
Futures and By-need Synchronization for OzMichael Mehl, Christian Schulte, Gert SmolkaProgramming Systems LabDFKI and Universit�at des SaarlandesPostfach 15 11 50, D-66041 Saarbr�ucken, GermanyMay 11, 19981 IntroductionWe propose a conservative extension of Oz that adds futures and by-needsynchronization. Futures are read-only views of logic variables that make itpossible to statically limit the scope in which a variable can be constrained.For instance, one can express with futures safe streams that cannot be as-signed by their readers. By-need synchronization makes it possible to syn-chronize a thread on the event that a thread blocks on a future. It is usedto express dynamic linking and lazy functions.We also introduce variable assignment and distinguish between simpleand complex variables. The idea is that programs should distinguish betweenthe use of logic variables for concurrency and the use of logic variables forconstraint programming. Variable assignment is an asymmetric operationthat eliminates a simple variable by binding it to a given unit.SB's version of Mozart will provide for the distribution of ports, futures,and simple variables. All other stateful units cannot be distributed.We outline an implementation of futures that does not incur an e�-ciency penalty. Futures require an extension of the protocols for distributedvariables.The proposed extensions are useful for Oz as is. They also �t into thenew model for Oz [2, 3] that starts from functional programming and thatintroduces logic variables only in subsequent steps for the purposes of top-down construction of stateless data structures, concurrency, and constraintprogramming. 1



2 FuturesA future is a read-only view of a logic variable. Every variable is associatedwith a future that is logically equal to the variable.The operation \get future"!! : 'a -> 'achecks whether its argument is a variable. If the argument is a variable, itreturns the future of this variable, otherwise it returns the argument as is.Futures must be represented in the constraint store and require changesin the uni�cation algorithm. We will detail the changes in a later section.Here we note the following:1. A unkinded variable may become a future.2. A kinded variable cannot become a future.3. A future cannot become a variable.4. A future may become another future or a determined unit.5. Uni�cation of a future with a di�erent future blocks.6. Uni�cation of a future with a kinded variable blocks.7. Uni�cation of a future with a determined unit blocks.8. Uni�cation proceeds until it detects failure or no or only blocked sub-tasks are left (subtasks are created by record constraints).3 By-need SynchronizationThe operationByNeed : (unit -> 'a) -> 'areturns a future. As soon as a thread blocks on the returned future, a threadis created in the home space of the future that evaluates the function andthat binds the future to the result after the evaluation has terminated.Futures introduced by ByNeed are special in that the associated logicvariable is not visible. This encapsulation avoids semantic complicationsand provides for optimizations. 2



