
Lexicalised Configuration Grammars∗

Robert Grabowski and Marco Kuhlmann and Mathias Möhl
Programming Systems Lab

Saarland University
Saarbrücken, Germany

Abstract

This paper introduces Lexicalised Con-

figuration Grammars (lcgs), a new

declarative framework for natural lan-

guage syntax. lcg is powerful enough

to encode a large number of existing

grammar formalisms, facilitating their

comparison from the perspective of

graph configuration (Debusmann et al.,

2005). Once a formalism has been en-

coded as an lcg, the framework offers

various means to increase its expres-

sivity in a controlled manner. Trad-

ing expressive power for computational

complexity, this makes it possible to

model syntactic phenomena in novel

ways. Parsing algorithms for lcgs lend

themselves to a combination of chart-

based and constraint-based processing

techniques, allowing both to bring in

their strengths.

1 Introduction

Formal accounts of natural language syntax

may differ in their understanding of gram-

mar. In generative frameworks, grammars are

systems of derivation rules; well-formed ex-

pressions correspond to successful derivations

in these systems. In descriptive frameworks,

grammars are complex constraints on syntac-

tic structures; well-formed structures are those

that satisfy a grammar. This paper presents

Lexicalised Configuration Grammars (lcgs), a

new descriptive framework for the syntactic

analysis of natural language.

∗ This paper is the extended version of an article
that appears in the proceedings of the 2nd International
Workshop on Constraint Solving and Language Process-
ing, Barcelona, Spain, 2005. 2006-05-24

Structures and constraints lcg does not re-

place existing grammar formalisms; it offers a

formal landscape into which these formalisms

can be embedded to study them and their re-

lations from a different angle: as description

languages for syntactic structures. To be ex-

pressed as an lcg, a grammar formalism needs

to be characterised by two choices: (1) What

structures does it describe? and (2) What con-

straints does it use to describe them? To il-

lustrate this, we will show how context-free

grammars (cfgs) fits into lcg.

Following McCawley (1968), cfgs can be

seen as description languages for ordered, la-

belled trees (Choice 1). More precisely, let

G = (N, T , P, S) be a cfg with N and T be-

ing the alphabets of non-terminal and terminal

symbols, respectively, P the set of productions,

and S ∈ N the start symbol. A node u satis-

fies G if either (a) u is a leaf node labelled

with a terminal symbol, or (b) u is an inner

node with successors u1, . . . , uk (in that order),

P contains a rule A→ α1 · · ·αk (where A ∈ N
and αi ∈ N∪T), u is labelled with A, and each

successor ui of u is labelled with αi; that is,

the order of the successors of u is compatible

with the order specified by the rule (Choice 2).

An ordered, labelled tree satisfies G if its root

node is labelled with π , its frontier is s, and

all of its nodes satisfy G.

Global and local constraints The choice of a

class of reference structures for an lcg gram-

mar formalism (Choice 1) imposes a global con-

straint on the formalism’s expressivity. For

example, by committing itself to ordered, la-

belled trees, no grammar specified in the lcg

version of cfg can possibly account for syn-

tactic structures with discontinuous configura-

tions, and no possible choice for the constraint

language (Choice 2) can change that. Similarly,

in previous work (Bodirsky et al., 2005), we

have identified a class of discontinuous struc-

tures that is ‘just right’ for a descriptive view

on Lexicalised Tree Adjoining Grammar (ltag)

(Joshi and Schabes, 1997). Adopting this class

commits an lcg formalism to subsets of those

syntactic structures describable by an ltag.

The choice of the class of reference struc-

tures is the only non-lexical constraint express-

ible in lcg. This sets lcg formalisms apart

from other formalisms employing constraints

to restrict syntactic configurations, like the

id/lp format of Generalised Phrase Structure

Grammar (Gazdar et al., 1985) or Constraint

Dependency Grammar (cdg) (Maruyama, 1990).

Both of these formalisms allow for the state-

ment of non-lexical constraints at the level

of individual grammars (order constraints in

id/lp grammars, all constraints in cdg). In

contrast, global constraints in lcg can be im-

posed only by the choice of reference struc-

tures (Choice 1), which is a choice made at

the level of the formalism. All remaining con-

straints are local: they apply to a word and

the words in its immediate syntactic neigh-

bourhood. In this sense, lcg is a lexicalised

framework. The next section discusses the no-

tion of locality employed in lcg and the role

of lexical constraints in more detail.

Valencies and lexical constraints Locality is

modelled through the concept of valency. The

valency of a word w specifies the possible

types of w (accepted types) and the number

and types of words that w must connect with

to form a complete expression (required types).

The concept of valency is universal among lex-

icalised formalisms; it is implemented by non-

terminal symbols in lexicalised cfg, syntactic

roles in dependency grammar, and slashed cat-

egories in categorial grammar. When we say

that lexical constraints apply to words and

their immediate syntactic neighbourhoods, we

mean that constraints in the lexical entry forw
are relations over the words permitted by the

valency of w. These words can be referred to

by the accepted and required types of w.

We illustrate the idea behind lexical con-

straints by finalising our encoding of cfg as

an lcg formalism. Assuming that we chose

ordered, labelled trees as the reference class

of structures (Choice 1), rules in a (lexicalised)

cfg can be rewritten as lcg lexical entries us-

ing a single binary constraint relation ≺ to

express linear precedence (Choice 2). For ex-

ample, the rule A→ B1wB2B3 (where A,Bi ∈ N
and w ∈ T) corresponds to the lexical entry

〈{A}, {B1, B2, B3} ; {B1 ≺ ?,? ≺ B2, B2 ≺ B3}〉 .

