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Abstract

Until the beginning of the 20th century, there was no way to reason formally
about proofs. In particular, the question of proof equivalence had never been
explored. When Hilbert asked in 1920 for an answer to this very question
in his famous program, people started looking for proof formalizations.

Natural deduction and sequent calculi, which were invented by Gentzen
in 1935, quickly became two of the main tools for the study of proofs.
Gentzen’s Hauptsatz on normal forms for his sequent calculi, and later on
Prawitz’ analog theorem for natural deduction, put forth a first notion of
equivalent proofs in intuitionistic and classical logic.

However, natural deduction only works well for intuitionistic logic. This
is why Girard invented proof nets in 1986 as an analog to natural deduction
for (the multiplicative fragment of) linear logic. Their universal structure
made proof nets also interesting for other logics. Proof nets have the great
advantage that they eliminate most of the bureaucracy involved in deductive
systems and so are probably closer to the essence of a proof. There has
recently been an increasing interest in the development of proof nets for
various kinds of logics. In 2005 for example, Lamarche and Straßburger
were able to express sequent proofs in classical logic as proof nets.

In this thesis, I will, starting from proof nets for classical logic, turn the
focus back on intuitionistic logic and propose proof nets that are suited as an
extension of natural deduction. I will examine these nets and characterize
those corresponding to natural deduction proofs. Additionally, I provide a
cut elimination procedure for the new proof nets and prove termination and
confluence for this reduction system, thus effectively a new notion of the
equivalence of intuitionistic proofs.
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Chapter 1

Introduction

What is a proof?

Whenever we study mathematical objects, one of the most important ques-
tions is whether two given objects should be identified. Examples are iso-
morphic groups or vector spaces, or maps that coincide on an interesting
subset of their domain. One type of objects that completely resisted such
an examination until the 20th century were proofs. Before that time, all
proofs were mainly texts in a natural language, which made any arguments
about them very awkward. So in fact, they were not even real mathematical
objects.

The complete absence of any possibility to reason rigorously about proofs
(and hence also about their equality) was the incitement of Hilbert’s Pro-
gram, in which he demanded to strictly formalize all mathematical reason-
ing. Hilbert had even considered including it into his famous lecture in 1900
as a 24th problem [Hil00, TW01]. So Hilbert may be seen as the founder
of modern proof theory, whose main interests are the following (cf. [Pra71,
Section I]):

(1) The basic question of defining the notion of proof, including the ques-
tion of the distinction between different kinds of proofs such as con-
structive proofs and classical proofs.

(2) Investigation of the structures of (different kinds of) proofs, including
e.g. questions concerning the existence of certain normal forms.

(3) The representation of proofs by formal derivations. In the same way
as one asks when two formulas define the same set or two sentences
express the same proposition, one asks when two derivations represent
the same proof; in other words, one asks for identity criteria for proofs
of for a “synonymity” (or equivalence) relation between derivations.
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1. Introduction

(4) Application of insights about the structure of proofs to other logical
questions that are not formulated in terms of the notion of proof.

Evidently the most fundamental question, on which all others build, is
the first one: What is a (formal) proof?

This question has of course to be answered separately for every logical
system. However, most approaches to a definition of proof calculi work for
a wide range of systems.

Hilbert himself favoured axiomatic systems, where a set of axioms is used
to logically derive theorems. Russell and Whitehead tried in their “Principia
Mathematica” [RW10] to infer all mathematical truths in this style.

It took more than 20 years to find alternative approaches. In his “Un-
tersuchungen über das logische Schließen” [Gen35], Gentzen developed two
new formal methods to write down proofs: on the one hand natural deduc-
tion, which uses deduction rules instead of axioms to try and model logical
reasoning as it is used by logicians, and on the other hand sequent calculi,
which use inference rules to derive provability statements (sequents) and
were used by Gentzen primarily as a tool for studying natural deduction.

It turned out that the sequent calculi, which Gentzen introduced for in-
tuitionistic and classical logic, also provide a solution to the second problem:
sorting out a class of normal forms. Gentzen’s Hauptsatz shows that each
proof in one of the calculi can be transformed into a proof that does not
use the so-called cut rule. However, this transformation does not lead to
a unique normal form, and so it does not give a satisfactory answer to the
question of proof equivalence.

This problem could be remedied by Prawitz [Pra65]. He identified the
appropriate normal proofs in natural deduction as those in which no for-
mula occurrence is both the principal premise of an elimination rule and the
conclusion of an introduction rule, and proved an analog to the Hauptsatz
for natural deduction. Because Prawitz’ normal form are unique, natural
deduction even provides a notion of the equivalence of intuitionistic proofs.

Recent Developments — Proof Nets

Although natural deduction seems perfectly apt for intuitionistic logic, it
does not work so well with logics whose sequent systems allow for multiple
consequences. This is the reason why, when Girard [Gir87] introduced linear
logic, he was faced with a lack of adequate possibilities to describe the
identity of proofs. In the presence of an involutive negation in linear logic,
the distinction between input and output in natural deduction no longer
made sense, such that the tree form of natural deduction proofs had to be
given up. His solution was what he called “a linear natural deduction”:
proof nets.

Proof nets, which consist mainly of a set of formulas with links between
atoms, have undergone a long development. At first, they could only handle

12



the multiplicative fragment of linear logic and used sequents in disguise
(called boxes) for the additive features. It took more than 15 years until
proof nets for the whole calculus could be found [GLR95].

Although proof nets were primarily designed for linear logic, their struc-
ture is so universal that it was only a matter of time until they were adapted
to other logics. In 2005, Lamarche and Straßburger [LS05] succeeded to clas-
sify a set of proof nets that correspond to classical sequent proofs.

Contributions

In this thesis, we will concentrate on intuitionistic propositional logic. Fol-
lowing the guideline given by the first three above mentioned goals of proof
theory, we will present a proof system for intuitionistic logic and distinguish
especially simple proofs to which every proof can be reduced. As we will
prove this reduction to be terminating and confluent, we thus provide a new
notion of the equivalence of proofs. This means, that we give an alternative
answer to the basic question: “What is an intuitionistic proof?”

In particular, we will, starting from the proof nets for classical logic
developed by Lamarche and Straßburger, introduce proof nets for intuition-
istic propositional logic and classify the proof nets corresponding to natural
deduction proofs.

Additionally, we provide a cut elimination procedure for the new proof
nets, which is loosely connected to normalization in natural deduction (or,
equivalently, in the typed λ-calculus), and prove termination and confluence
for this system.

Related Work

Recently, Guglielmi [Gug02] and Tiu [Tiu05] have been working on new
calculi for intuitionistic logic, that extend Gentzens [Gen35] sequent calculi
by allowing transformations not only at top level.

In parallel, there has been quite some work on prenets for different logics.
Girard [Gir87, GLR95] worked for years on a proof net calculus for full linear
logic. Important for the intuitionistic fragment were e.g. Danos and Regnier
[DR89], who developed a polarization system for intuitionistic formulas, and
Lamarche [Lam95], who used their theory to examine proof nets for the
intuitionistic fragment of linear logic.

Proof nets for classical logic were analyzed by Lamarche and Straßburger
[LS05, Str05].

13



1. Introduction

Outline

To get started, we will present some basic ideas of intuitionistic logic in chap-
ter 2. We will especially address natural deduction, the typed λ-calculus,
and the connection between both systems, given by the Curry-Howard-
Isomorphism.

The second ingredient, and later on the motivating reference system,
are proof nets for classical logic. While we will also look back at the early
development of proof nets, our main focus in chapter 3 will be on the classical
case. Here we will see the idea behind both the translation of classical
sequent proofs into proof nets and the cut elimination procedure for these
nets.

Chapter 4 is devoted to the introduction of proof nets for intuitionistic
logic. After laying the foundations, which come in the shape of the used
mathematical objects and above all a refined definition of proof nets, we
will see how typed λ-terms can be translated into these nets. We will then
study properties of these nets and give an algorithm that, given a proof net,
recovers a term that corresponds to this proof net. Finally, we will define
and examine cut elimination for intuitionistic proof nets. We will prove
termination and confluence of the cut elimination procedure, and we will
show in how far it corresponds to the reduction of λ-terms.

A short recapitulation of the results in chapter 5, along with an outlook
towards interesting further research, concludes the thesis.
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Chapter 2

Intuitionistic Logic

Intuitionism emerged at the beginning of the 20th century, mainly as a
development of mathematical fundamental research. It based on a criti-
cism of the classical logical proof methods. Advocates of intuitionism, like
L. Brouwer [Bro07] and later on A. Heyting [Hey25], were mainly worried
about metalogical principles, above all the tertium non datur assumption,
which states that every statement is either true or false. They interpreted
this principle in such a way, that the truth or falsity of every statement
can actually be proved. In his introductory book on intuitionism, Heyting
[Hey56] gives the following example statements:

(1) k is the greatest prime such that k− 1 is also a prime, or k = 1 if such
a number does not exist.

(2) l is the greatest prime such that l − 2 is also a prime, or l = 1 if such
a number does not exist.

He explains [Hey56, p. 2]: “Classical mathematics neglects altogether the
obvious difference in character between these definitions. k can actually be
calculated (k = 3), whereas we possess no method for calculating l, as it is
not known whether the sequence of pairs of twin primes p, p + 2 is finite
or not. Therefore intuitionists reject (2) as a definition of an integer; they
consider an integer to be well defined only if a method for calculating it
is given. Now this line of thought leads to the rejection of the principle
of excluded middle, for if the sequence of twin primes were either finite or
infinite, (2) would define an integer.”

A notable feature of intuitionistic logic is the Brouwer–Heyting–Kol-
mogorow interpretation, where formulas are interpreted by means of their
proofs. It turns out that, apart from Gentzen’s natural deduction systems
[Gen35], one of the approaches best suited to a formal description of intu-
itionism is the λ-calculus as introduced by Alonzo Church [Chu33, Chu40]
(untyped version) and Curry [Cur34] (typed version).
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2. Intuitionistic Logic

It took some time until Curry and Feys [CF58] and later on Howard
[How80] discovered a close correspondence between natural deduction proofs
and the functional programs of the typed λ-calculus, nowadays known as
Curry-Howard isomorphism. This isomorphism basically states that intu-
itionistically valid formulas correspond to inhabited types, and natural de-
duction proofs correspond to typed λ-terms.

In this chapter, we will have a short look at natural deduction for proposi-
tional intuitionistic logic, the typed λ-calculus and the connection between
both systems. For further information on natural deduction, the reader
is referred to the original works of Gentzen [Gen35] and Prawitz [Pra65].
Among others, Barendregt [Bar92] gives an extensive overview of the typed
λ-calculus.

2.1 Natural Deduction

A system of natural deduction can be thought of as a set of rules that de-
termines the concept of deduction in a logic. Such a system constitutes
a logical framework that is natural in several ways. First of all, it corre-
sponds closely to the methods found in intuitive, informal reasoning. The
ideas of intuitive proofs can usually be translated into a natural deduction
proof and give it an appearance that allows to retrieve the main structure.
Secondly, Gentzen’s rules allow for the distinction of normal forms, and for
the transformation of every proof into such a normal form. This Hauptsatz,
first formulated for different sequent calculi, was one of Gentzen’s [Gen35]
most important results and later on proved for natural deduction systems
by Prawitz [Pra65].

Gentzen himself gave natural deduction systems for intuitionistic and
classical first order logic. However, we restrict ourselves to the intuitionistic
case, and therein to propositional logic.

The framework of formulas and sequents is the following:

Definition and Notation 2.1.1. Let A = {a, b, . . .} ∪ {⊥} be a countable
set, called the set of atoms, containing a special symbol ⊥ that denotes
falsity. The set F of formulas is defined by the following abstract syntax:

F := A | F → F | F ∨ F | F ∧ F

We write A, B, . . . for formulas and Γ for multisets of formulas, and we use
the shorthand notations

Γ, A := Γ ∪ {A} and

A → B → . . . → C → D := A → (B → (. . . → (C → D) . . .)) ,

i.e. implication is right associative.
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2.1. Natural Deduction

Axioms and Falsity

A ⊢ A
axiom

Γ ⊢ ⊥

Γ ⊢ A
falsum

Rules for Implication

Γ,

n times︷ ︸︸ ︷
A, . . . , A ⊢ B

Γ ⊢ A→B
→In

Γ1 ⊢ A Γ2 ⊢ A→B

Γ1, Γ2 ⊢ B
→E

Rules for Conjunction

Γ1 ⊢ A Γ2 ⊢ B

Γ1, Γ2 ⊢ A∧B
∧I

Γ ⊢ A∧B

Γ ⊢ A
∧E1

Γ ⊢ A∧B

Γ ⊢ B
∧E2

Rules for Disjunction

Γ ⊢ A

Γ ⊢ A∨B
∨I1

Γ ⊢ B

Γ ⊢ A∨B
∨I2

Γ1 ⊢ A∨B Γ2 ⊢ A→C Γ3 ⊢ B→C

Γ1, Γ2, Γ3 ⊢ C
∨E

Table 2.1: Natural Deduction Rules for Propositional Intuitionistic Logic

Table 2.1 summarizes the natural deduction proof rules for intuitionistic
logic. Despite the danger to blur the difference between natural deduction
and sequent calculi, the rules are presented in a sequent style to provide
a more concise representation. As a result, the rule →I usually found in
natural deduction comes in the different forms →I0,→I1, . . ., depending on
how many hypotheses are discharged by the rule. With the exception of
the rules for axioms and falsity, all rules come in two forms, as introduction
rules and elimination rules, that allow inference to or from a formula with
a given principal connector.

Example 2.1.2. The following are natural deduction proofs of the formula
(a → a) → a → a:

a → a ⊢ a → a
axiom

⊢ (a → a) → a → a
→I1

a ⊢ a
axiom

⊢ a → a
→I1

⊢ (a → a) → a → a
→I0

17



2. Intuitionistic Logic

a ⊢ a
axiom

a → a ⊢ a → a
axiom

a → a, a ⊢ a
→E

a → a ⊢ a → a
→I1

⊢ (a → a) → a → a
→I1

The introduction rules have the subformula property : The premise of
each rule contains only formulas that appear in the conclusion. However, this
does not hold for the elimination rules, in which a formula simply vanishes
on its way from premise to conclusion. This behavior of the elimination
rules is undesirable in various applications, e.g. in proof search, where it
corresponds to guessing a formula.

However, many instances of elimination rules are not necessary. For
example, a proof containing

....
⊢ A

....
⊢ B

⊢ A ∧ B
∧I

⊢ A
∧E1

....

could be simplified to just the following subproof:

....
⊢ A....

The reduced proof does not contain the superfluous elimination rule any
more. Prawitz [Pra65, Pra71] found a general principle behind these simpli-
fications. He developed a method of converting any natural deduction proof
into a proof with the same conclusion and with a certain shape. Roughly
speaking, the assumptions in such a proof are first broken down into their
parts by elimination rules and then recombined by introduction rules, until
the conclusion is reached.

The concrete nature of the reductions is not important for the follow-
ing chapters, so we will not go into details. It is however important, that
Prawitz found a notion of normal forms of intuitionistic proofs, and a way
to normalize any given proof.

We will come back to this when we describe the analogous theorem in
the typed λ-calculus.

18



2.2. The Typed λ-Calculus and the Curry-Howard-Isomorphism

2.2 The Typed λ-Calculus and the Curry-Howard-

Isomorphism

The primary goal of this section is to give a short overview of the typed λ-
calculus and its connection to intuitionistic logic. The following remarks are
partially inspired by the works of Barendregt [Bar84, Bar92, Bar97], which
also provide more information on different λ-calculi. Other sources providing
further background are the books by Pierce [Pie02], Hindley [Hin97], and
Girard, Taylor and Lafont [GTL89].

We will have a short look at the syntax of the typed λ-calculus, as well
as recall the bijection between the sets of possible types of λ-terms and
intuitionistically provable formulas.

Definition 2.2.1. The set V = {x, y, . . .} denotes a countable set of vari-
ables. A type assignment is a function V → F that assigns a formula to
each variable. The value of a variable v under a given type assignment is
called the type of v.

Notation 2.2.2. In what follows, we will stick to one fixed type assignment
τ : V → F . We assume that the preimage of every type under τ is countable,
i.e. there are countably many variables of each type.

For our convenience, we will assume in all examples, that x, y and f are
variables, and that a is an atom, such that τ(x) = τ(y) = a and τ(f) =
(a → a).

Definition 2.2.3. The set Λ of λ-preterms is defined by the following ab-
stract syntax:

Λ := V | Λ Λ | λV.Λ

| π1 Λ | π2 Λ | pair Λ Λ

| inl Λ | inr Λ | case Λ Λ Λ | null Λ

The λ-preterms of the form e1 e2 are called applications, those of the form
λv.e1 are called abstractions, λv is called a variable binder , and π1, π2, pair,
inl, inr, case and null are constants.

If e is a λ-preterm, and if there is a formula A, such that the statement
e : A can be derived by the typing rules summarized in table 2.2, then we
say that e is of type A. In this case, e is called typed λ-term, or just λ-term.

We write λ→ and λ→∧ for the calculi of those typed λ-terms whose typing
derivations contain only types consisting of implications, or of implications
and conjunctions, respectively, and only the corresponding derivation rules
and the axiom rule.

Notation 2.2.4. We use brackets to avoid ambiguities in the string repre-
sentation of terms. However, we stick to two conventions that allow us to
minimize the use of brackets:
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2. Intuitionistic Logic

v : τ(v)
var

e : A ∧ B

π1 e : A
proj1

e2 : A e1 : A→B

e1 e2 : B
app

e : A ∧ B

π2 e : B
proj2

v : A e : B

λv.e : A→B
abs

e1 : A e2 : B

pair e1 e2 : A ∧ B
pair

e : A

inl e : A ∨ B
left

e : B

inr e : A ∨ B
right

e1 : A ∨ B e2 : A → C e3 : B → C

case e1 e2 e3 : C
case

e : ⊥

null e : A
null

Table 2.2: Typing rules for λ-terms

• Applications are left-associative, i.e.

e1 e2 e3 . . . en := (. . . ((e1 e2) e3) . . . en) .

This corresponds to the right-associativity of implication.

• The scope of a variable binder is always maximal, i.e.

λv.e1 e2 := λv.(e1 e2) .

Example 2.2.5. The three expressions λf.f , λf.λx.x, and λf.λx.f x are
typed λ-terms of type (a → a) → a → a. They have the following typing
derivations, respectively:

f : a → a
var

f : a → a
var

λf.f : (a → a) → a → a
abs

f : a → a
var

x : a
var

x : a
var

λx.x : a → a
abs

λf.λx.x : (a → a) → a → a
abs

f : a → a
var

x : a
var

x : a
var

f : a → a
var

f x : a
app

λx.f x : a → a
abs

λf.λx.f x : (a → a) → a → a
abs

20



2.2. The Typed λ-Calculus and the Curry-Howard-Isomorphism

When Church presented the (at that time still untyped) λ-calculus, he
tried to provide a general theory of functions and logic. This means that the
intuition behind λ-terms is to model mathematical functions as we under-
stand them today. For example, he wrote the function that adds 1 to every
natural number as x̂.x + 1, which was changed by typesetters to λx.x + 1.
Later on, the constants were introduced to model functions from or to direct
products and sums of sets.

