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s1 Introdu
tionBoth in 
omputational linguisti
s and in formal semanti
s, des
riptions have been usedwhi
h are stated in terms of dominan
e. In the domain of synta
ti
 pro
essing, [MHM83℄used dominan
e to support deterministi
 parsing. In the domain of grammar formalisms,[VS92℄ has used dominan
e to maintain monotoni
ity within the framework of Feature-Based Tree Adjoining Grammar (FTAG, [VSJ88℄). In formal semanti
s, [Mus97℄ useddominan
e to 
apture semanti
 underspe
i�
ation and in parti
ular, s
ope ambiguitieswhile [ENRX98℄ extends the idea to parallelism and ellipsis. Finally, [GW98a℄ use domi-nan
e to underspe
ify the semanti
 representation of dis
ourse.Yet the issue of how su
h des
riptions are pro
essed has been little explored. On theother hand, although dominan
e-based des
riptions have been used for a wide variety ofappli
ations, the parti
ulars both of the des
riptions used and of the models assumed varyfrom appli
ation to appli
ation. For instan
e, [VS92℄ assumes the models to be quasi-trees(i.e. sets of trees) whereas [GW98a℄ take them to be dis
ourse feature stru
tures (a spe
ialkind of DAGs) and [ENRX98℄ work with so-
alled �-stru
tures that is, tree stru
turesextended by a binding and a linking relation. It is therefore parti
ularly useful to developalgorithms for handling des
riptions whi
h are general enough to be parameterisable forone or another appli
ation.In this paper, we propose an eÆ
ient and general 
onstraint-based treatment of de-s
riptions. We then spe
ialise it and show that it 
an be used to implement the treatmentof dis
ourse advo
ated in [GW98a, BG98℄. The paper is stru
tured as follows. Se
tion 2introdu
es [GW98a, BG98℄'s des
ription-based treatment of dis
ourse. In Se
tion 3, a gen-eral treatment of des
riptions is given with a tree-based semanti
s. This approa
h is then1



generalized to a DAG-based semanti
s in Se
tion 4 so as to model [GW98a℄'s Dis
ourseFeature Stru
tures.2 Des
ribing dis
ourse meaning[GW98a℄ uses dominan
e to in
rementally build a semanti
 representation for dis
ourse.The motivation is the same as in [MHM83℄: underspe
ifying the stru
ture being built per-mits in
remental, deterministi
 pro
essing despite lo
al (i.e. temporary) ambiguities. Butwhat are the stru
tures being des
ribed? [GW98a℄'s working hypothesis is that the mean-ing of dis
ourse 
an be represented by a spe
ial kind of DAG (Dire
ted A
y
li
 Graph)namely, a Dis
ourse Feature Stru
ture. The meaning of a dis
ourse is not just the 
onjun
-tion of the meaning of its 
onstituting senten
es; it also in
ludes \relational propositions"[MT86℄ that is, 
omplex assertions whi
h relate two or more dis
ourse meanings. Forinstan
e, the meaning of:(1) (a.) He was in a foul humour. (b.) He hadn't slept well that night. (
.)His ele
tri
blanket hadn't worked.is not just the 
onjun
tive assertion of (1a), (1b) and (1
). It also in
ludes the inferentialmeaning that (1
) 
aused (1b), and that (1b) 
aused (1a). [GW98a℄'s assumption is thatthis meaning 
an be represented by the following DAG:
b

and
b


ause
b


ause
ba bb b
Further, [GW98a℄ use des
riptions as follows. Ea
h time a dis
ourse relation is inferredto hold between two dis
ourse meanings, a des
ription is li
ensed whi
h in
rements the
urrent des
ription. Interpreting dis
ourse then amounts to 
omputing the dominan
e-minimal DFS satisfying the des
ription. More spe
i�
ally, whenever a dis
ourse relationR is inferred to hold between two dis
ourse meanings a and b, the following des
ription isli
ensed: R

b a bbCru
ially, this des
ription leaves the relation between the dis
ourse relation R and its
urrent arguments a and b underspe
i�ed. This is pre
isely the feature whi
h permitsboth determinism and monotoni
ity. In what follows, we list the 
lasses of ambiguitywhi
h [GW98b℄ handles. Se
tion 4 will show how these problems are handled by oursystem and with whi
h results. 2