The first component of this entry specifies the

types accepted by w, the second component

specifies the required types; thus, in a tree

satisfying this entry, the node labelled with w
must have a predecessor of type A and succes-

sors of types B1, B2, B3. The third component

of the entry contains the lexical constraints on

the valency; for the example entry, the node

labelled with w (denoted by ? here) and its

successors (referred to by their types) must be

ordered as prescribed by the right hand side of

the context-free rule. Note that this semantics

exactly corresponds to McCawley’s conception

of cfg.

Increasing the expressivity Given that the

lcg framework is parametrised with respect

to the choice of the class of reference struc-

tures and the choice of the lexical constraint

languages, there are two obvious ways how

the expressivity of an lcg formalism can be

increased:

• choose a more permissive class of struc-

tures (for example, the ltag structures

mentioned above instead of the ordered,

labelled trees employed for the encoding

of cfg);

• choose other constraint languages (for

example, languages with structural con-

straints other than precedence, like iso-

lation or adjacency (Suhre, 1999), or lan-

guages allowing for non-structural con-

straints such as agreement).

It turns out that lcg facilitates a rather de-

tailed analysis of the implications that these

two changes have in terms of the generative

capacity and the processing complexity of the

resulting formalisms.

One of the main reasons why one might want

to experiment with expressivity alternations is

that for most traditional grammar formalisms,

there is a small number of ‘killer phenomena’

for which it seems necessary to locally extend

the expressiveness of the formalisms by just

the right amount. In the case of English for

example, while most syntactic configurations

disallow discontinuities, a few (such as in wh-

movement) require them. It seems desirable

to be able to express context-free and non-con-

text-free phenomena in the same formalism,

investing extra formal and computational re-

sources only in places where they really are

required. We claim that lcg is suitable for

such endeavours.

Another reason why we think that lcg is an

interesting formal framework for modelling

natural language is that it is able to handle

linguistic phenomena that have proven to be

particularly hard for other frameworks. As an

example, we cite the permutation of nominal

arguments in the German verb cluster known

as scrambling. If we accept the linguistic anal-

ysis put forward by Becker et al. (Becker et

al., 1992), the question whether a formalism

can model scrambling boils down to asking

whether it can generate the indexed language

SCR = {π(n[0], . . . , n[k])v[0] · · ·v[k] | k ≥ 0 } ,

where π is some permutation, and the indices

(written as superscripts) match up verbs (vs)

with their noun arguments (ns). It has been

shown (Becker et al., 1992) that no formalism

in the class of Linear Context-Free Rewriting

Systems1 that produces a verb v[i] and the

requirement for its matching noun argument

n[i] in the same derivation step can generate

SCR. In Section 3.3, we will present an lcg that

does.

Previous work Lexicalised Configuration

Grammar elaborates on our previous work on

graph configuration (Debusmann et al., 2005),

in which we have shown how a broad range
1The class of Linear Context-Free Rewriting Systems

includes, among other formalisms, Combinatory Catego-
rial Grammar, ltag, and local Multi-Component tags.

of problems within computational linguistics

can be modelled as tasks in which a finite num-

ber of elementary graph structures (fragments)

has to be assembled into one reference struc-

ture, obeying both global and local constraints.

In lcg, the fragments are specified by the lexi-

cal entries.

Structure We start our exposition by intro-

ducing labelled drawings as the universal class

of reference structures for lcgs (Section 2).

Section 3 presents the parametrised frame-

work for constraint languages over drawings

and gives some illustrative examples. In Sec-

tion 4, we prove some limitative complexity

results for lcg. Section 5 then addresses the

issue of parsing lcgs and shows how the stan-

dard polynomial complexities for parsing can

be obtained by appropriate restrictions on the

structures and constraint languages. The pa-

per concludes with an outlook on future work

in Section 6.

Acknowledgements We thank Alexander

Koller, Gert Smolka and the anonymous review-

ers for useful comments on earlier versions of

this paper. The work of Kuhlmann and Möhl is

funded by the Collaborative Research Centre

378 of the Deutsche Forschungsgemeinschaft.

2 Labelled drawings

We introduce lcgs as description languages

for (labelled) drawings (Bodirsky et al., 2005),

a class of relational structures representing

two essential syntactic dimensions: derivation

structure and word order. Derivation struc-

ture captures the idea that a natural language

expression can be composed of smaller expres-

sions; word order concerns the possible lin-

earisations of syntactic material. This section

presents the basic terminology for drawings

and cites some previous results.

2.1 Relational structures

A relational structure consists of a non-empty,

finite set V of nodes and a number of relations

on V . In this paper, we are mostly concerned

with binary relations on the nodes. We use the

standard terminology and notations available

for binary relations. In particular, R+ refers

a b c d fe

0

0

0 0

0

0

a b c e f d

0

0

0

1

1

0

a b e c f d

0

2

1

1

0

0

Figure 1: Drawings in D0 (projective drawings; left), D1−D0 (gap degree 1; middle) and D2−D1

(gap degree 2; right). An integer at a node states that node’s gap degree.

to the transitive closure, R∗ to the reflexive-

transitive closure of R. The notation Ru stands

for the relational image of u under R: the set

of all v such that (u,v) ∈ R. Since relational

structures with binary relations can also be

seen as multigraphs, all the standard graph

terminology can be applied to them.

Two types of relational structures are par-

ticularly important for the representation of

syntactic configurations: trees and total orders.

A relational structure (V ; /) is a forest iff /
is acyclic and every node in V has an indegree

of at most one. Nodes with indegree zero are

called roots. A tree is a forest with exactly one

root. For a node v , we call the set /∗v the

yield of v . A total order is a relational struc-

ture (V ; ≺) in which ≺ is transitive and for all

v1, v2 ∈ V , exactly one of the following three

conditions holds: v1 ≺ v2, v1 = v2, or v2 ≺ v1.
Given a total order, the interval between two

nodes v1 and v2 is the set of all v such that

v1 � v � v2. A set is convex iff it is an interval.