However, the representation of a function as a λ-term is by no means
unique. The successor function above might as well be written as λy.y+1, or
as λy.((λx.x + 1)y), as both functions increment an input by 1. To identify
all these terms, that mean essentially the same, there are several notions of
term equivalence.

To be able to properly formulate these notions, we need the concepts of
free variables and substitutions.

Definition 2.2.6. The function FV : Λ → V assigning to each λ-term its
set of free variables is inductively defined as

FV (v) = v if v ∈ V

FV (e1 e2) = FV (e1) ∪ FV (e2)

FV (λv.e) = FV (e) \ {v}

FV (c e1) = FV (e1) if c is a constant

FV (c e1 e2) = FV (e1) ∪ FV (e2) if c is a constant

FV (c e1 e2 e3) = FV (e1) ∪ FV (e2) ∪ FV (e3) if c is a constant

Each variable that occurs but is not free in a λ-term e is bound . A term
without free variables is closed .

The substitution function replacing each free instance of a variable v in
a λ-term e′ by a term e of the same type (i.e. e : τ(v)) is written e′[v 7→ e]
and inductively defined as follows:

v[v 7→ e] = e

w[v 7→ e] = w if v 6= w ∈ V

(c e1)[v 7→ e] = c if c is a constant

(c e1 e2)[v 7→ e] = c if c is a constant

(c e1 e2 e3)[v 7→ e] = c if c is a constant

(e1 e2)[v 7→ e] = (e1[v 7→ e]) (e2[v 7→ e])

(λv.e1)[v 7→ e] = (λv.e1)

(λw.e1)[v 7→ e] = λw.(e1[v 7→ e]) if v 6= w and w 6∈ FV (e)

(λw.e1)[v 7→ e] = λw′.((e1[w 7→ w′])[v 7→ e])

for some w′ 6∈ FV (e) ∪ FV (e1) if v 6= w and w ∈ FV (e)
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2. Intuitionistic Logic

The most obvious equivalence of λ-terms is caused by (bound) variable
renaming:

Definition 2.2.7. An α-conversion step is the procedure of replacing a
λ-term λv.e by λw.(e[v 7→ w]), where w 6∈ FV (e).

Two λ-terms are α-equivalent, if they can be transformed into each other
by a series of α-conversions.

Example 2.2.8. If τ(y) = τ(x) = a, then λx.x and λy.y are α-equivalent,
but λx.y, λx.x and λy.x are pairwise α-inequivalent.

If we regard abstractions as functions and applications as evaluation
of functions, we get a second notion of equivalence: A term of the form
(λv.e1) e2 should be equivalent to the result of its evaluation.

On the other hand, an abstraction λv.e v, where v is not free in e, denotes
the same function as just the term e. This formalizes the concept, that two
functions are equal, if both always yield the same result when applied to the
same argument.

Definition 2.2.9. A λ-term of the form (λv.e1) e2 is called β-redex (re-
ducible expression). A λ-term of the form λv.e v, where v is not free in e is
called η-redex.

A β-reduction (or η-reduction, respectively) step is the procedure of re-
placing a β-redex (λv.e1) e2 by e1[v 7→ e2] (or an η-redex λv.e v by e).

A λ-term is called β-normal, if it contains no β-redex, and η-normal, if
it contains no η-redex. When both reduction strategies are combined, we
speak of βη-reduction and of βη-normal forms.

Example 2.2.10. The term λf.λx.f x reduces in one η-step to the βη-
normal term λf.f , and (λf.λx.f x) (λx.x) reduces via βη to the normal
term λx.x.

Tait [Tai67] showed that βη-reduction is terminating and uniquely nor-
malizing for typed λ-terms, i.e. that every typed λ-term has exactly one nor-
mal form with respect to βη-reduction, and every sequence of βη-reduction
steps leads to this normal form.

The reductions we have talked about so far are only concerned with the
purely functional part of the λ-calculus. Both β- and η-reduction simplify
terms in the cases where an abstraction and an application, i.e. the creation
and evaluation of a function, come together.

However, we also have an intuitive understanding of the analogous con-
cepts for sums and products of sets. For example, the projection of the
pair (1, 2) of natural numbers to its first component equals 1. This interac-
tion between pairing and projection and its analog for sums can easily be
translated into the language of λ-terms.
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2.2. The Typed λ-Calculus and the Curry-Howard-Isomorphism

Definition 2.2.11. A λ-term of the form πi(pair e1 e2) is called product-
redex . A product-reduction step is the procedure of replacing a product-
redex πi(pair e1 e2) by ei.

A λ-term of the form case(inl e1) e2 e3 or case(inr e1) e2 e3 is called sum-
redex . A sum-reduction step is the procedure of replacing a sum-redex
case (inl e1) e2 e3 by e2 e1, or a sum-redex case (inr e1) e2 e3 by e3 e1.

The Curry-Howard Correspondence

The work of Curry and Feys [CF58], Howard [How80] and others has shown
a way to consider proofs as programs, and vice versa. For example, proofs
of a sequent ⊢ A1→ . . .→Ak→B may be interpreted as functional programs
mapping n inputs of types A1, . . . , Ak to an output of type B, i.e. as λ-terms
of type A1→ . . .→Ak→B.

We can formalize this idea by the following inductive translation of typed
λ-terms into natural deduction proofs. A term e of type B with free variable
occurrences v1, . . . , vk (counted with multiplicities) is translated into a proof
with conclusion τ(v1), . . . , τ(vk) ⊢ B as follows:

• If e is a variable, and τ(e) = A, then it is translated to

A ⊢ A
axiom

• If e = λv.e1, τ(v) = A, e1:B, Π1 is the translation of e1, and v appears
n ≥ 0 times freely in e1, then e is translated as follows:

.... Π1

Γ, A, . . . , A ⊢ B

Γ ⊢ A→B
→In

• An application e = e1 e2, where e1:A→B, e2:A, and Πi is the transla-
tion of ei, corresponds to

.... Π2

Γ1 ⊢ A

.... Π1

Γ2 ⊢ A→B

Γ1, Γ2 ⊢ B
→E

• A pairing e = pair e1 e2, where ei:Ai and Πi is the translation of ei, is
translated to

.... Π1

Γ1 ⊢ A1

.... Π2

Γ2 ⊢ A2

Γ1, Γ2 ⊢ A1 ∧ A2
∧I
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2. Intuitionistic Logic

• A projection e = πi e1, i ∈ {1, 2}, where e1:A1∧A2 and Π1 is the
translation of e1, corresponds to

.... Π1

Γ ⊢ A1 ∧ A2

Γ ⊢ Ai
∧Ei

• If e = case e1 e2 e3, e1:A∨B, e2:A→C, e3:B→C, and Πi is the transla-
tion of ei, then e is translated as follows:

.... Π3

Γ3 ⊢ B → C

.... Π2

Γ2 ⊢ A → C

.... Π1

Γ1 ⊢ A ∨ B

Γ1, Γ2, Γ3 ⊢ C
∨E

• If e = inl e1, e1:A1, e:A1∨A2, and Π1 is the translation of e1, then e

corresponds to
.... Π1

Γ ⊢ A1

Γ ⊢ A1 ∨ A2
∨I1

If e = inr e2, e2:A2, e:A1∨A2, and Π2 is the translation of e2, then e

is translated to
.... Π2

Γ ⊢ A2

Γ ⊢ A1 ∨ A2
∨I2

• A term e = null e1, where e1:⊥, e:A, and Π1 is the translation of e1,
is translated to

.... Π1

Γ ⊢ ⊥
Γ ⊢ A

falsum

Example 2.2.12. Via this translation, the terms of type (a → a) → a → a

from example 2.2.5 correspond to the natural deduction proofs of the formula
(a → a) → a → a from example 2.1.2.

The important fact about this translation is the following theorem:

Theorem 2.2.13 (Curry-Howard-Correspondence). A formula A is
intuitionistically valid, if and only if there is a closed typed λ-term of type
A. Moreover, the above translation gives a bijection between closed λ-terms
of type A and natural deduction proofs of ⊢ A, and normalization in both
systems commutes with this translation.
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2.2. The Typed λ-Calculus and the Curry-Howard-Isomorphism

In fact, the reductions of λ-terms defined in the last section just translate
to reductions of natural deduction proofs as used by Prawitz.

Remember that we want to define proof nets, i.e. a new proof system,
for intuitionistic logic. To make any statements about this system, we need
to relate it to a system we already know. The great benefit of this theorem
in our setting is, that it gives us a second choice for the reference formalism.
Compared to natural deduction proofs, λ-terms have the great advantage
that they are more compact and that normalization is more intuitive for the
λ-calculus than for natural deduction.
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Chapter 3

Proof Nets

3.1 The Idea and History of Proof Nets

All logical theories admit different kinds of proof systems. Intuitionistic
logic, for example, can be regarded from the perspective of either natural
deduction or sequents. According to Prawitz [Pra65], natural deduction
proofs should be regarded as “the true ones”, while those in sequent calcu-
lus distinguish negligibilities like the permutation of two independent rule
applications. Hence Prawitz considers them no longer as primitive but only
as instructions on how to reconstruct a natural deduction proof.

When Girard [Gir87] developed linear logic, he was faced with the same
task, but even more acute: On the one hand, linear logic is also construc-
tive, so one expects an interpretation of proofs as programs, as well as a
normalization theorem like Prawitz’ theorem for natural deduction. On the
other hand, linear logic has very much parallelism in it, taking it close to
classical logic, and far away from a nice normalization.

The investigation of these topics lead Girard to the invention of proof
nets, a proof system that transmits the absence of bureaucracy and the
strong notion of proof equivalence from natural deduction to linear logic.

Other researchers had an eye on the computational advantages of proof
nets. Lamarche and Retoré [LR96], for example, found out that cut elim-
ination for proof nets in the linguistically important Lambek calculus is
especially easy, and that proof nets provide a way to get complexity results
for this calculus.

Since the time when Girard first introduced proof nets, the basic con-
structive idea has always been to represent formulas as trees, and to use some
links between the leaves to encode a proof of the formula. As sequents were
the proof system of choice, the links in fact always encoded sequent proofs.
In this setting, each link corresponds to a sequent calculus rule application.

However in recent years, proof nets relieved themselves of this strong
influence of the sequent calculus and became more and more self–contained.
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3. Proof Nets

As a proof system of their own right, proof nets should ideally be indepen-
dent of the proof system used to construct them. They are now seen to be
more than a poor copy of sequent calculus systems; today, an alternative
approach is:

A proof net is a formula tree, or a sequent forest, enriched with
an additional graph structure.

This graph structure is supposed to reflect the essential part of a proof,
not its concrete look in a given proof system. Additionally, proof nets are
thought of as graphical representations of proofs that ignore bureaucracy,
meaning that e.g. trivial permutations of deduction steps in a proof are not
reflected in the corresponding proof net.

Probably the first researchers to deliberately adapt this notion of proof
nets were Hughes and van Glabbeek [HvG03] for unit–free multiplicative
additive linear logic, and Lamarche and Straßburger [SL04] for multiplicative
linear logic with units.

Shortly after their work on multiplicative linear logic, Lamarche and
Straßburger [LS05] also developed proof nets for classical logic, being the
first to leave the realm of linearity.

3.2 Proof Nets for Classical Propositional Logic

To further introduce the reader to proof nets, we will shortly illustrate the
concepts behind one type of proof nets for classical logic (CL), the so-called
N-proof nets, as presented by Lamarche and Straßburger [LS05] and reca-
pitulated by Straßburger [Str05].

Some of the ideas shown there carry over directly (e.g. the meaning of
links) or along general lines (e.g. the definition cut elimination) to proof
nets for intuitionistic logic as presented in chapter 4. As for now, we will
not give any proofs or technical details in this section, just a first glance at
how N-proof nets work.

Definition 3.2.1. Given a countable set A = {a, b, . . .} of atoms, and their
duals A = {a, b, . . .}, the set Fc of Cl-formulas is defined as follows:

Fc ::= A | A | Fc ∧ Fc | Fc ∨ Fc

(Constants representing truth and falsity may be added, but we will
ignore them here to keep things simple.) Additionally, a formula may be of
the form A♦A, where (·) is recursively defined by the de Morgan rules and
(a = a). The symbol ♦ is called the cut symbol, and a formula of this shape
is called a cut.
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3.2. Proof Nets for Classical Propositional Logic

Formulas are considered as binary trees, whose leaves are labeled by
atoms, and whose inner nodes are labeled by ∧ and ∨. A (one-sided) sequent
Γ is considered as a forest. We write leaves(Γ) for its set of leaves.

Given a forest Γ, a linking is a symmetrical function L: leaves(Γ) ×
leaves(Γ) → N, that associates to every two leaves a natural number, which
can only be non-zero if the leaves are labeled by dual atoms. In this case,
the leaves are said to be linked.

A sequent Γ together with a linking L is called N-prenet, denoted by
L ⊲ Γ.

When we plot prenets, we draw the sequent forest, and if L(l, l′) = n > 0,
we connect l and l′ by n edges.

Example 3.2.2. Given the sequent Γ = a, a, a ♦ a, a, the following two
graphics depict N-prenets over Γ:

a a a a a

♦

a a a a a

♦

Lamarche and Straßburger developed their prenets in such a way that
a given (one sided) sequent calculus proof can easily be converted into a
proof net. The idea is simple: The sequent forest is created from the proved
formula and one tree for each use of a cut rule. The atoms of the proved
formula and the atoms introduced by the cuts are pursued on their way
through the proof, and whenever two atoms come together in an axiom
rule, the corresponding leaves of the sequent forest are connected.

Table 3.1 gives an example of three sequent proofs of the sequent a, a∧a, a

along with the corresponding prenets. For a formal treatment compare
[LS05].

A much more simplified version of the idea to connect atoms of a formula
to represent a proof can already be found in Andrews’ matings [And76] or
Bibel’s connections [Bib81]. However, both systems pose strong restrictions
on the links. For example, they allow links only if the linked atoms are
in a disjunction. Because these restrictions cannot be maintained during
normalization, their system is too weak for our purpose.

Lamarche and Straßburger also give a geometric criterion to decide
whether a prenet is sequentializable, in the sense that it comes from a se-
quent proof:

Definition 3.2.3. A conjunctive pruning of a prenet L ⊲ Γ is a sub-prenet
that is obtained by deleting one child subformula for every conjunction or
cut node in Γ, together with all links starting or ending in a deleted formula.

A prenet is called correct, if all its conjunctive prunings contain at least
one link.

A correct prenet is called (classical) proof net .
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3. Proof Nets

⊢ a, a
axiom

⊢ a, a
axiom

⊢ a, a ∧ a, a
∧

↓

⊢ a, a
axiom

⊢ a, a
axiom

⊢ a, a ∧ a, a
∧

↓

a a a a

∧

⊢ a, a
axiom

⊢ a, a ∧ a, a
weak

↓

⊢ a, a
axiom

⊢ a, a ∧ a, a
weak

↓

a a a a

∧

⊢ a, a
axiom

⊢ a, a
axiom

⊢ a, a ∧ a, a
∧

⊢ a, a
axiom

⊢ a, a ∧ a, a
cut

↓

⊢ a, a
axiom

⊢ a, a
axiom

⊢ a, a ∧ a, a
∧

⊢ a, a
axiom

⊢ a, a ∧ a, a
cut♦

↓

a a a a

∧

a a

♦

Table 3.1: Translating sequent proofs into prenets
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3.2. Proof Nets for Classical Propositional Logic

Theorem 3.2.4. Every prenet that comes from a sequent proof is correct.
Conversely, if we restrict the number of links between two nodes to at most
1, every correct prenet is sequentializable.

One of the problems with finding a complete correctness criterion, which
also takes into account the exact number of links between two nodes, is
that sequentializability depends strongly on the underlying formalism. The
prenet

b a a b b a a b

∧ ∧ ∧ ∧

is one example of a proof net that does not come from a sequent calculus
proof. However, it can be formalized in the calculus of structures.

Cut Elimination and Normal Forms

Gentzen’s Hauptsatz allows to transform any sequent proof in classical logic
to a sequent proof without any applications of the cut rule, resulting in
normal forms. Classical proof nets may contain cuts as well, so the question
arises naturally, how those can be eliminated, and whether this elimination
results in normal forms.

Cut elimination in classical proof nets is very similar to cut elimination
in proof nets for multiplicative linear logic. In both systems, the elimination
of a cut between complex formulas is defined by

L ⊲ (A ∧ B) ♦ (A ∨ B), Γ → L ⊲ A ♦A, B ♦B, Γ

and
L ⊲ (A ∨ B) ♦ (A ∧ B), Γ → L ⊲ A ♦A, B ♦B, Γ .

When a cut between an atom and its dual is reduced, the paths “through
the cut” are counted, and each such path becomes a link.

Example 3.2.5. The proof net

a a a a a

♦

reduces to

a a a

A special case arises when links connect the atoms of the cut:
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3. Proof Nets

a a a a

♦

There are several possible ways to define a cut elimination for this net.
The simplest solution is to ignore the two links across the cut, such that
the reduced net contains exactly one link. Another possibility is to allow
paths that use the crossing links at most a fixed number of times. If we
allow at most three uses, the number of links in the reduced net will be
1 + 21 + 22 + 23 = 15. However, the least problems arise when those links
are ignored.

Unfortunately, whichever solution we decide to use, cut elimination for
classical proof nets is not confluent.

Example 3.2.6. We look at ways to reduce the following net (ignoring
crossing links):

a a a a a a

♦ ♦

When we reduce the right cut first, and then the left one, the result is:

a a

The other sequence of reductions yields the proof net

a a

which contains one more link.

When we define proof nets for intuitionistic logic and a cut elimination
procedure for them, we will focus our attention to making it confluent.
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Chapter 4

Proof Nets for Intuitionistic

Logic

The main goal of this thesis is the development of proof nets for intuition-
istic logic. The general strategy is to mimic basic aspects of proof nets for
other logics, e.g. classical logic or intuitionistic linear logic, and combine and
generalize them to a proof system.

At the beginning of our exploration stand the definitions of the basic
concepts that we will make use of. Hence we will have a look at trees
that natually correspond to formulas, and at nets that are constructed out
of these trees. As before, there will be special trees corresponding to cut
formulas.

An important contribution of this thesis is the idea to attach labels to
each link of a net. All types of proof nets developed before treated all labels
exactly the same way. This gave rise to some ad hoc decisions that are not
natural. Remember for example again the following classical proof net:

a a a a

♦

We have already remarked that there are several possible ways to reduce this
cut. Loop-killing (i.e. brushing off the links crossing the cut) may result in
the most compact theory, but it is not obvious that this is the most natural
way to deal with the situation.

Link labels allow us to make use of the computational flair of proofs
in intuitionistic logic. When we think of proofs by means of λ-terms, an
important aspect of computations is that different occurrences of the same
variable must be clearly separated. When a cut with crossing links is re-
duced, we allow basically all uses of crossing links, as long as they respect
this separation. This provides a natural interpretation of cut elimination,
and it can be achieved by adequate link labels.
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However, this liberal treatment of links across cuts may easily result in
an infinite number of paths through a cut, and hence to infinite nets. We will
discuss a translation of λ-terms into proof nets that mimics the separation
idea presented above and at the same time guarantees strong properties of
the resulting nets, as for example that they do not become infinite when
cuts are reduced.

