A constraint-based treatment of descriptions

Denys Duchier and Claire Gardent
University of the Saarland
denys.duchier@ps.uni-sb.de, claire@coli.uni-sb.de

Abstract

Both in computational linguistics and in formal semantics, descriptions have been
used which are stated in terms of dominance. Yet the issue of how such descriptions
are processed has been little explored. In this paper, we present a constraint-based
treatment of descriptions and apply it to the description-based treatment of discourse
advocated in [GW98a].

Keywords: Underspecified representations, Constraint programming, Dis-
course semantics

1 Introduction

Both in computational linguistics and in formal semantics, descriptions have been used
which are stated in terms of dominance. In the domain of syntactic processing, [MHMS83]
used dominance to support deterministic parsing. In the domain of grammar formalisms,
[VS92] has used dominance to maintain monotonicity within the framework of Feature-
Based Tree Adjoining Grammar (FTAG, [VSJ88]). In formal semantics, [Mus97] used
dominance to capture semantic underspecification and in particular, scope ambiguities
while [ENRX98] extends the idea to parallelism and ellipsis. Finally, [GW98a] use domi-
nance to underspecify the semantic representation of discourse.

Yet the issue of how such descriptions are processed has been little explored. On the
other hand, although dominance-based descriptions have been used for a wide variety of
applications, the particulars both of the descriptions used and of the models assumed vary
from application to application. For instance, [VS92] assumes the models to be quasi-trees
(i.e. sets of trees) whereas [GW98a] take them to be discourse feature structures (a special
kind of DAGs) and [ENRX98] work with so-called A-structures that is, tree structures
extended by a binding and a linking relation. It is therefore particularly useful to develop
algorithms for handling descriptions which are general enough to be parameterisable for
one or another application.

In this paper, we propose an efficient and general constraint-based treatment of de-
scriptions. We then specialise it and show that it can be used to implement the treatment
of discourse advocated in [GW98a, BG98]. The paper is structured as follows. Section 2
introduces [GW98a, BGI8|’s description-based treatment of discourse. In Section 3, a gen-
eral treatment of descriptions is given with a tree-based semantics. This approach is then

generalized to a DAG-based semantics in Section 4 so as to model [GW98a]’s Discourse
Feature Structures.

2 Describing discourse meaning

[GW98a] uses dominance to incrementally build a semantic representation for discourse.
The motivation is the same as in [MHMS83]: underspecifying the structure being built per-
mits incremental, deterministic processing despite local (i.e. temporary) ambiguities. But
what are the structures being described? [GW98a]’s working hypothesis is that the mean-
ing of discourse can be represented by a special kind of DAG (Directed Acyclic Graph)
namely, a Discourse Feature Structure. The meaning of a discourse is not just the conjunc-
tion of the meaning of its constituting sentences; it also includes “relational propositions”
[MTS86] that is, complex assertions which relate two or more discourse meanings. For
instance, the meaning of:

(1) (a.) He was in a foul humour. (b.) He hadn’t slept well that night. (c.)His electric
blanket hadn’t worked.

is not just the conjunctive assertion of (1a), (1b) and (1c). It also includes the inferential
meaning that (1c) caused (1b), and that (1b) caused (la). [GW98a]’s assumption is that
this meaning can be represented by the following DAG:

AND

O

Further, [GW98a] use descriptions as follows. Each time a discourse relation is inferred
to hold between two discourse meanings, a description is licensed which increments the
current description. Interpreting discourse then amounts to computing the dominance-
minimal DFS satisfying the description. More specifically, whenever a discourse relation
R is inferred to hold between two discourse meanings a and b, the following description is

licensed:

o o
Crucially, this description leaves the relation between the discourse relation R and its
current arguments a and b underspecified. This is precisely the feature which permits
both determinism and monotonicity. In what follows, we list the classes of ambiguity

which [GW98b] handles. Section 4 will show how these problems are handled by our
system and with which results.