Atta
hment ambiguityAtta
hment ambiguity stems from in
rementality: at some point during pro
essing, adis
ourse meaning is known to provide the 
urrent argument of a given dis
ourse relationbut it is un
lear whether it will also be its �nal argument or only part of it. The followingexample illustrates this.(2) a. The trains aren't running now.b. The 
ondu
tors' union 
alled a strike last Sunday.
. Then the signalmen's union walked out in sympathy.At the end of (2b), the hearer infers a 
ausal relation to hold between the meaningsof (2a) and (2b) whi
h is then revised to hold between (2a) and the sequen
e of (2b)and (2
). [GW98a℄'s observation is that su
h revisions however, do not trigger a \repairfeeling". In other words, they do not seem to lead to an in
rease in pro
essing load andtherefore are best modeled by a monotoni
 pro
ess. The use of dominan
e permits this.More spe
i�
ally, the derivation for (2) pro
eeds as follows. As (2a{b) is pro
essed, a
ausal relation is inferred to hold between (2a) and(2b) thereby li
ensing the followingdes
ription:
b


ause
ba bb (A1)Similarly, on pro
essing (2
) the hearer infers a dis
ourse relation of sequen
e to holdbetween the meaning b of (2b) and that 
 of (2
) thus li
ensing the following additions tothe 
urrent des
ription.

b


ause
b

sequen
e
ba bb b
 (A2)Finally, the inferential 
omponent will identify (2b{
) as providing the right-hand argu-ment of the 
ause relation introdu
ed by the �rst two 
lauses, whi
h in [GW98a℄ is takento li
ense an equality 
onstraint between the right-hand daughter of the 
ause node andthe sequen
e node. The only minimal stru
ture satisfying (A2) and this re-entran
y
onstraint is the following tree:

b


ause
ba b

sequen
e
bb b
 (A3)The point to note is that the initial des
ription (A1) 
aptures the lo
al atta
hment ambigu-ity triggered by b without introdu
ing non-determinism. Mar
us's deterministi
 hypothesis3



is satis�ed: 
ases of lo
al atta
hment ambiguity whi
h require no 
ons
ious reanalysis arepro
essed deterministi
ally.Relation ambiguityThe dis
ourse relation holding between two dis
ourse meanings may be be ambiguous. Forinstan
e, in(3) a. Max fellb. Jon pushed him.(3a) and (3b) may be related either by a 
ausal or by a narrative (i.e. temporally sequen-tial) relation. The �rst reading is obvious, the se
ond 
an be illustrated by imagining thefollowing 
ontinuation:(4) 
. and he rolled o� the 
li�.To permit both possibilities, [GW98b℄ propose to represent the ambiguous dis
ourse rela-tion by a variable. Further dis
ourse information might disambiguate this variable, whi
his then 
aptured by adding the relevant information to the des
ription. In spe
i�
, the�nal des
ription for (4) is then:
b

narrative
b

Rel
b

narrative
ba bb b
for whi
h the dominan
e-minimal satisfying DFS is:

b

narrative = Rel
ba b

narrative
bb b
As in [MHM83℄'s treatment of 
oordination, distin
t variables in the des
ription may pointto the same node in the stru
ture. In this way, the variable dis
ourse relation Rel 
an bedisambiguated to narrative.S
ope ambiguityDis
ourse exhibits 
ases of s
ope ambiguity mu
h like senten
es where the ambiguity stemsfrom the respe
tive s
ope of dis
ourse relations. For instan
e, the dis
ourse(5) a. Sarah reads a novel 4



