
Interfacing Propagators with a ConcurrentConstraint LanguageTobias M�ullerProgramming Systems LabUniversity of the SaarlandGeb. 45, Postf. 15 11 5066041 Saarbr�uckentmueller@ps.uni-sb.de J�org W�urtzProgramming Systems LabGerman Research Center for AIGeb. 45, Postf. 15 11 5066041 Saarbr�uckenwuertz@ps.uni-sb.deThis paper describes a C++ interface for the concurrent constraint language Oz to implementnon-basic constraints as propagators. The programmer bene�ts from the advantages of a high-levellanguage, like elegant and concise coding, in conjunction with e�ciency. For the user it is transparentwhether a constraint is implemented by an Oz procedure or through the interface. The interfaceis completely separated from the underlying Oz implementation. Moreover, it frees the user fromtedious tasks like suspending and waking up constraints.The overall e�ciency of the resulting system is comparable to existing �nite domain systems.For scheduling applications we demonstrate how algorithms from Operations Research can be incor-porated, which allows to obtain results comparable to commercially available systems.Keywords. Concurrent Constraint Language, Finite Domain Constraints, E�cient Implementa-tion1. IntroductionA concurrent constraint language provides for a well-suited platform to implement a �nite domainconstraint system over natural numbers. The concepts of a constraint store and of concurrent com-putation give the appropriate metaphors needed to understand and implement constraint programs.For the language Oz, we have shown in [SSW94] that the minimal requirements to enable �nitedomain programming are primitives to constrain a variable to a �nite domain and to re
ect thecurrent domain of a variable in conjunction with encapsulated search. Desired constraints can beexpressed in the language itself in an elegant way.But �nite domain systems must be e�cient in order to tackle practical problems, like schedul-ing, placement or con�guration [DVS+88]. Consequently, we decided to reimplement more complexconstraints, so-called propagators, which were implemented as Oz procedures by corresponding C++code. The resulting system provided the required e�ciency and still allowed the user to invent newIn Manuel Carro and Enrico Pontelli, editors, Proceedings of the Fourth COMPULOG-NET Work-shop on Parallelism and Implementation Technologies for (Constraint) Logic Languages, pages 195{206, Bonn, Germany, September 6, 1996.
1

2 1996 Compulog Net Meeting on Parallelism and Implementation Technologyconstraints by combining propagators with Oz language constructs like conditionals or disjunc-tions [ST97, MW96]. Nevertheless, users were not able to implement C++ propagators themselvesto meet their individual needs of e�ciency.Hence, we wanted to design an interface to C++ propagators that can easily be used byprogrammers. The main design goals were as follows:� It must be transparent to the user whether a propagator is implemented by an Oz program orby a C++ propagator implemented through the interface.� The interface must support a propagator to have properties like statefulness, atomicity ande�cient data structures. This is due to the requirements of the algorithms usually employed bypropagators. Such algorithms are typically derived from techniques known from mathematicsand Operations Research.� Propagators and the Oz runtime-system are completely separated. They are glued togetheronly by the interface abstractions. This enables the implementation of propagators withouthaving access to the code of the Oz runtime-system.� The programmer is freed from tedious tasks like suspending or waking up propagators andcaring about computation spaces (see Section 2.1.). This is achieved by providing interfaceabstractions at an appropriate level.Since we use C++, some similarities with the Ilog Solver [PL95] are inevitable. The maindi�erence is that in Ilog Solver both the problem formulation and the search strategy has tobe written in C++. In contrast to Ilog Solver, Oz provides for performance-critical constraintsthe option to implement them more e�cient as C++ propagators. The actual program is still anOz program, i.e. the problem formulation and the embedding of the constraint problem in largerapplications is done in a high-level language. Moreover, search itself and the labelling strategies canbe programmed in Oz too.C++ propagators are needed only in performance-critical Oz code segments. Oz is still usefulfor such code segments as a prototyping language. Code written in Oz can be e�ciently debuggedand tuned, before it is reimplemented using the interface. Our experiences shows that this approachshortens the development cycle of application programs.The resulting �nite domain system is expressive (it includes rei�ed constraints [HW96], non-linear constraints and several symbolic constraints) and more e�cient than Oz 1.0 [ST97] withunseparated propagators, i.e. C++ propagators tightly integrated in the emulator. The viabilityof our approach is also exempli�ed by the incorporation of special-purpose propagators for schedul-ing [W�ur96]. The resulting system shows an e�ciency comparable to Ilog Solver (see Section 5.).The plan of the paper is as follows. The next section sketches constraint computation in Ozand introduces basic notions and concepts. Section 3. explains in detail the implementation of apropagator, to give the reader an intuition of the expressiveness of the interface. A case study inSection 4. shows how more complex propagators bene�t from the interface. Finally, the yieldedresults are presented and discussed.2. Computation with Constraints in Oz2.1. Computation ModelThis paper focusses on constraints on �nite sets of nonnegative integers, so-called �nite domains ,in the constraint programming language Oz. For a more thorough treatment see [SSW94, HW96,MW96]. For a detailed presentation of the programming model see [Smo95].