Attachment ambiguity

Attachment ambiguity stems from incrementality: at some point during processing, a
discourse meaning is known to provide the current argument of a given discourse relation
but it is unclear whether it will also be its final argument or only part of it. The following
example illustrates this.

(2) a. The trains aren’t running now.
b. The conductors’ union called a strike last Sunday.
c. Then the signalmen’s union walked out in sympathy.

At the end of (2b), the hearer infers a causal relation to hold between the meanings
of (2a) and (2b) which is then revised to hold between (2a) and the sequence of (2b)
and (2c). [GW98a]’s observation is that such revisions however, do not trigger a “repair
feeling”. In other words, they do not seem to lead to an increase in processing load and
therefore are best modeled by a monotonic process. The use of dominance permits this.
More specifically, the derivation for (2) proceeds as follows. As (2a-b) is processed, a
causal relation is inferred to hold between (2a) and(2b) thereby licensing the following

description:
CAUSE

N

Similarly, on processing (2c) the hearer infers a discourse relation of SEQUENCE to hold
between the meaning b of (2b) and that ¢ of (2¢) thus licensing the following additions to

the current description.

CAUSE SEQUENCE
v " % v . (A2)

Finally, the inferential component will identify (2b-—c) as providing the right-hand argu-
ment of the CAUSE relation introduced by the first two clauses, which in [GW98a] is taken
to license an equality constraint between the right-hand daughter of the CAUSE node and
the SEQUENCE node. The only minimal structure satisfying (A2) and this re-entrancy
constraint is the following tree:

CAUSE

.a/ . ?QU.ENCE
Y 13

The point to note is that the initial description (A1) captures the local attachment ambigu-
ity triggered by b without introducing non-determinism. Marcus’s deterministic hypothesis

is satisfied: cases of local attachment ambiguity which require no conscious reanalysis are
processed deterministically.

Relation ambiguity

The discourse relation holding between two discourse meanings may be be ambiguous. For
instance, in

(3) a. Max fell
b. Jon pushed him.

(3a) and (3b) may be related either by a causal or by a narrative (i.e. temporally sequen-
tial) relation. The first reading is obvious, the second can be illustrated by imagining the
following continuation:

(4) c. and he rolled off the cliff.

To permit both possibilities, [GW98b] propose to represent the ambiguous discourse rela-
tion by a variable. Further discourse information might disambiguate this variable, which
is then captured by adding the relevant information to the description. In specific, the
final description for (4) is then:

NARRATIVE

Rel / . NARRATIVE
N N

-"a 0 .«

for which the dominance-minimal satisfying DFS is:

NARRATIVE = Rel

L] ﬁ
/ NARRATIVE
°q K_/ d \
b oc
As in [MHMBS83]’s treatment of coordination, distinct variables in the description may point
to the same node in the structure. In this way, the variable discourse relation Rel can be
disambiguated to NARRATIVE.
Scope ambiguity

Discourse exhibits cases of scope ambiguity much like sentences where the ambiguity stems
from the respective scope of discourse relations. For instance, the discourse

(5) a. Sarah reads a novel

b. if she is bored
c. or she is unhappy.

is ambiguous between a reading (if(a, or(b,c))) where Sarah reads a novel if she is either
bored or unhappy; and a reading (or(if(a,b),c)) where if Sarah does not read a novel when
she is bored, then she is unhappy. This ambiguity is captured as in [Mus97] by leaving
the structural relations between scope bearing elements underspecified. So for instance
the description for examples such as (5) has the same structure as given in (A2), but no
additional equality constraint is added. As a result, the description has not one but two
satisfying trees, one for each possible meaning.

Embedded/Conjoined ambiguity
The conjoined/embedded ambiguity is specific to discourse. It is illustrated by the follow-
ing example :
(6) a. Jon didn’t come to work
b. The trains aren’t running.

c. Buses aren’t either.