b. if she is bored
. or she is unhappy.is ambiguous between a reading (if(a, or(b,
))) where Sarah reads a novel if she is eitherbored or unhappy; and a reading (or(if(a,b),
)) where if Sarah does not read a novel whenshe is bored, then she is unhappy. This ambiguity is 
aptured as in [Mus97℄ by leavingthe stru
tural relations between s
ope bearing elements underspe
i�ed. So for instan
ethe des
ription for examples su
h as (5) has the same stru
ture as given in (A2), but noadditional equality 
onstraint is added. As a result, the des
ription has not one but twosatisfying trees, one for ea
h possible meaning.Embedded/Conjoined ambiguityThe 
onjoined/embedded ambiguity is spe
i�
 to dis
ourse. It is illustrated by the follow-ing example :(6) a. Jon didn't 
ome to workb. The trains aren't running.
. Buses aren't either.Depending on intonation and situational knowledge, (6) is ambiguous between a read-ing (and(
ause(a,b), and(b,
))) where the 
ause for Jon not 
oming to work is that thetrains aren't running { and furthermore we learn that buses aren't running either; anda reading (
ause(a,and(b,
))) in whi
h the 
ause for Jon not 
oming to work is the 
on-jun
tion of (6b) and (6
). These two readings are 
aptured by a des
ription whose shapeis identi
al to (A2). The di�eren
e is that instead of identifying the right-hand daughterof the �rst dis
ourse relation with the node labelled by the se
ond dis
ourse relation (se-quen
e in A2), the left-hand argument of the se
ond dis
ourse relation (and) is identi�edwith the node labelled with b { this 
aptures the fa
t that b is the �nal left-hand argumentof and. The des
ription has two satisfying models: one, tree-like, whi
h 
aptures theembedded reading, and the other, graph-like, whi
h represents the 
onjoined reading.Garden-path ambiguityFinally, there are ambiguities whi
h lead the hearer to garden-path that is, to experien
e
ons
ious pro
essing diÆ
ulties. Thus in:(7) a. Suppose the subje
t is dangerous.b. If you tou
h it,
. it will blow up.d. Then we should 
all the poli
e. 5



there seems to be a preferen
e for inferring that (7b-
) provides the se
ond argument ofthe 
ondition relation marked by suppose. On hearing (7d), the hearer then realises hermistake and re-analyses (7b-
) as elaborating on (7a). [GW98b℄ observes that this typeof ambiguity is in stark 
ontrast with the previous ones in that it 
annot be 
aptured bya single des
ription. Either (7b-
) provides the right-hand argument of the 
onditionrelation or it fun
tions as a modi�er of its left-hand argument. In the �rst 
ase, thedes
ription li
ensed by (7b-
) must be dominated by the right-hand daughter of the 
on-dition node whereas in the se
ond 
ase, it should be dominated by its left-hand daughter.The two statements are in
ompatible (there is no stru
ture satisfying both des
riptions)and therefore 
hoosing one over the other may lead to subsequent failure. This is pre
iselywhat happens with (7): if (7b-
) is assumed to provide the right-hand argument of the
ondition relation, subsequent pro
essing leads to a des
ription whi
h has no satisfyingstru
ture. \Re-analysis" then takes pla
e: to obtain an appropriate des
ription of themeaning of (7), the initial des
ription must be undone and another 
onstru
ted whi
h thistime, will be satis�able.3 A 
onstraint-based treatment of des
riptionsIn this se
tion, we present a 
onstraint-based treatment of des
riptions for the semanti
domain of �rst-order 
onstru
tor trees. We introdu
e an intuitive notion of models, 
alledD-trees, whi
h are related to quasi-trees [RVS92℄, yet di�er from them in that (1) they arebased on stri
t dominan
e and (2) any node may be labelled with a 
onstru
tor of a givenarity. In the next se
tion, this approa
h is extended to DAGs and applied to [GW98a℄'streatment of dis
ourse semanti
s.3.1 The languageDes
riptions 
an be expressed in terms of dominan
e 
onstraints. In this se
tion we presentsu
h a formulation, provide an intuitive explanation of what it means to �nd solutions ofa des
ription problem, and derive a purely de
larative, yet very eÆ
ient, 
onstraint-basedimplementation.The 
onstraint-based te
hnique devised by the �rst author has sin
e been 
arefullystudied by [KNT98℄. We follow here their formalization a

