics and Meanings of Program§ Studies of Program Constructdype structure F.4.0 Mathematical
Logic and Formal Language$: Formal Languages; F.4.0Mathematical Logic and Formal Language$:
Mathematical Logic

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: subtype constraints, type systems, tree automata, complexity

An earlier version [Su et al. 2002] of the paper was published in the Proceedings of the 29th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 203-216, January 2002.
Authors’ addresses: Zhendong Su, Department of Computer Science, University of California, Davis, CA
95616-8562. Alexander Aiken: Computer Science Department, Stanford University, Stanford, CA 94305-9025.
Joachim Niehren: Mostrare Project, INRIA Futurs, Lille, France. Tim Priesnitz: Programming Systems Lab,
Universi@at des Saarlandes, Sadrtken, Germany. Ralf Treinen: LSV, CNRS UMR 8643 and INRIA Futurs,
ENS de Cachan, 94235 Cachan Cedex, France.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1—

2 . Su et al.

1. INTRODUCTION

In this paper we present the first decidability and undecidability results for the first-order
theory of subtyping. Before describing our results, we begin with a capsule history of
subtyping, which motivates the first-order theory of subtyping as an interesting topic to
study.

Since the original results of Mitchell [Mitchell 1991], type checking and type inference
for subtyping systems have received steadily increasing attention. The primary motivations
for studying these systems today are program analysis algorithms based on subtyping (see,
for example, [Aiken et al. 1994; Andersen 1994; Flanagan et al. 1996; Heintze 1994;
Marlow and Wadler 1997; Palsberg and Schwartzbach 1991; Shivers 1988]) and, more
speculatively, richer designs for typed languages ([Odersky and Wadler 1997]).

Subtyping algorithms invariably involve systems of subtype constraints r», where
the r; are types that may contain type variables. There are two interesting questions we
can ask about a system of subtype constraihts

(1) DoesC have solutions (and what are they)?

(2) DoesC imply (or entail) another system of constrainf§? That is, is every solution
of C also a solution of’?

For (1), the basic algorithms for solving many natural forms of subtype constraints are
by now quite well understood (e.g., see [Rehof 1998]). For (2), there has been much less
progress on subtype entailment, although entailment is as important as constraint resolution
in applications of subtyping. For example, a type-based program analysis extracts some
system of constraint§’ from a program text; these constraints model whatever program
property is being analyzed. A client of the analysis (e.g., a program optimization system)
interacts with the analysis by asking queries: Does a particular constfakit hold
in C? Or in other words, doe§ entail; < 75? As another example, in designing a
language with expressive subtyping relationships, checking type interfaces also reduces to
a subtype entailment problem. While no mainstream language has such expressive power
today, language researchers have encountered just this problem in designing languages
that blend ML-style polymorphism with object-oriented style subtyping, which leads to
polymorphic constrained typdésee, again, discussion in [Odersky and Wadler 1997]).

There are two natural choices of subtype relation in the literastreictural subtyping
requires that types have exactly the same shape—read as{rees; cannot hold unless
the corresponding branches af and », are equal in length. For exampledf < b in
the subtype ordering, thefi(a,a) < C(b,b) for some covariant constructdr, buta £
C(b,b). Non-structuralsubtyping has both a least tygeand a greatest typ€, so that
1 < 7 < T foranyr. More details on structural and non-structural subtyping can be
found in [Mitchell 1991; Amadio and Cardelli 1993; Kozen et al. 1993].

Despite extensive effort over many years, the exact complexity and even the decidability
of entailment is open for non-structural subtype constraints [Rehof 1998; Henglein and Re-
hof 1997; 1998; Flanagan and Felleisen 1997; Niehren and Priesnitz 1999; 2003; Trifonov
and Smith 1996; Aiken et al. 1997aRndrich and Aiken 1996; Pottier 1996; Marlow and
Wadler 1997; Pottier 2001]. As we show in Section 2, the natural versions of entailment

1This paper extends [Su et al. 2002] with a notion of constrained tree automata to express non-structural subtype
entailment and an undecidability result of the emptiness problem gemeral constrained tree automata (cf.
Section 5.3).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 3

and subtyping constrained types can be encoded easily in the first-order theory of subtyp-
ing, so to gain insight into and take a step towards resolving these difficult problems, we
study the full first-order theory in this paper.

The major contributions of this paper are summarized as follows:

—We show that the first-order theory of non-structural subtype constraints is undecidable
via a reduction from the Post’s Correspondence Problem (PCP). The result is shown
for both simple and recursive types (Theorems 3.8 and 3.10). The result holds also for
infinite trees. In addition, this result yields a technical separation of structural subtyping
and non-structural subtyping (Theorem 4.1).

—We show that the first-order theory of subtype constraints with unary function symbols is
decidable by an automata-theoretic construction. This result holds for all combinations
of the structural versus non-structural, and simple versus recursive cases (Theorem 5.10).

—The automata-theoretic construction bridges tree automata theory and subtyping prob-
lems, suggesting an alternative way of tackling the problems (see Section 5.3 for a dis-
cussion).

It was shown recently that the first-order theory of structural subtyping over simple types
is decidable [Kuncak and Rinard 2003]. The decidability of the full first-order theory of
structural subtyping over recursive types is open.

We first present background information on subtyping (Section 2), and show that the
first-order theory of non-structural subtyping entailment is undecidable (Section 3). Next
we give an automata-theoretic construction for subtype constraints and show that the first-
order theory of subtype constraints with unary function symbols is decidable (Section 5).
We then discuss related work (Section 6) and conclude (Section 7). An example encoding
of an entailment problem is given in Appendix A.

2. SUBTYPE CONSTRAINTS AND THEIR FIRST-ORDER THEORIES

We present an overview of subtyping systems and introduce the problems we consider in
this paper.

2.1 Preliminaries on Subtyping

Subtyping systems are generalizations of the usual equality-based type systems such as
the Hindley/Milner type system of ML [Milner 1978]. We consider the following type
language
Tu=Ll|T|a|nn—m|n X1

where L andT are the smallest and largest type respectivelg, chosen from a countable
set of type variabled’, — is the function type constructor, and is the product type
constructor.

Types in this language form a lattice with the following ordering:
—1 <7<, foranyr;
—7 — 1o < 1] — 75 iff 7{ <7 andry, < 74, for any typesr, 7o, 71, andri;
—11 X 12 < 71 X 74 iff 71 < 7] andry, < 74, for any typesr, 72, 71, andr.

This is thenon-structural orderingn types, since related types need not have the same
shapege.g, L < L — T. The corresponding notion atructural orderingrequires two

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 . Su et al.

types to be related only if they have the same shape. In structural ordering, there is no
smallest or largest type.

Another dimension is whether a type language alloyesirsive types.e., infinite types
which are solutions to recursive type equations such asa — 1. Recursive types are
interpreted overegular treeswhich are possibly infinite trees with finitely many subterms.
We also consider general infinite trees.

We write T'(F) to denote the set of finitground typegtypes without variables), where
F is the alphabet

{l’T7._).’.x.}

The setl'(F, V) denotes the set of all types built with variables drawn fidm

A subtype constrainis an inequality of the form; < 7. A subtype constraint system
is a finite set of subtype constraints. When clear from context, we drop “subtype” and just
say a constraint or a constraint system. For a constraint sySteire type variables i@’
are called théree variablesof C', denoted f¥C').

A valuationp is a function mapping type variabl@sto ground typed'(F). A valuation
p is sometimes referred to as a ground substitution. As is standard, we extend valuations
homomorphically to substitutions froffi(F, V) to T'(F).

A valuationp satisfiesa constraint; < 7o, writtenp F 7y < 15 if p(11) < p(72) holds
in the latticeT (F). A valuationp satisfiesa constraint systemd', written p £ C, if p
satisfies all the constraints @i. A constraint systend’ is satisfiablef there is a valuation
p such thatp E C. The set of valuations satisfying a constraint systéiis the solution
setof C, denoted byS(C'). We denote by5(C) | g the set of solutions aof restricted to a
set of variable€. Thesatisfiability problenfor a constraint language is to decide whether
a given system of constraints is satisfiable. It is well-known that the satisfiability of a
constraint system can be decided in polynomial time by a tesidfosistencyf the given
constraint set according to a set of syntactic rules [Palsberg and O’Keefe 1995; Pottier
1996; Kozen et al. 1994].

Corresponding to polymorphic type schemes in Hindley/Milner style type systems, poly-
morphic subtype systems have so-caltedstrained typesn which a type is restricted by
a system of constraints [Aiken and Wimmers 1993; Trifonov and Smith 1996; Aiken et al.
1997]. An ML style polymorphic type can be viewed as a constrained type with no con-
straints. For example,

a— f\{a <int —int,int — a < G}

is a constrained type. Let\C be a constrained type, and febe a satisfying valuation for
C'. The ground type(r) is called ainstanceof 7\C'.

There are a few important problems associated with constrained types in polymorphic
subtype systems.

—In practice, constrained types can be large and complicated. Thus it is important to sim-
plify the types [Pottier 1996; Marlow and Wadler 199gHnadrich and Aiken 1996] to
make the types and the associated constraints smaller. Type and constraint simplifica-
tion is related to the following decision problem adnstraint entailmentA constraint
systemC' entailsa constraint; < 7, written C' E 7 < 7, if for every satisfying
valuationp of C, we havep F 7, < 7.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 5

—The notion ofexistential entailmentwritten C, F 3E.C5, is a more powerful notion of
entailmen€ The entailment holds if for every valuatigr= C}, there exists a valuation
p' E Cs such thatp and p’ agree on variables t€5) \ E. We assume w.l.o.g. that
fv(C1) N E = . This notion is interesting because usually for a constrained type, we
are only interested in variables appearing in the type, and there are often many “internal”
variables in the constraints we may wish to eliminate. This notion of entailment allows
more powerful simplification and is likely to be more expensive.