1996 Compulog Net Meeting on Parallelism and Implementation Technology 3A basic constraint takes the form x = n, x = y or x 2 D, where x and y are variables, n is anonnegative integer and D is a �nite domain. The basic constraints reside in the constraint store.Oz provides e�cient algorithms to decide satis�ability and implication for basic constraints.For more expressive constraints, like x+ y = z, deciding their satis�ability is not computation-ally tractable. Such non-basic constraints are not contained in the constraint store but are imposedby propagators . A propagator is a computational agent which is posted on the variables occurringin the corresponding constraint. It tries to narrow the domains of the variables it is posted onby amplifying the store with basic constraints. This narrowing is called constraint propagation. Apropagator P ampli�es the store S by writing a basic constraint � to it, if P ^ S entails � but S onits own does not. If P ceases to exist, it is either entailed by the store S, or P ^ S is unsatis�able.Note that the amount of propagation depends on the operational semantics of the propagator. Forexample, the equation X + Y = Z can be modelled by the conjunction of the two propagatorsX + Y � Z and X + Y � Z instead by only one propagator.As an example, assume a store containingX;Y; Z 2 f1; : : : ; 10g. The propagator forX+Y < Znarrows the domains to X;Y 2 f1; : : : ; 8g and Z 2 f3; : : : ; 10g (since the other values cannot satisfythe constraint). Adding the constraint Z = 5 causes the propagator to strengthen the store toX;Y 2 f1; : : : ; 3g and Z = 5. Imposing X = 3 lets the propagator narrow the domain of Y to 1.We say that the propagator X + Y < Z constrains the variables X;Y and Z.In general, computation in Oz is built around the notion of a computation space. A computationspace consists of the constraint store and tasks connected to the store. One kind of tasks arepropagators. Because tasks themselves (like disjunctions) may host computation spaces, a tree ofspaces results (see [Smo95]). Furthermore, encapsulated search in Oz employs local computationspaces too.2.2. Spaces and PropagatorsAs indicated above, a propagator is a computational agent that is associated with a certain space,called its home space (for details see [MSS95]). There are three kinds of data
ow between a spaceand a propagator.1. Reading and writing basic constraints. A propagator reads the basic constraints of the variablesit is posted on. In the process of constraint propagation it writes basic constraints to the store.2. Status of propagation. The propagator's home space derives its status from the statuses ofthe propagators it hosts. A single failed propagator causes the whole computation space tofail. The existence of a single propagator prevents a space from being entailed. A necessarycondition for a space to be entailed is that all propagators cease to exist.3. Synchronisation. A propagator's home space noti�es the propagator when the store has beenampli�ed in a way the propagator is waiting for. For example, many propagators will benoti�ed only in case the bounds of a domain have been narrowed.Figure 1 depicts the data
ow between a propagator and its home space.As a �rst approximation, a propagator can be regarded as a stateful long-lived computationalentity which is waiting on a synchronisation message, is able to read and write basic constraints,and signals the status of propagation.2.3. Adding Propagators to OzThe computation model sketched above is realized by the Oz runtime system, which is implementedby an abstract machine [MSS95], called the emulator .