ording to whi
h a des
ription� is an arbitrary 
onjun
tion of dominan
e and labeling 
onstraints:� ::= � ^ �0 j x /? y j x : f(x1 : : : xn)where x, y, xi are taken from a set of variables and f is an n-ary fun
tion symbol from agiven signature.The semanti
s are given by interpretation over �nite tree stru
tures. A solution to �
onsists of a �nite tree T and an interpretation I that maps ea
h variable in � to a nodein T . x /? y means that, in the solution tree T , I(x) must dominate I(y), whereas thelabeling 
onstraint x : f(x1 : : : xn) means that I(x) = f(I(x1) : : : I(xn)).6



Complexity result. [KNT98℄ show that the satis�ability of propositional logi
 for-mulae 
an be redu
ed to the satis�ability of dominan
e 
onstraints over the signatureff : 2; true : 0; false : 0g, thus establishing the NP-hardness result.3.2 A Tree-based Semanti
sWith semanti
s based on �nite trees, a solution to a des
ription � is a tree T and aninterpretation I that maps ea
h variable of � to a node in T . This has the disadvantagethat every tree T 0 whi
h 
ontains T as a subtree is also a solution of �. Thus, there arein�nitely many solutions to �.Consider the example below: a des
ription � is listed in the box and a solution tree Tis displayed next to it. The interpretation I is represented by listing next to a node thevariables of � whi
h I maps to it. f
 f x1g x2f x4 x11
 x5 x12 
 x6 x13 ff x7f x8
 x10 
 f x9
 




 x3 x1 : f(x2 x3)x2 /? x4x4 /? x5x4 /? x6x1 /? x7x7 : f(x8 x9)x1 /? x10x2 /? x11x11 : f(x12 x13)x13 : 


There is mu
h in T whi
h is not required to model �. In the pi
ture, all super
uousinformation is shown in gray. If we remove all the gray parts, we are left with a mu
hsimpler tree shape: f x1x2f x4 x11x5 x12 
 x6 x13 f x7x8x10 x9x3
The tree shape 
ontains two kinds of nodes: (1) 
losed nodes are labeled and 
oloredbla
k; from them emanate solid edges representing immediate dominan
e; (2) open nodes7