Depending on intonation and situational knowledge, (6) is ambiguous between a read-
ing (and(cause(a,b), and(b,c))) where the cause for Jon not coming to work is that the
trains aren’t running — and furthermore we learn that buses aren’t running either; and
a reading (cause(a,and(b,c))) in which the cause for Jon not coming to work is the con-
junction of (6b) and (6¢). These two readings are captured by a description whose shape
is identical to (A2). The difference is that instead of identifying the right-hand daughter
of the first discourse relation with the node labelled by the second discourse relation (SE-
QUENCE in A2), the left-hand argument of the second discourse relation (AND) is identified
with the node labelled with b — this captures the fact that b is the final left-hand argument
of AND. The description has two satisfying models: one, tree-like, which captures the
embedded reading, and the other, graph-like, which represents the conjoined reading.

Garden-path ambiguity

Finally, there are ambiguities which lead the hearer to garden-path that is, to experience
conscious processing difficulties. Thus in:

(7) a. Suppose the subject is dangerous.
b. If you touch it,
c. it will blow up.

d. Then we should call the police.

there seems to be a preference for inferring that (7b-c) provides the second argument of
the CONDITION relation marked by suppose. On hearing (7d), the hearer then realises her
mistake and re-analyses (7h-c) as elaborating on (7a). [GW98b] observes that this type
of ambiguity is in stark contrast with the previous ones in that it cannot be captured by
a single description. Either (7b-c) provides the right-hand argument of the CONDITION
relation or it functions as a modifier of its left-hand argument. In the first case, the
description licensed by (7b-c¢) must be dominated by the right-hand daughter of the CON-
DITION node whereas in the second case, it should be dominated by its left-hand daughter.
The two statements are incompatible (there is no structure satisfying both descriptions)
and therefore choosing one over the other may lead to subsequent failure. This is precisely
what happens with (7): if (7b-c) is assumed to provide the right-hand argument of the
CONDITION relation, subsequent processing leads to a description which has no satisfying
structure. “Re-analysis” then takes place: to obtain an appropriate description of the
meaning of (7), the initial description must be undone and another constructed which this
time, will be satisfiable.

3 A constraint-based treatment of descriptions

In this section, we present a constraint-based treatment of descriptions for the semantic
domain of first-order constructor trees. We introduce an intuitive notion of models, called
D-trees, which are related to quasi-trees [RVS92], yet differ from them in that (1) they are
based on strict dominance and (2) any node may be labelled with a constructor of a given
arity. In the next section, this approach is extended to DAGs and applied to [GW98a]’s
treatment of discourse semantics.

3.1 The language

Descriptions can be expressed in terms of dominance constraints. In this section we present
such a formulation, provide an intuitive explanation of what it means to find solutions of
a description problem, and derive a purely declarative, yet very efficient, constraint-based
implementation.

The constraint-based technique devised by the first author has since been carefully
studied by [KNT98]. We follow here their formalization according to which a description
¢ is an arbitrary conjunction of dominance and labeling constraints:

¢ un= oANY |rxaxy|x: flo...2)

where z, y, x; are taken from a set of variables and f is an n-ary function symbol from a
given signature.

The semantics are given by interpretation over finite tree structures. A solution to ¢
consists of a finite tree T' and an interpretation I that maps each variable in ¢ to a node
in T. x <%y means that, in the solution tree T, I(x) must dominate I(y), whereas the
labeling constraint x : f(z1...x,) means that I(x) = f(I(x1)...I(xy,)).

Complexity result. [KNT98] show that the satisfiability of propositional logic for-
mulae can be reduced to the satisfiability of dominance constraints over the signature
{f :2, true: 0, false: 0}, thus establishing the NP-hardness result.

3.2 A Tree-based Semantics

With semantics based on finite trees, a solution to a description ¢ is a tree T and an
interpretation I that maps each variable of ¢ to a node in T'. This has the disadvantage
that every tree T” which contains T as a subtree is also a solution of ¢. Thus, there are
infinitely many solutions to ¢.