The cover of a set V ′, C(V ′), is the smallest

interval containing V ′. A gap in a set V ′ is a

maximal, non-empty interval in C(V ′)−V ′; the

number of gaps in V ′ is the gap degree of V ′.

2.2 Drawings

Drawings are trees whose nodes are totally

ordered.

Definition 2.1 A drawing is a relational struc-

ture (V ; /,≺) in which (V ; /) forms a tree

and (V ; ≺) forms a total order. a
Note that drawings are not the same as ordered

trees: in an ordered tree, only sibling nodes

are ordered; in drawings, the order is total for

all of the nodes.

The notions of cover, gap and gap degree

can be applied to nodes in a drawing by identi-

fying a node v with its yield /∗v ; for example,

the gap degree of a node v is the gap degree of

/∗v . The gap degree of a drawing is the maxi-

mum among the gap degrees of its nodes. We

write Dg for the class of all drawings whose

gap degree does not exceed g. The drawings

in D0 are called projective. Fig. 1 shows three

drawings of the same tree structure but with

different gap degrees.

The notion of gap degree yields a scale along

which the non-projectivity of a drawing can be

quantified. Orthogonal to that, there are lin-

guistically relevant qualitative restrictions on

non-projectivity. One of these is well-nested-

ness, which constrains the possible relations

between gaps (Bodirsky et al., 2005).

Definition 2.2 Let D be a drawing. Two dis-

joint trees T1 and T2 in D interleave iff there

are nodes l1, r1 ∈ T1 and l2, r2 ∈ T2 such that

l1 ≺ l2 ≺ r1 ≺ r2. The drawing D is called well-

nested iff it does not contain any interleaving

trees. a

We use the notation Dwn to refer to the class

of all well-nested drawings. In Fig. 1, the first

and the second drawing are well-nested; the

third drawing contains two pairs of interleav-

ing trees, rooted at b, e and c, e, respectively.

2.3 Labelled drawings

A labelled drawing is a drawing equipped with

two total functions `V and `E : the function `V
marks each node with a node label from an

alphabet Σ, and `E marks each edge with an

edge label from an alphabet Π. We write DΣ,Π

for the class of labelled drawings obtained by

decorating drawings from class D with node

labels from Σ and edge labels from Π.

In labelled drawings, labelled successor rela-

tions can be defined as follows:

/π := { (u,v) | u/ v and `E(u,v) = π } .

To reduce the complexity of our presentation,

we define the accessibility relation as the set of

nodes reachable via an edge labelled with π :

�π := /π ◦/∗

The projection of a labelled drawing D,

proj(D), is the string obtained by concatenat-

ing the node labels of the drawing in the order

of their corresponding nodes. Thus, the pro-

jection of a drawing in DΣ,Π is a string over Σ.

3 Lexical constraint languages

The choice of a particular class of drawings im-

poses a global constraint on the syntactic struc-

tures allowed by an lcg formalism. In this

section, we formalise the mechanism of lexical

(local) constraints. As we illustrated in the in-

troduction, the lexical entry for a given wordw
specifies the type of w and the types of the

words connected to w , and imposes additional

structural restrictions using constraints from

a lexical constraint language. In our formal

model, words will correspond to node labels,

and types of nodes will correspond to edge

labels. A lexical constraint between two types

π1, π2 in the entry of a word `V (u) will be in-

terpreted on the nodes reachable from u by

the labelled successor relations named by π1
and π2.

3.1 Syntax and semantics

Syntax The syntax of a lexical constraint lan-

guage is defined relative to an alphabet R of

relation symbols and an alphabet Π of edge

labels. The alphabet R, together with a func-

tion ar that assigns every symbol R ∈ R a

non-negative arity ar(R), forms the signature

of the language. We will leave the arity func-

tion implicit, and use the letter R to refer to

signatures.

Definition 3.1 Let R be a signature, and let Π
be an alphabet of edge labels. A lexical con-

straint language with signature R over Π, writ-

ten LR(Π), consists of literals of the form

R(π1, . . . , πk), where R ∈ R, ar(R) = k, and

πi ∈ Π. We write LR for the class of all lexical

constraint languages with signature R. a

Binary constraint literals will be written using

infix notation, so the notation π1 R π2 will

stand for R(π1, π2). Note that L� is the class

of languages that contains no constraints.

Semantics The satisfiability relation associ-

ated to a lexical constraint language LR(Π) is

a ternary relation between a formulaφ, a draw-

ing D ∈ DΣ,Π and a node u in that drawing.

In this paper, we focus on satisfiability rela-

tions that meet the following requirement: the

question whether a defining condition of a con-

straint applies must be decidable in time poly-

nomial in the number of nodes in D. lcg as

we define it here does not impose any further

restrictions; it allows for defining arbitrary con-

straint languages for labelled drawings, if they

meet the complexity condition.

To simplify our presentation, we assume

the existence of a special edge label ? called

‘self’, distinct from all other labels, and define

/? := Id and �? := Id. The self label allows

for constraint definitions in which successors

and the node u itself are referenced in the

same manner. It constitutes a notational trick:

instead, one could define additional special

contraints with references to u integrated into

their definition.