—In polymorphic subtype systems, we may need to determine whether one constrained
type is a subtype of another constrained type [Trifonov and Smith 1996]. L€
andr,\C> be two constrained types. We wish to check wheth&t; < 72\ C> which
holds if for every instance of 75\ C5, there exists an instance of of 7\ C} such that
7/ < 7. We assume w.l.o.g. th&; andC; do not have any variables in common. In
addition, we can restriet; andr, to variables because

7\C1 < \Cy iff a\(C1U{a=7}) <B\(C2U{B=m})
wherea andg are fresh variables not ifi; or Cs.

Although extensive research has directed at these problems [Rehof 1998; Henglein and
Rehof 1997; 1998; Flanagan and Felleisen 1997; Niehren and Priesnitz 1999; 2003; Tri-
fonov and Smith 1996; Aiken et al. 1997akndrich and Aiken 1996; Pottier 1996; Marlow
and Wadler 1997; Pottier 2001], their decidability has been open for many years. In this
paper, we present results on the first-order theory of subtype constraints, which we believe
is a step in resolving these open problems.

2.2 The First-Order Theory of Subtype Constraints

We first define thdirst-order theory of subtype constraintsirst-order formulae w.r.t. to a
subtype language are:

fZI: true| t1 < to | _\f | f1/\f2 | Hl‘f

wheret; andt, are type expressions andis a first-order variable ranging over types.
Notice that we do not need equality becagsis anti-symmetric.

As usual, for convenience, we also allow disjunctigrimplication — , and universal
quantificationv. We writet; £ ¢, for =(t; < t,). A formula isquantifier freeif it has
no quantifiers. A formula is iprenex normal fornif it is of the form Q1 ... @Q,,.f where
Q;'s are quantifiers and is a quantifier free formula. We adopt the usual notion béa
variableand aclosedandopenformula.

We next show how the open entailment problems discussed in Section 2.1 fit in the
first-order theory of subtyping.

2.2.1 Entailmentisin th&-Fragment. The universal fragment consists of all the closed
formulaeVv. f, whereV consists of a set of universal quantifiers, ghid a quantifier free
formula.

The entailment problemd F 2 < y is in the universal fragment. Notice thatis a
conjunction of basic constraints and the entailmént = < y holds iff the universal
formulaVzey,...,z,.(C — (x < y)) is valid, where ther;'s are the variables free in
CuU{z <y}

2Existential entailment is also calledstricted entailmentritten Cy =g/ Oz, whereE’ = fv(C2) \ E.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 . Su et al.

2.2.2 Existential Entailment is in the3-Fragment. The V3-fragment consists of all
the closed formulag3. f, wheref is a quantifier free formula.
Existential entailmen€’; = 3F.Cs is expressed by the following formula:
VOél, ey an.(C’l — EIEOQ)
where they;'s are the variables in i) U(fv(C2)\ E). Because we assumeh) NE =
(), there is an equivalent formula in th@-fragment
VOQ, ey Ozn.HE.(Ol — 02)
2.2.3 Subtype Constrained Types is in #&-Fragment. Let o\C; and5\C; be con-
strained types. We expres§C; < §\C; as the formula
Vﬂl, . 7ﬂn~(02 — E'()él, ceey ozm.(Cl N« S ﬂ))

where thew;’s and §;'s are the variables free i6'; and C, respectively. Becaus€'
and C> have disjoint sets of variables (see definition of constrained types above), this is
equivalent to

Vﬂl,. .. ,ﬁn.Elal, .. .7O£m.(02 — (Cl N« S ﬂ))

In fact, we can show that subtype constrained types can be polynomially reduced to
existential entailment.

Proposition 2.1. Subtype constrained types is polynomially reducible to existential en-
tailment.

PROOF We have the following equivalences:
a\Cy < B\Cq

< {bydefn. ofa\Cy < B\C> }
S(C2) sy € Sla < BACY) (s
< { by defn. of existential entailment with = fv(Cy) }

Cy EIE.(a < BACY)
O

3. UNDECIDABILITY OF THE FIRST-ORDER THEORY OF NON-STRUCTURAL
SUBTYPING

In this section, we show that the first-order theory of non-structural subtyping is undecid-
able for any type language with a binary type constructor and the bottom elem@mt
dually, the top element). The formula we exhibit is in thav3v3v-fragment.

The proof is via a reduction from the Post’s Correspondence Problem (PCP) [Post 1946]
to a first-order formula of non-structural subtyping. Since PCP is undecidable [Post 1946],
the first-order theory of non-structural subtyping is undecidable as well. The proof follows
the framework of Treinen [Treinen 1992] and is inspired by the proof of undecidability of
the first-order theory of ordering constraints over feature treegl@viet al. 2001].

Recall that an instance of PCP is a finite set of pairs of wdtds;) for 1 < i < n.

The words are drawn from the alphal§ét 2}. The problem is to decide whether there is

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 7

f
/ \?
il f
f '/ \
; Y/ \ ;oL
/\ ot /N
TR / \ L f
L / \?
Lr f
1/ \
! 1
/\
1 1
(@) Theworde. (b) The wordl. (c) The word21221.

Fig. 1. Some example representations of words.

a non-empty finite sequence of indices . . s,, (Wherel < s; <nforl <i <m)and
the sequence constitutes a pair of matched words:

lsl...l :rsl...rsym

Sm

where words are concatenated.

For non-structural subtyping, we consider both finite types and recursive types. We first
describe the subtype logic that we use. We consider any subtype language with at least a
bottom element. and a binary type constructor. We show that for any such language, the
first-order theory of non-structural subtype entailment is undecidable.

For the rest of the paper, we consider the simple expression language:

Tu=1| f(r,7)
wheref is covariant in both of its arguments. It is straightforward to modify our construc-
tion to allow type constructors with contravariant field(s) and with arity greater than two.
3.1 Representing Words as Trees
PCP is a word problem but types are trees. As a first step, we describe how to encode
words in{1, 2} using types.

3.1.1 Words asf-Spines.We first describe how to represent words ofer2} as trees
over a binary constructof and the constant.. We usef-spinesto represent words.
Intuitively, an f-spine is simply a tree with a spine % and all other positions labelled.

Definition 3.1 (f-SPINE). A finite treet (in f and_L) is an f-spine if there iexactly
one maximal patlvith labelsf. On this maximal path, a left child represemtand a right
child represents.

Example3.2. The empty word is represented by the terf{_L, L). See Figure 1a.
The wordl is represented by the teryfi{ f(L, L), L). See Figure 1b. The wor2l221 is
represented by (L, f(f(L, f(L, f(f(L,L1),1))),L)). See Figure 1c.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 . Su et al.

f
/ \?
1 !

f '/ \
VA fooL
foL Y\

/ \? FoL
L f / \?
/ N\ L
L 1 / \
1 1
(a) Thewordl2. (b) The word2112 = 21 - 12.

Fig. 2. Tree prepending example.

3.1.2 Enforcing a Word Tree We want to enforce with a first-order formula of subtype
constraints that a treds anf-spine,i.e, that it represents a word. Any f-spinet satisfies
three properties:

(1) Only f and_L appear int (Lemma 3.3).
(2) There is exactly one maximal path g (Lemma 3.4).
(3) tisnotL (becausel does not represent a word).

Lemma3.3. Atreet contains onlyf and L iff 3z.((x < f(z,x)) A (t < x)) holds.

PROOFE Supposé contains onlyf and_L. Let h be the height of, which is the length
of the longest branch af The full binary trees of heighth where all the leaves are labelled
L and all the internal nodes are labellg¢datisfiess < f(s, s) andt < s.

On the other hand, suppose for soeith s < f(s,s), we havet < s. It suffices to
show thats contains onlyf and L. For the sake of argument, assume on some shortest
pathz from the root,s is labelled withg, i.e., every path strictly shorter thanis labelled
either f or L. Now consider the path in f(s,s). If = exists inf(s, s), then it must be
labelled eitherf or L in f(s,s). If = does not exist irf(s, s), then a prefix ofr exists
in f(s,s) and must be labelled with.. In both cases, a contradiction is reached since
s< f(s,s). O

Lemma3.4. For any nont treet with f and_L, there is exactly one maximal path of
f's iff the subtypes of form a chain w.r.t<.

PrROOF If t has exactly one maximal path 6§, then clearly all the subtypes oform
a chain. On the other hand tihas at least two maximal paths 6. The two subtypes of
t where we replacé by | at the respective paths are incomparablé.

Thus we can enforce a tree to represent a word. We shorthand the formautardhy),
that is:

f

dom-closure(t) £ 3z.((z < f(z,z)) A (t <z))

Chain(t) & th,tg.(((tl < t) A (tQ < t)) — ((tl < tg) \Y (tg < tl)))

def

word(t) = dom-closure(t) A chain(t) A (t# L)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 9

\
/\ /\
\ /\,
\.

Sm— 1l Tsm—1Tsm \ f
! / \ 1
N
lsy s, Tsp " Tsm

Fig. 3. A PCP solution viewed as a tree.

3.1.3 Prepending TreeslIn the following discussion, we use words and trees that rep-
resent words interchangeably, since the context should make the distinction clear.