Consider the example below: a description ¢ is listed in the box and a solution tree T
is displayed next to it. The interpretation I is represented by listing next to a node the
variables of ¢ which I maps to it.

x1: f(xg x3)
T <k T4

T4 <k Ty

T4 <Kk Tg

T <k T7

v7 2 f(xs 29)
T1 <k X0

To <k T11

z11 : f(xi2 213)
13 . C

There is much in T" which is not required to model ¢. In the picture, all superfluous
information is shown in gray. If we remove all the gray parts, we are left with a much
simpler tree shape:

. <
f T4 T11 f x7
Ts5 12 C Te T13 T8 T9

O 210

The tree shape contains two kinds of nodes: (1) closed nodes are labeled and colored
black; from them emanate solid edges representing immediate dominance; (2) open nodes

are not labeled and hollow; from them emanate dotted edges representing strict dominance
to an arbitrary distance.

The formal notion of a tree shape is called a D-tree [RVSW95] and allows us to define
a more economical semantics by interpretation over finite D-tree structures on a given
signature. A D-tree T' is defined by the inductive rule:

T = f(TlTn) ‘ {Tle}

The first alternative stands for a closed node and the second for an open node. The
semantics of D-trees are given by interpretation over finite trees relative to the same
signature. If I is such an interpretation, we have:

I(f(Ty...T,)) = f(I(Th) ... I(T},))

Open nodes have somewhat less direct semantics: I({T}...T,,}) must be a tree which
has I(TY), ..., I(T,,) as subtrees. These notions can be made precise and formal, but the
exercise lies beyond the scope of this article.

Obviously all trees are also D-trees: so what have we gained? The answer is that we
can now define the notion of a minimal D-tree model. First, we notice that there is a
partial order of specialization on D-trees: T} is said to be an instance of T5 if, by erasing
some information, like we did with the gray bits in the earlier picture, we can transform
Ty into T. Again, this could be made formal.

If we have a D-tree model of ¢, all its instances are also models of ¢, but not all
its generalizations. There exists a unique one which is the most general: this we call a
minimal D-tree model of ¢.

In a minimal D-tree model of ¢, all nodes interpret at least one variable in ¢. Since
there are finitely many of them, ¢ has finitely many D-tree models.

It may be helpful to draw an analogy between minimal D-tree models and most general
unifiers. Much like a most general unifier instantiates two terms only as far as necessary
to make them equal, a minimal D-tree model explicitates only as much of the tree shape
as is necessary to model ¢.

We have stated (without proof) that for every tree model of ¢ there is a unique minimal
D-tree model of which it is an instance. What about the reverse direction? Is it the case
that for every D-tree model of ¢ there exists a finite tree which is a ground instance of
that model?

Obviously the signature must contain at least one constant ¢ (nullary function symbol),
else we could not construct a leaf node.! If the signature contains at least one binary
function symbol? f, then we can replace any open node {} by ¢, {T1} by f(T} ¢), and
{Th Ty...} by f(Ty f(T»...)). By repeating this procedure, we obtain a ground instance.

Thus, under the reasonable assumption that the signature contains at least one nullary
function ¢ and one n-ary function f with n > 2, every D-tree model of ¢ denotes a non-
empty family of ground tree models of ¢.

'The domain of interpretation would be empty.
2or n-ary, with n > 2, in which case we can arbitrarily set n—2 arguments to ¢ and obtain the equivalent
of a binary function symbol.

Thus we have established that to enumerate the minimal D-tree models is both com-
plete and sound with respect to the original tree-based semantics. It also has the very
desirable properties of being finite and systematic (no repeats).