4 1996 Compulog Net Meeting on Parallelism and Implementation Technology
X + Y =: Z

� � � X Y Z � � �
propagator

spacesynchronisation basicconstraints status
Figure 1: Data
ow between space and propagatorImplementation of Propagators. The creation of a propagator is triggered by the execution ofan Oz program (see Section 3.2.). When a propagator is created a reference to it is added to thesuspension lists of the variables it is posted on; we say, a propagator is suspending on these variables.This ensures the run of the propagator whenever these variables are narrowed. The entries in thesuspension lists are used to synchronise a propagator's execution on narrowed domains.A propagator has direct access to the constraint store through its arguments which are storedin its state. Consequently, reading and writing basic constraints is done by the propagator itself.That causes the propagator to be responsible for scanning suspension lists of variables it is postedon. An appropriate interface abstraction takes care of that tedious matter. In case the propagatorampli�es the constraint store, i.e. writes basic constraints to the store, it noti�es the emulator whatother propagators have to be synchronised (that means woken up). A propagator run stops if theconstraints in the store cannot be further ampli�ed by the propagator or are inconsistent with thepropagator.The value returned by a propagator to the emulator is either SLEEP, ENTAILED or FAILED .The value SLEEP indicates that the propagator continues to exist and the propagator is consistentwith the constraint store, but for now, cannot further amplify the store. The value FAILED isreturned if the propagator is inconsistent with the store and consequently, has to cease to exist. Apropagator which consistently ampli�ed the store with respect to its semantics to a maximal extendceases to exist and returns ENTAILED. The emulator uses the return value to compute the status ofthe propagator's home space.A Propagator's Execution State. From the emulator's perspective, a propagator is a statefullong-lived computational agent, which exists in di�erent execution states and has to be providedwith resources like computation time and heap memory.The emulator's scheduler switches a propagator between the execution states and inevitablyfor a concurrent computation model, provides computation time in a fair way. That means thatevery propagator that is runnable will eventually be run.After creation, a propagator has one of �ve di�erent states (namely running, runnable,sleeping, entailed, and failed) which are controlled by the emulator's scheduler (see Figure 2).When a propagator is created, its state is immediately set running and the scheduler allocates atime slot for its �rst run. After every run, the emulator evaluates the propagator's return value

1996 Compulog Net Meeting on Parallelism and Implementation Technology 5which either causes the propagator to be terminated (ENTAILED resp. FAILED) or causes it to bekept alive (SLEEP).
creation runningfailed

entailed
sleeping
runnable (1)(2)

SLEEPFAILED

ENTAILED

Figure 2: Execution states of a propagatorWhenever a propagator returns SLEEP and its state is switched to sleeping, the emulatorkeeps the propagator suspending on its constrained variables. A propagator is woken up when vari-ables it is posted on are further constrained. This is indicated by (1) in Figure 2. The propagator'sstate is then switched to runnable. Now, the scheduler takes care of the propagator and will sched-ule it later on (the transition (2) from runnable to running is subject to the scheduler's policy andwill be not discussed here). If the propagator fails its execution state is set to failed and the currentcomputation space will be discarded by the emulator. If the propagator can decide (according toits operational semantics), that the corresponding constraint is entailed, it returns ENTAILED andits execution state is set to entailed. As optimisation the emulator removes all suspension entriesfrom variables the propagator was previously been posted on.3. The Constraint Propagator InterfaceA major design objective of the �nite domain system of Oz was to be as high-level as possible andas low-level as necessary. Therefore, we provide for Oz a full-
edged ready-to-use �nite domainsystem. But certain problems require tailored algorithms, which can often better be implemented inan imperative language rather than in Oz. Thus, a set of C++ abstractions is provided, to connectpropagators with the emulator; in this way, the implementation of propagators has been completelyseparated from the rest of the emulator.To prove the feasibility of our approach we reimplemented the �nite domain constraint libraryof Oz using the constraint propagator interface. In fact, this library is dynamically loaded by theemulator when launching the system and mapped to the corresponding Oz abstractions. There wasno performance penalty for using the propagation interface.Another design objective was, of course, the compatibility with Oz; the implementation ofa propagator through the interface should be transparent. The major di�culties here are thatvariables a propagator is posted on, may belong to di�erent computation spaces. Furthermore,equality between variables imposed at runtime must be considered (note that in Oz, equality is abasic constraint of the store). The di�culty of local computation spaces is overcome by hiding it