To construct a solution to a PCP instance, we need to concatenate words. Thus we want
to express with constraints that a woud is obtained fromw, by prependingw. We
express this with a family of predicatpsepend,,, one for each constant word. The
predicateprepend,, (t1, t2) is true if the word represented byis obtained by prepending
w to the word forts. Note that this is sufficient, because in PCP, the words are constant.
We define the predicate recursively:

prepend,(t1,t2) £ (t; = to)

def

prepend,, (t1,t2) = 3t'.((t1 = f(t', L)) A prepend,, (¢, ts2))
prepend,,, (t1,t2) = 3t'.((t, = f(L,t') A prepend, (t',ts))

Example 3.5 (PREPENDING). We prepend the wordl onto the wordl2 (Figure 2a)
to get the word112 (Figure 2b).

3.2 Reducing PCP to the First-Order Theory of Non-structural Subtyping

In this section, we describe how to reduce an instance of PCP to a first-order formula of
subtype constraints.

3.2.1 Outline of the ReductionWe construct a formula that accepts the representa-
tions of all the solutions of a PCP instance.

We first describe a solution to a PCP instance as a tree. Recall that a PCP instance P
consists ofn pairs of words(ly,r1), ..., (l,,7,), Wherel;,r; € {1,2}*. A solutions =
s1 -+ sm to P is anon-emptyfinite sequence of indices 1 throughi.e., s € {1,--- ,n}™,
such that,, ---l,,, = rs ---75,,. One can represent a solutieras the tree¢ shown
in Figure 3. In the tree, the values ok, I, s, , ..., s, -+ ls,,, andrs, -- .75 are
represented by their corresponding word trees. The tree is constructed as follows. We start
with the empty word paife, €). At each step, we prepend a particular pair from the PCP
instance(ls,, 75,) to the previous pair of words. At the end, - =Tgy T, 1€y

S m

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 . Su et al.

/N /N

L/:\f J:\f

f/ \: L/ \:
/ \w; L/'\l L/'\L

i

(a) A branch. (b) The main spine.

Fig. 4. The branch of a solution tree.

we have found a solution to P. Notice that the solutions are constructed in the reverse order
because we use prepend instead of apgend.

With this representation of PCP solutions as trees, we can reduce an instance of PCP to
the validity of a first-order formula of subtype constraints by expressing that there exists a
treet such that:

(1) The treet is of the particular form in Figure 3(Section 3.2.2)
Our construction does not require the branches of the solution tree to be in the order
shown in Figure 3. Any order is fine (repetitions are also permitted).

(2) We have a valid PCP construction sequer(@action 3.2.3)
Each left branchf (w;, w}) is either the pair of empty words or there exists another left
branchf(w;,w;) such thaprepend,, (w;, w;) andprepend,, (w;, w’) for somek.
In addition, one of the left branches is of the foyfifw, w) with w non-empty* This
ensures that we have a non-empty sequence.

We next express these requirements with first-order formulae of subtype constraints.

3.2.2 Correct Form of the TreeTo ensure the correct form of the tréewe require
that each left branch represents two words conjoined with the root labelled with, we
have f(w,w’) for some trees representing wordsandw’. In order to achieve this, we
construct trees of the form shown in Figure 4a, which is a branch of the tree representing a
PCP solution shown in Figure 3.

Let ¢ be the tree representing a PCP solution. We cannot extract a branch directly from
t because subtype constraints cannot express removing something from a tree. However,
we observe that a branch is a supertype ofrttan spineshown in Figure 4b with some
additional properties, which we enforce separately. We first express the mairs sgine
Two properties are needed far

(1) The main spine is of the form shown in Figure 4b.
We simply requires < f(L, s).
(2) The trees is a subtype of and among all possible spines, it is the largest such tree.

3We use prepend because append is just not as convenient to express.
4We assume for any PCP instantes r; for anyi. Otherwise, the instance is trivially solvable.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 11

This is easily expressed as:
(s <t) AVe(((z < f(L2) A (z<t) — (z<5))
We introduce the shorthand thats the main spine of by:
w (s < f(Ls) A (s<1)
(Vo.(((z < f(Lw) A (2 <1) — (2 <5)))
We observe that a branélof ¢ is a subtype of and a proper supertype of the main spine
s with two additional properties:

spine(s, t)

(1) Exactly one left branch of the main spine is of the fgffw;, w}).
(2) All the other left branches of the main spine are labelled with

We can express thatis a proper supertype of the main spinby:
s<b = ((s<b) A (s#Db))

We express (1) and (2) by observing thas amaximal treesuch that the set of all the
subtypes ob that are proper supertypes of the main spihave auniqgueminimal element,
i.e, the set{x | s < = < b} has a unique minimal element. We usemin(u, v, w) to
express that: is the smallest element of the subtypes dfiat are proper supertypesof
that is:
is-min(u, v,w) & (S 0) A (w<u)A

T Ve.(((x <v) A (w<x)) — (u<x))

In addition,unig-min(u, w) expresses that all the subtypesudhat are proper supertypes
w have auniqgueminimal element, that is:

unig-min(u, w) £ Jz.is-min(z, u, w)
With that, we can express the requirement$ &y the following formula:

(b<t)A
branch(b,t) = 3s.(spine(s,t) A (s <b) A unig-min(b, s)
AVz.((b <z <t) — —unig-min(z, s)))

We establish the correctnesstséinch(b, t) in Lemma 3.6.
Lemma3.6. Atreebis a branch of as shown in Figure 4a iffranch(b, t).

PrROOF ltis straightforward to verify that i is a branch of thenbranch(b, t). For the
other direction, assunmteranch(b, t). Then we know thak is a subtype of and a proper
supertype of the main spine Sinceunig-min(b, s), i.e., all the subtypes ob strictly
larger thans have a unique minimunt, cannot have two left sub-branches labelled with
f. Thusb must be a subtype of a branch. However, sitidg the largest tree such that
unig-min(b, s), it must be a branch.Ol

3.2.3 Correct Construction of the Tre€l'he previous section describes how to extract
a branch of the treeé. However, that is not sufficient, since we ultimately need the two
wordsw;, w; associated with a branch.

We must ensure that for each branch the two wargdsindw, are empty or are con-
structed from the words of another branchandw’; by prepending;, andr;. respectively,
for somek.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 . Su et al.

/\ /\
/\ /\ /\
/\ /\ /\

/
w;

VAW VAYAY

(a) A branch. (b) An expanded branch.

Fig. 5. Extracting words from a branch.

For a brancth, we need to extract the two words andw;. The trick is to duplicate the
non-L left child of b to all the left children ob preceding this nonk child. In particular,
this would have the effect of duplicating the two words at the first child of the branch.

We give an example. Consider the brahdhown in Figure 5a. We would like to build
from b the expanded trelé shown in Figure 5b. If we can construct such a ffe¢hen it is
easy to extract the two words; andw; simply by the constraindu. f (f (w;, w}),u) = b'.

We now show how to construgtfrom b. Observe that the right child éf is a subtype of
b itself,i.e, if we letd’ = f(u,v), thenv < ¥'. In addition, observe that of all supertypes
of b, &/ is the smallest tree with this property. We write the shorthesmdirse(¢,, t2) for
the formula:

recurse(tl,tg) | (tl < tg) A 3331,132.(t2 = f($1,$2)) A\ (332 < tg)

which says that; is a subtype of, and the right child ot, is a subtype of itself. Now
we can express the duplicationipofo getd’ through the following formula:

dup-branch(b, ') = recurse(b,b’) A Vt.(recurse(b,t) — (b <t))
We establish the correctnessdfp-branch(b, ') in Lemma 3.7.

Lemma3.7. Letb be a branch of. A treeb’ duplicates the non- sub-branch ob (as
shown in Figure 5) ifidup-branch(b, v’).

PrOOF It is straightforward to verify that i’ duplicates the non- sub-branch of
b, thendup-branch(b,v’). For the other direction, assundeip-branch(b,b”). Sinced’
(shown in Figure 5b) meets the conditimrturse(b, b’), by definition ofdup-branch we
haveb” < ¥’. We also haveé < b becauseecurse(b, ") holds. With a simple induction
on the height of the left spine gfs of b, we can show thdt’ must be the same &5 Thus,
b" duplicates the non- sub-branch 0b. O

We introduce a few shorthands next. The formutadpair(w, w2, b) expresses that for
a branchb of a solution treew; andw- are the pair of words associated with that branch:

wordpair(p) & word(w;) A word(wsz) A
pair(wy, ws,b) = 3v’.(dup-branch(b,0") A Fu.(f(f(w1,we),u) = b'))

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 13

The formulaonestep(w;, w}, w;, w}) expresses a step in the PCP constructien,the
concatenation of a pair of words onto the current pair. It says that the woralsdw, are
obtained from the words); andw’; by respectively prepending some woigsandr;, of
the PCP instance.

/

onestep(w;, w}, w;, w}) = \/ (prepend,, (w;,w;) A prepend,, (w;,w}))
1<k<n

We can now express that the treeepresents a solution of a PCP instance. Recall that
we must express that for eaah andwj, eitherw, andw); are the empty words, or there
existw; andw’; such thaprepend,, (w;,w;) andprepend,, (w;,w’). Consider the PCP
instance P in which we havé,,), ..., (I, r.), wherel; andr; are words in{1,2}. We
construct a first-order formulsolvable(P) which is valid iff P is solvable. The formula
expresses the existence of a tree representing a solution to P.