Which leads us to the second subject of our investigations: cut elimi-
nation. As proof nets are supposed to constitute a proof formalism, it is
natural to look for normal forms. While the cut elimination procedures
for all calculi considered so far are normalizing and terminating, confluence
does not always hold, as we have seen in the last chapter. We will define
a cut elimination procedure that is not only terminating, but also uniquely
normalizing. Although it might be tempting to reach this goal by a close
connection of cut elimination to the reduction of λ-terms, we will show that
there is no way to define cut elimination in such a way that it simulates
these reduction procedures. We will, however, present classes of situations
in which a reduction step of a λ-term corresponds exactly, or almost, to a
cut elimination step for the corresponding proof net.

4.1 Basic Concepts

Before we can construct proof nets for intuitionistic logic, we have to lay the
necessary foundations. We start with a formal introduction of trees, making
many of the intuitive notions from chapter 3 explicit. With this basis we
can go on to the definition of prenets for intuitionistic logic, which will be
slightly more complicated than in the classical case, but also much more
expressive.

Notation 4.1.1. We regard a function f : X → Y as the corresponding
subset {(x, y) | f(x) = y} of X×Y . A partial function f : X ⇀ Y is a subset
of a function in X → Y , such that for two functions f, g: X ⇀ Y with
disjoint domains, f ∪ g is again a partial function from X to Y .

The restriction of f to a subset X ′ of X is f |X′ := f ∩(X ′×Y ). We write

dom(f) = {x ∈ X | ∃y ∈ Y : (x, y) ∈ f}

and

im(f) = {y ∈ Y | ∃x ∈ X : (x, y) ∈ f}

for the domain and the image of a partial function f : X ⇀ Y .

When we explicitly write down functions, we use the slightly more intu-
itive notation

f = {1 7→ 5, 2 7→ 3, . . .}

to indicate that f maps 1 to 5, 2 to 3 and so on.
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4.1.1 Trees

We regard a tree as a function mapping each path in the tree to the label of
the respective node. Before we make this precise, shortly recall the notion
of paths:

Notation 4.1.2. Let X be a set. The set X∗ := {ε} ∪
⋃

n≥1 Xn is the
set of finite paths over X, where the symbol ε ∈ X∗ denotes the empty
path. If x1, x2, . . . , xn are elements of X, we write x1x2 . . . xn for the tuple
(x1, x2, . . . , xn) ∈ Xn.

We use the canonical identification Xm × Xn = Xm+n for m, n ∈ N,
such that the concatenation πρ of two paths π ∈ Xm and ρ ∈ Xn is the
element (π, ρ) ∈ Xm × Xn.

If Y is a set of paths over X, then π ∈ Y is called maximal (wrt. Y ), if

∀ρ ∈ X∗ : πρ ∈ Y =⇒ ρ = ε.

We will use trees to represent the types, i.e. formulas, occurring in terms.
All trees will be binary, with logical connectors at the inner nodes and atoms
at the leaves. Additionally, we again allow special formulas with the main
connector ♦, called cut.

As it will later, when we construct proof nets, be important that all
occurring leaves are unambiguously distinguishable, we add some further
information, stored in the second and third component of each node label.
For the time being, it may help to just ignore this and not to try and see a
deeper meaning behind the concrete information provided in the examples.

Definition 4.1.3. A (binary) tree domain is a finite set D ⊆ {1, 2}∗ with
the following properties:

• D is closed under prefixes:

ε ∈ D and ∀π ∈ {1, 2}∗ : ∀n ∈ {1, 2} : π.n ∈ D =⇒ π ∈ D

• D is strictly binary:

∀π ∈ D : π is maximal wrt. D or π.1, π.2 ∈ D

Furthermore let Â = {â | a ∈ A} be the set of duals of atoms, and let
N = (A∪ Â ∪ {→,∧,∨,♦})×N×{1, 2}∗ be a set of node labels, consisting
of a possibly dualized atom or a binary connector, an index and a path. A
(binary) tree t is a partial function t: {1, 2}∗ ⇀ N such that

• dom(t) is a tree domain,

• a cut symbol may only appear at the root, i.e. t(π) = (♦, n, ρ) implies
π = ε, and
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4. Proof Nets for Intuitionistic Logic

• the leaves are labeled with (possibly negated) atoms, and the inner
nodes with logical operators: t(π) ∈ (A∪A)×N×{1, 2}∗ holds if and
only if π is maximal wrt. dom(t).

The set of all trees is called T .

We draw trees with the leaves on top, and whenever a node has two
children, the first one is drawn left of the second one.

Example 4.1.4. The function

t = { ε 7→ (♦, 5, ε) ,

1 7→ (→, 3, ε) ,

1.1 7→ (â, 2, ε) ,

1.2 7→ (a, 1, ε) ,

2 7→ (→, 4, ε) ,

2.1 7→ (a, 4, 1) ,

2.2 7→ (â, 4, 2) }

is a tree, having the following graphical representation:

(â, 2, ε) (a, 1, ε) (a, 4, 1) (â, 4, 2)

(→, 3, ε) (→, 4, ε)

(♦, 5, ε)

Notation 4.1.5. By abuse of notation, a tree t whose root is labelled by a
cut (♦) will itself be called a cut . The subset

leaves(t) :=
{

(a, n, π) ∈ im(t) | a ∈ A ∪A
}
⊆ im(t)

of nodes labeled by an atom is exactly the set of leaves of t. Given a tree t

and a path π ∈ dom(t), the subtree t.π of t at position π is defined as

t.π := {(ρ 7→ l) | (πρ 7→ l) ∈ t} .

Example 4.1.6. The tree from example 4.1.4 has the leaves

leaves(t) = {(â, 2, ε), (a, 1, ε), (a, 4, 1), (â, 4, 2)} .

It has exactly six proper subtrees:

t.1 = { ε 7→ (→, 3, ε) , t.2 = { ε 7→ (→, 4, ε) ,

1 7→ (â, 2, ε) , 1 7→ (a, 4, 1) ,

2 7→ (a, 1, ε) } 2 7→ (â, 4, 2) }

t.11 = { ε 7→ (â, 2, ε) } t.21 = { ε 7→ (a, 4, 1) }

t.12 = { ε 7→ (a, 1, ε) } t.22 = { ε 7→ (â, 4, 2) }
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When we construct prenets, we will sometimes combine two trees to form
one big tree. This operation is parallel to the combination of formulas, where
e.g. A and B are combined to A∨B or A∧B. Furthermore, we will use the
“dualization” of trees, which simply exchanges dualized and non-dualized
atoms.

Notation 4.1.7. Let t1, t2 ∈ T be two trees and let ⋆ ∈ {→,∧,∨,♦}. By
t̂1 or t1̂ , we denote the unique tree with t̂1(π) = (a, n, ρ), if

• a 6∈ A ∪ Â and t̂1(π) = t1(π), and

• t1(π) = (a1, n, ρ), a1 ∈ A ∪ Â and a = â1 or a1 = â.

The expression t1 ⋆ t2 denotes a tree with

• (t1 ⋆ t2)(ε) = (⋆, n, ε) for some fresh n ∈ N,

• (t1 ⋆ t2).1 = t1, and

• (t1 ⋆ t2).2 = t2.

Example 4.1.8. Consider the three trees

t1 = { ε 7→ (â, 2, ε) }

t2 = { ε 7→ (a, 1, ε) }

t3 = { ε 7→ (→, 4, ε) ,

1 7→ (a, 4, 1) ,

2 7→ (â, 4, 2) }

with the following graphical representations:

t1: (â, 2, ε) t2: (a, 1, ε) t3:
(a, 4, 1) (â, 4, 2)

(→, 4, ε)

Then the tree

(â, 2, ε) (a, 1, ε) (a, 4, 1) (â, 4, 2)

(→, 3, ε) (→, 4, ε)

(♦, 5, ε)

is of the form (t1 → t2) ♦ t3, and

(a, 2, ε) (â, 1, ε)

(→, 4, ε)

is one of the form (t1 → t2)̂ .
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Now it is almost obvious how to define the tree representing a formula.
The only specialty is how to use the additional information in the nodes,
and when to use elements of A or Â for the leaves. For the latter, we may
regard the difference between both possibilities as the difference between
atoms in positive and negative contexts.

Definition 4.1.9. Let A ∈ F be a formula, n ∈ N, π ∈ {1, 2}∗ a path. We
define the tree T(A, n, π) as follows:

• If A = a ∈ A is an atomic formula, then T(a, n, π) = {ε 7→(a, n, π)}.

• If otherwise A = A1 ∨ A2, then T(A, n, π) is the unique tree t, such
that

– t(ε) = (∨, n, π) ,

– t.1 = T(A1, n, π.1) , and

– t.2 = T(A2, n, π.2) .

• Analogously, if A = A1 ∧A2, T(A, n, π) is the unique tree t, such that

– t(ε) = (∧, n, π) ,

– t.1 = T(A1, n, π.1) , and

– t.2 = T(A2, n, π.2) .

• As the left subformula of an implication is in a negative context,
T(A1 → A2, n, π) is the unique tree t, such that

– t(ε) = (→, n, π) ,

– t.1 = (T(A1, n, π.1))̂ , and

– t.2 = T(A2, n, π.2) .

We will often use the abbreviation T(A, i) := T(A, i, ε).

Conversely, every tree that is not a cut determines a unique type:

Definition 4.1.10. The type ty(t) coded in a non-cut tree t is defined as
follows:

• If t consists of only one node, i.e. if t(ε) = (a, n, π), or t(ε) = (â, n, π)
for some atom a ∈ A, then ty(t) = a.

• Otherwise t(ε) = (⋆, n, π) for some connector ⋆ ∈ {→,∧,∨}, and
ty(t) = ty(t.1) ⋆ ty(t.2).

With these two functions, we can move back and forth between types
and trees:
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Lemma 4.1.11. The function ty is left inverse for all functions T(·, n, π),
where n ∈ N and π ∈ N

∗, i.e.

∀A ∈ F : ty(T(A, n, π)) = A .

Proof. This follows directly by induction on the structure of A.

Example 4.1.12. Any tree assigned to the type (a → a) → a → a is of the
form

(a, n, 1.1) (â, n, 1.2) (â, n, 2.1) (a, n, 2.2)

(→, n, 1) (→, n, 2)

(→, n, ε)

for some n ∈ N, and the type assigned to all these trees is (a → a) → a → a.

The additional information in the nodes is important for no other reason
but to make all leaves within a tree, and later on all leaves in the trees
of a prenet, distinguishable. For example, you may think of the second
component as a counter for different trees, and of the third component as a
position in this tree. As the distinction between all nodes is automatically
done when we actually draw trees, we exclude this extra information in all
further graphics.

Definition 4.1.13. Two trees t and t′ are equivalent , if both are not cuts,
ty(t) = ty(t′), and all leaves are labeled by the same element of A ∪ Â, i.e.

∀π ∈ dom(t) : t(π) ∈ leaves(t) ∧ t(π) = (a, n, ρ) =⇒ t′(π) = (a, n′, ρ′) ,

or if both are cuts, and t.1 and t′.1 are equivalent, as well as t.2 and t′.2.
They are complementary , if they are not cuts, and if t and t̂′ are equiv-

alent.

When we use trees in further examples, we usually give their graph
representation only. Additionally, we present them up to equivalence, i.e.
we leave out the additional information in the leaves.

Example 4.1.14. All trees from example 4.1.12 are equivalent and will
simply be drawn as:

a â â a

→ →

→

Every tree that is complementary to those trees is of the following form:

â a a â

→ →

→
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4.1.2 Prenets

When working with proof nets, it is a tradition to call the general nets that
one wants to consider either “prenets” or “proof structures”, and to call
only those “proof nets” that are considered proofs in the new calculus.

We are now at the point to give a formal definition of prenets for intu-
itionistic logic. As mentioned before, we try to find an intuitionistic analog
to the notion of prenets for classical logic, which we introduced in chapter 3.
This means that our prenets will have a similar shape. They consist mainly
of a sequent forest and some links between the leaves of these trees. Where
the presented classical prenets may already have multiple links between two
leaves, we go one step further and attach a label to each link.

This does not only make the links distinguishable, but will be the key
ingredient in the cut elimination procedure for intuitionistic prenets.

Definition 4.1.15. Let L = ({+,−} × V × N)∗ be a set of link labels. A
prenet L ⊲ t |C consists of a tree t ∈ T , a set C ⊂ T of cuts, and a
partial function L: N ×N ⇀ P(L), called linking , such that the following
conditions hold:

(0) The main tree t is not a cut: t(ε) 6= ♦

(1) Each cut connects two complementary subtrees:

(t1 ♦ t2) ∈ C =⇒ t1 and t2 are complementary

(2) The different trees in the prenet do not share any leaves:

t′, t′′ ∈ C ∪ {t} =⇒ (t′ = t′′ ∨ leaves(t′) ∩ leaves(t′′) = ∅)

(3) The function L is defined only on the leaves of trees in the prenet:

dom(L) ⊆




⋃

t′∈{t}∪C

leaves(t′)



×




⋃

t′∈{t}∪C

leaves(t′)





(4) Each link connects dual atoms, or two instances of ⊥̂:

((a, i, π), (b, j, ρ)) ∈ dom(L) =⇒ a = b̂ ∨ a = b = ⊥̂

We extend the notion of leaves to prenets and write

leaves(L ⊲ t |C) =
⋃

t′∈{t}∪C

leaves(t′) .
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Notation 4.1.16. By a slight abuse of notation, we will identify a linking
L: N ×N ⇀ P(L) of a prenet N with the set

{
(l, l′, σ) |σ ∈ L(l, l)

}
.

The elements of this set are called the links of the prenet.

Example 4.1.17. The following graphics depicts a simple prenet.

a â

→

â a â

♦

a

→

→

x.2 -f.1 f.1

It consists of the main tree, one cut between a and â, six leaves and three
links. The links are labeled by x.2, -f.1 and f.1 instead of (+,x,2), (–,f,1)
and (+,f,1) for better readability. If we call the main tree t, the cut c, and
the leaves l1, . . . , l6, ordered from left to right, then the picture describes
the prenet L ⊲ t | {c} with

L = {(l5, l1, (−, f, 1)), (l2, l6, (+, f, 1)), (l3, l4, (+, x, 1))} .

When we define cut elimination for prenets in 4.4, we will see that the
cut elimination of this prenet yields the prenet

a â

→

â a

→

→

(x.2,-f.1) f.1

with only two links, that bear the labels ((+,x,2),(–,f,1)) and (+,f,1), re-
spectively.

Remark 4.1.18. Following our simplified graphical representation of trees
and prenets, we will never look at the additional information stored in the
second and third component of the nodes. In particular, two prenets will be
considered identical, if they differ only in the additional information.

4.2 Typed λ-Terms and Intuitionistic Prenets

Now that we have developed a notion of prenets, we can spend a thought
at the question how to relate λ-terms to these prenets. The idea is to use a
direct translation of terms into prenets. To keep things simple, we will first
restrict ourselves to simply typed λ-terms. This way, we can analyze the
main concepts without being overwhelmed by never ending case distinctions.
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4.2.1 Translating Simply Typed λ-Terms into Prenets

The idea of translating λ-terms into intuitionistic prenets is quite straight-
forward: It is natural to associate to each variable a tree corresponding to
its type. It is also natural to associate to each binder a tree corresponding
to the negative type. We use links to represent the binding structure, and
cuts for applications.

Example 4.2.1. The simply typed λ-term λfx.f could roughly be trans-
lated into something like

a â

→

â â a

→

λf fλx

and λfx.fx into

a â

→

â a â

♦

a

→

λf fλx x

f x

Both of these are not real prenets, of course, but they show what we are
aiming at.

We will now proceed to do an inductive translation of simply typed λ-
terms. Here, we are finally at the point where the additional information at
the nodes of trees come into play. To be able to use it properly, we make
the following convention:

Notation 4.2.2. When we regard a λ-term e, we assume without loss of
generality, that no variable is bound more than once in e. This situation
can always be reached by a sequence of α-conversions.

Additionally, we mark all variable and constant occurrences in e with a
unique positive natural number. We write vi for the occurrence of the vari-
able v in e marked by the number i. For example, the term e = λf.λx.f (f x)
might be marked as λf5.λx4.f1(f2 x3). This way, we are able to distinguish
any two variable occurrences in e.

Definition 4.2.3. We define the prenet N(e) associated to a simply typed
λ-term e inductively over the structure of e. To build up the prenet, we also
assign to every subterm e′ a function le′ : V → P(L), that memorizes which
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Term Corresponding Prenet

e = λvi.e1 :

t0
N(e1)

t1

vj1 vj2

•· · · • •· · · • •· · · •

±v.j1

±v.j2

→

e = e1 e2 :
N(e2)

t2
N(e1)

t1.1 t1.2

→
♦

Table 4.1: Translating simply typed lambda terms into prenets

leaves in the prenet of e′ were created for which free variable of e′. However,
this function will not be used beyond this definition.

Table 4.1 illustrates the composition of prenets in the non-variable cases.

• If e = vi is a variable, and t = T(τ(v), i), then we define

N(e) := ∅ ⊲ t | ∅

and

le(w) =

{
leaves(t) if w = v

∅ if w 6= v

• If e = λvi.e1 is an abstraction, with N(e1) = L1 ⊲ t1 |C1 and t0 =
T(τ(v), i), then the prenet for e is

N(e) := L ⊲ t0 → t1 |C1

where corresponding leaves in t0 and t1 are linked in such a way, that
each link starts at a dualized atom, i.e.

L = L1 ∪ {((â, i, π), (a, j, π), (+, v, j)) ∈ leaves(t0) × le1
(v) × L}

∪ {((â, j, π), (a, i, π), (−, v, j)) ∈ le1
(v) × leaves(t0) × L}

and

le(w) =

{
∅ if w = v

le1
(w) if w 6= v
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4. Proof Nets for Intuitionistic Logic

• If e = e1 e2 is an application, and

N(e1) = L1 ⊲ t1 |C1

N(e2) = L2 ⊲ t2 |C2 ,

then

N(e) := L2 ∪ L1 ⊲ t1.2 |C2 ∪ {t2 ♦ t1.1} ∪ C1

and le(v) = le1
(v) ∪ le2

(v) for all variables v ∈ V.

Some remarks on the shape of the links may be appropriate:

Remark 4.2.4. Until now, the only terms for which links are created are
abstractions. In this situation, the nodes coming from the binder are con-
nected to the nodes coming from the bound variables. Each of these con-
necting links is labeled by the variable name and the occurrence counter,
such that we can later distinguish links of the same binder leading to dif-
ferent bound variable occurrences. This will enable us not to mix up these
occurrences. The direction of the links is done in such a way that links
always lead from dualized to normal atoms. The signs in the labels mark
whether a link leaves (+) or enters (−) the binder’s tree.

Before we closely examine the translation function, we take a short glance
at a few examples.