3.2 Theories and grammars

Within lcg, we distinguish between theories

and grammars. Formally, an lcg theory is a

pair of a class of (unlabelled) drawings and

a class of lexical constraint languages. An

lcg theory corresponds to a ‘grammar formal-

ism’ in the usual sense of the word. An lcg

grammar adopts a theory and instantiates it

by choosing concrete alphabets for the node

and edge labels, and a lexicon. An lcg lexicon

is a mapping from node labels to sets of lexical

entries. The type of a lexical entry depends on

the signature of its constraint language and

the alphabet of edge labels that the lexical con-

straints may refer to.

Definition 3.2 A bag (multiset) over a base

set S is a function in S → N0 that assigns ev-

ery element in S a natural number that tells

how often the element appears in the bag. The

set of all bags over S is written B(S). An op-

tion over S is a bag over S that assigns 0 to

all elements in S, possibly except for exactly

one element which is assigned 1. An option

is therefore equivalent to a set that contains

either exactly one element of S or is empty.

The set of all options over S is written O(S).a

Definition 3.3 A lexical entry describes a node

in a drawing. It is a triple 〈I,Ω ; Φ〉 ∈ LER(Π),
where the option I ∈ O(Π) and the bag Ω ∈
B(Π) contain edge labels, and Φ ∈ P(LR(Π))
is a set of lexical constraints.

A node u in D ∈ DΣ,Π satisfies a lexical

entry 〈I,Ω ; Φ〉 ∈ LER(Π) iff: for all π ∈ Π,

|(/π)−1u| = I(π) and |(/π)u| = Ω(π); and

D, u î φ for all φ ∈ Φ. a

A node u thus satisfies a lexical entry 〈I,Ω ;Φ〉
if and only if I contains exactly the ingoing

edge of u, Ω is exactly the bag of outgoing

edges, and u satisfies all constraints in the set

of constraints Φ.

Definition 3.4 Let T = (D,LR) be a theory. A

grammar of type T is a triple GT = (Σ,Π,Lex)
such that Σ is an alphabet of node labels, Π is

an alphabet of edge labels, and Lex is a lexicon

of type Σ→ P(LER(Π)). a

Definition 3.5 A node u ∈ D ∈ DΣ,Π satisfies

a lexicon Lex ∈ Σ → P(LER(Π)) iff there is

a lexical entry 〈I,Ω ; Φ〉 ∈ Lex(`V (u)) such

that u satisfies 〈I,Ω ; Φ〉. A drawing D satisfies

a grammar G, written D î G, iff every node

u ∈ D satisfies the lexicon of G. a

3.3 Sample languages

To provide an intuition for the formal con-

cepts defined in the previous two sections, we

will now translate three grammar formalisms

into lcg theories. We start by adapting our

previous encoding of lcfg to the new formal

concepts.

Lexicalised Context-Free Grammars As

mentioned in the introduction, lexicalised

context-free rules like A → B1wB2B3 can be

seen as local well-formedness conditions

on node-labelled, ordered trees (see Fig. 2).

B₁

A

B₂

a w b c

B₃
A

wB₁ B₂ B₃

w : 〈{A}, {B1, B2, B3} ; {B1 ≺ ?,? ≺ B2, B2 ≺ B3}〉

Figure 2: Encoding Lexicalised Context Free

Grammars

To express these conditions in the formal

framework defined above, we first need

to choose a class of drawings suitable as

models for lcfgs. Since the yields of each

non-terminal are continuous, a proper choice

isD0, the class of projective drawings. Second,

we need to choose a signature for the lexical

constraint language that we want to use. As

we already mentioned in the introduction, the

only structural constraint relevant to lcfgs

is linear order. Therefore, it suffices to have

a single literal ≺ that imposes an order on

the immediate successors of a node; since the

language is interpreted on projective drawings,

this order induces an order on the subtrees.

D, u î π1 ≺ π2 iff /π1u×/π2u ⊆ ≺

Fig. 2 shows a node-labelled tree, the corre-

sponding lexical entry for the word w, and

a (partial) drawing satisfying the entry. Note

that (instances of) non-terminals in the lcfg

rule correspond to edge labels in lcg. If A
was a start symbol of the underlying grammar,

the first component of the corresponding lcg

entry would have to be the empty set; such

entries can only be satisfied at root nodes.

Lexicalised Unordered Context-Free Gram-

mar Since nothing forces us to impose order

constraints on all types, we can write gram-

mars corresponding to lcfgs with arbitrary

permutations of the right hand sides of the

rules. If we abandon the order constraints

completely, we get the theory (D0,L�), which

is equivalent to the class of (lexicalised) un-

ordered context-free grammars.

The scrambling language The following

grammar derives drawings whose projections

D, u î π1 ≺ π2 iff �π1u×�π2u ⊆ ≺
D, u î π1 1 π2 iff (/π1 ∪/π2)u convex

n

v
n

n

n n n n vv

n

v v

v

v

Figure 3: Lexical constraint language and sam-

ple drawing for SCR

form the scrambling language presented in

the introduction. The underlying theory uses

the unrestricted class of drawings and a con-

straint language with two literals ≺ (linear

precedence) and 1 (adjacency), whose seman-

tics are specified in Fig. 3. The grammar is

GSCR := ({n,v}, {n,v},Lex), where the lexicon

Lex contains the entry 〈{n}, � ;�〉 for n and the

following entries for v :

〈�, {n,v} ; {n ≺ ?,? ≺ v,? 1 v}〉 ,
〈{v}, {n,v} ; {n ≺ ?,? ≺ v,? 1 v}〉 ,

and 〈{v}, {n} ; {n ≺ ?}〉 .

The precedence constraints place each v in

between its n-successor and its v-successor.

The adjacency constraint prevents material

from entering between a v and its v-successor.

Therefore, all nodes labelled with n must be

placed to the left of all nodes labelled with v ,

and while the vs are ordered, the ns can ap-

pear in any permutation. (Fig. 3 shows a sam-

ple drawing licensed by GSCR.)