are not labeled and hollow; from them emanate dotted edges representing stri
t dominan
eto an arbitrary distan
e.The formal notion of a tree shape is 
alled a D-tree [RVSW95℄ and allows us to de�nea more e
onomi
al semanti
s by interpretation over �nite D-tree stru
tures on a givensignature. A D-tree T is de�ned by the indu
tive rule:T ::= f(T1 : : : Tn) j fT1 : : : TmgThe �rst alternative stands for a 
losed node and the se
ond for an open node. Thesemanti
s of D-trees are given by interpretation over �nite trees relative to the samesignature. If I is su
h an interpretation, we have:I(f(T1 : : : Tn)) = f(I(T1) : : : I(Tn))Open nodes have somewhat less dire
t semanti
s: I(fT1 : : : Tmg) must be a tree whi
hhas I(T1), . . . , I(Tm) as subtrees. These notions 
an be made pre
ise and formal, but theexer
ise lies beyond the s
ope of this arti
le.Obviously all trees are also D-trees: so what have we gained? The answer is that we
an now de�ne the notion of a minimal D-tree model. First, we noti
e that there is apartial order of spe
ialization on D-trees: T1 is said to be an instan
e of T2 if, by erasingsome information, like we did with the gray bits in the earlier pi
ture, we 
an transformT1 into T2. Again, this 
ould be made formal.If we have a D-tree model of �, all its instan
es are also models of �, but not allits generalizations. There exists a unique one whi
h is the most general: this we 
all aminimal D-tree model of �.In a minimal D-tree model of �, all nodes interpret at least one variable in �. Sin
ethere are �nitely many of them, � has �nitely many D-tree models.It may be helpful to draw an analogy between minimal D-tree models andmost generaluni�ers. Mu
h like a most general uni�er instantiates two terms only as far as ne
essaryto make them equal, a minimal D-tree model expli
itates only as mu
h of the tree shapeas is ne
essary to model �.We have stated (without proof) that for every tree model of � there is a unique minimalD-tree model of whi
h it is an instan
e. What about the reverse dire
tion? Is it the 
asethat for every D-tree model of � there exists a �nite tree whi
h is a ground instan
e ofthat model?Obviously the signature must 
ontain at least one 
onstant 
 (nullary fun
tion symbol),else we 
ould not 
onstru
t a leaf node.1 If the signature 
ontains at least one binaryfun
tion symbol2 f , then we 
an repla
e any open node fg by 
, fT1g by f(T1 
), andfT1 T2 : : :g by f(T1 f(T2 : : :)). By repeating this pro
edure, we obtain a ground instan
e.Thus, under the reasonable assumption that the signature 
ontains at least one nullaryfun
tion 
 and one n-ary fun
tion f with n � 2, every D-tree model of � denotes a non-empty family of ground tree models of �.1The domain of interpretation would be empty.2or n-ary, with n � 2, in whi
h 
ase we 
an arbitrarily set n�2 arguments to 
 and obtain the equivalentof a binary fun
tion symbol. 8



Thus we have established that to enumerate the minimal D-tree models is both 
om-plete and sound with respe
t to the original tree-based semanti
s. It also has the verydesirable properties of being �nite and systemati
 (no repeats).One last remark 
on
erns a te
hni
al infeli
ity in the notion of minimal D-tree model.A D-tree model of � must 
onsist of a set of D-trees: typi
ally the set is a singleton, butnot ne
essarily as the example below illustrates:ff
 
 f
 
 f
 
 f
 
3.3 A 
onstraint-based Approa
hOur goal is now to devise a 
omputationally e�e
tive method to enumerate the minimal D-tree models of a des
ription �. We are going to do this by representing the interpretation ofa variable x of � as an underspe
i�ed termNx in a 
onstraint programming language. Thisis what Prolog programmers have been doing for years when representing underspe
i�edtrees using terms 
ontaining variables. The sear
h pro
edure will simply look for allpossible arrangements of these representations into D-trees that model �.The idea is that every 
onstraint in � involving x and y will be translated into a
onstraint involving terms Nx and Ny. For this strategy to be e�e
tive, the translated
onstraints must involve quantities whi
h are lo
al to Nx and Ny. The most important
onstraint is that of dominan
e, and, in this respe
t, it is 
ru
ial to noti
e that every twonodes Nx and Ny of a D-tree always stand in one of four mutually ex
lusive relationships:Nx = Ny they are equalNx /+Ny Nx stri
tly dominates NyNy /+Nx Ny stri
tly dominates NxNx ?Ny they are unrelatedFor every Nx we 
an keep tra
k of all variables whose interpretation is equal to, stri
tlydominates, is stri
tly dominated, or is unrelated to that of x.In earlier pi
tures, we represented an interpretation I by de
orating ea
h node of a D-tree with the set of variables of � that I maps to it. Now, we simply extend this de
orationwith the set of variables that are above, below, and unrelated.We assume a 
onstraint language that supports set variables. Most readers will befamiliar with the idea of �nite domain variable, i.e. a variable that denotes an integer and
an be 
onstrained (e.g. x < y). Set variables are just the same idea but ranging over sets.Our implementation language (Oz, [Smo95℄) supports only �nite sets of integers, whose
onstraint theory has an extremely eÆ
ient implementation. However, the formulationwhi
h we present here does not depend on this restri
tion.The idea is that for every node Nx, we make expli
it the set of variables whose inter-pretations are equal, above, below, and unrelated to Nx. We represent Nx by the feature9