One last remark concerns a technical infelicity in the notion of minimal D-tree model.
A D-tree model of ¢ must consist of a set of D-trees: typically the set is a singleton, but
not necessarily as the example below illustrates:

3.3 A constraint-based Approach

Our goal is now to devise a computationally effective method to enumerate the minimal D-
tree models of a description ¢. We are going to do this by representing the interpretation of
a variable x of ¢ as an underspecified term N in a constraint programming language. This
is what Prolog programmers have been doing for years when representing underspecified
trees using terms containing variables. The search procedure will simply look for all
possible arrangements of these representations into D-trees that model ¢.

The idea is that every constraint in ¢ involving x and y will be translated into a
constraint involving terms N® and NY. For this strategy to be effective, the translated
constraints must involve quantities which are local to N® and NY. The most important
constraint is that of dominance, and, in this respect, it is crucial to notice that every two
nodes N* and NY of a D-tree always stand in one of four mutually exclusive relationships:

N? = NY they are equal

N? a4+ NY N7 strictly dominates NY
NY a4+ N* NV strictly dominates N*
N® 1 NY they are unrelated

For every N* we can keep track of all variables whose interpretation is equal to, strictly
dominates, is strictly dominated, or is unrelated to that of x.

In earlier pictures, we represented an interpretation I by decorating each node of a D-
tree with the set of variables of ¢ that I maps to it. Now, we simply extend this decoration
with the set of variables that are above, below, and unrelated.

We assume a constraint language that supports set variables. Most readers will be
familiar with the idea of finite domain variable, i.e. a variable that denotes an integer and
can be constrained (e.g. © < y). Set variables are just the same idea but ranging over sets.
Our implementation language (Oz, [Smo95]) supports only finite sets of integers, whose
constraint theory has an extremely efficient implementation. However, the formulation
which we present here does not depend on this restriction.

The idea is that for every node N¥, we make explicit the set of variables whose inter-
pretations are equal, above, below, and unrelated to N*. We represent N by the feature

structure below:

= : NZ
-+ NI,
+> Njfl>
L = N7

we write N2 to notate feature a of term N?®. Here, NZ is the set of variables whose
interpretations are equal to that of x. In earlier pictures, we represented this set by listing
the variables to the right of the node. N, is the set of variables whose interpretations are
strictly dominated by the interpretation of x, and N{ are these variables whose interpre-
tations neither dominate nor are dominated by the interpretation of x: we say that their
interpretations are unrelated.

Since the interpretations of any two variables must stand in one of the mutually exclu-
sive relationships described earlier, the sets N2, N7, , NY and N{ must form a partition
of the set V of variables of ¢:

VZN:L‘HN<1+H’JN+|>H’JNJ_

where W denotes disjoint union. Furthermore, z must be in the set of variables mapped
to N¥:

xz e N®
For convenience, we define N, = N_ U Ny and N, = N_ U N,,. The dominance
constraint = <x y translates to the constraint N* <x NY:

NTax NY = NI C N
N7 C NY

NZ D N,

To account for the labeling constraint x : f(x1... z,), we equip nodes with the additional
feature ¢. The labeling constraint translates as follows:

NZ = f(N®... Non)
N* = NIlw...wNIr
Nz = N —..= N

The first line serves two purposes: it guarantees that two equal nodes (1) must be labeled
with the same constructor, (2) must have (pairwise) equal daughters.

The tree structure is guaranteed by requiring that every pair of nodes N* and NY
stand in one of the four mutually exclusive relationships described earlier:

N"=NY Vv N'«+NY Vv N'4sNY v N”LNY (a)

These alternatives can be translated according to the following definitions:

N*=NY = unify(N", NY)
N*#£NY = NZANY=
N*a+NY = NTaxNY A NT#NY
N*INY = NLCNY A NYCN?

10

The first alternative involves unification of set variables: when the element domain consists
of terms, this is a very expensive AC-unification problem; when the elements are integers,
it is a very efficient or-like operation. We assume the latter: in our encoding, every variable
is represented by a distinct integer.