6 1996 Compulog Net Meeting on Parallelism and Implementation Technologyaway by su�ciently powerful interface abstractions. Equality between variables can be detected byappropriate interface functions.Every relevant entity of the emulator, like for example a variable in a store constrained with a�nite domain, is represented in the interface by a corresponding C++ class. The member functionsof these classes provide the required functionality to implement �nite domain propagators.3.1. Building a PropagatorThis section explains by means of an example the constraint propagator interface of Oz. We im-plement the propagator for the domain-consistent constraint X + Y = Z. For the sake of clarity weuse a rather naive implementation here.The Interface Class OZ_Propagator . The emulator requires a uniform way to refer to all in-stances of propagators. This is realized in the interface by the abstract base class OZ_Propagator ,which is the base class for all propagators. Consequently, a propagator is implemented as a C++object. The class OZ_Propagator de�nes the basic functionality required by the emulator. Theprogrammer has to replace the pure virtual member functions to build a propagator.
enum OZ_Return {ENTAILED, FAILED, SLEEP};

class OZ_Propagator {
public:

OZ_Propagator(void);
virtual ˜OZ_Propagator(void);
static void * operator new(size_t);
static void operator delete(void *, size_t);
virtual OZ_Return run(void) = 0;

}; The operators new and delete are necessary to make propagators compatible with the em-ulator's memory management.The central member function is run . It is responsible for the actual constraint propagationand is called by the emulator when the propagator's execution states is switched to running. Theimplementation of a propagator requires �rst the de�nition of a new class for the propagator.
class PlusPropagator : public OZ_Propagator {
private:

OZ_Term _x, _y, _z;
public:

PlusPropagator(OZ_Term a, OZ_Term b, OZ_Term c)
: _x(a), _y(b), _z(c) {}
virtual OZ_Return run(void);

}; The example propagator stores in its state references to variables it is posted on (namely _x ,
_y and _z). A value of type OZ_Term is used to refer to a variable on the heap. The constructorof the class PlusPropagator simply initialises the data members. We will see later where theconstructor is used. We �rst describe two further classes, which are used in the function.The Member Function OZ_Propagator::run . The algorithm for the example propagator isstraightforward. The domains of the variables are always rebuilt on each invocation. Therefore

1996 Compulog Net Meeting on Parallelism and Implementation Technology 7auxiliary domains for each variable are introduced which are initially empty. For all values of thedomains of X and Y it is checked if there is a consistent value in the domain of Z. If so, the valuesare added to corresponding auxiliary domains. Finally, the domains of the variables are constrainedwith the corresponding auxiliary domains. Consequently, the core of the program code consists oftwo nested loops iterating over all values of the domains of X and Y .
OZ_Return PlusPropagator::run(void)
{

OZ_FDIntVar x(_x), y(_y), z(_z);
OZ_FiniteDomain x_aux(fd_empty), y_aux(fd_empty),

z_aux(fd_empty);

for (int i=x->getMinElem(); i!=-1; i=x->getNextLargerEl(i))
for (int j=y->getMinElem(); j!=-1; j=y->getNextLargerEl(j))

if (z->isIn(i + j)) {
x_aux += i;
y_aux += j;
z_aux += (i + j);

}
FailOnEmpty(*x &= x_aux);
FailOnEmpty(*y &= y_aux);
FailOnEmpty(*z &= z_aux);
return (x.leave()|y.leave()|z.leave()) ? SLEEP : ENTAILED;

failure:
x.fail();
y.fail();
z.fail();
return FAILED;

}The Interface Class OZ_FDIntVar . A propagator needs direct access to the constrained vari-ables it is posted on. The interface class OZ_FDIntVar member functions access variables in thestore directly. The constructor dereferences the variable in the store and stores the dereferencedinformation in the state of the newly created object. The operators * and -> are overloaded toprovide direct access to the representation of the �nite domain of a variable in the store resp. toinvoke member functions of the class OZ_FiniteDomain (see below). The member function leavehas to be called when the propagator is left. If the variable's domain has been constrained by thepropagator, it causes the scheduler to switch all propagators waiting for further constraints on thatvariable to come to runnable. The return value of leave is 0 if the domain became a singleton,otherwise 1. This information is used to decide whether a propagator is entailed or not. The memberfunction fail is to be called if the propagator encounters an empty domain and does some cleanups.The Interface Class OZ_FiniteDomain . The basic �nite domain constraint on a variable isrepresented by an object of the class OZ_FiniteDomain . Modifying their value is immediatelyvisible in the constraint store. The operator += adds a value to a domain. The operator &=intersects two domains, modi�es the domain on the left hand side and returns the size of theintersected domain. The member function getMinElem returns the smallest value of the domainand getNextLargerEl returns the smallest value of the domain larger than i . Testing whether a