We introduce a few more shorthands. The formemapty(w) tests whether a word
is e. The formulaconstruct(w,, ws, b, t) ensures that; andws are obtained from some
branchd’ of ¢ by a one step construction. We ugadid-branch(b, ¢) for saying that the
wordsw; andws are eithefe or are obtained by a construction step of PCP from another
branchd’. Finally, we use the formulaccept-branch(b, t) to say that for some branch,
the two words associated with that branch are the same and not the emptywords

empty(w) = w= f(L,1)

construct(wy, we, b, t) 2 branch(v',t) A
B Jw}, wh.(wordpair(w], wh, b') A onestep(wy, w2, wi, wh))

(Fwy, we.wordpair(wy , we, b)
valid-branch(b,t) = A ((empty(w;) A empty(wy))
v 3p’.construct(wy, we, V', t)))
def

accept-branch(b,t) = branch(b,t) A Jw.(wordpair(w,w,b) A —empty(w))

The formulasolvable(P) now can be given as:

solvable(P) £ 3t.(vb.(branch(b,) — valid-branch(b, t)) A 3b.accept-branch(b, t))
The correctness of the reduction from PCP to the first-order theory of subtype constraints
is established in Theorem 3.8.

Theorem3.8 (SOUNDNESS ANDCOMPLETENESY. A PCP instance P has a solution
iff the formulasolvable(P) is valid.

PROOF Itis easy to verify that if P has a solution, then any representation of the solution
sequence in terms of a treshown in Figure 3 meets the requirement

vb.(branch(b,t) — valid-branch(b, t)) A 3b.accept-branch(b, t)

On the other hand, suppose we have suchthaen it is also easy to extract a solution
sequence from. Start with the branch,,, such that the two words associated with are

the same. Sinck,, is a branch and the two words are mpthere must be another branch
bm,—1 such that we have a PCP construction step. This process must terminate,isince

a finite tree. This reasoning can be easily formalized with an induction on the number of
branches of (or equivalently the size a@f. [

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 . Su et al.

f
. PN
f f
f/ \L / \ VARN
w1 w2 f 1

/ \ / \
w w wy w1
(a) Failed attempt one. (b) Failed attempt two.

Fig. 6. Failed attempts for recursive types.

3.3 Recursive Types

In this section, we show that the construction can be adapted to recursive types. Recall that
in recursive types, types are interpreted as regular treesfosed | .

To adapt our construction, notice that it is sufficient to restrict all the types (trees) to be
finite trees. That is, we need only express that atiisdinite.

It turns out that only the words we get from a brancht ahust be finite. The other
trees in the construction can be infinite. For words, if we do not restrict them to be finite,
the existence of such a treas in Figure 3 may not correspond to a solution to the PCP
problem. To see this, consider the PCP instafide, 1)}. Clearly, it has no solution.
However, consider the treg (f (w,w), L) shown in Figure 6a, where is the infinite
regular tree such that = f(w, 1), i.e, the infinite word1¥.

One may wonder whether we can instead require that a construction step must use two
different branches, and that the words for the two branches are not the same at the re-
spective positions. This does not work either. Consider the PCP insfande, (¢, 2)},
which has no solution. Now consider the tréef (w1, w2), f(f (w1, w1), L)) shown in
Figure 6b, wherev; = f(wa, L) A we = f(L,wy), i.e, w; is the infinite word(12)“
andws is the infinite word(21)~.

We take the approach of restricting the words extracted from a branch to be finite. This
can be achieved by simply requiring that the set of proper subtypestais alargest
elementi.e,

has-max(w) £ 3t.(t<w A V(' <w — t' <t)
Lemma3.9. Atreet representing a word is finite iffas-max(¢).

PROOF Lett be a word tree. It is finite, then the set of proper subtypestdbrms
a chain. The set is finite, and thus has a largest element. On the other hand, if the tree is
infinite, then all its proper subtypes are finite trees truncated frare., the set of trees
representing the finite prefixes of word denoted lfgxceptL). This set forms an infinite
ascending chain, and thus it does not have a largest eleniant.

We can now directly use the construction in Section 3, except we require in the formula
wordpair(w, ws, b) thatw; andw- are finite:

. ar Word(wq) A word(ws) A has-max(w;) A has-max(wsz) A
wordpair(ws, wa,) = Sy qup-branch(b, b') A Fu.(f(f(wy, ws),w) — b))

Thus, we have shown that the first-order theory of non-structural subtype constraints
over recursive types (and infinite trees) is undecidable.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 15

Theorem3.10. The first-order theory of non-structural subtype constraints over recur-
sive types (and infinite trees) is undecidable for any type language with a binary type
symbol and.L.

ProoF Follows from Lemma 3.9 and Theorem 3.8.]

4. STRUCTURAL SUBTYPING: A COMPARISON

We show that the first-order theory of structural subtype constraints over the type language
over f and_L is decidable. This result provides a clear contrast between the expressiveness
of structural and non-structural subtyping. In addition, it provides another, and in some
sense more apparent, distinction between these two alternative interpretation of subtypes.
In fact, we show that the first-order theory of structural subtype constraints with a signature
containing one constant symbol is decidable.

Theorem4.1. The first-order theory of structural subtype constraints with a single con-
stant symbol is decidable for both simple and recursive types (and infinite trees).

PROOFE This can be easily shown by noticing that in a type language with only one
constanti(e., L), the subtype relation is the same as equality. Thus we can simply turn
any constraint; < ¢, into t; = t,. Since the first-order theory of equality is decidable
both for finite and regular trees (and infinite trees) [Maher 1988], the theorem follows
immediately. [

Recently, it is shown that the full first-order theory of finite structural subtyping over
arbitrary signatures is decidable [Kuncak and Rinard 2003]. This result, together with
our undecidability result, provides a further distinction of structural subtyping from non-
structural subtyping. However, at this point, an interesting open problem is the decidability
of the full first-order theory of structural subtyping over recursive types.

5. DECIDABILITY OF THE FIRST-ORDER THEORY OF SUBTYPING OVER
UNARY SYMBOLS

In this section, we show that if we restrict our type language to unary function symbols
and constants, the first-order theory is decidable. This result shows that the difficulty in the
whole first-order theory lies in binary type constructors. The idea of the proof is to reduce
the problem to the tree automata emptiness problem.

Note that word automata would suffice for encoding the case with unary function sym-
bols. However, because our approach is extensible to type languages over arbitrary signa-
tures for the existential or universal fragments (see Section 5.3), we present our results in
terms of tree automata.

5.1 Background on Tree Automata

We recall some definitions and results on tree automata.
Tree automata generalize word automata by accepting trees instead of word@sbé&et
a ranked alphabet, and &}, denote the set of symbols of arity

Definition 5.1 (FNITE TREE). A finite treet over a ranked alphabéf is a mapping
from a prefix-closed set pg C N* into F. The set ofositionspos oft satisfies

—pogt) is nonempty and prefix-closed.
—For eachr € pogt), if t(7) € F,,, thenmi € pogt) iff 1 <i < n.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 . Su et al.

Definition 5.2 (ENITE TREEAUTOMATA). A finite tree automatorfNFTA) over F
is a tuple

A: (Qaj:vQFaA)
whereq is a finite set oktates F is a finite set ofanked alphabetQr C @ is a set of
final statesandA is a set oftransition rulesof the form

fla, - van) —q
wheren > 0, f € Fo, ¢, q1, -+, qn € Q.

The above defines laottom-up tree automatoisince an automaton starts at the leaves
and works up the tree inductively. Theve relatiorof a tree automatod = (Q, F, Qr, A)
can be defined as tree rewriting rulﬁesT t'. We say that - t" if ¢’ can be obtained

from t by replacingf(qi, - . ., ¢,) with ¢ for somef(qi,...,¢,) — ¢ € A. We denote
the reflexive and transitive closure of- by %.

Aterm (or a tree) isicceptechy a NFTAA = (Q, F, Qr, A) if t %» q for some final
stateg in Qr.

Example 5.3 (TREE AUTOMATON). Consider the automaton where

Q = {¢,qs}
F = {a, b, f(-,-)}
Qr = {ar}
a — (q
A = b — qy
fa.q5) — ay

The automaton accepts the smallest tree languagatisfying (1)b € L, and (2) if
t € Lthenf(a,t) € L. For example, it accepts the terf{a, b) since

! - f - f —
/\ / \ / \
a b qa b qa g5

Our goal is to use tree automata to encode the solutions of subtype constraints. The solu-
tions of a constraint system aresary relation, associating with each type variable a com-
ponent in the relation. Thus, the solutions of a constraint systemwariables can be rep-
resented as a setof-tuples of trees. For example, the tupfg f(T, T), L), £(T, f(L, T)))
is a solution to the constraint < y.

We use a standard encoding to represent tuples [Comon et al. 2002]. We first give an
example to illustrate how the encoding works. Consider tuples of words over the alphabet
{0,1}. We can construct an automaton to accept the (encoding of) landuag@airs
(w,w") such that|w|| = ||w’|| (||w| denotes the length of the wotd) andw; # w} for
1 <i < |w|,ie,weflip0'sandl’sin w andw’. One possible encoding is to “stack”
the two words,i.e., put one on top of the other, and we consider the product alphabet

{8, (1), (1), }}. With this encoding, we can easily construct an automaton that acEefiis

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 17

example, the automaton with one statandq is both initial and final, having transitions
(g, (1)) — g and(q, (1)) —q.

This idea can be extended to tree automata on tuples with “overlapping” of the terms.
For any finite ranked alphab&, we defineF" = (F U {t})", wheref is a new symbol
of arity 0. We consider only binary terms, since generary symbols can be simulated
with a linear number of binary symbols in the arity of the symbol. We define the arity of
the symbols as the maximum of the arities of the componesetsarity(fi,..., fn) =
max{arity(f1), ..., arity(f,)}. Sincet is of arity 0, the symbott, . . ., t) is of arity 0,i.e,,
a constant. We denote I, the set of symbols itF™ of arity m.