Linear Specification Language Suhre’s lsl

formalism (Suhre, 1999) allows to generate lan-

guages with a free word order. It is inspired by

id/lp parsing (Gazdar et al., 1985), but allows

for local constraints only, which makes it more

suitable for translation into lcg. The yields in

lsl are generally discontinuous; therefore, a

theory for lsl needs to adopt the class of unre-

stricted drawings as its models. To restrict the

possible linearisations, each lsl grammar rule

can be annotated with local precedence and

‘isolation’ (zero-gap) constraints. These con-

straints can be translated into constraints from

the lexical constraint language LLSL shown in

Fig. 4.

4 Limitative complexity results

The previous section has demonstrated that

the lcg framework is rather expressive. This

expressive power does not come without a

price. It is clear that all recognition prob-

lems for lcg are in np: we can simply guess

a labelled drawing and check the lexical con-

straints in polynomial time. The main result of

the present section is the proof that the univer-

sal recognition problem for the most general

lcg theory is np-complete.

4.1 The universal recognition problem

Definition 4.1 Let G = (Σ,Π,Lex) be a gram-

mar for the theory (D,LR), and let s be a

string over Σ. The universal recognition prob-

lem for G and s, written (G, s), is the problem

to decide whether the following set is non-

empty:

C(G, s) := {D ∈ DΣ,Π | D î G and proj(D) = s }

Elements of this set are called configurations

of (G, s). a

Lemma 4.2 The universal recognition problem

for (D,L�) is np-hard. 2

Proof We will present a polynomial reduction

of Hamilton Path to the universal recogni-

tion problem for (D,L�). More specifically,

for each input graph H = (V ; E) to Hamilton

Path, we will construct (in time linear in the

size of the input graph) a grammar GH and

a string sH such that C(GH , sH) is non-empty

iff H has a Hamilton Path. Let sH be some

string over V , and define

ΣH ,ΠH := V
S(v) := {〈�, {v′} ; �〉 | v → v′ ∈ H }
I(v) := {〈{v}, {v′} ; �〉 | v → v′ ∈ H }
E(v) := {〈{v}, � ; �〉 | v → v′ ∈ H }
LexH := {v , S(v)∪ I(v)∪ E(v) | v ∈ V }
GH := (ΣH ,ΠH ,LexH)

D, u î π1 < π2 iff �π1u×�π2u ⊆ ≺
D, u î π1� π2 iff �π1u×�π2u ⊆ ≺ and C(�π1u)∪C(�π2u) convex

D, u î 〈π〉 iff �πu is convex

D, u î 〈•〉 iff /∗u is convex

Figure 4: Suhre’s Linear Specification Language. The last clause corresponds to an isolation

constraint applied to the left hand side of an lsl rule.

Each Hamilton Path in H forms a linear tree

on V . Each such tree can be configured us-

ing GH by choosing, for each node v in H,

an entry from either S(v), E(v), or I(v), de-

pending on the position of v in the Hamilton

Path (start, inner, or end). Conversely, in each

configuration of (GH , sH), each node has at

most one predecessor and at most one succes-

sor qua lexicon. Therefore, each such config-

uration is a drawing whose successor relation

forms a linear tree, and the path from the root

to the leaf identifies a Hamilton Path in H. �

To illustrate the encoding used in the proof,

we show an example for an input graph H
and a corresponding configuration in Fig. 5.

The depicted drawing satisfies the following

lexicon LexH . (The lexical entry satisfied at

each node is underlined.)

Well-nested drawings Since linear drawings

do not contain disjoint trees, all solutions

to the configuration problem for Hamilton

Graphs are well-nested.

Corollary 4.3 The universal recognition prob-

lem for (Dwn,L�) is np-hard. 2

Projective drawings While all solutions to

the configuration problem for Hamilton

Graphs are well-nested, there is no limit on

their gap degree. One may wonder if restrict-

ing the gap degree reduces the complexity of

the universal recognition problem. This, how-

ever, is not even the case for drawings without

gaps:

Lemma 4.4 The universal recognition prob-

lem for (D0,L�) is np-hard. 2

Proof As indicated in section 3.3, each

(D0,L�) grammar can be transformed into an

equivalent lexicalised unordered context-free

grammar. Therefore, the universal recognition

problem for (D0,L�) can be reduced from the

corresponding problem for lucfgs; this prob-

lem is np-hard (Barton, 1985). �

4.2 The fixed recognition problem

The fixed recognition problem asks the same

question as the universal problem, but the

grammar is not considered part of the input.

This invalidates the reduction that we used

in the previous section, as this reduction con-

structed a new grammar for every input, while

any reduction for the fixed recognition prob-

lem needs to assume one fixed grammar for

every input string.

Lemma 4.5 The fixed recognition problem for

(D,L�) is polynomial. 2

Proof We assume the existence of a chart

parser that solves the fixed recognition prob-

lem for (D,L�) and uses parse items to rep-

resent partial derivations. These parse items

have the form s : 〈I,Ω〉, where s represents

the span of the input sentence covered by the

partial derivation, and I and Ω represent the

incoming and outgoing valencies that still need

to be saturated. (We will show such a general

chart-based parsing schema for lcgs in Sec-

tion 5.) The time complexity of such a parser

is polynomial in the number of possible parse

items, but since for the fixed recognition prob-

lem, we may ignore the size of the grammar,

we are only interested in the number of dif-

ferent spans. The string languages of (D,L�)
are closed under permutation; therefore, each

span can be represented by a Parikh vector (a

mapping from node labels to natural numbers).