8 1996 Compulog Net Meeting on Parallelism and Implementation Technologyvalue is contained in a domain or not can be done by the member function isIn .The Implementation. The implementation of the constraint X + Y = Z proceeds as follows.First the variables in the store are dereferenced and stored in the local C++ variables x , y and
z . The corresponding auxiliary domains are held in the variables x_aux , y_aux and z_aux ,which are initialised to empty domains. Two nested for-loops enumerate all possible pairs (vx; vy)of values of the domains of X and Y . Each loop starts from the smallest value of a domain andproceeds till �1 is returned, indicating, that there is no larger value. If there is a value vz in thedomain of Z satisfying the relation vx + vy = vz then these values are added to the appropriateauxiliary domains. After completing the nested loops, the domains of the variables are constrainedby intersecting them with the auxiliary domains. The macro FailOnEmpty branches to the label
failure if its argument results in the value 0. By this means, constraining the domain of a variableto an empty domain would cause the execution to branch to label failure and eventually return
FAILED to the emulator. The return value of the member function leave of class OZ_FDIntVaris used to decide whether the propagator returns SLEEPor ENTAILED. The return value ENTAILEDindicates entailment and is returned if all variable's domains are singletons, i.e. the calls of leavefor all three variables return 0. Otherwise, SLEEPis returned and the propagator is reinvoked whenat least one of its variables is constrained again.3.2. Creating a PropagatorBefore a propagator can be created and introduced to the emulator, its variables must be su�cientlyconstrained, e.g., for the example the variables must be constrained to �nite domains. In case only asubset of variables is su�ciently constrained, the computation will suspend and resume again whenmore constraints become available. This is checked in a separate C function, which is directly calledfrom the emulator, as consequence of applying an Oz procedure connected with this C function.Further, when a propagator is posted on a variable, it has to be determined which changes to thedomain wake up the propagator again. The alternatives are to wake up a propagator if the variable'sdomain becomes a singleton, the bounds are narrowed or some value is removed from the domain.The macros OZ_C_proc_begin and OZ_C_proc_end are provided to allow the implemen-tation of C functions which are compliant with the calling conventions of Oz's emulator.

OZ_C_proc_begin(plus, 3)
{

OZ_Expect pe;

EXPECT(pe, 0, expectIntVarAny);
EXPECT(pe, 1, expectIntVarAny);
EXPECT(pe, 2, expectIntVarAny);

return pe.spawn(new PlusPropagator(OZ_args[0], OZ_args[1],
OZ_args[2]));

}
OZ_C_proc_endThe interface class OZ_Expect provides the required functionality to ful�ll the above men-tioned task. For the sake of program code conciseness the macro EXPECTis supplied by the in-terface. It ensures that incompatible constraints are rejected and insu�cient constraints cause theexecution to be suspended until more constraints become known. An object of class OZ_Expectcollects in its state all variables the propagator is supposed to be posted on. The member function