The main applications of by-need synchronization are dynamic linkingand lazy functions.Halstead's Multilisp [1] provides by-need synchronization in the sameway we propose it above. Multilisp does not have logic variables and telloperations.4 Simple and Complex VariablesWhen a variable is created it is always a simple variable. A simple variablebecomes complex if it becomes kinded, or if it is constrained in a subordi-nated space, or if it is uni�ed with a complex variable. Once a variable iscomplex, it stays complex until it is eliminated. Uni�cation of a complexand a simple variable makes the simple variable complex.SB's Mozart will provide for the distribution of only three stateful units:ports, futures, and simple variables. It is an error to export a complexvariable or to make a distributed variable complex.An alternative to the above is to �x the distinction between simple andcomplex upon creation of a variable. In this case one would disallow theuni�cation of a simple with a complex variable. If the default is complex,there is no need to rewrite existing nondistributed programs. However,complex variables are less e�cient than simple variables.5 Variable AssignmentThe variable assignment operation:= : 'a * 'a -> unitexpects that its left argument is a simple variable whose home is the currentspace and that is di�erent from the right argument (in particular, they rightargument must not be the future of the left argument). In this case variableassignment uni�es its two arguments. Otherwise, it raises an error.Variable assignment is distinguished from tell operations like generaluni�cation. Tell operations should only be used for constraint programming.The distinction between variable assignment and tell operations introducesredundancy that makes programs more readable.
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6 Uni�cation with FuturesThe essence of uni�cation with futures can be presented in a simple formalmodel that accounts for variables, futures, and constants. The constraintstore is represented as a directed acyclic graph. A node is either a constantor a nonconstant. We use x and y to denote nonconstants, c to denoteconstants, and n to denote nodes. There are 2 types of edges:1. xfy, which says that y is the future of the variable x.2. x! n, which says that x is a reference to n.The direction of an edge is from left to right.A constraint store is now a �nite set of edges such that:1. The edges form a DAG whose nodes have either no or exactly onedeparting edge.2. If there is an edge xfy, then there is no edge departing from y.A uni�cation task is a pair n1 = n2 of 2 nodes. The execution of auni�cation task is described by rewriting rules for constraint stores, whichare as follows:1. x1fy1; x2fy2; x1 = x2 ) x1 ! x2; y1 ! y2; x2fy22. x1fy1; x2fy2; x1 = y2 ) x1 ! y2; y1 ! y2; x2fy23. xfy; x = c ) x! c; y ! c4. n = n ) ;5. c1 = c2 ) failure if c1 6= c26. x! n1; x = n2 ) x! n1; n1 = n27. x = c ) x! c if there is no link departing from x.The addition of determined records does not bring anything new as itcomes to futures. The addition of kinded variables relies on the assumptionthat the uni�cation of a future and a kinded variable blocks.The assumption that the uni�cation of a future and a kinded variableblocks is more rigid that necessary. The alternative is to propagate con-straints from the future of a kinded variable to the other partner, be it avariable or a determined unit. The question is whether this alternative has4



a straightforward implementation and whether there are interesting appli-cations.The next extension is deep uni�cation. Here it seems easiest to makeuni�cation of a complex variable and a future blocking.7 ImplementationFutures can be put into Mozart without loss of e�ciency. When a variableis created, a word V|-- --> homeis allocated. When the variable is eliminated, the word is updated to atransparent reference R|-- --> unitWhen the variable acquires a suspension, a constraint, or a future, the wordis updated to VF|-- --> F|type | ...where the right-hand side is a block of words. The �rst word of the blockis tagged with F and represents the future of the variable. When such avariable is eliminated, the two words tagged with VF and F are updated toreferences to the same unit.Note that it is ok to bind a future to a variable provided the variable isupdated to be a future. We can also say that it is ok to unify a future anda variable, provided we make the result a future.The presence of futures requires an extension of the protocols for dis-tributed variables so that the uni�cation of two futures is avoided. Let usrefer to variables and futures jointly as quasi-variables.The protocol extensions for distributed quasi-variables are as follows. Asbefore the protocols respect a ranking of quasi-variables, where bindings gofrom higher rank to lower rank. If a distributed future x is asked to binditself to a lower ranking quasi-variable y, the following happens:1. x locks itself.2. x sends a request to y to turn itself into a future.3. y answers with ack or nack. ack means that y was a variable anddid update itself into a future. nack means that y is not a variableanymore and hence cannot ful�ll the request.5



4. When x gets the answer ack, it binds itself to y as usual and unlocksitself.5. When x gets the answer nack, it sends nack to the requester of thebinding and unlocks itself.6. Bind requests that arrive during the time x is locked are queued andare processed once x becomes unlocked again.7. Deadlock is excluded since a locked variable always waits for an answerfrom a variable with lower rank.8. Messages from x to the requester of the binding must arrive in order.References[1] H. Halstaedt, Robert. Multilisp: A language for concurrent symboliccomputation. ACM Transactions on Programming Languages and Sys-tems, 1985.[2] G. Smolka. Concurrent constraint programming based on functionalprogramming. In C. Hankin, editor, Programming Languages and Sys-tems, Lecture Notes in Computer Science, vol. 1381, pages 1{11, Lisbon,Portugal, 1998. Springer-Verlag.[3] G. Smolka. Concurrent constraint programming based on func-tional programming, Slides of an Invited Talk at ETAPS'98, 1998.http://www.ps.uni-sb.de/ smolka/drafts/etaps98.ps.
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