For example, consideF = {a, f(-,)}, wherea is a constant and is a binary symbol.

ThenF? is the se{aa, af, af, fa, f f, f1, ta, 4, 4} andF3 is {af, fa, f f, fH, 81}

Example5.4 (TUPLE ENCODING). Consider the terms = f(f(T,T), L) andts =
f(T, f(L, T)). We show below how to encode the tugie, t2).

f f fr
/ \ / \ PN
oL T f T Lf
/ N\ / N\ /N /N
T T 1L T Tt Tt gl 8T
@)ty (b) t2 (c) encoding of(t4, t2)

Definition 5.5 (TREE AUTOMATA ON TUPLES). Let F be a ranked alphabet. #nite
tree automaton om-tuplesover F is a tree automatol = (Q,F",Qr,A) over F"
(defined above), wher@ is a finite set oktates Q@ C @ is a set offinal statesandA is
a set oftransition rulesof the form

flars o sqm) — ¢
wheren >0, f € F, ¢, q1,. .., qm € Q.

Example 5.6 AUTOMATON ON TUPLES Consider the automaton where

Q = {ar}
F = Aa, f(-,-)}
Qr = {qr}

. aaq — Qf
A= {ff(Qfan) — q4f}

One can verify that this automaton accepts the tree langage | t € T'(F)}.

Lett = (fi,...,fi,.--, fn). Definet’ = f; (thei-th componenbf t) andt—¢ =

(f1,---, fiz1, fit1s- -, fn) (thei-th projectionof ¢).
We now define two important operations on relations, projection and cylindrification.

Definition 5.7 (FROJECTION ANDCYLINDRIFICATION). If R C T(F)™ (n > 1) and
1 < i < n, then thei-th projectionof R is the relationR—¢ C T'(F)"~! defined by

Vir, ..oty € T(F)(R™(t1,. . sty 1) & I ET(F).R(t1, .., tic1,t iy stn_1))

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 . Su et al.

If RC T(F)" (n >0)andl < i < n+ 1, then thei-th cylindrificationof R is the
relationR*™* C T(F)"*! defined by
Vity, .oty € T(F). (R (t1, .. tici,tytsy .o ytn) € Rty .. tioq,tis ... tn))
We summarize here results on tree automata that we use. More details can be found
in [Gécseg and Steinby 1984; Comon et al. 2002].

Theorem5.8 (DECIDABLE EMPTINESS). The emptiness problem for tree automata is
decidable. In fact, it can be decided in linear time in the size of the automaton.

Theorem5.9 (OLOSUREPROPERTIEY. Tree automata are closed under intersection,
union, complementation, cylindrification, and projection.

One can view intersection as the equivalent of Boolean “andinion as the Boolean
“or” v, complementation as the Boolean negatioprojection as existential quantification
3. Cylindrification is used to ensure that two automata represent solutions over a common
set of variables, so that their intersection can be taken.

5.2 A Decision Procedure for the Monadic Fragment

Recall that we consider a monadic signature in this section. We reduce the validity of
a formula¢ to the emptiness decision of a tree automaton. We proceed by structural
induction on the formulap). We assume the formula is normalized so that it uses only
the connectives\, -, and3. In addition, w.l.0.g., we assume the literals of the formula
are of the forme < y, 2 = 1,z = T, andz = f(y). We first consider the cases with
guantifiers and boolean connectives:

Let A; be the automaton fop. We construct an automato# for 3x.¢ by

taking the projection ofd; w.r.t. thez component of the tupl2.

Let A; be the automaton fap. We construct an automato# for —¢ by com-
plementingA;.

Let.A; and.A; be the automata fas; and¢. We constructd) and.A, for

¢1 andgs by cylindrifying A; and.A; so that4] and. 4, agree on all the components.
Then construcid for ¢; A ¢4 by intersecting4] and.Aj5.

The other cases are for the base predicates:

We construct the automaton

A= {as} F{as b AL — ar))
We construct the automaton

A= {as} F g b AT — ar))

x = f(y)| We illustrate the construction for the case where there is one other unary

function symbolg in addition to f. The constants aré and T. We construct the
following automaton

A= ({qfaQqulvq—rv(Jﬁ}7F27 {qf}7A)

5Notice that only trees that are encodings of tuples of trees are considered during an automata projection.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 19

to accept all the pairs ofx,y) wherez = f(y). The transitionsA is constructed
recursively. We usg, as the state in which we are expectingsdior the z-component
(i.e., the first component).
Here are the cases where we expecy dor thex component and in which we accept:
fLlqr) — gy
fT(qr)
fflag) — ar
falay)

— g
— qf

Here are the cases wherg & expected for the component:
9L(q1) — qq
9T (qr)
9f(ar) — qq
99(4q)

— qq
— qq

Here are the base cases:
1f — qo
T4 — q1

One can easily show with an induction that the constructed automaton accepts the lan-

guagef{(z,y) | = = f(y)}-

We illustrate the construction fgf. We assumé is covariant in its argument.
The construction is easily extensible to the case with more function symbols, with func-
tion symbols of binary or greater arities, and with function symbols with contravariant
arguments.

Fora < 3 to hold, we have the following cases:

—ais 1

—p3isT;

—a = f(aq) andg = f(51), wherea; < .

We construct the automaton

A= ({QZ; QWQf}v]:Q’ {Qf}’ A)

The transition relatiod\ is constructed in pieces. We first have the atomic cases where
« andg are eitherL or T:

TT — gy
Then we have the cases where= L ands = f(5;) or 5 = T anda = f(aq):
Lf(@) — ar

fTe) — a
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 . Su et al.

The statey; is used to signify that the left component can onlytbiee., the component
isn't there. We still need to complete the right component.growve have the rules:

il — a
T — a
tf(@) — a

The case for, is symmetric, and we have the rules:
Lt — o
T — ¢
filar) — ar

Finally we have the case whetie= f(a;) andg = f(61). In this case, we require the
subterms to be related. Thus we have the rule:

fflag) — ar
One can easily verify that the automaton indeed recognizes the solutions gf.

Thus the first-order theory of non-structural subtyping restricted to unary function sym-
bols is decidable. In addition, note that for structural subtyping, the only changes are in the
casexr < y, and can be easily expressed with tree automata. By using an acceptor model
for infinite trees and using top-down automata, we can easily adapt this construction for
infinite words.

Theorem5.10. The first-order theory of non-structural subtyping with unary function
symbols is decidable. This holds both for the finite and infinite words and for structural
subtyping as well.

PrRooOFE Follows immediately from the above construction and the properties of tree
automata. O]

To illustrate our construction, an example encoding of an entailment problem is given in
Appendix A.

5.3 Extending to Arbitrary Signatures

We now discuss the issues with extending the described approach to arbitrary signatures.
There are two related difficulties in extending our approach to the full first-order theory
over arbitrary signatures. First, although we can easily express the solutions towith

a standard tree automaton, we cannot express the solutiens tf(y, z) with a standard

tree automaton for any binary symbp)l because the sé{t1,t2,t3) | t1 = f(t2,t3)} IS

not regular [Comon et al. 2002]. An extended form of tree automata on tuples is required,
which belongs to the class tee automata on tuples with component-wise tEBACT).

Such automata allow machines to test relationships between tuple components [Treinen
2000]. Because this class of tree automata is not closed under projection, it does not extend
to the full first-order theory. However, this class of automata is still interesting because it
can encode the existential or equivalently the universal fragments of the first-order theory.
Therefore, we can reduce non-structural subtype entailment to the emptiness problem over
a restricted class of TACT. We believe this reduction is a promising direction in resolving
the decidability of non-structural subtype entailment.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 21

5.3.1 Expressinge < y over Arbitrary SignaturesWe first show how to encode the
solutions tar < y for the general case over arbitrary signatures. In particular, it is sufficient
to consider the case with a binary function symbol, gajorx < y to hold, we have the
following cases:

—xis L;

—yis T;or

—x = f(x1,z2) andy = f(y1,y2), andz; < y; andzy < yo.
We construct the automaton

A= ({Qb(h‘v Qf}aj:zv {Qf}a A)

with the transition relatiom\ constructed in pieces. First, we have the atomic cases where
2 andy are eitherl or T:
TT — gy
Then we have the cases where= | andy is a product type, oy = T andzx is a
product type:
Lfla, @) — qr
fT(ar,ar) — ar

Similar to our construction for the monadic fragment, the sjate used to signify that the
left component can only b i.e,, the particular component is not there. We still need to
complete the right component. Fgr we have the rules:

tL— a
T — a
tfla, @) — @
The case for,. is symmetric, and we have the rules:
1t — ¢
T — ar
@) — @
Finally we have the case where batlandy are product types. In this case, we require the
corresponding subterms to be related by the subtype ordering. Thus we have the rule:
ffag.ar) — ar
It expresses the following structural decomposition rule:
flr,m2) < f(ry,m5) iff 7 < 7 andm < 75

One can easily verify that the automaton indeed recognizes the solutions o

Because of the closure properties of tree automata, we can obtain an automaton repre-
sentation oft £ y by complementing the one constructed for y. However, in order
to give an additional example, we show a direct construction:fegf y. The automaton

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 . Su et al.

construction is similar to the construction for< y. The reader is invited to verify the
following construction of the automaton

A= {q, 9,945} F>, {ar}, A)
whereA is given by the following transitions:
TL — gy
THaa) — ar
fL(qr,qr)
ffag.q) — ar
fHa,a5) — ar

— qy

L — g
1T — q
if(a,a) — @

1t — 4
T — gqr
i@ @) — @

11 —

1T —
Lf(g,q) —
fflaq9) —
[(g, qr) —
fT(gr qr) —
T —

Tf(QZ;ql) -
TT —

QR QR R

Q

The meaning of stateg andg, is the same as in the case< y. The state; is used
to recognize all the possible pairs of terms. Notice that our construction can be easily
extended to handle contravariant type constructors.