1996 Compulog Net Meeting on Parallelism and Implementation Technology 9
expectIntVarAny of class OZ_Expect expects a variable already constrained to a �nite domain.If a variable is su�ciently constrained, it is stored in the state of the object pe . A side-e�ect of amember function of the group expectIntVar is that it determines which kind of pruning of thedomain will wake up the propagator. For example, the member function expectIntVarSinglinstead of expectIntVarAny would cause the propagator to be woken up, if the domain of theappropriate variable becomes a singleton.Finally, the actual propagator is created by calling its constructor via the application of the
new operator. The reference to the newly created propagator is passed as argument to spawn , amember function of OZ_Expect , which executes the run method and introduces the propagator tothe emulator.4. Implementing Complex PropagatorsIn this section we outline how to implement a more complex propagator in the �eld of scheduling.In scheduling problems several tasks compete for shared resources. If only one task can be servedby a resource at once, the constraint has to be stated that no two tasks on this resource overlap intime. This can be expressed by stating for all task pairs the disjunctions(X1) + d(X1) � s(X2) _ s(X2) + d(X2) � s(X1)where s(Xi) and d(Xi) denote the start time and the duration of a task, respectively. If n tasksare to be scheduled on the same resource, these constraints can be stated by imposing n(n � 1)=2propagators modelling the described disjunctions.An alternative which saves memory is to model these constraints by only one propagator, calleddisjunctive propagator in the sequel. To avoid useless computation (e.g., in case one disjunctionbecomes valid), the propagator maintains a state that keeps track of only those disjunctions thathave already been committed to a clause.The disjunctive propagator will be posted on two tuples containing start times and durationsof tasks scheduled on the same resource. The propagator suspends only on the start times, whereasthe durations are stored in the state. Furthermore, the propagator's state holds pairs of integers,where a pair (i; j) denotes that the corresponding tasks for i and j must not overlap.The member function run of the disjunctive propagator will check for each pair if the cor-responding disjunction can be discarded. If one clause of a disjunction is entailed by the currentconstraint store, e.g. max(s(X1)) + d(X1) � min(s(X2)), the corresponding pair has not to be con-sidered anymore in further invocations of the propagator and can be destructively deleted from thestored pair list. Here, min and max denote the functions returning the current minimum and maxi-mum of a domain, respectively. If one clause is disentailed (e.g. min(s(X1)) + d(X1) > max(s(X2)),the remaining clause must be spawned as a propagator and the corresponding pair can be deletedfrom the list. To this aim a further primitive is provided by the interface to spawn another propa-gator from a running propagator (in our case the disjunctive propagator). On the other hand, thedisjunctive propagator must loop over the pairs until no pair can be discarded anymore (since thepropagation behaviour of several disjunctions is modelled). Since the execution of a propagator isatomic, the spawned propagators cannot run until the disjunctive propagator has �nished. Hence,to get the immediate e�ect spawning a propagator of a clause is modelled inside the disjunctivepropagator by narrowing the domain of the variables appropriately (e.g. if the �rst clause fails, theconstraints Y � max(s(X1)) � d(X2) and X1 � min(s(X2)) + d(X2) are added to the constraintstore immediately).As optimisation, the disjunctive propagator unposts itself from tasks that do not occur any-more, which includes removing the suspensions to the propagator from the tasks's suspension lists.

10 1996 Compulog Net Meeting on Parallelism and Implementation TechnologyBecause more complex propagators are usually more expensive in terms of computation time,the interface provides also means to delay such propagators by assigning them a lower executionpriority.5. EvaluationThe performance of the interface is evaluated on a set of standard benchmarks in Table 1. Wecompare our work with clp(fd) [DC93] and ECLiPSe [ECR96]. The queens problem is the usualone. The problems alpha and donald are crypto-arithmetic puzzles. Finding a solution for a setof 10 and 20 equations is the task of the problems equation10 and equation20, respectively. Theannotations indicate the labelling strategies; either �rst-fail or naive. Note for these benchmarksclp(FD) is faster than Oz due to the fact that Oz uses copy-based search, has an emulator-basedruntime system and implements a far more complex computation model.Problem Oz clp(fd) clp(fd) ECLiPSe ECLiPSe(secs) (secs) Oz (secs) Oz16-queens, naive 18.47 2.7 0.146 15.48 0.83830-queens, � 2.17 0.49 0.225 3.22 1.484alpha, naive 41.5 16.69 0.402 256.5 6.181alpha, � 0.34 0.24 0.705 1.35 3.970donald, naive 19.48 6.23 0.319 21.2 1.088equation20, naive 0.43 0.18 0.418 1.10 2.558equation10, naive 0.28 0.12 0.428 0.53 1.893Table 1: Comparing di�erent �nite domain systems on a SPARC ELCThe propagator presented in Section 4. in conjunction with an improved labelling strategybased on [CL94] was used to tackle job-shop problems1, which were supposed to be particularlyhard for a long period of time.The obtained results are shown in Table 2. The �rst two columns give the number of failuresand the time taken to �nd the optimal solution from scratch and to prove the optimality. The lasttwo columns indicate the numbers of failures and the time taken for proving the optimality only.The runtimes are comparable to the results obtained with Ilog Schedule in [BP95] (on an IBMRS6000). More details on scheduling in Oz can be found in [W�ur96].AcknowledgementsThe authors would like to thank Martin M�uller and Peter Van Roy for their invaluable commentson a draft version of this paper.1An nxm job-shop problem consists of n jobs and m resources. Each job consists of m tasks to bescheduled on di�erent resources. The tasks in a job are linearly ordered by precedence constraints.The resources are unary and no preemption is allowed.