Example 4.2.5. The prenet of the simply typed λ-term f1 x2 is

a â

♦

a

fx

We see that there is only a small difference to example 4.2.1. From this
prenet, we can build the one of λx3.f1 x2, namely

â a â

♦

a

→

x.2

λx

fx

and finally the prenet for λf4.λx3.f1 x2:
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4.2. Typed λ-Terms and Intuitionistic Prenets

a â

→

â a â

♦

a

→

→

x.2 -f.1 f.1

λf

Now is the time to consider why the function N really produces prenets,
i.e. why the conditions (1)–(6) of definition 4.1.15 are fulfilled. For this we
need a few lemmas:

Lemma 4.2.6. Let e be a simply typed λ-term, and let N(e) = L ⊲ t |C.
Then t codes the type of e, i.e. the type of e equals ty(t).

Proof. By easy induction on the structure of e.

Lemma 4.2.7. If e = e1 e2 is a simply typed λ-term, and if the prenets of e1

and e2 are N1 and N2, then N1 and N2 are disjoint, meaning leaves(N1) ∩
leaves(N2) = ∅.

Proof. If l1 ∈ leaves(N1), then either l1 ∈ leaves(T(τ(v), i1)) for some vari-
able occurrence vi1 in e1, or l1 ∈ leaves(T(τ(v), i1)) for some variable binder
λvi1 in e1. Either way, l1 is of the form l1 = (a1, i1, π1). Analogously, any
leaf l2 ∈ leaves(N2) is of the form l2 = (a2, i2, π2), coming from a vari-
able occurrence or binder in e2. As e1 and e2 contain no common variable
occurrence, we know that i1 6= i2, i.e. l1 6= l2.

Proposition 4.2.8. Let e be a simply typed λ-term. Then N(e) is a prenet.

Proof. We have to verify the conditions in the definition 4.1.15 of prenets
for N(e) = L ⊲ t |C.

First of all, it is inductively clear, that t is a tree, and that the elements
of C are cuts.

(1) holds by lemma 4.2.6, because the symbol ♦ cannot appear in a
formula. For the other properties, we use induction on the structure of e.

• If e is a variable occurrence, then (2)–(5) hold trivially, because C and
dom(L) are empty.

• Now let e = λv.e′ be an abstraction, and N(e1) = L1 ⊲ t1 |C1.

– (2) and (3) hold by induction hypothesis, because C = C1, and
because t0 contains only leaves that do not occur in leaves(N(e1)).

– For (4) and (5) remark, that leaves(N(e)) ⊇ leaves(N(e1)), and
dom(L) ⊇ dom(L1), so by induction hypothesis we only have
to worry about the new links. But these are created between
complementary leaves of N(e), so (4) and (5) hold.
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4. Proof Nets for Intuitionistic Logic

• Let e = e1 e2 be an application, and N(ei) = Li ⊲ ti |Ci for i ∈ {1, 2}.

– As (2)–(3) hold for C1 and C2, we only have to look at the new
cut t2 ♦ t1.1 ∈ C \ (C1 ∪ C2).

As e is well-typed, we know by lemma 4.2.6, that ty(t1) = T̂2∨T1

and ty(t1.1) = T2 for some types T1 and T2, i.e. ty(t1.1) = T̂2 =
ty(t2). So t2 and t1.1 are complementary, which verifies (2).

By lemma 4.2.7 and the property (3) of C1 and C2, the elements
of C1 ∪C2 ∪{t1, t2} do not share any leaves. Obviously, the same
holds for the elements of C1 ∪ C2 ∪ {t2 ♦ t1.1, t1.2} = C ∪ {t}.

– (4) and (5) hold by induction hypothesis, because L = L2 ∪ L1

(which already implies (5)), and so

dom(L) = dom(L1) ∪ dom(L2)

⊆ (leaves(N1) ∪ leaves(N2)) × (leaves(N1) ∪ leaves(N2))

⊆ leaves(N) × leaves(N) .

Thus the proof is complete, and we know that N(e) is a prenet.

4.2.2 Translating Typed λ-Terms into Prenets

Now that we have a first impression on how prenets work, we can extend
the translation function N to all λ-terms.

Definition 4.2.9. We define the prenet N(e) associated to a λ-term e in-
ductively over the structure of e. As a basis, we use the translation from
definition 4.2.3, and extend it by the following cases, which are illustrated
in table 4.2:

• If e = pairi e1 e2 is a pairing, where e1 : A1 and e2 : A2, then e is treated
as an application e = (e′ e1) e2, where N(e′) = L′ ⊲ t′ | ∅ is a prenet,
such that t′ = T(A1 → (A2 → (A1∧A2)), i), and corresponding leaves
in the subtrees coming from the two instances of A1, as well as those
in the subtrees coming from the two instances of A2, are linked:

L′ = {((â, i, 1π), (a, i, 221π), ε) ∈ leaves(t′) × leaves(t′) × L}

∪ {((â, i, 221π), (a, i, 1π), ε) ∈ leaves(t′) × leaves(t′) × L}

∪ {((â, i, 21π), (a, i, 222π), ε) ∈ leaves(t′) × leaves(t′) × L}

∪ {((â, i, 222π), (a, i, 21π), ε) ∈ leaves(t′) × leaves(t′) × L}

Finally, le′(v) = ∅ for all v ∈ V.

• If e = πi
1 e1 is a projection, where e1 : A1 ∧A2, then e is treated as an

application e = e′ e1, where N(e′) = L′ ⊲ t′ | ∅ is a prenet, such that

46



4.2. Typed λ-Terms and Intuitionistic Prenets

Constant Corresponding Prenet

e = pair:

•· · · •

A1

•· · · •

A2

•· · · •

A1

•· · · •

A2

∧

→

→

e = π1 or π2:
•· · · •

A1 A2

•· · · •

A1

∧

→

A1

•· · · •

A2

•· · · •

A2

∧

→

e = case:
•· · · •

A

•· · · •

B

•· · · •

A

•· · · •

C

•· · · •

B

•· · · •

C

•· · · •

C

∨ → →

→

→

→

e = inl or inr:

•· · · •

A1

•· · · •

A1 A2

∨

→

•· · · •

A2 A1

•· · · •

A2

∨

→

e = null: ⊥̂

A

→

Table 4.2: Translating λ-Terms into Prenets

47



4. Proof Nets for Intuitionistic Logic

t′ = T((A1∧A2) → A1), i), and the leaves in the subtrees coming from
the two instances of A1 are linked:

L′ = {((â, i, 11π), (a, i, 2π), ε) ∈ leaves(t′) × leaves(t′) × L}

∪ {((â, i, 2π), (a, i, 11π), ε) ∈ leaves(t′) × leaves(t′) × L}

Finally, le′(v) = ∅ for all v ∈ V.

• The case e = πi
2 e1 works analogously, except that t′ = T((A1∧A2) →

A2), i), and the leaves in the subtrees coming from the two instances
of A2 are linked:

L′ = {((â, i, 12π), (a, i, 2π), ε) ∈ leaves(t′) × leaves(t′) × L}

∪ {((â, i, 2π), (a, i, 12π), ε) ∈ leaves(t′) × leaves(t′) × L}

• If e = inli e1, where e : A1 ∨ A2, then e is treated as an application
e = e′ e1, where N(e′) = L′ ⊲ t′ | ∅ is a prenet, such that t′ = T(A1 →
(A1 ∨ A2), i), and corresponding leaves in the subtrees coming from
the two instances of A1 are linked:

L′ = {((â, i, 1π), (a, i, 21π), ε) ∈ leaves(t′) × leaves(t′) × L}

∪ {((â, i, 21π), (a, i, 1π), ε) ∈ leaves(t′) × leaves(t′) × L}

Finally, le′(v) = ∅ for all v ∈ V.

• The case e = inri e1 works analog, except that t′ = T(A2 → (A1 ∨
A2), i), and the leaves in the subtrees coming from the two instances
of A2 are linked:

L′ = {((â, i, 1π), (a, i, 22π), ε) ∈ leaves(t′) × leaves(t′) × L}

∪ {((â, i, 22π), (a, i, 1π), ε) ∈ leaves(t′) × leaves(t′) × L}

• If e = casei e1 e2 e3, where e1 : A∨B, e2 : A → C and e2 : B → C, then
e is treated as an application e = ((e′ e1) e2) e3, where N(e′) = L′ ⊲

t′ | ∅ is a prenet, such that t′ = T((A∨B) → (A → C) → (B → C) →
C, i), and the corresponding leaves in the subtrees coming from the
two instances of A, as well as those in the subtrees coming from the
two instances of B, are linked, and those in the subtrees coming from
the left two instances of C are linked to those of the subtree coming

48



4.2. Typed λ-Terms and Intuitionistic Prenets

from the rightmost instance of C:

L′ = {((â, i, 11π), (a, i, 211π), ε) ∈ leaves(t′) × leaves(t′) × L}

∪ {((â, i, 211π), (a, i, 11π), ε) ∈ leaves(t′) × leaves(t′) × L}

∪ {((â, i, 12π), (a, i, 2211π), ε) ∈ leaves(t′) × leaves(t′) × L}

∪ {((â, i, 2211π), (a, i, 12π), ε) ∈ leaves(t′) × leaves(t′) × L}

∪ {((â, i, 212π), (a, i, 222π), ε) ∈ leaves(t′) × leaves(t′) × L}

∪ {((â, i, 222π), (a, i, 212π), ε) ∈ leaves(t′) × leaves(t′) × L}

∪ {((â, i, 2212π), (a, i, 222π), ε) ∈ leaves(t′) × leaves(t′) × L}

∪ {((â, i, 222π), (a, i, 2212π), ε) ∈ leaves(t′) × leaves(t′) × L}

Finally, le′(v) = ∅ for all v ∈ V.

• If e = nulli e1, where e : A, then e is treated as an application e = e′ e1,
where N(e′) = L′ ⊲ t′ | ∅ is a prenet, such that t′ = T(⊥ → A, i), and
there is one link connecting the ⊥-labeled node to itself:

L′ = {((⊥̂, i, 1), (⊥̂, i, 1), ε)}

Finally, le′(v) = ∅ for all v ∈ V.

The images of closed terms under N are called sequentializable.

Remark 4.2.10. The way we treated constants looks a lot like a mixture
of variables and abstractions. In fact, we will often take this point of view.

• Let e1, e2 and e be typed λ-terms of types A1, A2 and A1∧A2, re-
spectively. Additionally, let vπ1

, vπ2
and vpair be variables, such that

vπ1
:(A1∧A2)→A1, vπ2

:(A1∧A2)→A2, and vpair:A1→(A2→(A1∧A2)).

Then the prenets N(pair e1 e2) and N(vpair e1 e2) differ only in so far
as the second prenet lacks some links between leaves created for vpair.

Additionally, the prenets N(π1 e) and N(vπ1
e) differ only in so far as

the second prenet lacks some links between leaves created for vπ1
. The

analogous statement is true for N(π2 e) and N(vπ2
e).

This means, that we can and often will simply consider an instance of
one of the constants pair, π1 and π2 as a kind of variable, and a term
of the form pair e1 e2, π1 e or π2 e as an application.

The same holds for the constants case, inl, inr and null, so we also
consider these as variables, whenever appropriate.

• The links in the prenets of constants do not carry other labels than ε.
We could treat the constants like a combination of binders and vari-
ables, and label links going “from left to right” by e.g. (+, π1, 5), and
the others by e.g. (−, π1, 5). The following considerations, however,
work equally well in both situations, so we may well choose the simpler
labels.
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As before, we get:

Proposition 4.2.11. Let e be a λ-term. Then N(e) is a prenet.

Proof. The proofs of the lemmas 4.2.6 and 4.2.5 transfer word by word to
the extended case.

For the proposition itself, remark that we again have to verify the con-
ditions in the definition 4.1.15.

The cases of variables, abstractions and applications are handled by
proposition 4.2.8.

Following our approach to treat constants like normal terms, the re-
maining case is that e = c is a constant. In this situation, (2) and (3) hold
trivially, because C is empty, and (4) and (5) hold because all links are cre-
ated between complementary leaves of N(e), if e 6= null, and from a ⊥̂-leaf
in t to itself, if e = null.

Another well-definedness issue is caused by α-equivalence. We already
mentioned that λ-terms are often regarded only up to α-equivalence. Terms
are even often given in a variable-free de Bruijn notation [dB72]. Note that
two different but α-equivalent λ-terms may correspond to different prenets.
However, these prenets differ only by a consistent renaming of link labels.
We will see, that the behavior of the prenets during cut elimination does
not depend on this difference.

4.3 Properties of Sequentializable Prenets

Whenever one designs prenets for a new logic, it is one of the most interesting
questions, which prenets correspond to a proof in a given reference proof
system for the logic. While this distinction might sometimes be possible by
means of a brute force search, the desired result is a intrinsic property of
the prenets, i.e. a criterion for sequenzialization that can be checked without
looking at the reference calculus.

The first such criterion for multiplicatice linear logic was already given by
Girard [Gir87], and later on many simplified criteria for this calculus were
found, e.g. by Danos and Regnier [DR89]. Lamarche [Lam95] examined
prenets for intuitionistic linear logic and gave a criterion using a system
of polarities, and Lamarche and Straßburger [LS05] found a criterion that
applies to a equivalence classes of prenets for classical propositional logic
(called B-prenets), but not the full calculus.

Unfortunately, by now there is also no such correctness criterion for
intuitionistic prenets. To see the problems with an intrinsic characterization
of prenets that are suited as proofs, consider the following prenet:
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â a a â â a

→ →

♦

→

y.6
(f.2,-f.1)

(x.3,-f.2) f.1

We will show later, that this prenet can be constructed by a series of cut
eliminations from the prenet of the term (λf.λx.f (f x))(λy.y). As cut elim-
ination will play the part of a proof normalization procedure, we expect
our calculus to be closed under cut elimination. However, the above prenet
is not the prenet of any λ-term, so it does not correspond to a traditional
intuitionistic proof. And even if we only expect the existence of a λ-term
whose net contains the same number of links between two given leaves, we
will not be able to find such a term.

Instead of giving a complete correctness criterion, we will in this section
present several properties of sequentializable prenets, which have a good
chance to play an important role in such a criterion. Finally, we will explain
why we called the images of terms under N “sequentializable”. We do so by
presenting an algorithm that computes a right-inverse of N.

4.3.1 Polarization

The first property that distinguishes prenets coming from a λ-term from
many other prenets is whether the main tree of a prenet corresponds to an
intuitionistic formula. Lamarche [Lam95], and later on also Retoré [LR96]
used a system of polarities to characterize these prenets. They extended the
idea of writing a sequent A, B ⊢ C as the one-sided sequent ⊢ A•, B•, C◦,
where the additional markers show which side a formula came from. Al-
though both authors worked on linear logic, the analogous generalization
also applies to our system.

Definition 4.3.1. A prenet L ⊲ t |C is called polarizable, if its nodes can
be decorated with a polarity (we use the symbols ◦ and •), such that the
following rules hold:

(1) Each link connects a • node to a ◦ node, or it connects ⊥̂-labeled
• nodes.

(2) The left child of each →-labelled ◦ node is a • node, the right child is
a ◦ node.

The left child of each →-labelled • node is a ◦ node, the right child is
a • node.

(3) Both children of each ∨-labelled node have the same polarity as the
node itself.
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4. Proof Nets for Intuitionistic Logic

(4) Both children of each ∧-labelled node have the same polarity as the
node itself.

(5) Each ♦-labelled root c(ε) is a • node, its left child is a ◦ node, and its
right child is a • node.

The root of t is a ◦ node.

⊥̂• ⊥̂•

• ◦

◦ •

→◦

• ◦

→•

◦ ◦

∨◦

• •

∨•

◦ ◦

∧◦

• •

∧•

t

◦

◦ •

♦•
(1) (2) (3) (4) (5)

Each decoration of a prenet satisfying the above conditions is called a po-
larization.

A tree t is called polarizable, if the prenet ∅ ⊲ t | ∅ is polarizable, ignoring
rule (5).

Example 4.3.2. The prenet from example 4.1.17 can be uniquely polarized
as follows:

a◦ â•

→•

â• a◦ â•

♦•

a◦

→◦

→◦

x.2 -f.1 f.1

The prenet

â a

∧

however does not have a polarization because of a conflict betwee rules (1)
and (3).

It is obvious from the shape of the polarization rules that the polarities
of two siblings are determined by the polarity of their parent node. So we
can directly conclude:

Proposition 4.3.3. Let N be a prenet. If N is polarizable, then this polar-
ization is unique.

Example 4.3.2 shows that it is not the case, that every prenet admits a
polarization. However we will now show that sequentializable prenets are
also polarizable.
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Lemma 4.3.4. Let A be a type. Then t = T(A, i) is polarizable by the rules
of 4.3.1, such that its root is a ◦ node.

Dually, t′ = T(A, i)̂ is polarizeable by the rules of 4.3.1, such that its
root is a •-node.

These polarizations can be done in such a way, that each leaf is a ◦ node,
if and only if it is labeled by a (positive) atom.

Proof. It is obvious from the polarization rules, that any polarization of the
root of a tree can be promoted to its leaves. So the only thing we have to
show is, that we can produce the required polarization of the leaves.

We prove this by induction on the structure of A.

• If A = a is an atom, there is nothing to show.

• Let A = A1 → A2, i.e. t = t.1 → t.2. As the root of t is a ◦ node, the
root of t1 is a •-node, and the root of t2 is a ◦ node by rule (2).

As t.1 is equivalent to T(A1)̂ , and as t.2 is equivalent to T(A2), the
induction hypothesis for t.1 and t.2 ensures, that we get the desired
polarization of the leaves.

Dually, we can promote a • node at the root of t to a ◦ node at the
root of t1, and a • node at the root of t2, again receiving the result by
induction hypothesis.

• Let A = A1 ∧ A2, i.e. t = t.1 ∧ t.2. As the root of t is a ◦ node, the
roots of t1 and t2 are also ◦ nodes by rule (2).

As t.1 is equivalent to T(A1), and as t.2 is equivalent to T(A2), the
induction hypothesis for t.1 and t.2 ensures that we get the desired
polarization of the leaves.

Dually, we can promote a • node at the root of t to • nodes at the
roots of t1 and t2, again receiving the result by induction hypothesis.

• The case A = A1 ∨ A2 is completely analogous to A = A1 ∧ A2.

The duality in the above construction of the polarization of comple-
mentary trees, together with the uniqueness of polarizations, allows us to
conclude:

Corollary 4.3.5. Let A be a formula, and let i, j any two integers. Then
the unique polarization of T(A, i) marks a node as a ◦ node, if and only if the
unique polarization of T(A, j)̂ marks the corresponding node as a •-node.

Proposition 4.3.6. Let e be a term. Then N(e) is polarizable.
Furthermore, the polarization can be done in such a way, that nodes

coming from a variable are polarized dually to the respective nodes coming
from this variable’s binder.
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Proof. We know that there is a unique polarization by rules (1)–(5). We
have to show that the links respect rule (1).

We proceed by induction on the structure of e. Let N(e) = L ⊲ t |C.

• Let e = v be a variable, and A = τ(v). Since there are no links, there
is nothing to show.