5.3.2 Constrained AutomataRecall that the only type of literals not expressible with
standard tree automata is of the farm= f(y, z). Ouridea is to separate the regular part of
subtype constraints.é., expressible with tree automata) and the non-regular pastr{ot
expressible with tree automata). To achieve this, we introduce the notiooosfsérained
tree automatona special case of a tree automaton with component-wise tests [Treinen
2000] where tests can only be performed at the root of the tree being tested for acceptance.
Interested readers are referred to [Treinen 2000; Comon et al. 2002] for more details on
tree automata with tests.

Consider a tree automatof on n-tuples over the ranked alphah&t We name its:
componentsey, ..., x,. We are interested in the following decision problem: Givén

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 23

andC, whereC'is a set of equations.€., unification constraints) over, ..., z, andF,
decide whether there exist trefgs. . . , t,, such that:

(1) (t1,...,t,)is accepted by.
(2) The valuatiorh with h(z;) = t; satisfiesC.

We call such an automaton with equationganstrained automatqgrand denote it by
(A, C). Next, we give an example constrained automaton.

Example5.11 (CONSTRAINED AUTOMATA). Consider the automatas where

Q = {ar}
F = {avf('a')}
Qr = {ar}

)
fHagar) — ar
and the set of equationts = {z; = f(z2,22)}.
Notice that the constrained automato#, C') does not accept any finite trees. However,

it does accept some infinite trees. For example, take botaindzs to be the complete
infinite tree,i.e,, x; = z2 = t, wheret is the unique solution to= f (¢, t).

5.3.3 Expressing Subtype Entailment with Constrained Autom#éta.now show how
to reduce subtype entailment (structural or non-structural, finite or recursive) to the empti-
ness problem for constrained automata.

Consider a subtype entailment probléfrF = < y. It holds if and only if the constraint

C”d:aC/\o:j{y

does not have a solution, because each soluti@rf worresponds to a witness to the non-
entailment ofC F = < y. The idea is to use a constrained automaton to express all
the solutions to the constraift A z £ y. LetC = {rn < 7{,...,7, < 7.,}. Then

C' is equivalent to the single constraint< 7/, wherer = f(ry, f(m2, f(...,7))) and

7' = f(ry, f(75, (..., 7}))). For example, le€ be the following set of constraints:

{xl < f(ylaf(zle))?f(Tayl) < yQaf(JﬂZl) < yl}
It is equivalent to the following constraint:

f($17f(f(T7y1)7f(J-vzl))) < f(f(ylvf(zle-))vf(y%yl))

Next, we introduce two fresh type variable'sandy’. Let A be the tree automaton con-
structed for the constraints < y’ andz £ y. Now, consider the constrained automaton

(A" =7y =7}

Itis obvious that A, {z’ = 7,y = 7'}) is empty if and only ifC F 2 < y.

This is a simple and straightforward reduction. There is a special property about the
constructed automaton for subtype entailment: The tree automata component consists of
an automaton with a bounded number of states. Next, we show that general constrained
automata emptiness is undecidable. The proof crucially relies upon the fact that the tree
automaton component has an unbounded number of states. Therefore, it is open whether
constrained automata emptiness is decidable if the associated tree automaton has a bounded

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 . Su et al.

Irff
\
Irrf (1001)(100)(10011)(10011)
-
Frff (1)(10)(1001)(100)
N
LLff (e)(e)(1)(10)
RN
gLl ft(e)(e)

Fig. 7. A solution to the PCP instan¢g, 10), (001, 0), (1, 11) viewed as a tuple tree.

number of states. Its decidability would imply the decidability of non-structural subtype
entailment.

5.3.4 Undecidability of the Constrained Automata Emptiness Problemnthis part,
we show that the emptiness problem for constrained automata is undecidable. Our result
holds for any signature with at least a binary (or larger arity) function synfibol and
1. This again is the smallest signature for our result to hold. Indeed, one can show that
emptiness is decidable when only unary symbols and constants are allowed, which follows
from the decidability of the monadic fragment (cf. Section 5). Our proof of undecidability
of emptiness for constrained automata is through a reduction from PCP.

Recall the PCP problem. Lé&p;,¢;) for 1 < i < n be a PCP instance with; and
¢; being words over 0 and 1. The problem is to decide whether there exists a non-empty
sequences, ..., s, With s; € [1,n], such thabs, ...ps,, = qs, ---gs,, -

We adapt and simplify a proof of Treinen [Treinen 2001]. First, we recall from Sec-
tion 3.1.1 the encoding of a word over 0 and 1 with a tree(w) over the alphabet

{rG), L)

_C(E) = f(L> L);
—c(0w) = f(c(w), L);
—c(lw) = f(L, c(w)).

A key step in our reduction is the encoding of solutions to a PCP instance as 4-tuples
of trees over the alphabéf (,), L}. Certainly there are many possible encodings of PCP
solutions, however, we need one that can be recognized by a constrained automaton. We
explain our encoding with an example. Consider the PCP instante), (001, 0), (1,11).
One solution for it isl.001.1 = 10.0.11 = 10011. We show how to encode this solution
with the tree in Figure 7. In our encoding, for a simpler presentation wéwis® denote
the wordw’s corresponding tree representatigm).

We now explain how to interpret our encoding in Figure 7 of the PCP solution. The

three subtree&)(e)(1)(10), (1)(10)(1001)(100), and(1001)(100)(10011)(10011) form
a sequence, which corresponds to the three steps in the PCP solution:

—(€)(€)(1)(10): appending1, 10) to (e, €);
—(1)(10)(1001)(100): appending001, 0) to (1,10);
—(1001)(100)(10011)(10011): appending1,11) to (1001, 100).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 25

To make sure that our encoding does correspond to a PCP solution, we also need to make
sure that the intermediate results are carried over from one step to the.eeite third

and fourth components (underlined below) of a step must be the same as the first and
second components (underlined below) of the following step:

—From(€)(e)(1)(10) to (1)(10)(1001)(100);
—From(1)(10)(1001)(100) to (1001)(100)(10011)(10011).

Finally, because the third and fourth component$16f1)(100)(10011)(10011) are the
same, we indeed have a solution for the particular PCP instance.

Next, we show how to construct a constrained automaton to recognize all (and only) tree
encodingg of solutions to a PCP problem. We proceed with the following steps:

(Step) To enforce that each right subtree of the main spiné adrresponds to a valid
PCP construction step (with a standard tree automaton);

(Step 2 To enforce that the right-most subtree’s third and fourth components are the same
(with a standard tree automaton);

(Step 3 To enforce that the correct intermediate results are carried over from one step to
the next (with equality constraints).

Step1 We construct an automato to accept all tree encodings of word tuples of the
form (w, w’, wp;, w'q;) for somei, i.e,,

L(A) = {{(w,w,v,v") | Fiw = wp; Av' = w'q;}

This automaton is used to encode a single step in the PCP construction. For a particular
i, we construct two automatd; and.A, to accept respectively all the tuplés, wp;) and
(w',w'q;). We can then construct for the above defined tree language frotp and.As
because tree automata are closed under cylindrification, union, and intersection.

In particular, for the automatod; associated withp; = ;... 1y, whereljcqy 5y €
{0, 1}, we have the following set of transition rules (when- 0):

ff(Tf,TL) — Tf
ffri,ry) — 1y
fflro,my) — 1y ifl;=0
ffri,mo) — ry ifl; =1
Lf(rgs,m) — 7o if k=1
Lf(rl,m) — 79 if k> 1andl, =0
Lf(rss,m) — 10 if k> 1landl, =1
8f(rj,ry1) — 11 if j >1andl; =0
8f(rg,rj) — 11 if j >1andl; =1
ﬂL — THL
il — 7

Fork =0 (i.e, p; = €), we simply have:

(van-)
ffrisrg) — rf
ffri,ry)

J_L—>7°J_

— 1y

— 1y

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 . Su et al.

In our construction, the only final staterig.

We perform a similar construction for the automatds that is associated with the
word ¢;. Then we can apply cylindrification and intersection to obtain an automaton that
constructs a PCP step with the particular gair, ¢;). We apply the same construction to
eachi to obtainn automata. With these automata as sub-automata, we can construct an
automatonA to accept the language that represents a PCPigegw, w’, wp;, w'q;) for
somei, which is achieved by taking the union of the tree automata for €ach

Step2 Inthe next step, we construct an automaton to accept all the tuples,, w, w),
with the same third and fourth components. We first construct the following automaton to
accept all the pairs of equal worde, w):

11l — Sf
ff(sp,sp) — sy

wheres; is the only state and also the final state. By applying cylindrification twice on
this automaton, we get an automaton that accepts the language-, w, w). Taking the
intersection of this automaton with the automagértonstructed in the previous step, we
getA’.