stru
ture below: 26664 = : Nx=/+ : Nx/++. : Nx+.? : Nx? 37775we write Nx� to notate feature � of term Nx. Here, Nx= is the set of variables whoseinterpretations are equal to that of x. In earlier pi
tures, we represented this set by listingthe variables to the right of the node. Nx/+ is the set of variables whose interpretations arestri
tly dominated by the interpretation of x, and Nx? are these variables whose interpre-tations neither dominate nor are dominated by the interpretation of x: we say that theirinterpretations are unrelated.Sin
e the interpretations of any two variables must stand in one of the mutually ex
lu-sive relationships des
ribed earlier, the sets Nx=, Nx/+, Nx+. and Nx? must form a partitionof the set V of variables of �: V = N= ℄N/+ ℄N+. ℄N?where ℄ denotes disjoint union. Furthermore, x must be in the set of variables mappedto Nx: x 2 Nx=For 
onvenien
e, we de�ne N/? = N= [ N/+ and N?. = N= [ N+.. The dominan
e
onstraint x /? y translates to the 
onstraint Nx /? Ny:Nx /? Ny � 8><>: Nx/? � Ny/?Nx?. � Ny?.Nx? � Ny?To a

ount for the labeling 
onstraint x : f(x1 : : : xn), we equip nodes with the additionalfeature `. The labeling 
onstraint translates as follows:N x̀ = f(Nx1 : : : Nxn)Nx/+ = Nx1/? ℄ : : : ℄Nxn/?Nx?. = Nx1+. = : : : = Nxn+.The �rst line serves two purposes: it guarantees that two equal nodes (1) must be labeledwith the same 
onstru
tor, (2) must have (pairwise) equal daughters.The tree stru
ture is guaranteed by requiring that every pair of nodes Nx and Nystand in one of the four mutually ex
lusive relationships des
ribed earlier:Nx = Ny _ Nx /+Ny _ Nx +. Ny _ Nx ?Ny (�)These alternatives 
an be translated a

ording to the following de�nitions:Nx = Ny � unify(Nx; Ny)Nx 6= Ny � Nx= \Ny= = ;Nx /+Ny � Nx /? Ny ^ Nx 6= NyNx ?Ny � Nx/? � Ny? ^ Ny/? � Nx?10