• Let e = λv.e1 and let N(e1) = L1 ⊲ t1 |C1. Because of rules (5) and
(2), the root of t1 = t.1 is a ◦ node in both N(e1) and N(e). Hence
we can apply the induction hypothesis, and the proposition holds for
all links in e1.

Let t0 be the tree coming from the binder λv in N(e). By rules (5)
and (2) the root of t0 is a • node. By lemma 4.3.5, the leaves of t0
are marked dually to the leaves in e1 coming from an instance of v.
So rule (1) is also respected by all links that are introduced by the
abstraction.

• Let e = e1 e2, and let N(ei) = Li ⊲ ti |Ci for i ∈ {1, 2}.

Because of rule (5), the root of t2 = c.1 is a ◦ node in both N(e1) and
N(e), and the root of t1.1 = c.2 is a • node in both N(e1) and N(e).
Hence we can apply the induction hypothesis, and the proposition
holds for e1 and e2.

As N(e) does not contain links that were not already present in N(e1)
or N(e2), rule (1) is fulfilled.

• Let e = null. Then N(e) can be polarized as follows:

⊥̂•

A◦

→ ◦

• If e is one of the other constants, the situation is completely analogous
to the abstraction case, because any polarization that marks the root
as ◦ marks the roots of connected subtrees differently, i.e. the duality of
the polarization rules allows once again a polarization as required.

4.3.2 Classical Correctness

Lamarche and Straßburger [LS05] gave a geometric criterion to decide,
whether a given classical prenet can be constructed from a classical sequent
proof (cf. theorem 3.2.4). As every intuitionistic proof of a formula can also
be seen as a classical proof, it is not surprising that intuitionistic prenets
fulfill the same criterion.
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Definition 4.3.7. A conjunctive pruning of a polarized prenet L ⊲ t |C is
a triple (t′, C ′, L′), where t′ and C ′ are obtained from t and C by replacing
each subtree of type t1 ∧

◦ t2, t1 →• t2, t1 ∨
• t2 or t1 ♦ t2 by either t1 or t2,

and where
L′ = L|leaves({t′}∪C′)×leaves({t′}∪C′) .

When (t′, ∅, ∅) is a conjunctive pruning of ∅ ⊲ t | ∅, we call t′ the conjunctive
pruning of t.

A prenet N is classically correct , if every conjunctive pruning of N con-
tains at least one link.

Note that a conjunctive pruning is almost again a prenet. The only
tender spot is that the elements of C ′ are not cuts. In [LS05], this distinction
is not made, because a prenet may contain more than one non-cut tree.

Example 4.3.8. The following graphs visualize the conjunctive prunings
of the prenet from example 4.1.17:

â â â a

→

→

f.1

â â a a

→

→

x.2

a â â a

→

→

-f.1

a â a a

→

→

x.2

Each of these prunings contains a link, so the original prenet is classically
correct.

Proposition 4.3.9. Let e be a closed term. Then N(e) is classically correct.

Proof. We show the classical correctness of N(e) by induction on the number
of cuts in N(e). Again, we follow remark 4.2.10 to deal with constants. Table
4.3 illustrates the main cases.

• Let e be application-free, but not a constant. Then e is of the form
λv1. . . . λvn.vi with 1 ≤ i ≤ n, and its prenet contains exactly the same
links as the prenet of e′ = λvi.vi. Additionally, every pruning of e can
be restricted to a pruning of e′, and so it suffices to examine this term.

Let N(e′) = L ⊲ t | ∅, and let A = τ(vi). By construction, t is of the
form t = T(A, j) →◦ T(A, k) for some occurrence markers j and k.

To prove that every conjunctive pruning of N(e′) contains a link, it
suffices to show that every conjunctive pruning of t contains a pair of
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e is application-free
and not a constant:

λv1

. . .

λvi

. . .

λvn
vi

→

→

→

±vi.j

e is a constant (examples):

e is a pairing: e is a projection (e.g. π1):

•· · · •

A1

•· · · •

A2

•· · · •

A1

•· · · •

A2

→

→

→

•· · · •

A1 A2

•· · · •

A1

∧

→

e contains applications:

N(e2)

N(e′2)

t2
N(e1)

N(e′1)

t1.1

♦
c

λv1 λvn

. . .

Table 4.3: The Structure of a Closed Term
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corresponding leaves in T(A, j)̂ and T(A, k), i.e. two leaves (â, j, π)
and (a, k, π) (note that the path labels are equal).

We prove this by induction on the structure of A.

– If A is an atom, then t = t(1) →◦ t(2) does not contain prunable
nodes, so there is only one conjunctive pruning: t itself. The
nodes t(1) and t(2) provide the demanded pair.

– If A = A1 → A2, then t is of the form t = (t.11 →• t.12) →◦

(t.21 →◦ t.22), and every conjunctive pruning of t is of the form
t′ = t′1 →◦ (t′21 →◦ t′22), where t′21 and t′22 are conjunctive prun-
ings of t.21 and t.22, respectively, and t′1 is either a conjunctive
pruning of t.11 or t.12. Let us assume that t′1 is a conjunctive
pruning of t.11 (the other case works analogously). As t′1 →◦ t′21
is a conjunctive pruning of t.11∨ t.21, we can apply the induction
hypothesis to conclude that t′1 ∨ t′21 contains the wanted pair of
leaves, thus so does t′.

– The case of a disjunction type A = A1 ∨A2 is completely analog
to the case of an implication, and in the case of a conjunction
type A = A1 ∧A2, the only difference is that prunings are of the
form t′ = (t′11 ∧◦ t′12) →◦ t′2, but the rest of the argumentation
does not change.

• Let e = pair, and e : A1 → A2 → (A1 ∧ A2). Then any conjunctive
pruning of N(e) is a conjunctive pruning of

•· · · •

A1 A2

•· · · •

A1

→
→

or
A1

•· · · •

A2

•· · · •

A2

→
→

These prenets are obviously classically correct, if the identically shaped
prenets of λx1.λx2.x1 and λx1.λx2.x2, for variables of type x1 : A1 and
x2 : A2, are classically correct. We have already shown this in the first
part of this proof.

• Let e = πi, i ∈ {1, 2}, and e : (A1 ∧ A2) → Ai. Then any conjunctive
pruning of N(e) can be restricted to a conjunctive pruning of the
prenet
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•· · · •

Ai

•· · · •

Ai

→

This prenet is obviously classically correct, if the identically shaped
prenet of λxi.xi, for a variable of type xi : Ai, is classically correct.
We have already shown this in the first part of this proof.

• The argumentation for e = inl and e = inr is analog to the cases e = π1

and e = π2.

• Let e = case and e : (A ∨ B) → (A → C) → (B → C) → C. Any
conjunctive pruning of e deletes either the leftmost tree coming from
A or from B. Without loss of generality, assume that the tree coming
from B is deleted. Any such pruning is contained in a conjunctive
pruning of

A

•· · · •

C

•· · · •

C

→

→

→

or

•· · · •

A

•· · · •

A C

→

→

→

These prenets are obviously classically correct, if the prenets of λx1.x1

and λx2.x2, for variables of type x1 : A and x2 : C, are classically
correct. We have already shown this in the first part of this proof.

• Let e = null and e : ⊥ → A. Then any conjunctive pruning of e

contains the link connecting ⊥̂ to itself.

• Let e be a formula containing at least one application. Then e is of
the form λv1. . . . λvn.e1 e2, with n ≥ 0. The terms e′i = λv1. . . . λvn.ei

are closed and contain strictly less applications than e. So the prenets
N(e′i) are classically correct by induction hypothesis.

Let N(e) = L ⊲ t |C, let c ∈ C be the cut introduced by the applica-
tion e1 e2, and let P be any conjunctive pruning of N(e). Then there
are conjunctive prunings P1 and P2 of N(e′1) and N(e′2), respectively,
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such that the construction of each Pi agrees with the construction of
P on all nodes that N(e′i) and N(e) have in common. So the only
choice made for P that is not visible in P1 or P2 is the choice at c.

Now, if c.1 is deleted in P , P1 is unaffected by this, and all links of P1

appear in P . Analogously, if c.2 is deleted, the links of P2 appear in
P .

As the prenets N(e′i) are classically correct, each Pi contains at least
one link. So in any case, P too contains at least one link.

4.3.3 Paths and Finiteness

In chapter 3, when we discussed proof nets for classical logic, we saw that an
atomic cut was eliminated by following all paths through the cut. We follow
this idea of paths through a cut and expand it to non-atomic cuts. Although
the notion seems to be very close to the one in the context of classical proof
nets, there is one big difference: While Lamarche and Straßburger strictly
forbade the use of links that cross a cut, and only gave the idea to impose
any finite bound on the number of uses of such links, we explicitly encourage
following any link any number of times.

Definition 4.3.10. Let N = L ⊲ t |C be a prenet, and let C ′ = {c1, . . . , ck}
⊆ C. A triple (l0, l

′
n, σ) ∈ leaves(N)×leaves(N)×L is called a path candidate

in N through C ′, if there is a series l′0, l1, l
′
1, . . . , ln−1, l

′
n−1, ln ∈ leaves(C ′) of

leaves such that:

(1) A path candidate does not begin or end in one of the distinguished
cuts: l0, l

′
n 6∈ leaves(C ′)

(2) It is composed of a series of links: ∀0 ≤ i ≤ n : (li, l
′
i) ∈ dom(L)

(3) These links are connected by cuts, such that if one link ends in a cut,
the next starts on the opposite side of the cut:

∀0 ≤ i ≤ n : ∃c ∈ C ′ : ∃π ∈ dom(c.1) :

(l′i = c(1π) ∧ li+1 = c(2π)) ∨ (l′i = c(2π) ∧ li+1 = c(1π))

(4) And finally, the label of the path candidate is the concatenation of the
labels of all the used links: σ ∈ L(l0, l

′
0) × . . . × L(ln, l′n)

An explosion of the number of resulting paths is prohibited by a con-
straint on the labels of the links that paths accumulate:

Definition 4.3.11. Let σ = σ1(−, v, i)σ2(+, v, i)σ3 be a link label, where
v ∈ V is a variable, i ∈ N is an occurrence marker, and σ2 does not contain
(±, v, j) for any j ∈ N. A label reduction step is the procedure of replacing
such σ by σ1σ2σ3.
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Now let σ be any link label. If the normal form of σ under the above
reduction relation is not of the form σ1(−, v, i)σ2(+, v, j)σ3 with i 6= j, then
σ is called well-formed .

A path candidate with well-formed label in a prenet N = L ⊲ t |C is
called path in N . We write path(N, C ′) for the set of paths in N through
C ′ ⊆ C, and abbreviate path(N) =

⋃
C′⊆C path(N, C ′) for the set of all

paths in N (through any set of cuts).

The general idea of the restriction to well-formed labels is to keep differ-
ent occurrences of a variable apart. We will discuss this in again when we
define a cut elimination procedure for our prenets.

Example 4.3.12.

(1) path(N, ∅) consists exactly of the links of N .

(2) There are two paths through the cut of the prenet

a â

→

â a â

♦

a

→

→

x.2 -f.1 f.1

for λfx.fx, which we have already seen in example 4.2.5. They bear
the labels (f.1) and (x.2,−f.1), respectively.

(3) Let us have a glance at how the well-formedness condition influences
the paths in a prenet. Consider the prenet of λf5.λx4.f1(f2 x3), where
again upper indices mark the variable occurrences:

a â

→

â a â

♦

a â

♦

a

→
→

x.3 -f.2 f.2 -f.1 f.1

There are two paths in this prenet that are not links: one labeled by
(x.3,−f.2), and one labeled by (f.2,−f.1). The first label means, that
the variable occurrence x3 is used as an input to f2, and the second
means, that the output of f2 is used as an input to f1.

If we apply the above term to λy7.y6, the resulting prenet is
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â a

→

a â

→

â a â

♦

a â

♦

a

→
♦

x.3 -f.2 f.2 -f.1 f.1y.6

It contains only one well-formed path candidate through all three cuts,
marked by the label (x.3,−f.2, y.6, f.2,−f.1, y.6, f.1). Pay attention
to how the path represents the flow of the variable x3 through the term:
x3 is the input to f2, hence the component (x.3,−f.2). The variable
f2 is (after a β-reduction) instantiated by λy7.y6, which is responsible
for the first instance of y.6. The output of f2 is used as input of f1,
which is where the part (f.2,−f.1) comes from. The instantiation of
f1 is again responsible for the component y.6. Finally the output of
f1 is the output of the whole term, hence the label f.1.

The well-definedness condition says here, that when we enter the tree
coming from λf by a link labeled −f.i, we have to leave it again by a
link with the label +f.i. If we had allowed any combinations of links to
form a path, we would also have received the path (x.3,−f.2, y.6, f.1).
This path corresponds to x3 being used as input to f2 (nothing new
so far), but then miraculously jumping to and leaving f1. For sure,
this is not what we expect x3 to do, and we exclude this possibility in
our paths.

Paths have the nice property that the labels of two paths separated by
a cut can always be combined to a well-formed label:

Lemma 4.3.13. Let e = λv1. . . . λvn.e1 e2 with n ≥ 0 be a closed term. Let
c ∈ C be the cut introduced by the application e1 e2, and Let p1 = (l1, l

′
1, σ1)

and p2 = (l2, l
′
2, σ2) be two path candidates that do not use c.

If l′1 ∈ leaves(c.1) and l2 ∈ leaves(c.2), or vice versa, then the combined
label σ1σ2 is well-formed, if and only if σ1 and σ2 are well-formed.

Proof. We consider only the case that l′1 ∈ leaves(c.1) and l2 ∈ leaves(c.2).
The case l′1 ∈ leaves(c.2) and l2 ∈ leaves(c.1) is analogous.

Let e′i = λv1. . . . λvn.ei. For a visualization of the situation look again
at table 4.3. Since p1 and p2 do not use c, p1 is a path candidate in e′1,
and p2 is a path candidate in e′2. The only variables that both e′i share are
v1, . . . , vn. This means, that reasons for a non-well-formedness of σ1σ2 can
lie in a non-well-formedness of one of the σi, or in components of the form
(±, vj , k) that occur in the σi.

Let t1, . . . , tn be the trees coming from λv1, . . . , λvn. If no tj contains
both l′1 and l2 then σ1 and σ2 contain no components involving the same
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variables. So the well-formedness of σ1 and σ2 carries over to σ1σ2 and vice
versa.

Otherwise σ1 = (+, vj , k1)σ′
1 and σ2 = σ′

2(−, vj , k2), where σ′
1 and σ′

2 do
not involve any common variable nor vj . Again σ1σ2 is well-formed, if and
only if σ1 and σ2 are well-formed.

Although the notion of paths looks quite innocent, even small changes
in the labels of a prenet may result in enormous changes in the number of
paths.

Example 4.3.14. Consider the following prenet template:

â a a â â a

→ →

♦

→

y.6
?

(x.3,-f.2) f.1

If the label at “?” is (f.2,−f.1) (which means, as we will see, that the prenet
emerged from the one in example 4.3.12 by elimination of the two cuts on the
right), then the path candidate through the cut that does not use the “?”-
link is labeled (x.3,−f.2, y.6, f.1). It violates the second well-formedness
condition. The only path through the cut uses the “?”-link once and passes
the cut three times. It bears the label (x.3,−f.2, y.6, f.2,−f.1, y.6, f.1).

However, if the label at “?” is just −f.1, then there is one path for each
number of uses of the “?”-link. These paths bear the following labels:

(x.3,−f.2, y.6,−f.1, y.6, f.1)

(x.3,−f.2, y.6,−f.1, y.6,−f.1, y.6, f.1)

(x.3,−f.2, y.6,−f.1, y.6,−f.1, y.6,−f.1, y.6, f.1)

(x.3,−f.2, y.6,−f.1, y.6,−f.1, y.6,−f.1, y.6,−f.1, y.6, f.1)

...

The existence of infinitely many paths is a situation we will want to
avoid. Especially when we turn to cut elimination, infinitely many paths
will mean that cut elimination turns a prenet with a finite set of links into
one with infinitely many links. As we have just seen in the above example,
our restriction on the allowed path labels cannot circumvent this problem
in all settings. However, we can show that the restriction is sufficient when
we work with prenets of λ-terms.

To prove this, we need the concept of loops. When we construct prenets
out of terms, a small prenet is often used as one constituent of a larger
prenet. A loop is a path that, when seen in the context of a larger prenet,
may give rise to infinitely many paths in this prenet.
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Definition 4.3.15. Let N = L ⊲ t |C be a polarized prenet. A path
(l1, l2, σ) in N is a loop, if the following conditions hold:

• The path connects two dually polarized leaves.

• The combined link label σσ (and hence also σσσ, σσσσ and so forth)
is well-formed.

• There is a subtree t′ of t with a • root (or a cut c ∈ C), such that t′

(or c.2, respectively) contains both leaves l1 and l2.

We speak of a loop over t or a loop over c.

Example 4.3.16.

• The prenet

a â â a

→ →

→

-f.1

(x.3,-f.2) f.1

has only one polarization, and it contains one loop labeled −f.1. Nev-
ertheless, there are only finitely many (namely 3) paths through this
prenet. The last prenet in example 4.3.12 also has exactly one polar-
ization, and it contains the same loop, but now this loop is a loop over
a cut and produces an infinite number of paths.

• The typed λ-calculus can be extended to a proof system for full classi-
cal logic by including a way to eliminate double negations by deducing

A from A, i.e. a construct

Λ := . . . | dneg Λ

with the typing rule

e : (A → ⊥) → ⊥

dneg e : A
dneg

Translating the constant dneg into the language of prenets yields for
example the following uniquely polarizable prenet:

â• ⊥◦

→ ◦

⊥̂•

→ •

a◦

→ ◦
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It is classically correct, but it contains a loop: the link from the ⊥̂-
labeled node to itself.

All the other prenets presented so far are loop free. In fact, this is not a
coincidence but common to all prenets associated to λ-terms.

Lemma 4.3.17. Let v1, . . . , vn ∈ V be variables, and 1 ≤ i ≤ n. Then the
prenet N(λv1. . . . λvn.vi) does not contain a loop. The same holds for the
prenets of the constants.

Proof. Let N(λv1. . . . λvn.vi) = L ⊲ t | ∅, and let t′ be an arbitrary subtree
of t with a • root. Then t′ is a (not necessarily strict) subtree of one of
the trees coming from a binder λvj , or of the tree coming from vi. In both
cases there are no links (and, as the prenet is cut-free, no paths) between
two leaves of t′. Hence there is no loop over t.

This argument is simiar for all constants except null. But for N(null),
the situation is even simpler: There is only one link, and this link is obviously
not a loop.

Proposition 4.3.18. Let e be a typed λ-term. Then N(e) does not contain
a loop.

Proof. We apply the same proof technique as in the correctness proof 4.3.9,
showing the proposition by induction on the number of cuts in N(e).

Let N(e) = L ⊲ t |C.

• If e is a constant, then the proposition follows from lemma 4.3.17.

• Let N(e) be cut-free but not a constant. Then e is of the form
λv1. . . . λvn.v. If v = vi with 1 ≤ i ≤ n, then the proposition fol-
lows again from lemma 4.3.17.

If v 6= vi for all 1 ≤ i ≤ n, then N(e) does not contain any links at all,
so the proposition is trivially true.