Step 3 In this final step, in order to ensure that our encoding does correspond to a PCP
solution, we need to make sure the intermediate results are carried over from one step to
the next correctly. The main difficulty is to enforce this requirement with constraints at the
root of the tree. In fact, it is surprising this can be achieved at all. To see what we need to
enforce, consider again the example in Figure 7. 4,gtu,andv corresponds to the first,
second, third, and fourth components respectively. Noticeuthat f(x,¢(10011)) and
v = f(y,c(10011)), wherec(10011) denotes the tree encoding of the wafi11. On the
other hand, notice that in general, if we require- f(z,w) andv = f(y, w) for someuw,
thenz,y, v, andv does meet our third requirement.

Here is how our construction works. We construct an automatonAigmd. A’ as its
sub-automata. Here are the transition rules:

gLl — ty

B f (e, tg1) — tyr

LLff(tse tep) — to
frffto,ry) — to for every final state ; of A
ffff(to,sy) — t for every final state ; of A’

wheret is the only accepting state. We then cylindrify this automaton to add a fifth com-
ponent to obtain our final automatof. It accepts our encoding in Figure 7. The tree
where nodes are labelled with their corresponding states is given in Figure 8.

We name the five components dfp with the variablesr,y,u,v, andw. The equal-
ity constraint component of our constrained automaton consists of two equatioas:
f(z,w)andv = f(y,w). This step completes our reduction from PCP to the constrained
automata emptiness problem. One can verify the correctness of our constrietjghe
PCP instancé is solvable if and only ifL.(Ap) is not empty.

Theorem5.12 (SOUNDNESS ANDCOMPLETENESY. The PCP instancg is solvable
iff there is a tuple of treeér, y, u, v, w) € L(Ap) and satisfies the unification constraints
u= f(z,w)andv = f(y,w).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 27

[e]rrfs
/ \
111 [s5]m
— \
111 (1)(10)(1001)(100)
/ \
LLff ()(e)(1)(10)
~ N

A #(e)(e)

Fig. 8. The solution tree in Figure 7 labelled with state information, wheretands for the word tree
(1001)(100)(10011)(10011).

6. RELATED WORK

There are a few previous results on constraint simplification regarding subtype and set
constraints. Henglein and Rehof consider the problem of subtype constraint entailment of
the formC F a < g8, whereC' is a constraint set with subtype constraints arahdj are

type variables [Henglein and Rehof 1997; 1998]. The types are constructed from a finite
lattice of base elements with the functior) and product &) constructors. They prove

the following results:

(1) Structural subtype entailment over finite types is coNP-complete [Henglein and Rehof
1997].

(2) Structural subtype entailment over recursive types is PSPACE-complete [Henglein and
Rehof 1998].

(3) Non-structural subtype entailment over finite types is PSPACE-hard [Henglein and
Rehof 1998].

(4) Non-structural subtype entailment over recursive types is PSPACE-hard [Henglein and
Rehof 1998].

Niehren and Priesnitz consider the problem of non-structural subtype entailment. They
show that a natural subproblem is PSPACE-complete [Niehren and Priesnitz 1999] and
characterize non-structural subtype entailment over the signéfifre, L, T} with so-
called P-automata [Niehren and Priesnitz 2003]. They leave open the decidability of non-
structural subtype entailment for this particular signature. Furthermore, it is not known
whether this approach can be extended to work on arbitrary signatures.

Niehrenet al. consider the entailment problem afomic set constrain{sa restricted
class of set constraints without union and intersections and interpreted over the Herbrand
universe. They show entailment of the forth= o C 3 is PSPACE-complete for atomic
set constraints [Niehren et al. 1999]. Flanagan and Felleisen consider the problem of sim-
plifying a variant of atomic set constraints. They show existential entailidiert 3£.C5
for this class of constraints is decidable (in exponential time) by reducing existential en-
tailment to regular tree grammar containment and PSPACE-hard by a reduction from non-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 . Su et al.

deterministic finite state automata containment [Flanagan and Felleisen 1997]. They do
not give an exact characterization of the complexity of the problem.

Entailment problems for conditional equality constraints [Steensgaard 1996] (a weaker
form of non-structural subtype constraints) are studied in [Su and Aiken 2001]. Both
entailment and existential entailment are PTIME-complete. This is in contrast to a simple
extension, for which existential entailment is coNP-complete.

A few researchers consider semantic notions for subtype constraint simplification. The
most powerful one is the notion abservational equivalenceefined in [Trifonov and
Smith 1996]. Intuitively, observational equivalence says that from the analysis point of
view replacing one constraint set with an equivalent one does not change the observable
behavior of the constraint system. A similar notion is used in [Pottier 1996] for simplifying
subtype constraints.

There is also related work in term rewriting and constraint solving over trees in gen-
eral [Comon and Treinen 1994; Comon 1990]. The work in this paper is inspired by work
in this area. Maher shows the first-order theory of finite trees, infinite trees, and rational
trees is decidable by giving a complete axiomatization [Maher 1988]. Many researchers
consider various order relations among trees, similar to the subtype orders. Venkataraman
study the first-order theory of subterm ordering over finite trees. The existential fragment
is shown to be NP-complete and thé-fragment to be undecidable [Venkataraman 1987].
Miller et al. study the first order theory of feature trees and show it undecidahldgm
et al. 2001]. Comon and Treinen show the first-order theory of lexicographic path or-
dering is undecidable [Comon and Treinen 1997]. Automata-theoretic constructions are
used to obtain decidability results for many theoriesicli uses finite word automata to
show the decidability of WS1S and S1Sijéhi 1960]. Finite automata are also used to
construct alternative proofs of decidability of Presburger arithmetic [Wolper and Boigelot
1995; Boudet and Comon 1996], and Rabin’s decidability of WS2S and S2S are based on
tree automata [Rabin 1969].

7. CONCLUSION

In this paper, we have shown that the first-order theory of non-structural subtype con-
straints is undecidable via a reduction from the Post’s Correspondence Problem (PCP).
Our result holds both for finite and infinite trees and for any type signature with at least
one binary type constructor and a least elementhis result yields a technical separation

of structural subtyping and non-structural subtyping. We have also shown that the first-
order theory of subtype constraints with unary function symbols is decidable. To express
subtype entailment over arbitrary signatures, we have introduced the class of constrained
tree automata. Our automata-theoretic construction bridges automata theory and subtyping
problems, which provides an alternative approach to tackle these problems. We consider
this work a step towards resolving the longstanding open questions about subtyping. The
most outstanding problems are the decidability of non-structural subtype entailment and
subtyping constrained types.

Acknowledgments

This research was supported in part by the National Science Foundation grant No. CCR-
0085949 and NASA Contract No. NAG2-1210.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 29

REFERENCES

AIKEN, A. AND WIMMERS, E. 1993. Type inclusion constraints and type inferenc@rateedings of the 1993
Conference on Functional Programming Languages and Computer Archite€openhagen, Denmark, 31—
41.

AIKEN, A., WIMMERS, E.,AND LAKSHMAN, T. 1994. Soft typing with conditional types. Froceedings of
the 21th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Langlié8e$73.

AIKEN, A., WIMMERS, E., AND PALSBERG, J. 1997. Optimal representations of polymorphic types with
subtyping. InProceedings of 3rd International Symposium on Theoretical Aspects of Computer Software
(TACS'97) 47-76.

AMADIO, R. AND CARDELLI, L. 1993. Subtyping recursive typeACM Transactions on Programming Lan-
guages and Systems ¥5,575-631.

ANDERSEN L. 1994. Program analysis and specialization for the C programming language. Ph.D. thesis, DIKU,
University of Copenhagen. DIKU report 94/19.

BoOuUDET, A. AND COMON, H. 1996. Diophantine equations, Presburger arithmetic and finite automata. In
Proceedings of Trees in Algebra and Programming (CAAR'@@cture Notes in Computer Science, vol.
1059. Springer-Verlag, 30—43.

BUCHI, J. 1960. Weak second order logic and finite automatéath. Logik, Grundlag. Math.,5%6-62.

CoMON, H. 1990. Solving symbolic ordering constraintsiternational Journal of Foundations of Computer
Science 14, 387-411.

ComoN, H., DAUCHET, M., GILLERON, R., JRACQUEMARD, F., Luciez, D., TisoN, S,

AND ToOMMASI, M. 2002. Tree automata techniqgues and applications. Available on:
http://www.grappa.univ-lille3.fr/tata .

COMON, H. AND TREINEN, R. 1994. Ordering constraints on treesCaolloguium on Trees in Algebra and Pro-
gramming S. Tison, Ed. Lecture Notes in Computer Science, vol. 787. Springer Verlag, Edinburgh, Scotland,
1-14.

CoMON, H. AND TREINEN, R. 1997. The first-order theory of lexicographic path orderings is undecidable.
Theoretical Computer Science 187-87.

FAHNDRICH, M. AND AIKEN, A. 1996. Making set-constraint based program analyses scadf@stiworkshop
on Set Constraints at CP'9&€ambridge, MA. Available as Technical Report CSD-TR-96-917, University of
California at Berkeley.

FLANAGAN, C.AND FELLEISEN, M. 1997. Componential set-based analysisPioceedings of the 1997 ACM
SIGPLAN Conference on Programming Language Design and Implementation

FLANAGAN, C., A.ATT, M., KRISHNAMURTHI, S., WEIRICH, S.,AND FELLEISEN, M. 1996. Catching bugs
in the web of program invariants. roceedings of the 1996 ACM SIGPLAN Conference on Programming
Language Design and Implementati@3—32.

GECSEG F. AND STEINBY, M. 1984. Tree AutomataAkademiai Kiado.

HEINTZE, N. 1994. Set based analysis of ML programsPhoceedings of the 1994 ACM Conference on LISP
and Functional Programming306-17.