As each σ ∈ Σ can occur between zero and n
times, the number of different such Parikh vec-

3

1 2

4

1

3

1 2 3 4

4

1, {〈�, {3} ; �〉, 〈�, {4} ; �〉, 〈{1}, {3} ; �〉, 〈{1}, {4} ; �〉, 〈{1}, � ; �〉}
2, {〈�, {1} ; �〉, 〈�, {4} ; �〉, 〈{2}, {1} ; �〉, 〈{2}, {4} ; �〉, 〈{2}, � ; �〉}
3, {〈{3}, � ; �〉}
4, {〈�, {3} ; �〉, 〈{4}, {3} ; �〉, 〈{4}, � ; �〉}

Figure 5: An input graph H for Hamilton Path and a drawing licensing LexH . The Hamilton

Path in H is marked by solid edges.

tors is (n + 1)|Σ| ∈ O(n|Σ|), which is polyno-

mial in n. (An upper bound for Σ is the size of

the grammar, which is considered constant for

the fixed recognition problem.) �

It would seem desirable to have a frame-

work in which extending the signature of the

constraint language may only reduce the com-

plexity of the recognition problem, but never

increase it. For lcgs, however, this is not neces-

sarily the case: in an unpublished manuscript,

Holzer et. al. show—by a reduction of Tripar-

tite Matching—that for the Linear Specifi-

cation Language, even the fixed recognition

problem is np-complete (p.c.); consequently,

by the encoding of lsl presented in Section 3.3,

the same result applies to lcgs.

5 Parsing Lexicalised Configuration
Grammars

This section presents a general schema for

chart-based approaches to parsing lcgs. Pars-

ing schemata (Sikkel, 1997) provide us with a

declarative specification of concrete parsing

algorithms, and allow us to analyse the com-

plexity of these algorithms on a high level of

abstraction, hiding the algorithmic details. The

complexity and even the completeness heav-

ily depend on the class of drawings that the

schema is applied to. Hence we get a detailed

picture of how parsers can benefit from the

global constraints that are implicit in a class of

drawings and up to what limits the class can

be extended without losing efficiency.

5.1 A general parsing schema

Parsing schemata (Sikkel, 1997) view parsing

algorithms as inference systems. The general

parsing schema for lcg derives parse items

representing partial drawings licensed by a

given grammar and sentence. These parse

items have the form s : 〈I,Ω〉, where s is a

span (a non-empty subset of the words in the

sentence) and I and Ω are bags of edge labels.

Each parse item represents the information

that the grammar licenses a partial drawing

covering the words of the input sentence spec-

ified by s; for this drawing to be complete, one

still needs to connect its root nodes using in-

coming edges labelled with the labels in I and

outgoing edges labelled with the labels in Ω. A

parse item in which Ω is empty is fully satu-

rated. An item s : 〈�, �〉 in which s contains all

the words in the sentence is complete.

The lookup rule The parsing schema con-

tains three rules called lookup, group and

plug. The lookup rule creates a new parse

item with a singleton span for a wordwi in the

input sentence:

〈I,Ω ; Φ〉 ∈ Lex(wi)

{i} : 〈I,Ω〉
lookup

The combination rules The group and plug

rules derive new parse items from existing

ones. The first rule, group, combines two fully

saturated items into a new fully saturated item.

The plug rule saturates a bag of valencies in a

parse item by combining it with another item

accepting these valencies on incoming edges

pointing to its root nodes:

s1 : 〈I1, �〉 s2 : 〈I2, �〉
s1 ⊕ s2 : 〈I1 ∪ I2, �〉

group

s1 : 〈I1,Ω] I2〉 s2 : 〈I2, �〉
s1 ⊕ s2 : 〈I1,Ω〉

plug

The span of a parse item in the conclusion of

the group or plug rule (s1⊕ s2) is the union of

the spans in the premises (s1, s2). The ⊕ rela-

tion is a subset of the disjoint union relation.

On which pairs of spans it is defined depends

on the class of drawings that the schema is

applied to, e.g. for D1 it would only be defined

on pairs of spans whose union has at most one

gap. We regard these restrictions as implicit

side conditions of the group and plug rule.

Chart-based parsing A concrete parsing al-

gorithm using the general schema would test

whether the inferential closure of the three

rules contains a complete item. Computing the

inferential closure can be done efficiently by

using a chart, indexed by the spans, to record

parse items already derived, and by choosing

a control strategy that guarantees that no two

items are combined twice.

Alternatively a grammar could be translated

into a definite-clause grammar (dcg): each in-

stance of the lookup rule as well as the group

and the plug rule can be represented by dcg

rules. A dcg parser implemented as proposed

in (Shieber et al., 1995) will perform the same

operations as the chart parser sketched above.

5.2 Completeness

Before we look at the complexity of parsing

lcgs in more detail, we first need to ensure

that the presented parsing schema is sound

and complete, i.e., that all the inferences are

valid and that every drawing can be derived

with them. While this is easy to show in the

general case, chart-based parsing requires a

crucial invariant on the parsing rules: all spans

derived during parsing must have a uniform

representation. More specifically, assume that

each span in the premises of a combination

rule has at most g gaps and thus can be repre-

sented using 2(g+1) integer indices (denoting

the start and end positions of the g + 1 inter-

vals that the span consists of). Then the union

of two spans must also have at most g gaps.

Under this side condition, the general parsing

schema is no longer complete: there are draw-

ings whose gap degree is bounded by g that

cannot be derived using parse items whose gap

degree is bounded by g.

Completeness for well-nested drawings We

will now show that for well-nested drawings

(cf. Section 2.2), the general parsing schema

is complete even in the presence of the gap

invariant. For the proof of this result, we need

the concept of the gap forest of a well-nested

drawing (Bodirsky et al., 2005).