• Let N(e) be a formula containing at least one cut.

Then e is of the form λv1. . . . λvn.e1 e2, with n ≥ 0. Let c ∈ C be the
cut introduced by the application e1 e2. The terms e′i = λv1. . . . λvn.ei

contain strictly less applications than e. So the N(e′i) do not contain
loops.

Assume that there is a loop in N(e). By induction hypothesis this
loop has to contain parts of both subnets, N(e1) and N(e2). Thus it
has to use the cut c, i.e. without loss of generality, it is a loop over c.

This loop’s label must then be of the form

l
(1)
1 l

(2)
1 l

(1)
2 l

(2)
2 . . . l(1)n ,
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with l
(1)
1 , . . . , l

(1)
n being labels of paths in e1, with l

(2)
1 , . . . , l

(2)
n being

labels of paths in e2, and with l
(1)
1 and l

(1)
n polarized dually.

Because of the independence of paths on both sides of c, that we know

from lemma 4.3.13, the label l
(1)
1 l

(1)
2 . . . l

(1)
n is also well-formed, and thus

comes from a loop in e1. But this is a contradiction to the assumption
that e1 does not contain loops.

Hence there are no loops in N(e).

With this information, we can directly conclude:

Corollary 4.3.19. Let e be a typed lambda term. Then the number of paths
in N(e) is finite.

So we know that the prenets in examples 4.3.16 are not the prenets of
any λ-term.

4.3.4 Ramification

An outstanding difference between sequent systems for classical and intu-
itionistic logic is the handling of contractions. In a classical sequent proof,
contraction may be used on any formula of a sequent. As intuitionistic
sequents have only one conclusion (i.e. they are of the form Γ ⊢ A), contrac-
tion on the right hand side of a sequent is not possible. As a polarization
provides a means to represent the difference between left and right, we can
also translate the intuitionistic restriction of contractions into the language
of prenets.

Definition 4.3.20. Let N be a polarized prenet. A leaf l of N is called an
output leaf , if l and all ancestors of l are ◦ nodes.

A leaf k of N is called an input leaf , if k ia a • node, and if there are
natural numbers m, n ≥ 0 such that the first m ancestors of k are • nodes,
while the remaining n ancestors of k are ◦ nodes.

A polarized prenet N = L ⊲ t |C is unramified , if there is at most one
path in path(N, C) to every output leaf in N .

Example 4.3.21. The prenet from example 4.1.17 has only the polarization
seen in example 4.3.2, and exactly one output leaf (marked by a circle):

a◦ â•

→•

â• a◦ â•

♦•

a ◦

→◦

→◦

x.2 -f.1 f.1
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Obviously, there is exactly one path ending in this node. All • leaves of this
prenet are input leaves.

The following prenet is polarizable and classically correct, however its
unique output leaf (the rightmost node) has two incoming paths:

â• b◦

→ ◦

â•

→ •

a ◦

→ ◦

x.1 y.2

The underlying sequent is Pierce’s law ⊢ ((a → b) → a) → a, which has no
intuitionistic proof.

Proposition 4.3.22. Let A be a type. If t = T(A, i) polarized by the rules
of 4.3.1, such that its root is a ◦ node, then there is at least one output leaf.

If A contains no conjunctions and disjunctions, then the output leaf is
unique.

Proof. This follows directly from the polarization rules 4.3.1.

Lemma 4.3.23. Let e be a term. If l is an output leaf of N(e), and if
(k, l, σ) ∈ path(N(e)) is a path ending in l, then k is an input leaf.

Proof. We again proceed by induction on the number of applications in e.

Let N(e) = L ⊲ t |C, and let l be an output leaf of N(e). All leaves
in N(e) were introduced either by a variable or constant occurrence or by
a variable binder. As lemma 4.3.4 and the unique propagation of polarities
(cf. proposition 4.3.3) ensure that the roots of the trees coming from binders
are always • nodes, l must come from a variable or a constant.

Assume that l comes from a variable v. The argumentation for the
constants is analog, if we interpret them as abstractions as motivated in
4.2.10. If there is any link to l, then it comes from the corresponding node
k in the tree t′ of λv. As all ancestors of l are ◦ nodes, the by 4.3.5 dually
markable ancestors of k in t′ are all • nodes.

We distinguish two cases:

• If e does not contain a subterm of the form (λv.e1) e2, the tree t′ is
not part of a cut of N(e), instead, t is of the following shape:
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•t(1)

•t(21)

•t(2i1) ◦ t(2i2)

→◦

. . .

→◦

→◦

•k
•
•
•

◦ l
◦
◦
◦
◦

All nodes between t(ε) and t(2i) are ◦ nodes, and all nodes between
t(2i1) = t′(ε) and k are • nodes. So k is an input leaf, and k is the
only node where a path to l starts.

• If e contains a subterm of the form (λv.e1) e2, there is a cut c ∈ C

such that c.2 = t′. As c(ε) is a • node, and as t′ is polarized dually to
the tree coming from v, all predecessors of k are • nodes. This means,
that k is an input leaf.

If there is no longer path leading to l, we are done. Otherwise the path
enters c in the node opposite to k: If k = c.2π, it enters in l′ = c.1π.

◦◦t′ •c.2

♦•

•k
•
•
•

◦l′

◦
◦
◦

◦ l
◦
◦
◦
◦

Consider the term e′2 = λv1. . . . λvn.e2, where e2 is extended by all the
binders of e that bind free variables of e2. As c.1 is polarized dually
to c.2, all nodes of the path from c(1) to l′ are ◦ nodes. Hence, l′ is an
output leaf of e′2. By induction hypothesis, the paths in N(e′2) ending
in l′ begin in input leaves (which cannot be leaves of c.1, because c(1)
is a ◦ node but c(ε) is not). Expanding these paths by the link from k

to l yields the paths to l, so all their start points are input leaves.

Lemma 4.3.24. Let e be a term that does not contain the constant case.
Let l be an output leaf of N(e) = L ⊲ t |C and let (k, l, σ) ∈ path(N(e), C)
be a path ending in l.

If k and a ◦ leaf l′ have a common ancestor that is a • node, then there
is at most one path (k′, l′, σ′) ∈ path(N(e), C) such that σ′σ is well-formed.

Proof. We show the proposition by induction on the number of applications
in e.

• Let e be application-free. If e is of the form λv1. . . . λvn.vi with 1 ≤
i ≤ n, then every leaf is the starting point of at most one path. Thus
the statement is true. The same holds for all constants except case. If
e is of the form λv1. . . . λvn.v with v 6= vi for all 1 ≤ i ≤ n, then N(e)
does not contain any leaves at all, so the statement is also true.
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• Let e be a formula containing at least one application. Then e is of the
form λv1. . . . λvn.e1 e2, with n ≥ 0. Let c ∈ C be the cut introduced
by the application e1 e2. The terms e′i = λv1. . . . λvn.ei contain strictly
less applications than e, so we may use the induction hypothesis for
both terms.

Let (k, l, σ) ∈ path(N(e), C). If the path lies completely in N(e′1), the
lemma holds by induction hypothesis for e′1.

Otherwise, the path uses the cut c. Then we can split it into two parts
(k, l′, σ1) and (k′, l, σ2), such that (k, l′, σ1) does not use c.

•k ◦l′ •k′
◦ l

♦ c

By lemma 4.3.23, k′ is an input node, and since c.1 and c.2 are dually
polarized, l′ is an output leaf of N(e′2).

The induction hypothesis for (k, l′, σ1) and e′2 proves the claim.

Proposition 4.3.25. Let e be a λ→∧-term. Then N(e) is unramified.

Proof. To simplify the notation in this proof, we will say that a path p is a
full path in a prenet N , if it is a path through all cuts of N .

Let N(e) = L ⊲ t |C be equipped with a polarization. We proceed by
induction on the number of applications in e.

• Let e be application-free. Then e is a constant, or e is of the form
λv1. . . . λvn.v with n ≥ 0 (and not necessarily v = vi for any i). There
is at most one link ending in any leaf N(e), and as the prenet does not
contain cuts, all paths are links.

• Let e be a formula containing at least one application. Then e is of the
form λv1. . . . λvn.e1 e2, with n ≥ 0. Let c ∈ C be the cut introduced
by the application e1 e2. The terms e′i = λv1. . . . λvn.ei contain strictly
less applications than e. So N(e′1) and N(e′2) are unramified.

Let l be any output leaf of N(e). We will now incrementally construct
the possible ending of a path to l. To do this, we divide each such
possible ending into its parts inside e′1 and e′2, respectively. This is not
hard, but it means that we have to jump to and fro in N(e).

As an output leaf of N(e), l is also an output leaf of N(e′1). By
induction hypothesis for e′1, there is at most one full path (k, l, σ) in
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N(e′1). If such a path does not exist, there can also be no full path to
l in N(e). If such a path exists and k is not a leaf of c, then (k, l, σ) is
also the only full path to l in N(e).

So assume that k = c(2π) is a leaf of (the right subtree of) c. Because
k is an input leaf by lemma 4.3.23 for e′1, and because c.1 and c.2 are
dually polarized, l′ := c(1π) is an output leaf of N(e′2). By induction
hypothesis for e′2, there is at most one full path (k′, l′, σ′) in N(e′2). As
before, the only interesting case is k′ = c(1ρ).

Lemma 4.3.24 for e′1 ensures that there is at most one full path in
e′1 that can be prefixed to (k, l, σ). Because paths in e′1 and e′2 are
independent by lemma 4.3.13, the same holds also for the combined
path (k′, l, σ′σ). Again, the only interesting case is that the prefix
starts in a leaf of c.

If this is the case, the same argument as before yields the existence
of at most one prefix in e′2. Iteration of this process for e′1 and e′2 in
turn always yields at most one new prefix. The iteration terminates,
because leaves(c) is finite and N(e) contains no loops by proposition
4.3.18.

4.3.5 Sequentialization

We will now justify the terminology “sequentializeble”: If we have a sequen-
tializable prenet, there is a way to retrieve a term, i.e. a natural deduction
or sequent proof, that is translated into this prenet:

Theorem 4.3.26. It is decidable, whether a prenet is the image under N
of a closed λ-term.

Let N = L ⊲ t |C be the prenet of a closed λ-term e, and let nnodes be
the number of nodes in N . If e contains at most one instance of the constant
null, then a term e′ with N = N(e′) can be computed in time O(nnodes).

Proof. Decidability is obvious, because we can enumerate all λ-terms whose
corresponding prenets contain nnodes nodes, i.e. all λ-terms whose variable
occurrences have types containing all in all nnodes symbols. The really in-
teresting statement is that the reconstruction of e′ can be done in linear
time.

We first describe an algorithm computing e′ from N in the case of a
simply typed term e. This allows us to concentrate on the essential ideas.
Then this algorithm is extended to the full calculus, and we finally analyze
the complexity.

Analyzing prenets of closed λ→-terms: In a preprocessing step, we index
all links by their label, and we mark all trees coming from a binder.

Step 1: Find the output leaf l of t. This leaf exists and is unique because
of proposition 4.3.22. As e is closed, and l comes from a variable,
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there is exactly one link touching l. This link is unique, because N is
unramified. Let it be (l′, l, (+, v, i)).

Let v1, . . . , vk be the different variables occurring in other links that use
leaves of t (sorted, starting from the leftmost leaf). These correspond
to the binders whose trees are subtrees of t.

Step 2: We know that l′ comes from the binder λv0. Follow, starting with
the leftmost sibling of l′, all other links labeled (±, v, i).

Step 3: If such a link leads to the right side of a cut, this cut must come
from an application of vi to another term.

So let c1, . . . , cm be these cuts, i.e. c1.2, . . . , cm.2 are reached by the
links. Restart the algorithm with c1.1, . . . , cm.1 instead of t, which
produces terms e1, . . . , em.

Step 4: Collecting all the information we have so far, the net associated to
the term e := λv1. . . . λvk.v0 e1 . . . em is contained in N . Additionally,
it contains all nodes visited so far in any instance of step 1, but not
necessarily all from an instance of step 2.

If all binders encountered so far have been used for a term, return e.
If otherwise all possible instances of a variable v′ are contained in e,
look at the tree coming from the binder λv′. As this is not a subtree
of t (those have been handled in step 1), it must be the right direct
subtree of a cut c′. Restart the algorithm with c′ instead of t, resulting
in a term e′. Replace e by (λv′.e) e′, and repeat this step.

It is obvious that every leaf of N is contained in N(e), that the appli-
cation structure is done in such a way that the cuts of N(e) correspond to
those of N , and that the linkings of both prenets are identical.

Extension to λ→∧-terms: If e may contain conjunctions, then t may have
multiple output leaves. We can proceed with the algorithm by following the
link to an arbitrary output node. Here again, we use the fact that the
constants pair, π1 and π2 can be regarded as abstractions. The difference
between these constants can easily be read off from the shape of the tree
that is linked to l. The rest of the algorithm does not change at all, except
that v may not only be a variable, but also one of the conjunctive constants.

Including the other λ-terms: Including the constants case, inl and inr
is completely analogous to the inclusion of pair, π1 and π2, except that the
concrete constant can directly be read off the shape of t, and for case have
to follow two links. A special case occurs, if the constant null comes into
play. Then all output leaves are not part of the linking of N . However, if
there is only one occurrence of null in e, then there is a unique ⊥̂-labeled
leaf in N , which is linked to itself. Then we can continue the algorithm as
if l had been linked to this node.
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Runtime: We analyze only the elementary algorithm. The extensions do
not change the complexity. Let nnodes be the number of nodes in N , and let
nlinks be the number of links.

The preprocessing can obviously be done in time O(links+nlinks).
It is easy to model the necessary data structures in such a way, that

finding the links needed in steps 2 and 3 (and the ⊥̂-leaf) takes constant
time per link. Each link of N is visited at most twice, always directly
between the visits to the nodes it connects, and all links coming from the
same variable occurrence are visited at the same time. So all instances of
link operations together take O(nlinks). Walking up the trees in all runs of
step 1 takes O(nnodes), and walking down to the root in step 3 can be done
in constant time per walk, i.e. O(links) altogether. If we count the number
of unprocessed occurrences of the variables incrementally in step 1, which
can be done in constant time per update, each instance of step 4 also takes
constant time.

All in all, the algorithm for λ→ has a runtime of O(links+nlinks). As each
link touches at least on leaf that is touched by no other link, links < nlinks,
i.e. the runtime is O(nlinks).

Remark 4.3.27.

• The problem with the constant null comes from its fragmentation of
the prenet. To get an idea, consider, for a variable n of type ⊥, the
prenet of the term λn.null (null n) of type a:

⊥̂ ⊥ ⊥̂ ⊥ ⊥̂ a

♦ ♦

→

n.1

After finding the (unique) output node, we know that we have to
continue at one of the ⊥̂-nodes with a link to itself. However, we can
only nondeterministically guess which one to take. This means, that
an extension of the reconstruction algorithm to arbitrary terms has
the complexity O(n · nnull!), where nnull is the number of occurrences
of the constant null in e.

• The term found by the algorithm is in general not the only term that
is translated to the given prenet N . E.g. the two terms

(λf5.λx4.f1(f2 x3)) (λy7.y6)

and
λx4.(λf5.f1(f2 x3) (λy7.y6))

both translate to the prenet
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â a

→

a â

→

â a â

♦

a â

♦

a

→
♦

x.3 -f.2 f.2 -f.1 f.1y.6

from example 4.3.12. Applying the algorithm to this prenet yields the
first term.

4.4 Cut Elimination

Whenever a new proof system is introduced, one is interested in some major
properties. And when a system contains a cut rule, probably the most
important question is whether this rule is admissible, i.e. whether there is
a way to transform a given proof into one that does not contain any cuts.
This idea was introduced by Gentzen [Gen35]. When he discovered natural
deduction and the sequent calculus for intuitionistic and classical logic, the
highlight was his Hauptsatz, that proved admissibility of the cut rule in his
sequent calculi. The potential complexity of this question can be seen in the
fact that it took about 30 years until Prawitz [Pra65] succeeded in proving
the same theorem for natural deduction.

In the realm of proof nets, cut elimination is usually much easier to cope
with. Whether we look at proof nets for multiplicative linear logic, or for
extensions, or at classical proof nets — in every case, cut admissibility was
proved along with the introduction of the system.

We will continue this tradition by giving a cut elimination procedure
for intuitionistic prenets. This cut elimination procedure takes the general
idea of chasing links through cuts from cut elimination in the context of
classical proof nets. However, we use the label attached to each link to
choose “good” link combinations. Proceeding this way, in which the good
link combinations bear a meaning, we get a somehow canonical definition
of cut elimination and avoid ad hoc decisions. At the same time, this cut
elimination has many desirable properties. Above all, we will show that it
is terminating and confluent.

Knowing this, we can also finally distinguish real intuitionistic proof nets,
i.e. a sufficiently large class of prenets that can be regarded as intuitionistic
proofs.

As it will (on the long run) be interesting to see how proof nets of different
calculi can be seen as parts of one general theory, we also show how to define
another cut elimination that produces the same normal forms but is even

72



4.4. Cut Elimination

closer to classical cut elimination, because it first simplifies cuts between
complex trees and then only has to care about cuts between atoms.

Our final goal is to compare cut elimination and reduction procedures
for λ-terms. Although it would be nice to have as close as possible a corre-
spondence between both, we will show that anything near a bisimulation is
impossible. However, we will characterize many cases, in which term reduc-
tion does not or only slightly change the normal form of the corresponding
prenet.

4.4.1 Intuitionistic Cut Elimination

As intuitionistic logic is naturally a fragment of classical logic, and as in-
tuitionistic prenets look almost like their classical counterparts, a first ap-
proach could be to regard intuitionistic prenets as classical prenets and copy
the classical cut elimination into our framework. However, this method has
a huge drawback: cut elimination for classical prenets is not confluent, and
it is yet unknown, whether a restriction to intuitionistic prenets solves this
problem.

However, we will maintain a basic idea of cut elimination in classical
prenets: Eliminiating a cut means following the paths through this cut.

Definition 4.4.1. Let N = L ⊲ t |C be a prenet and c ∈ C. The result of
the cut elimination of c in N is the prenet

CE(N, c) := path(N, {c}) ⊲ t |C \ {c} .

At first glance, this is exactly the way cut elimination was defined for
classical propositional logic. Note however, that our notion of the paths
through a cut imposes a restriction on the labels of the links that form these
paths, thus eliminating some potential paths we would allow when doing
cut elimination in classical logic. On the other hand, we relax the somehow
unnatural condition to rule out all links crossing a cut, which means that
we may allow more paths.

Example 4.4.2.

• Let us have a look at the prenet of (λfx.f(fx))(λy.y):

â a

→

a â

→

â a â

♦

a â

♦

a

→
♦

x.3 -f.2 f.2 -f.1 f.1y.6
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Reduction of the two rightmost cuts yields the following prenet, which
we already know from example 4.3.14:

â a a â â a

→ →

♦

→

y.6
(f.2,-f.1)

(x.3,-f.2) f.1

When we do cut elimination as if this were a classical prenet, we get a
net with one link that would be labeled (x.3,−f.2, y.6, f.1) (and thus
not be well-formed). With the new cut reduction procedure, we get
a link with a different label, namely (x.3,−f.2, y.6, f.2,−f.1, y.6, f.1).
This means, that we took a different path through the cut. Remark
again how this path reflects the input/output flow in the term: x is
the input to one instance of f , which is instantiated by the identity,
produces an output that is used as the input to the other instance of
f , which is again instantiated by the identity function and produces
the output of the term.