1996 Compulog Net Meeting on Parallelism and Implementation Technology 11Problem Fails CPU time Fails (pr) CPU time (pr)(secs) (secs)MT10 5 812 278 3 982 150ABZ5 4 371 219 2 159 77ABZ6 1 712 109 238 7La19 3 709 182 1 755 62La20 4 849 184 3 246 117ORB1 19 450 885 16 251 623ORB2 2 813 148 765 27ORB3 47 446 1 855 39 405 1 141ORB4 6 052 287 1 938 68ORB5 3 971 194 1 498 57Table 2: Results of 10x10 job-shop problems on a SPARC 20References[BP95] P. Baptiste and C. Le Pape. A theoretical and experimental comparison of constraintpropagation techniques for disjunctive scheduling. In Proceedings of the Fourteenth In-ternational Joint Conference on Arti�cial Intelligence, Montreal, Quebec, pages 600{606,1995.[CL94] Y. Caseau and F. Laburthe. Improved CLP scheduling with task intervals. In Proceedingsof the International Conference on Logic Programming, pages 369{383. The MIT Press,1994.[DC93] D. Diaz and P. Codognet. A minimal extension of the WAM for clp(FD). In Proceedings ofthe International Conference on Logic Programming, pages 774{790, Budapest, Hungary,1993. MIT Press.[DVS+88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. Theconstraint logic programming language CHIP. In Proceedings of the International Con-ference on Fifth Generation Computer Systems FGCS-88, pages 693{702, Tokyo, Japan,December 1988.[ECR96] ECRC. ECLiPSe, User Manual Version 3.5.2, December 1996.[HW96] M. Henz and J. W�urtz. Using Oz for college timetabling. In E.K. Burke and P. Ross,editors, Practice and Theory of Automated Timetabling, First International Conference,Selected Papers, Edinburgh 1995, volume 1153 of Lecture Notes in Computer Science,pages 162{178. Springer-Verlag, 1996.[MSS95] M. Mehl, R. Scheidhauer, and C. Schulte. An abstract machine for Oz. In ProgrammingLanguages, Implementations, Logics and Programs, Seventh International Symposium,PLILP'95, Lecture Notes in Computer Science, pages 151{168, Utrecht, The Netherlands,20{22 September 1995. Springer Verlag.

12 1996 Compulog Net Meeting on Parallelism and Implementation Technology[MW96] T. M�uller and J. W�urtz. A survey on �nite domain programming in Oz. In Notes onthe DFKI-Workshop: Constraint-Based Problem Solving, To appear as Technical reportD-96-02, Kaiserslautern, Germany, 1996.[PL95] Jean-Froncois Puget and Michel Leconte. Beyond the glass box: Constraints as objects.In John Lloyd, editor, Logic Programming - Proceedings of the 1995 International Sym-posium, pages 513{527. The MIT Press, December 1995.[Smo95] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer ScienceToday, volume 1000 of Lecture Notes in Computer Science, pages 324{343. Springer-Verlag, Berlin, 1995.[SSW94] C. Schulte, G. Smolka, and J. W�urtz. Encapsulated search and constraint programming inOz. In A.H. Borning, editor, Principles and Practice of Constraint Programming, volume874 of Lecture Notes in Computer Science, pages 134{150, Orcas Island, Washington,USA, 1994. Springer-Verlag.[ST97] G. Smolka and R. Treinen, editors. DFKI Oz Documentation Series. DeutschesForschungszentrum f�ur K�unstliche Intelligenz GmbH, Stuhlsatzenhausweg 3, 66123Saarbr�ucken, Germany, 1997.[W�ur96] J. W�urtz. Oz Scheduler: A Workbench for Scheduling Problems. In IEEE InternationalConference on Tools with Arti�cial Intelligence (ICTAI'96), 1996.