Definition 5.1 Let (V ; /,≺) be a well-nested

drawing and let v ∈ V be a node with g gaps.

The gap forest for v is defined as the ordered

forest gf(v) = (S ; =, <):

S := {{v}, Gv1 , . . . , Gvg} ∪ {/∗w | v /w }
= := { (s1, s2) ∈ S × S | C(s1) ⊃ s2 }
< := { (s1, s2) ∈ S × S | s1 ≺ s2 }

The elements of S are called spans. a

(The notation Gvi refers to the ith gap in the

yield of v .) In a gap forest, sibling spans cor-

respond to disjoint sets whose union has at

most g gaps. Sibling spans belonging to the

same convex region are called span groups.

Lemma 5.2 Let G be an lcg grammar and let D
be a well-nested drawing on nodes V with gap

degree at most g. Then D î G implies the

existence of a derivation of a parse item V :

〈I, �〉 that only involves parse items whose gap

degree is bounded by g. 2

Proof Let G be a grammar and let D be a

well-nested drawing on V such that D î G.

If V = {u}, then 〈�, � ; Φ〉 ∈ Lex(`(u)). In this

case, the parse item {u} : 〈�, �〉 can be derived

by one application of the lookup rule. Now

assume that D consists of a root node u with

children vi, 1 ≤ i ≤ k, where each child vi is

the root of a drawing Di. Then

〈�,
⋃
1≤i≤k Qi ; Φ〉 ∈ Lex(`V (u)), where

Qi = {πi | 〈{πi},Ωi ; Φi〉 ∈ Lex(`V (vi)) } .

n∑
i=1
(ik − (i− 1)k)2 + (ik − (i− 1)k)(i− 1)k

=
n∑
i=1
i2k − 2ik(i− 1)k + (i− 1)2k + ik(i− 1)k − (i− 1)2k

=
n∑
i=1
i2k − ik(i− 1)k ≤

n∑
i=1
i2k − (i− 1)2k = n2k

Figure 6: Complexity estimate for a left-to-right chart parsing strategy. The last equality holds

because the sum in question is telescopic.

By induction, we may assume that each of the

drawings Di was derived using parse items

with gap degree at most g only; in particu-

lar, each complete drawing Di corresponds to

such a parse item. The drawing D then can

be derived using the two combination rules,

successively combining the parse items for the

drawings Di and the item for the root node u
(obtainable by the lookup rule).

The interesting part of the proof is to show

that the combining operations can be lin-

earised in such a way that the gap degree of

the intermediate parse items is bounded by g.

We now present such a linearisation, based on

a post-order traversal of the gap forest for the

node u: In a horizontal phase of the traversal,

we combine all parse items corresponding to

a span group from left to right, ignoring any

gap nodes. There are at most g such nodes in

the complete gap forest; therefore, this phase

of the traversal maintains the gap invariant. In

a vertical phase, we combine the parse items

from the preceding horizontal phase with the

item corresponding to the parent node in the

gap forest in order of their gap degree. Since

the gap degree of the final item is bounded

by g, this maintains the gap invariant. �

5.3 Complexity analysis

We now determine the complexity bounds of

an implementation of our schema.

Space complexity To bound the number of

parse items stored in the chart, we look at the

number of possible values for the variables of a

parse item s : 〈I,Ω〉. As both I and Ω may rep-

resent arbitrary multisets over the edge labels,

the number of parse items may be exponential

in the size of the grammar. In the case that the

drawings under consideration are unrestricted

(so that a span s can be an arbitrary set), the

number of parse items is also exponential in

the length of the input sentence. However, in

cases where Lemma 5.2 applies, spans can be

represented by k = 2(g + 1) integers (cf. Sec-

tion 5.2). Thus, there will be at most O(nk)
different parse items in the chart.

Time complexity Since the chart-based archi-

tecture guarantees that no two parse items are

combined twice, the space complexity can be

used to bound the time complexity. Of course,

if the number of parse items is exponential,

the runtime of any algorithm faithfully imple-

menting the general parsing schema will be

exponential as well. In what follows, we will

ignore the size of the grammar and focus on

well-nested drawings with bounded gap degree.

How many possibilities of combinations are

there for parse items? Counted over the run-

time of the complete algorithm, every parse

item needs to be combined with every other

item, so the time needed for these combina-

tions is O(nk) ·O(nk) = O(n2k).
To see this more clearly, assume that the

parser works from left to right. At each posi-

tion i in the input string, the chart contains

ik different spans. For the combination rule,

we need to combine the parse items that we

have not yet seen among each other, and with

all the items previously present in the chart.

Since the number is monotonically increasing,

the estimate in Fig. 6 holds.

A refined analysis This O(n2k) time esti-

mate is too pessimistic still. To see this, notice

that in both of the combination rules, k in-

dices used to represent the spans only occur

in the premises: since both the spans in the

premises and the span in the conclusion can

be represented using k indices each, 2k−k can-

not ‘make it’ into the conclusion. As the union

operation on spans does not ‘forget’ about any

material, the value of k/2 of these indices are

determined by other indices in the premises.

Thus, a better upper bound for the time com-

plexity for the algorithm is O(n2k−k/2). Re-

membering that k = 2(g + 1), we get the fol-

lowing result:

Lemma 5.3 Let D be a class of well-nested

drawings whose gap degree is bounded

by g, and let LR be a lexical constraint lan-

guage. Then the universal recognition prob-

lem for (D,LR) has complexityO(2|G|cn3g+3),
where c is the (polynomial) time it takes to

check lexical constraints, measured relative to

|G| and n. 2

For context-free grammars (g = 0), this

lemma gives the familiar O(n3) parsing re-

sult; for tags (g = 1), we get a parser that

takes time O(n6). Note that both of these

complexities ignore the size of the grammar,

and the complexity of the lexical constraints.