The �rst alternative involves uni�
ation of set variables: when the element domain 
onsistsof terms, this is a very expensive AC-uni�
ation problem; when the elements are integers,it is a very eÆ
ient or-like operation. We assume the latter: in our en
oding, every variableis represented by a distin
t integer.Note that the only sour
e of disjun
tion 
omes from formula s
hema (�): thus, simplyby arbitrarily 
hoosing the relationship in whi
h every two nodes stand, we obtain apurely 
onjun
tive formula. Inferential 
losure (
onstraint propagation) either derives a
ontradi
tion or 
onstru
ts a minimal D-tree model (a solved form).3.4 EÆ
ient ImplementationSo far, we have spe
i�ed de
laratively what all the 
onstraints should be. Every solutionof this 
onstraint system represents a D-tree model of �. We now explain how to eÆ
ientlyenumerate all and only the minimal D-tree models.In a minimal D-tree model, the relationship in whi
h any two nodes Nx and Ny standis determined. We 
an make this 
hoi
e expli
it in (�) by introdu
ing a �nite domainvariable Cx;y 2 f1::4g: Cx;y = 1 ^ Nx = Ny_ Cx;y = 2 ^ Nx /+Ny_ Cx;y = 3 ^ Nx +. Ny_ Cx;y = 4 ^ Nx ?NyThis does not 
hange the solutions sin
e the alternatives are mutually ex
lusive. ChoosingCx;y sele
ts pre
isely one alternative; the others be
ome in
onsistent. In every D-treemodel, Cx;y must be determined. By making no further 
hoi
es, we enumerate only mini-mal D-tree models. Thus, the problem of sear
hing for a solution to the initial dominan
edes
ription has been redu
ed to the sear
h for a 
onsistent assignment to the 
hoi
e vari-ables Cx;y 8x; y 2 V.Computationally, we are going to make these 
hoi
es in an in
remental sequen
e. Assoon as one 
hoi
e has been de
ided, the 
onstraint of the sele
ted alternative strengthensthe partial des
ription of the solution. Often, the 
urrently known 
onstraints are suÆ
ientto eliminate all but one of the alternatives in a disjun
tion. It is desirable to noti
e thisas soon as possible and add the remaining alternative to the global des
ription.The programming language Oz makes this possible. Disjun
tions are implemented as
on
urrent agents that spe
ulatively investigate their alternatives.3 When only a single
onsistent alternative remains, it is automati
ally 
ommitted (
hosen).A disadvantage of the 4-way disjun
tion (�) is that it 
an only 
ontribute to the global
onstraints when it has been fully de
ided. A more e�e
tive formulation separates thealternatives into 4 
on
urrent agents:Cx;y = 1 ^Nx = Ny _ Cx;y 6= 1 ^Nx 6= NyCx;y = 2 ^Nx /+Ny _ Cx;y 6= 2 ^Nx /6 +NyCx;y = 3 ^Ny /+Nx _ Cx;y 6= 3 ^Ny /6 +NxCx;y = 4 ^Nx ?Ny _ Cx;y 6= 4 ^Nx ?6 Ny3This generalizes the idea of deep guards. 11



As soon as one alternative be
omes in
onsistent, its negation is added to the global store.With this en
oding, the standard �rst-fail sear
h strategy appears to give rather goodresults.4 Appli
ation to dis
ourseWe now show how the 
onstraint-based approa
h des
ribed above 
an be extended tomodel [GW98a℄'s treatment of dis
ourse. First, we tailor the above framework to a DAG-based semanti
s as advo
ated in [BG98℄. Then, we des
ribe its use for implementing[GW98a℄'s a

ount.4.1 A DAG-based Semanti
sWe 
an develop a similar framework with semanti
s based on �nite DAGs. It 
an beobtained by weakening the previous formulation (trees are a subset of dags), and we shallbe looking for minimal D-dag models de�ned analogously to minimal D-tree models.Due to the requirement of a
y
li
ity, it is still the 
ase that:V = N= ℄N/+ ℄N+. ℄N?Thus, both our �rst equation and our sear
h strategy remain un
hanged. However, thetranslation of Nx/?Ny looses the 3rd 
onstraint sin
e nothing 
an be 
on
luded 
on
erningthe sets Nx? and Ny?: Nx /? Ny � ( Nx/? � Ny/?Nx?. � Ny?.Finally, for the labeling 
onstraint x : f(x1 : : : xn), it is no longer the 
ase that Nx1 . . .Nxn must be disjoint subtrees. However our linguisti
 appli
ation stipulates that no siblingmay dominate another. Thus the translation be
omes:N x̀ = f(Nx1 : : : Nxn)Nx/+ = Nx1/? [ : : : [Nxn/?; = Nxi= \Nxj?. 8i 6= j 2 1::nNothing else need 
hange. Results of 
ompleteness, soundness, �niteness and systemati
itystill hold.4.2 Treatment of Dis
ourse Des
riptionsDis
ourse des
riptions are given dag-based semanti
s as outlined in the previous se
tion.To a

ount for 
ertain phenomena, we have found it 
onvenient to de
ompose the labeling
onstraint x : f(x1 : : : xn) into two simpler 
onstraints: one that spe
i�es the 
onstru
torand one that spe
i�es the daughters. A des
ription is now de�ned by the indu
tive rule:� ::= � ^ �0 j x /? y j x : f j x : hx1 : : : xni12