• In general, classical cut elimination for these prenets does not follow
this flow, but it merges disjoint parts of terms. Consider for example
the term λx.(λf.λh.λg.g (h (f x)) (h (f x)))id, where h : a → a and
g : a → a → b. This is (up to link labels) the corresponding intuition-
istically reduced prenet:

â a â a a b̂ b

→ →

→

→
→

→

If we look at the classically reduced prenet of the term, we see that it
contains two extra links:

â a â a a b̂ b

→ →

→

→
→

→
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These come from the fact, that the two instances of f are not kept
apart by the classical reduction, and so both instances of x are linked
to both instances of h.

Above all, this example shows, that intuitionistic cut elimination is
not just a different way to model classical cut reduction restricted to
intuitionistic prenets.

Let us now throw a glance at some important properties that we want
cut elimination to enjoy. First of all, a normal form should be reached after
finitely many steps.

Proposition 4.4.3. Cut elimination for intuitionistic prenets is terminat-
ing.

Proof. As every step of cut elimination reduces the number of cuts by one,
the cut elimination of a prenet L ⊲ t |C terminates after exatly |C| steps.

When we define cut elimination as above, we even get confluence for free:

Proposition 4.4.4. Cut elimination for intuitionistic prenets is confluent.

Proof. Let N be a prenet containing two cuts c1, c2, and let Ni = Li ⊲ t |Ci

be the result of eliminating the cut ci. Then

CE(N1, c2) = path(N1, {c2}) ⊲ t |C1 \ {c2}

= path(N, {c1, c2}) ⊲ t |C \ {c1, c2}

= path(N2, {c1}) ⊲ t |C2 \ {c1}

= CE(N2, c1)

This proves that cut elimination is locally confluent. As we already know
that it is also terminating, local confluence implies global confluence.

Notation 4.4.5. If N = L ⊲ t |C is a prenet, and C ′ = {c1, . . . , cn} ⊂ C is
a set of cuts, then we write CE(N, C ′) for the successive cut elimination of
the elements of C ′ (in any order), and we write CE(N) = CE(N, C) for the
prenet that results from the elimination of all cuts in N .

Putting these results together yields:

Theorem 4.4.6. Each prenet has exactly one normal form with respect to
cut elimination.

Proof. This follows directly from the propositions 4.4.3 and 4.4.4.

We can even easily describe the unique normal form of a prenet without
doing every single reduction step:
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Corollary 4.4.7. Let N = L ⊲ t |C be a prenet. The unique normal form
of N is the prenet

CE(N) = path(N, C) ⊲ t | ∅ .

Remember that one idea behind prenets is that proofs can be represented
in a compact way, and that cut elimination is supposed to further simplify
this representation. So above all, cut elimination should not transform a
finite prenet into an infinite one. The last example in 4.3.12 shows, that
with one step of cut elimination, a finite prenet may indeed become infinite.
But we already know that this does not happen when we restrict ourselves
to the normalization of nets coming from λ-terms:

Proposition 4.4.8. Let e be a typed lambda term. If any number of cuts
in N(e) is eliminated, the resulting net contains only finitely many links.

Proof. Let N(e) = L ⊲ t |C, and let N ′ = L′ ⊲ t |C ′ be the result of any
series of cut eliminations in N(e).

We know from proposition 4.3.19, that the number |path(N)| of paths
in N(e) is finite. As the set of links of N ′, which equals path(N ′, ∅), is a
subset, it must be finite as well:

|path(N ′, ∅)| = |path(N(e), C \ C ′)| ≤ |path(N(e))| < ∞

We can say even more about properties of prenets that are preserved by
cut elimination:

Theorem 4.4.9. Cut elimination preserves polarizability, finiteness and
non-ramification.

Proof. Let e be a prenet, N(e) = L ⊲ t |C, c ∈ C and N ′ = CE(N, c) =
L′ ⊲ t |C \ {c}.

If N(e) is polarizable, then all trees of {t} ∪ C are polarizable. In par-
ticular, all trees of {t} ∪ C \ {c} are polarizable. Have have to show, that
the new links obey rule (1). Since every link of N(e) starts in a • node, so
does every path of N(e). If a path of N(e) ends in a • node, then its last
link ends in a ⊥̂-labeled node, so the same holds for the whole path.

If N(e) is finite, then the set path(N ′) ⊆ path(N) is also finite (cf. propo-
sition 4.4.8). The same argument shows, that N ′ is unramified, whenever
N is unramified.

Remark 4.4.10. In general, a prenet may well reduce to a prenet that is
not classically correct. For example, the prenet

â a â a

♦

→

-x.1 x.2
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reduces to the following, not classically correct prenet:

a â

→

4.4.2 Prenet Equivalence and Proof Nets

The link labels are mainly an additional algorithmic information that is
supposed to control the behavior of a prenet under cut elimination. Hence
two nets are equivalent, if they have the same shape, and if the prenets
“behave the same way” with respect to cut elimination:

Definition 4.4.11. Given two intuitionistic prenets N = L ⊲ t |C and
N ′ = L′ ⊲ t′ |C ′, we say that N is stronger than N ′, if there is a bijection
f : {t} ∪ C → {t′} ∪ C ′ and a partial, surjective function g: path(N) ⇀

path(N ′), such that:

(1) The bijection f maps each tree to an equivalent tree:

∀t1 ∈ {t} ∪ C : f(t1) ≡ t1

(2) g identifies only paths between corresponding leaves: If the canonical
extension of f to the leaves in N and N ′ is denoted by

f̂ : leaves(N) → leaves(N ′) ,

then

∀(l1, l2, σ) ∈ dom(g) : ∃σ′ ∈ L : g(l1, l2, σ) = (f̂(l1), f̂(l2), σ′) .

(3) The labels of two paths p1, p2 ∈ dom(g) can be combined to a well-
formed label, if and only if the same holds for the labels of g(p1) and
g(p2).

If N is stronger than N ′, and N ′ is stronger than N , then N and N ′ are
called strongly equivalent .

Remark 4.4.12.

• The intuition behind this comparison is, that the stronger a prenet is,
the more information is contained in it, and that strongly equivalent
prenets contain exactly the same information.

• The relation stronger than is a preorder on the set of prenets, i.e. it is
reflexive and transitive.

• Because of the first condition, only prenets of the same type can be
compared. The second condition guarantees, that there are at least as
many path candidates in N as in N ′, and the third condition extends
this guaranty to paths.
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• Strong equivalence of nets trivially defines an equivalence relation, i.e.
it is reflexive, symmetric and transitive.

Example 4.4.13.

• If two terms e and e′ are α-equivalent, and both terms bind no vari-
able more than once (which is a precondition for their translation into
prenets, cf. 4.2.2), then their proof nets N(e) and N(e′) are strongly
equivalent.

• The two prenets

CE(N(λf.λx.f x)) =
a â

→

â a

→

→

(x.2,-f.1) f.1

and

N(λf.f) =
a â

→

â a

→

→

-f.1 f.1

are strongly equivalent, and both are neither weaker nor stronger than

CE(N(λf.λx.f(f x))) =
a â â a

→ →

→

(-f.1,f.2) (x.3,-f.2) f.1

The last example is just one instance of the general situation that, if
a certain variable occurs only once in a term, i.e. if a label featuring this
variable must have a fixed occurrence marker, then we can delete the label
components containing the variable:

Lemma 4.4.14. Let N be a prenet, let v ∈ V be a variable and i0 a fixed
integer. If each component of a link label of N involving v is of the form
(±, v, i0), then replacing all these components by ε yields a prenet N ′ which
is strongly equivalent to N .
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Proof. Let d: L → L be the function that deletes all label components con-
taining v:

d(ε) := ε

d((±, v, i)) := ε for all i ∈ N

d((±, w, i)) := (±, w, i) for all w ∈ V \ {v}, i ∈ N

d(σσ′) := d(σ)d(σ′) for all σ 6= ε 6= σ′

Let g: path(N) → path(N ′) be the function deleting all occurrences of v:

g(l, l′, σ) := (l, l′, d(σ))

Then g is by construction a bijection between the paths in N and N ′, iden-
tifying only paths between corresponding leaves. As label components in-
volving v do not occur in the form (±, v, i) and (±, v, j) for i 6= j, these
components do not affect the well-formedness of any combination of path
labels in N .

Hence g meets the demands of definition 4.4.14, and N and N ′ are
strongly equivalent.

We can further use the recursive definition of well-formedness to simplify
the labels in a prenet:

Lemma 4.4.15. Let N be a prenet, let v be a variable, and let (l, l′, σ1σ2σ3)
be a link in N , such that σ2 does not contain components of the form (±, v, i)
for any integer i.

Then replacing (l, l′, σ1σ2σ3) by (l, l′, σ1(−, v, i)σ2(+, v, i)σ3) produces a
strongly equivalent prenet.

Proof. Let N = L ⊲ t |C, and let N ′ = L′ ⊲ t |C be the prenet produced
by the replacement.

If f : {t} ∪ C → {t} ∪ C and g: path(N) → path(N ′) are both chosen
to be the respective identity functions, then we only have to show that the
labels of two paths in N can be combined to a well-formed label, if and only
if the same holds for the corresponding paths in N ′.

This is trivial, if none of the involved label components is the one we
changed.

So assume, that the combination of the labels of two paths p1 and p2

in N , one of which uses the link (l, l′, σ1σ2σ3), is well-formed. We write
this combined label as σ′σ1σ2σ3σ

′′. By definition 4.3.11, σ′σ1σ2σ3σ
′′ is well-

formed, if and only if σ′σ1(−, v, i)σ2(+, v, i)σ3σ
′′, i.e. the combination of the

corresponding path labels in N ′, is well-formed.

Although we now have some notion of equivalence of equally shaped
prenets, what we are really interested in is a description of those nets that
reduce to the same normal form.
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Definition 4.4.16. Two prenets N and N ′ are equivalent , if their normal
forms CE(N) and CE(N ′) are strongly equivalent.

We can now distinguish a class of prenets that correspond — under this
notion of equivalence — to an intuitionistic proof in natural deduction:

Definition 4.4.17. A prenet is called an (intuitionistic) proof net, if it is
equivalent to N(e) for some λ-term e.

Example 4.4.18. All intuitionistic prenets that we have seen so far are
proof nets, except the prenets of Pierce’s law and double negation, and
the loop-containing prenet from example 4.3.16. Even the prenets of the
constants are proof nets. The proof net of λn.null n, for example, reduces
to a prenet that is strongly equivalent to N(null).

We directly see, that proof nets are closed under cut elimination:

Theorem 4.4.19. Cut elimination transforms proof nets into proof nets.

The following shows, that this notion of equivalence interacts well with
strong equivalence.

Proposition 4.4.20. Let N = L ⊲ t |C be stronger than N ′ = L′ ⊲ t′ |C ′,
and let the cut c ∈ C corresponds to c′ ∈ C ′. Then CE(N, c) is stronger
than CE(N ′, c′).

Proof. Without loss of generality, we assume t = t′ and C = C ′. Then

CE(N, c) = path(N, c) ⊲ t |C \ {c} and

CE(N ′, c) = path(N ′, c) ⊲ t |C \ {c} .

We have to show that there is a partial surjection of path(N, c) onto
path(N ′, c) that is subject to the requirements in definition 4.4.11.

Let g: path(N) ⇀ path(N ′) be the corresponding surjection for N and
N ′. Let p′ ∈ path(N ′, c) be any path in CE(N ′, c). Since g is surjective, there
is a preimage p ∈ path(N), such that g(p) = p′. Furthermore, condition (2)
ensures p ∈ path(N, c).

Hence the restriction

g|g−1(path(N ′,c)): g−1(path(N ′, c)) → path(N ′, c)

is the searched-for function.

Corollary 4.4.21. Let N = L ⊲ t |C and N ′ = L′ ⊲ t′ |C ′ be two strongly
equivalent prenets, and let the cut c ∈ C correspond to c′ ∈ C ′. Then
CE(N, c) and CE(N ′, c′) are strongly equivalent.

Example 4.4.22. The two prenets from example 4.4.2 are equivalent to
their common normal form
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â a

→

(x.3,-f.2,y.6,f.2,-f.1,y.6,f.1)

and to the following normal prenet:

â a

→

x.3

4.4.3 Atomic Cut Elimination

In all former proof net calculi, e.g. in the case of classical proof nets, cut
elimination is done in two structurally different steps: Cuts between the trees
of complex formulas are first split into cuts between subformulas, and only
when a cut between atoms is reduced, real work is done. The presented cut
elimination procedure for intuitionistic prenets works differently: No matter
how large a cut is, it is eliminated in one step.

However, we can also express this cut elimination as the combination of
cut simplifications and the reduction of cuts between atoms.

Definition 4.4.23. Let N = L ⊲ t |C be a prenet and c = (t1 ♦ t2) ∈ C.
The result of the atomic cut elimination of c in N is the prenet

CEa(N, c) :=

{
path(N, {c}) ⊲ t |C \ {c} if dom(t1) = {ε}

L ⊲ t |C \ {c} ∪ {t1.1 ♦ t2.1, t1.2 ♦ t2.2} otherwise.

Proposition 4.4.24. Given a prenet N , the two notions of cut elimination
reduce N to the same normal form.

Proof. It suffices to show, that cut elimination via CEa terminates, and that
this reduction relation has the same effect on the paths as CE.

• We first prove the termination of CEa. Given a prenet N = L ⊲ t |C,
let n(N) be the overall number of nodes belonging to a cut of N :

n(N) :=
∑

c′∈C

|dom(c′)|

Obviously n(N) ≥ 0, and we show that n(N) decreases by at least 1
during each step of atomic cut elimination.

Let c = (t1 ♦ t2) ∈ C be a cut of N . If c is a cut between two atoms,
then

n(CEa(N, c)) =
∑

c′∈C\{c}

|dom(c′)|

=

(
∑

c′∈C

|dom(c′)|

)
− |dom(c)| = n(N) − 3 .
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Otherwise let c1 := t1.1 ♦ t2.1 and c2 := t1.2 ♦ t2.2. Then

n(CEa(N, c)) =
∑

c′∈C\{c}∪{c1,c2}

|dom(c′)|

=

(
∑

c′∈C

|dom(c′)|

)
− |dom(c)| + |dom(c1)| + |dom(c2)|

= n(N) − 1 .

• Let N = L ⊲ t |C be a prenet, c ∈ C and CEa(N, c) = L′ ⊲ t′ |C ′.
We show, that the paths in N through C are exactly the paths in
CEa(N, c) through C ′.

If c is a cut between two atoms, then CEa(N, c) = CE(N, c), so there
is nothing to show.

Otherwise let c1 := t1.1 ♦ t2.1 and c2 := t1.2 ♦ t2.2.

Let p ∈ path(N, C), and let l′0, l1, l
′
1, . . . , ln−1, l

′
n−1, ln ∈ leaves(C) be

the series of links lying on the path, i.e. the series such that the re-
quirements of the definition 4.3.10 are fulfilled.

Then the same series of links also fulfills the requirements of a path
candidate in CEa(N, c) through C ′: (1), (2) and (4) are automatically
fulfilled, because leaves(C ′) = leaves(C) and L = L′, and (3) is ful-
filled, because we can replace each occurrence of (c, π) in (3) by (c1, ρ),
if π = 1.ρ, and by (c2, ρ), if π = 2.ρ.

Since the well-formedness of the label of a path candiate does not de-
pend on the surrouding prenet, p is also a path in path(CEa(N, c), C ′).

This transfer is reversible, just by replacing each occurrence of (ci, π)
by (c.iπ). So path(N, C) = path(CEa(N, c), C ′).

Corollary 4.4.25. When computing the normal form of a prenet with re-
spect to CE, we may freely use both reductions with CE and CEa.

4.4.4 Cut Elimination and Other Normalization Procedures

Cut elimination for multiplicative linear logic has an analog in the calculus
of structures [Gug02], where cuts can be eliminated via a technique called
splitting.

Lamarche and Straßburger [SL04] quickly found out, that their cut elim-
ination procedure does not work parallel to cut elimination in the sequent
calculus, and conjectured it also to be modeled by splitting in an adjusted
version of the calculus of structures.

Of course, a strong connection to a different proof system has the ad-
vantage that many properties of the new system come for free. In general,
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there seem to be at least two ways to describe the relation between two
normalization strategies. The strongest is (bi-)simulation. In our setting,
this is the question, whether a step of βη-reduction corresponds exactly to
one step of cut elimination:

e

e′

N(e)

N(e′)

βη cut elimination

If this is not possible, there is also the request that normal forms in both
formalisms correspond. However, when we compare βη-reduction and cut
elimination, we have to realize that both goals are not satisfiable:

Example 4.4.26. Let fnx be an abbreviation for f(fn−1x), if n ≥ 1, and
for x, if n = 0,.

The terms en = λf.λx.fnx are βη-normal, but their proof nets contain
n cuts and hence are not normal for n ≥ 1. So the second goal is not
achievable, no matter what cut elimination procedure we choose.

The same holds for the first goal: Cut elimination in all theories of
prenets developed so far (including ours) reduces not more than one cut per
step, so this seems to be a reasonable assumption. This assumption also
means, that the number of steps to a normal form is independent of the
reduction strategy. However, this does in general not hold in the λ-calculus.
The term (λf.x)(en(λx.x)) for example takes any number of steps between
1 and n + 2 to reach a normal form.

Another question is, whether proof nets and their cut elimination are

monotone, in the sense that if e.g. e
β
 e′, then the number of links in the

normal form CE(N(e)) is always larger, or always smaller than the number
of links in CE(N(e′)). However, this monotonicity does not hold:

Example 4.4.27. We ignore link labels in this example.

The normal form of the proof net of λf.λx.(λy.x) (f x) contains one link
more than the proof net of its β-normal form λf.λx.x:

CE(N(λf.λx. (λy.x) (f x))) : CE(N(λf.λx.x)) :

a â

→

â a

→

→

a â

→

â a

→

→

For g : a → a → a, the term λx.λf.λg.(λy.g y y) (f x) and its β-normal form
λx.λf.λg.λy.g (f x) (f x), the situation is the other way round:
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CE(N(λx.λf.λg.λy.g y y) (f x))) : CE(N(λx.λf.λg.λy.g (f x) (f x))) :

a ââ a a â a

→ →
→

→
→

→

a ââ a a â a

→ →
→

→
→

→

This means, that we can only hope for some basic parallels between cut
elimination and the reduction of λ-terms. But in fact, there are some. An
almost trivial one is, that if N(e) is a normal proof net, then e is also normal:

Proposition 4.4.28. Let e be a λ-term, such that N(e) is normal with
respect to cut elimination. The e is βη-normal and does not contain a sum-
or product-redex.

Proof. As N(e) does not contain any cuts, it is of the form λv1. . . . λvn.v

with n ≥ 0.