For lcfgs, however, our parsing framework

can be as efficient as e.g. the Earley parser:

Lemma 5.4 The universal recognition prob-

lem for totally ordered grammars of type

(D0,L{≺}) has complexity O(|G|2n3). 2

Proof By the previous lemma, we know that

O(2|G|cn3) is an upper bound. The restriction

that the valency of each lexical entry are totally

ordered implies that we can represent valen-

cies as lists instead of bags. The precedence

constraints can be expressed entirely as side

conditions on the span variables, hence we can

ignore complexity of these constraints. �

5.4 The size of the grammar and the

complexity of the constraints

The previous section offered insights in how

far the model class used by a certain gram-

mar formalism influences the completeness

and the complexity with respect to the length

of the input sentence. To develop an efficient

parser of practical relevance based on our pars-

ing schema, two crucial points are the pars-

ing complexity with respect to the size of the

grammar and the complexity of the lexical con-

straints.

Grammar size is an often neglected factor

for the performance of parsing algorithms: a

standard sentence of, say, 25 words, is usually

several orders of magnitude shorter than a lex-

icalised grammar. While grammar size thus is

significant even for frameworks in which the

grammar only contributes linearly or quadrat-

ically to the speed of the parsing algorithm

(such as context-free grammar), it is definitely

an issue in a framework like lcg, where for rea-

sons of expressive power it cannot in general

be avoided. It seems then, that it is desirable

to complement the chart-based parsing archi-

tecture by methods to avoid the worst-case

complexity in the size of the grammar when-

ever possible.

This is where we propose to use constraint

propagation: lexical constraints can be used

to control the chart-based parser. To give a

very simple example: in the presence of order

constraints, far from all of the possible combi-

nations of parse items need to be considered

when applying the plug rule: if an item i has

open valencies π1 ≺ π2, there is no need to try

to plug π2 with an item adjacent to i—any item

plugging π1 precedes any item plugging π2 in

all licensing drawings. How exactly the interac-

tion between constraint propagation and chart

parsing is realized and how much a parser can

benefit from each single constraint are open

questions that we are currently addressing.

6 Conclusion

This paper presented Lexicalised Configura-

tion Grammars (lcgs), a novel framework for

the descriptive analysis of natural language.

lcg is parametrised by the choice of a class of

reference structures (a global constraint), and

the choice of a lexical (i.e., local) constraint lan-

guage used to describe those structures that

should be considered grammatical. Translat-

ing grammar formalisms into lcg makes it

possible to study these formalisms and their

relations from a new perspective, and to ex-

periment with gradual and local alternations

of their expressivity and processing complex-

ity. lcgs are expressive enough to generate

the scrambling language, a language that can-

not be generated by many traditional gener-

ative frameworks. The universal recognition

problem for lcg is np-complete; however, a

broad class of linguistically relevant lcgs can

be parsed in polynomial time.

Future work We plan to continue our re-

search by investigating the potential of the

processing framework outlined in Section 5 to

combine chart-based and constraint-based pro-

cessing techniques. Our immediate goal is the

implementation of a parser for lcgs that uses

constraint propagation to avoid the worst-case

complexity of the chart-based parsing algo-

rithm with respect of the size of the grammar.

One of the major technical challenges in this is

the constraint-based treatment of lexical am-

biguity: handling disjunctive information is

notorously difficult for constraint propagation.

In a second line of work, we will try to relate

lcgs to more and more traditional grammar

formalisms by defining appropriate lcg theo-

ries and grammars and proving the necessary

equivalence results.

References

G. Edward Barton. 1985. On the complexity of
ID/LP parsing. Comp. Ling., 11(4):205–218.

Tilman Becker, Owen Rambow, and Michael Niv.
1992. The derivational generative power, or,
scrambling is beyond lcfrs. Technical Report
IRCS-92-38, University of Pennsylvania.

Manuel Bodirsky, Marco Kuhlmann, and Mathias
Möhl. 2005. Well-nested drawings as models of
syntactic structure. In 10th Conference on For-
mal Grammar and 9th Meeting on Mathematics
of Language, Edinburgh, Scotland, UK.

Ralph Debusmann, Denys Duchier, and Marco
Kuhlmann. 2005. Multi-dimensional graph
configuration for natural language processing.
In Constraint Solving and Language Processing,
volume 3438 of Lecture Notes in Computer Sci-
ence, pages 104–120. Springer.

Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum,
and Ivan A. Sag. 1985. Generalized Phrase Struc-
ture Grammar. Havard University Press, Cam-
brige, MA.

Aravind Joshi and Yves Schabes, 1997. Handbook
of Formal Languages, volume 3, chapter Tree
Adjoining Grammars, pages 69–123. Springer.

Hiroshi Maruyama. 1990. Structural disambigua-
tion with constraint propagation. In 28th An-
nual Meeting of the Association for Computa-
tional Linguistics (ACL 1990), pages 31–38, Pitts-
burgh, Pennsylvania, USA.

James D. McCawley. 1968. Concerning the
base component of a transformational grammar.
Foundations of Language, 4(3):243–269.

Stuart M. Shieber, Yves Schabes, and Fernando
C. N. Pereira. 1995. Principles and implementa-
tion of deductive parsing. Journal of Logic Pro-
gramming, 24(1&2):3–36.

Klaas Sikkel. 1997. Parsing Schemata: A Frame-
work for Specification and Analysis of Parsing
Algorithms. Springer-Verlag.

Oliver Suhre. 1999. Computational aspects of
a grammar formalism for languages with freer
word order. Diploma thesis, Universität Tübin-
gen.