HENGLEIN, F. AND REHOF, J. 1997. The complexity of subtype entailment for simple type®raceedings of
the 12th Annual IEEE Symposium on Logic in Computer Science (LB53}-361.

HENGLEIN, F. AND REHOF, J. 1998. Constraint automata and the complexity of recursive subtype entailment.
In Proceedings of the 25th International Colloquium on Automata, Languages, and Programming (ICALP)
616-627.

KOZEN, D., PALSBERG, J.,AND SCHWARTZBACH, M. 1993. Efficient recursive subtyping. Rroceedings of
the 20th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Langdage428.

KOZEN, D., PALSBERG, J.,AND SCHWARTZBACH, M. 1994. Efficient inference of partial typesournal of
Computer and System Sciences (JCSS24306-324.

KUNCAK, V. AND RINARD, M. 2003. Structural subtyping of non-recursive types is decidabl®rdoneedings
of the 18th Annual IEEE Symposium on Logic in Computer Science (L96S)07.

MAHER, M. 1988. Complete axiomatizations of the algebras of the finite, rational and infinite tré@scked-
ings of the Third IEEE Symposium on Logic in Computer Scie@oenputer Society Press, Edinburgh, UK,
348-357.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 . Su et al.

MARLOW, S.AND WADLER, P. 1997. A practical subtyping system for Erlang.Pimceedings of the Interna-
tional Conference on Functional Programming (ICFP '9TB6—149.

MILNER, R. 1978. A theory of type polymorphism in programmingournal of Computer and System Sci-
ences 173 (Dec.), 348-375.

MITCHELL, J. 1991. Type inference with simple typdeurnal of Functional Programming B, 245-285.

MULLER, M., NIEHREN, J.,AND TREINEN, R. 2001. The first-order theory of ordering constraints over feature
trees.Discrete Mathematics and Theoretical Computer Scien@(8gpt.), 193-234.

NIEHREN, J., MULLER, M., AND TALBOT, J. 1999. Entailment of atomic set constraints is pspace-complete. In
Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science. @86S394.

NIEHREN, J.AND PRIESNITZ, T. 1999. Entailment of non-structural subtype constraintsAdian Computing
Science Conferencdlumber 1742 in LNCS. Springer, 251-265.

NIEHREN, J.AND PRIESNITZ, T. 2003. Non-structural subtype entailment in automata thénfgrmation and
Computation 1862. Special Issue of TACS 2001.

ODERSKY, M. AND WADLER, P. 1997. Pizza into Java: Translating theory into practicd®rteedings of the
24th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming LangFages France,
146-159.

PALSBERG, J. AND O'KEEFE, P. 1995. A type system equivalent to flow analys&CM Transactions on
Programming Languages and Systems4, 576-599.

PALSBERG, J. AND SCHWARTZBACH, M. 1991. Object-oriented type inference. Pnoceedings of the ACM
Conference on Object-Oriented programming: Systems, Languages, and Applicai6n$61.

PosT, E. 1946. A variant of a recursively unsolvable probldBull. of the Am. Math. Soc. 52

POTTIER, F. 1996. Simplifying subtyping constraints. Pmoceedings of the 1996 ACM SIGPLAN International
Conference on Functional Programming (ICFP '96p2-133.

POTTIER, F. 2001. Simplifying subtyping constraints: a theoyformation & Computation 1702 (Nov.),
153-183.

RABIN, M. 1969. Decidability of second-order theories and automata on infinite tréessactions of the
American Mathematical Society 141-35.

REHOF, J. 1998. The complexity of simple subtyping systems. Ph.D. thesis, DIKU.

SHIVERS, O. 1988. Control flow analysis in Scheme.Rroceedings of the 1988 ACM SIGPLAN Conference on
Programming Language Design and ImplementatitBi—174.

STEENSGAARD, B. 1996. Points-to analysis in almost linear time. Aroceedings of the 23rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languaged1.

Su, Z. AND AIKEN, A. 2001. Entailment with conditional equality constraints. Aroceedings of European
Symposium on Programming70-189.

Su, Z., AIKEN, A., NIEHREN, J., RRIESNITZ, T., AND TREINEN, R. 2002. The first-order theory of subtyp-
ing constraints. IrProceedings of the 29th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Language203-216.

TREINEN, R. 1992. A new method for undecidability proofs of first order theordesirnal of Symbolic Compu-
tation 14,5 (Nov.), 437-457.

TREINEN, R. 2000. Predicate logic and tree automata with testsFolmdations of Software Science and
Computation Structured. Tiuryn, Ed. Vol. LNCS 1784. Springer, 329-343.

TREINEN, R. 2001. Undecidability of the emptiness problem of reduction automata with component-wise tests.
Available athttp://www.Isv.ens-cachan.fr/ treinen/publications.html

TRIFONOV, V. AND SMITH, S. 1996. Subtyping constrained typesPhoceedings of the 3rd International Static
Analysis Symposiur349-365.

VENKATARAMAN , K. 1987. Decidability of the purely existential fragment of the theory of term algebras.
Journal of the ACM 342 (Apr.), 492-510.

WOLPER, P.AND BOIGELOT, B. 1995. An automata-theoretic approach to presburger arithmetic constraints. In
Static Analysis Symposiu21-32.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 31

A. AN EXAMPLE

We give an example in this section to demonstrate our automata construction in Sec-
tion 5. Consider the alphabef = {1, T,g(-)}. We want to decide the entailment
{z <9 g(x) <ytFz<y.

This entailment holds. We reason with a proof by contradiction. Suppose the entailment
does not hold. Then there exist two tréegndit, such that (1}; < g(t2) andg(ty) < to;
and (2)t; £ to. Choose; andt, to be trees such th#jt;|| + ||¢2| is minimized. Notice
thatt; = g(t}) andty = g(t}) for somet| andt,, otherwise¢;, andt, cannot witness the
non-entailment. However, then we hay@’) < g(g(3)), i.e,, 7 < g(t5) andg(g(t})) <
g(th),i.e, g(t}) < t5. Furthermore; £ t} sincet; = g(t}) £ g(t5) = t2. Thus,t} and
t}, also witness the non-entailment, a contradiction.

We demonstrate that the entailment holds with the technique presented in this paper.
After flattening the constraints, we consider the equivalent entailment

{o' =g(x),y =g(y),z <y, 2’ <ylkEax<y

The above entailment is equivalent to deciding whether the constiaihts g(z),y’ =
g(y),z <y',z’ <y,z £y} are unsatisfiable.
We construct an automaton for each of the five constraints:

a2’ = g(z)| Consider the automaton where

Q = {Q1,(I2an}
F={LT,9()¥
Qr = {ar}
L — @
Lglq) — qy
A= T —
Tg9(q2) — qy
99(qr) — a5

The first component is far, and the second component is f6r

y' =g(y)| Thisisthe same automaton as f6r= g(z), with the first component for
y and the second component fgr

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 . Su et al.

Consider the automaton where

Q = {Q1aq27qf}
F = {J-v—l—vg(')}2
Qr = {ar}
11l — qaf
1T — qas
TT — gy
L — ¢
ol — 01
A = t9(q1) — @
Lg(g1) — gy
1 — @
T4 — Q2
98(e2) — @
9T (q2) — qr
99(ag) — as

The first component is far, and the second component is for

This is the same automaton as oK 3/, with the first component far’ and
the second component fgr

Consider the automaton where

Q = {(JlaCI27qf}
F = {J—7Tag()}2
Qr = {qr}
L — @
ﬂT — q1
tig((ql)) — q
) Tgler) — qy
A= 1t — @
T8 — @
gi(@2) — @
91(q2) — qr
99(qr) — a5

The first component is far, and the second component is for

Now we apply cylindrification to the automata abévéve use the following shorthand
for transition rules:

A2 1 f5)(@) — ¢

6Before applying cylindrification, we need to make these automata complete. Because of space limitations and
the tediousness of the construction, we simply use the original automata to illustrate how cylindrification works.
The basic construction is the same regardless whether the automata are complete or not.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

The First-Order Theory of Subtyping Constraints . 33

is a shorthand for the two rules:

fifalq) — ¢
fifsle) — ¢

Forz’ = g(z), consider the automaton where

Q = {(h,QQan}
F = {LvTag(')}él
Qr = {qr}
* derived fromf L — ¢; */
I LITLEILIT) — o
gL LT [9)(q) — Q1
gL LT [9)(g2) — q
fg L1 LT |g)(ar) — @
gL T)Lg(a) — @
g1 L] T)Lg(ge — q
gL T)Lg(ar) — q
[* derived from_Lg(q1) — g5 */
Lg(qr) — qy
LEILITIggt LT I 9)a) — g
A = [* derived from$ T — g9 */
B LIT)TEILIT) — ¢
fgT @ LT 19)(q) — @
fgT@ LT 19)(g) —
9T @[LT]9)(gr) — @
gL T)Tglar) — q2
g8 L1 T)Ta(g2) — @
(ﬁ|i\T)T(f) — Q2

* derived from T g(g2) — g5 */
TEILITI9g@] L1T9)(g2) — a5

I* derived fromgg(qs) — qf */
g LT lgg] LT 9)ar) — a5

This automaton is obtained from the automatorufor= g(x) above by applying cylin-
drification twice. The tuples are ordered by y, 2/, andy/, i.e, the first component
corresponds ta, the second component correspondg,tand so on.

The remaining four constrainty)/ = g(y),z < y',2’ < y,z & y} are treated in
the same manner. Finally, we can construct the intersection of the five automata obtained
through cylindrification and verify that the language accepted by the intersection is empty.
With that, we can conclude that the entailment does indeed hold. We leave the remaining
construction to the reader.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