Considering now each of the different reduction procedures by itself, we
see several parallels to cut elimination. In particular, η-reduction can be
simulated by cut elimination:

Proposition 4.4.29. Let e and e′ be any λ-terms, such that e reduces in
one η-step to e′. Then the proof nets N(e) and N(e′) are equivalent.

Proof. For simplicity, we assume that the reduction happens at top level,
i.e. e = λv.e1 v with v 6∈ FV (e1). The case of a reduction deep within e is
completely analogous.

Then N(e) = L ⊲ t |C has the following shape:

t1

from
λv

from
v

N(e′)

c.2 t2

♦
c

→

±v.i

That v is not free in e1 ensures that no link connects N(e1) and the tree
coming from λv.

Let N(e1) = L1 ⊲ t1 |C1. If c ∈ C is the cut introduced by the applica-
tion e1 v, and if Lv contains the links introduced by the abstraction λv.e1 v.
Then

N(e1 v) = L1 ⊲ t1.2 |C1 ∪ {c}

84



4.4. Cut Elimination

and

N(λv.e1 v) = L1 ∪ λv ⊲ t0 → t1.2 |C1 ∪ {c}

where t0 is equivalent to t1.1. Hence

CE(N(λv.e1 v), c) = L′ ⊲ t0 → t1.2 |C1 ,

where

L′ = {(t0.π, l, (+, v, i)σ) | (c.2π, l, σ) ∈ L1}

∪ {(l, t0.π, σ(−, v, i)) | (l, c.2π, σ) ∈ L1}

∪
{

(l, l′, σ) ∈ L1 | l, l
′ 6∈ leaves(c.2)

}
.

Using lemma 4.4.14 and the equivalence of t2 and t0 ∨ t1.2, we can directly
conclude that the two prenets CE(N(λv.e1 v), c) and N(e1) are strongly
equivalent.

The other situation that we can describe completely is β-reduction in
the linear fragment of the calculus, i.e. the fragment where a variable binder
λv binds exact one occurrence of v:

Proposition 4.4.30. Let e = (λv.e1) e2 be a λ-term, where v occurs exactly
once freely in e1.

Then the proof nets N(e) and N(e1[v 7→ e2]) are equivalent.

Proof. The situation is as follows:

N(e) :
N(e2)

t2
•· · · •

N(e1)

from
v

•· · · •

♦
c

±v.i

N(e1[v 7→ e2]) : N(e2)
t2

N(e1)

Let N(e) = L ⊲ t |C, let N(ei) = Li ⊲ ti |Ci, and let c be the cut in N(e)
introduced by the application. If Lv contains the links introduced by the
abstraction λv.e1, and if c ∈ C is the cut introduced by the application
(λv.e1) e2, then N(e1[v 7→ e2]) is of the form

N(e1[v 7→ e2]) = L1 ∪ L2 ⊲ t1 |C1 ∪ C2 .
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On the other hand, we have

N(λv.e1) = L1 ∪ Lv ⊲ t0 → t1 |C1

(for some tree t0) and

N((λv.e1) e2) = L1 ∪ Lv ∪ L2 ⊲ t1 |C1 ∪ C2 ∪ {c} .

This means, that CE(N(e), c) is of the form

CE(N(e), c) = L1 ∪ L′ ⊲ t1 |C1 ∪ C2 ,

where

L′ = {(l, t0.π, σ(+, v, i)) | (l, c.1π, σ) ∈ L2 ∧ l 6∈ leaves(c.1)}

∪ {(t0.π, l, (−, v, i)σ) | (c.1π, l, σ) ∈ L2 ∧ l 6∈ leaves(c.1)}

∪
{

(t0.π, t0.π
′, (−, v, i)σ(+, v, i)) | (c.1π, c.1π′, σ) ∈ L2

}

∪
{

(l, l′, σ) ∈ L2 | l, l
′ 6∈ leaves(c.1)

}
.

Thus, deletion of the label components of the form (±, v, i) yields exactly
the proof net N(e1[v 7→ e2]). By lemma 4.4.14, both nets are strongly
equivalent.

The second situation where β-reduction corresponds exactly to cut elim-
inations is the one in which the argument term is closed:

Proposition 4.4.31. Let e = (λv.e1) e2 be a λ-term, where e2 is a closed
term.

Then the proof nets N(e) and N(e1[v 7→ e2]) are equivalent.

Proof. Let c be the cut in N(e) introduced by the application. We show
that the elimination of c and all cuts introduced by an occurrence of e2 in
N(e) and N(e1[v 7→ e2]) yields strongly equivalent proof nets. Table 4.4
shows the nets we will consider during this proof.

Let N(e) = L ⊲ t |C, let N(ei) = Li ⊲ ti |Ci be the subnet of N(e)
introduced by ei, and let Lv contain the links introduced by the abstraction
λv.e1. Then L = L1 ∪ Lv ∪ L2.

Let CE(N(e2)) = L′
2 ⊲ t2 | ∅. If v1, . . . , vn are the free occurrences of v

in e1, then reducing N(e2) in N(e) yields

CE(N(e), C2) = (L \ L2) ∪ L′
2 ⊲ t |C \ C2

= L1 ∪ Lv ∪ L′
2 ⊲ t | {c} ∪ C1 .

So
CE(N(e), {c} ∪ C2) = L1 ∪ L(1) ∪ . . . ∪ L(n) ⊲ t |C1 ,

86



4.4. Cut Elimination

N(e) : N(e2) t2
•· · · • N(e1)

from
v1

•· · · •

from
vn

•· · · •

♦
c

±v.1
±v.n

CE(N(e), C2) :
t2

L′

2

•· · · • N(e1)

from
v1

•· · · •

from
vn

•· · · •

♦
c

±v.1
±v.n

CE(N(e), {c} ∪ C2) : N(e1)

from
v1

L(1)

from
vn

L(n)

CE(N(e1[v 7→ e2])), C ′
2
1 ∪ . . . ∪ C ′

2
n) : N(e1)

L′

2
1 L′

2
n

Table 4.4: Proof nets occurring in the proof of 4.4.31
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where

L(i) = { (l, l′, (−, v, i)σ(+, v, i)) | (l, c.2π, (−, v, i)) ∈ Lv,

(c.1π, c.1π′, σ) ∈ L′
2,

(c.2π′, l′, (+, v, i)) ∈ Lv }

(labels of the form (−, v, i)σ(+, v, j) for i 6= j are not well-formed).

On the other hand, let N(e1[v 7→ e2]) = Ls ⊲ t |Cs. This proof net con-
tains n copies N

j
2 , j ∈ {1, . . . n} of N(e2) (i.e. each N

j
2 is strongly equivalent

to N(e2)).

But then the normal forms N ′
2
j = L′

2
j
⊲ t′2

j |C ′
2
j of the N j are strongly

equivalent to CE(N(e2)), so reducing these nets in N(e1[v 7→ e2]) yields

CE(N(e1[v 7→ e2]), C ′
2
1
∪ . . . ∪ C ′

2
n
) = L1 ∪ L′

2
1
∪ . . . ∪ L′

2
n
⊲ t |C1 .

The links in L(i) and L′
2
i correspond, and deletion of the label components

of the form (±, v, i) in the former yields exactly the the latter sets.

By lemma 4.4.15, the two proof nets are strongly equivalent.

Remark 4.4.32. The last two propositions also hold, if the β-reduction
occurs anywhere inside a term. The proofs are analog, if N(e1) is replaced
by “the whole of N , except N(e2) and the part coming from the abstraction
λv”.

When weakening comes into play, i.e. when a binder does not bind any
variable occurrence, we may lose information during β-reduction, that we
keep with cut elimination. We have already seen an example in 4.4.27, but
this is also a general result.

Proposition 4.4.33. Let e be a λ-term containing the β-redex (λv.e1) e2,
where v does not occur freely in e1. If e′ is obtained from e by β-reduction
of this subterm, then the reduced net CE(N(e)) is stronger than the reduced
net CE(N(e′)).

Proof. Let c be the cut in N(e) introduced by the application (λv.e1) e2.
We show that the elimination of c and all cuts introduced by e2 in N(e)
produces a proof net that is stronger than N(e′). Table 4.5 shows the nets
we will consider during this proof.

Let N(e) = L ⊲ t |C, and let N(e2) = L2 ⊲ t2 |C2 be the subnet of
N(e) introduced by e2.

We can write the result of the reduction of C2 in N(e) in the form

CE(N(e), C2) = L′ ∪ Li ∪ Le ∪ Lm ⊲ t |C \ C2 .

Here
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4.4. Cut Elimination

N(e) : N(e2)
t2

∅

♦
c

N(e1)

CE(N(e), C2) :

Le

t2

Li
∅

♦
c

N(e1)

Lm

CE(N(e), {c} ∪ C2) :

Le

N(e1)

N(e′) : N(e1)

Table 4.5: Proof nets occurring in the proof of 4.4.33
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4. Proof Nets for Intuitionistic Logic

• L′ ⊆ L are those links in N(e) that do not touch e2 and hence are not
affected by the cut elimination,

• Li contains all links that begin and end in t2 (i means internal),

• Le contains all the new links that do not begin or end in t2 (e means
external), and

• Lm contains all links that begin or end in t2 but not both (m means
mixed).

Since v does not occur freely in e1, the abstraction λv.e1 does not intro-
duce any links. This means, that the elimination of c deletes all links that
begin or end in t2:

CE(N(e), {c} ∪ C2) = L′ ∪ Le ⊲ t |C \ ({c} ∪ C2)

On the other hand, e′ results from e by replacing the subterm (λv.e1) e2

by e1, so
N(e′) = L′ ⊲ t |C \ ({c} ∪ C2) .

This means, that CE(N(e), {c} ∪ C2) is stronger than N(e′), and by
proposition 4.4.21 the same holds for CE(N(e)) and CE(N(e′)).

The final two reduction methods on λ-terms are product- and sum-
reduction. Both are somehow similar to weakening, in so far as they also
throw away information that is kept during cut elimination of the corre-
sponding prenet.

Proposition 4.4.34. Let e be a λ-term containing one of the product-redices
π1(pair e1 e2) and π2(pair e1 e2). If e′ is obtained from e by product-reduction
of this subterm, then the reduced net CE(N(e)) is stronger than the reduced
net CE(N(e′)).

Proof. We only consider the reduction of the product-redex π1(pair e1 e2) to
e1. The case π2(pair e1 e2)  e2 is completely analogous. Table 4.6 shows
the nets we will talk about during this proof.

Let c1, c2 be the cuts in N(e) introduced by the pairing of e1 and e2, and
let c be the cut introduced by the projection. We show that the elimination
of c1, c2, c and all cuts introduced by e2 in N(e) yields a stronger prenet
than N(e′).

Let N(e) = L ⊲ t |C, let N(π1(pair e1 e2)) = Lr ⊲ tr |Cr be the subnet
of N(e) introduced by the redex, and let N(ei) = Li ⊲ ti |Ci, i ∈ {1, 2} be
the subnet introduced by ei.

We can write the result of the reduction of C2 in N(e) in the form

CE(N(e), C2) = L′ ∪ Li ∪ Le ∪ Lm ⊲ t |C \ C2 .

Here again
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4.4. Cut Elimination

N(e) :

N(π1(pair e1 e2))

N(e2)

t2

N(e1)

t1
•· · · • •· · · • •· · · • •· · · • •· · · • •· · · •

tr

♦ c1

♦ c2

∧ ∧

♦ c

pair π1

CE(N(e), C2) :

Le

t2

Li N(e1)

t1
•· · · • •· · · • •· · · • •· · · • •· · · • •· · · •

tr

♦ c1

♦ c2

∧ ∧

♦ c

Lm

CE(N(e), C2 ∪ {c1, c2}) :

Le N(e1)

tr

N(e′) :

N(e1)

t1

Table 4.6: Proof nets occurring in the proof of 4.4.34
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4. Proof Nets for Intuitionistic Logic

• L′ ⊆ L are those links in N(e) that do not touch e2 and hence are not
affected by the cut elimination,

• Li contains all links that begin and end in t2,

• Le contains all the new links that do not begin or end in t2, and

• Lm contains all links that begin or end in t2 but not both.

Further elimination of c1, c2 and c deletes all links in Li and Lm and extends
all other links touching t1 or t2 by the ε-labeled links in Lpair and Lπ. So
we can write the result of this second step of cut eliminations as

CE(N(e), C2 ∪ {c1, c2}) = L̃′ ∪ Le ⊲ t |C \ (C2 ∪ {c1, c2}) ,

where tr takes over the role of t1, i.e.

L̃′ =
{

(l, tr.π, σ) | (l, t1.π, σ) ∈ L′ ∧ l 6∈ leaves(t.1)
}

∪
{

(tr.π, l, σ) | (t1.π, l, σ) ∈ L′ ∧ l 6∈ leaves(t.1)
}

∪
{

(tr.π, tr.π
′, σ) | (t1.π, t1.π

′, σ) ∈ L′
}

∪
{

(l, l′, σ) ∈ L′ | l, l′ 6∈ leaves({c1, c2, c})
}

.

The obvious identification of the links in L̃′ with those of the proof
net N(e′), which does not contain links corresponding to Le, shows that
CE(N(e), C2 ∪ {c1, c2}) is stronger than N(e′).

According to lemma 4.4.20, this relation is preserved by cut elimination,
so CE(N(e)) is stronger than CE(N(e′)).

Proposition 4.4.35. Let e be a λ-term containing one of the sum-redices
case (inl e1) e2 e3 and case (inr e1) e2 e3. If e′ is obtained from e by sum-re-
duction of this subterm, then the reduced net CE(N(e)) is stronger than the
reduced net CE(N(e′)).

Proof. We only consider the reduction of the sum-redex case(inl e1) e2 e3 to
e2 e1. The case case(inr e1) e2 e3  e3 e1 is completely analogous.

Let c be the cut introduced by the application inl e1, let c1, c2, c3 be the
cuts in N(e) introduced by the successive application of (inl e1), e2 and e3

to the constant case, and let N(e3) = L3 ⊲ t3 |C3.

We can apply atomic cut elimination to reduce c1 to two cuts c11 and
c12. From here on, the most interesting aspect of the proof is the order in
which cuts are reduced. Apart from that, the proof contains no ideas that
were not present in the proof of proposition 4.4.34, so we do not show the
explicit computation of the cut eliminations in N(e), but give the shape of
the nets that are reached by successive elimination of {c, c2}, {c12}∪C3 and
c3, as well as the proof net N(e′) in table 4.7.
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4.4. Cut Elimination

CE(N(e), {c, c2}) :

N(e1) N(e2)
•· · · •

tr
•· · · •

N(e3)
•· · · • •· · · •

♦ c11 ♦ c12

→ →

♦ c3

CE(N(e), {c, c12, c2} ∪ C3) :

Le N(e1) N(e2)
•· · · •

tr

Li
more
links

•· · · •

♦ c11

→ →

♦ c3

Lm

CE(N(e), {c, c12, c2, c3} ∪ C3) :

Le N(e1) N(e2)

tr

Li

♦ c11

Lm

N(e′) :

N(e1) N(e2)

tr

♦ c0

Table 4.7: Proof nets occurring in the proof of 4.4.35
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4. Proof Nets for Intuitionistic Logic

The obvious identification of the links in CE(N(e), {c, c12, c2, c3} ∪ C2),
excluding Le, Li and Lm, with the links in N(e′), as well as the identification
of c12 with c′ shows that the former net is stronger than the latter.

According to lemma 4.4.20, this relation is preserved by cut elimination,
so CE(N(e)) is stronger than CE(N(e′)).
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Chapter 5

Conclusions

In this thesis, I presented a new way to write down intuitionistic proofs.
Starting from classical proof nets, I developed a class of intuitionistic proof
nets and a way to interpret λ-terms as proof nets and vice versa, together
with linear time algorithms for this interpretation. I analyzed different ge-
ometrical properties of intuitionistic proof nets, e.g. their polarizations and
the interaction of their links.

Moreover, I presented a cut elimination for these proof nets and com-
pared this procedure to the well-known normalization procedures of λ-terms.
As cut elimination of intuitionistic proof nets is a terminating and confluent
normalization procedure, I effectively created a new notion of the equiva-
lence of intuitionistic proofs or, equivalently, of functional programs in the
λ-calculus.

The translation of simply typed λ-terms into proof nets and the cut
elimination procedure were implemented in Java. The sources can be found
online at http://www.ps.uni-sb.de/~horbach/thesis/.

Future work

There are a lot of questions that naturally arise during the work with proof
nets but still remain to be answered. The following are some of the most
important ones:

• By now, little is known about complexity issues. Computations on
proof nets are often more space- and time-efficient than the corres-
ponding computations on λ-terms. The β-normal form of the term
λx.λz.(λy.z y y)n+1 x, for example, has a size exponential in n and
is reached after up to exponentially many reductions, depending on
the order in which redices are evaluated. However, the corresponding
normal proof net
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5. Conclusions

â a a â a

→

→

→

→

n times

has only linearly many links with labels of constant length, and it
can be computed in linear time. This effect seems to originate in the
immense sharing that is present in prenets.

• Are there sensible extensions of intuitionistic proof nets that work
for larger logics? First candidates are classical logic and intuitionistic
predicate logic. Is it, for example, possible to equip a classical proof net
with links in such a way, that the paths followed during intuitionistic
cut elimination are the same ones that are followed during classical
cut elimination?

• Intuitionistic logic can be regarded as a fragment of both classical and
linear logic. It would be interesting to further compare cut elimination
for classical or linear proof nets to the images of intuitionistic cut
elimination under these embeddings.

• The calculus of structures allows for much more proofs than the λ-
calculus. Is there a decent translation of these proofs into proof nets?

• We still do not have a complete classification of those intuitionistic
prenets whose underlying formula is intuitionistically valid.
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Nomenclature

A the set of atoms

⊥ falsity

F the set of formulas

V the set of variables

τ a fixed type assignment

Λ the set of all λ-preterms

e : A e is of type A (wrt. τ)

λ→ simply typed λ-terms

λ→∧ λ-terms restricted to → and ∧

FV (e) the free variables of the term e

e′[v 7→ e] variable substitution

f : X ⇀ Y a partial function f from X to Y

f |X the restriction of the domain of f to X

dom(f) the domain of f

im(f) the image of f

X∗ the set of finite paths over X

ε the empty path

πρ the concatenation of the paths π and ρ

♦ the cut connector

Â the set of duals of atoms

N the set of nodes of trees
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T the set of (binary) trees

leaves(t) the set of leaves of the tree t

t.π the subtree of t at position π

t1 ♦ t2 etc. a tree with root ♦ and direct subtrees t1 and t2

T(A, n, π) the tree corresponding to the formula A, with additional
information n and π

T(A, n) equals T(A, n, ε)

ty(t) the type coded in the tree t

L the set of link labels

L ⊲ t |C a prenet with main tree t, cut set C and linking L

leaves(N) the set of leaves of all trees in N

vi the occurrence of v marked by i

N(e) the prenet assigned to the term e

◦, • polarizations of nodes

path(N, C) the paths in N through C

path(N) the paths in N through any set of cuts

CE(N, c) elimination of the cut c in N

CE(N) elimination of all cuts in N

CEa(N, c) atomic elimination of the cut c in N
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