If I is an interpretation of �, x/? y means that I(x) must dominate I(y), x : f means thatI(x) must be labeled with 
onstru
tor f , and x : hx1 : : : xni means that I(x) is labeledwith an n-ary 
onstru
tor and has daughters I(x1) through I(xn). In the following, wewrite x : fhx1 : : : xni to abbreviate the 
ommon 
ase x : f ^ x : hx1 : : : xniConsider the `s
ope ambiguity' example on page 4: (a) Sarah reads a novel (b) if sheis bored (
) or she is unhappy. The des
ription is displayed in the box below.
b

x1 if
b

x7 orx2 x4 x6 x8x3 ba x5 bb x9 b

x1 : ifhx2; x4ix2 /? x3x3 : ahix4 /? x5x5 : bhix7 : orhx6; x8ix6 /? x5x8 /? x9x9 : 
hiAdditionally to the des
ription, our linguisti
 appli
ation makes the following stipulations:� there is a unique root: the interpretation of one variable dominates all the others� a variable whi
h is not assigned a label in the des
ription must be identi�ed withone that isThe 
orresponding sear
h tree is displayed in the window on the right: the blue 
ir
lesrepresent 
hoi
e nodes, the red squares failed nodes, and the green diamonds are the twosolutions. In this example, the full sear
h tree is obtained in 80ms.The ability to state 
onstru
tor and daughter 
onstraints separately allows us to ex-pression the `relation ambiguity' des
ription of page 4 as follows:

b

x6 narrativex7 x8
b

x1 Rel
b

x9 narrativex2 x4 x10 x11x3 ba x5 bb x12 b

x1 : hx2; x4ix2 /? x3x3 : ahix4 /? x5x5 : bhix6 : narrativehx7; x8ix7 /? x3x8 /? x9x9 : narrativehx10; x11ix10 /? x5x11 /? x12x12 : 
hix1 is simply given the daughter 
onstraint x1 : hx2; x4i, but its label remains unspe
i�ed.

13



5 Con
lusionIn 
omputational linguisti
s and formal semanti
s, des
riptions of trees and DAGs statedin terms of dominan
e have gained popularity. In this paper, we have 
ontributed a
onstraint-based framework for pro
essing su
h des
riptions.Our approa
h is purely de
larative and formulated in terms of 
onstraints between setsof variables whi
h straightforwardly 
apture what it means for two nodes to be part of atree (or graph) stru
ture, or to stand in a more spe
i�
 dominan
e relationship. By takingadvantage of modern 
onstraint programming te
hnology, this transparent de
larative en-
oding, when further equipped with a sear
h strategy, also 
onstitutes an implementation.For the tree-based semanti
s, experimental results indi
ate that even the simplisti
�rst-fail enumeration of the 
hoi
e variables gives ex
ellent performan
e. The NP-hardnessresult, however, shows that we 
annot expe
t mira
les. From the 
omputational point ofview, 
onstraint programming o�ers two potential advantages: (1) an eÆ
ient implemen-tation of inferen
e through 
onstraint propagation, and (2) an eÆ
ient treatment of valuedisjun
tion through �nite domain and �nite set variables. It is the job of the sear
hstrategy to take e�e
tive advantage of the framework. In the weaker semanti
 domains ofDAGs, its importan
e be
omes again 
riti
al.A methodologi
al bonus of our de
larative approa
h is that the design of an appro-priate sear
h strategy 
an be investigated independently: the sear
h strategy is merely aparameter of our system. We are 
urrently exploring the e�e
tiveness of more spe
ializedsear
h trategies.Finally, our treatement of des
riptions is stated in general terms using D-trees as thebasi
 models. As we showed, the approa
h 
an easily be tailored to graphs. But it 
an alsobe tailored to minimal trees or �-stru
ture. Thus it o�ers a general framework in whi
h thevarious des
ription-based approa
hes mentioned in the introdu
tion 
an be implemented,
ombined and 
ompared.Referen
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