Note that the only source of disjunction comes from formula schema («): thus, simply
by arbitrarily choosing the relationship in which every two nodes stand, we obtain a
purely conjunctive formula. Inferential closure (constraint propagation) either derives a
contradiction or constructs a minimal D-tree model (a solved form).

3.4 Efficient Implementation

So far, we have specified declaratively what all the constraints should be. Every solution
of this constraint system represents a D-tree model of ¢. We now explain how to efficiently
enumerate all and only the minimal D-tree models.

In a minimal D-tree model, the relationship in which any two nodes N* and N¥ stand
is determined. We can make this choice explicit in (a) by introducing a finite domain
variable C*¥ € {1..4}:

c*%=1 AN N*"=NY
\Y% cC*W =2 AN NTa+ NV
\Y% c*%=3 AN N?4>NY
\% c*¥=4 AN N*1NY

This does not change the solutions since the alternatives are mutually exclusive. Choosing
C*Y selects precisely one alternative; the others become inconsistent. In every D-tree
model, C*¥ must be determined. By making no further choices, we enumerate only mini-
mal D-tree models. Thus, the problem of searching for a solution to the initial dominance
description has been reduced to the search for a consistent assignment to the choice vari-
ables C*Y Vx,y € V.

Computationally, we are going to make these choices in an incremental sequence. As
soon as one choice has been decided, the constraint of the selected alternative strengthens
the partial description of the solution. Often, the currently known constraints are sufficient
to eliminate all but one of the alternatives in a disjunction. It is desirable to notice this
as soon as possible and add the remaining alternative to the global description.

The programming language Oz makes this possible. Disjunctions are implemented as
concurrent agents that speculatively investigate their alternatives.> When only a single
consistent alternative remains, it is automatically committed (chosen).

A disadvantage of the 4-way disjunction («) is that it can only contribute to the global
constraints when it has been fully decided. A more effective formulation separates the
alternatives into 4 concurrent agents:

C*¥ =1AN*=NY
C*"Y =2ANN* a4+ NY
C*Y =3 ANNYa+ N*
C*"Y =4 ANN* L NY

C™Y £ 1 AN® £ NV
C™Y £ 2 A N g+ NV
C™Y £ 3 ANV 4+ N*
C™Y £ 4 AN® f NV

<< <L

3This generalizes the idea of deep guards.

11

As soon as one alternative becomes inconsistent, its negation is added to the global store.
With this encoding, the standard first-fail search strategy appears to give rather good
results.

4 Application to discourse

We now show how the constraint-based approach described above can be extended to
model [GW98a]’s treatment of discourse. First, we tailor the above framework to a DAG-
based semantics as advocated in [BG98]. Then, we describe its use for implementing
[GW98a]’s account.

4.1 A DAG-based Semantics

We can develop a similar framework with semantics based on finite DAGs. It can be

obtained by weakening the previous formulation (trees are a subset of dags), and we shall

be looking for minimal D-dag models defined analogously to minimal D-tree models.
Due to the requirement of acyclicity, it is still the case that:

V:N:L‘!'JNQ_FL‘HN_}_DL‘HNL

Thus, both our first equation and our search strategy remain unchanged. However, the

translation of N¥<xN¥ looses the 3rd constraint since nothing can be concluded concerning
the sets N7 and NY:

NZ D NY

NTax NY = B = %

{ NI C NL

Finally, for the labeling constraint = : f(x1...x,), it is no longer the case that N*! ...
N*» must be disjoint subtrees. However our linguistic application stipulates that no sibling
may dominate another. Thus the translation becomes:

NP = f(N® ... N™)
Nz = NIIU...UNZ
0 = N%ANy VYi#jel.n

Nothing else need change. Results of completeness, soundness, finiteness and systematicity
still hold.

4.2 Treatment of Discourse Descriptions

Discourse descriptions are given dag-based semantics as outlined in the previous section.
To account for certain phenomena, we have found it convenient to decompose the labeling
constraint x : f(x1...x,) into two simpler constraints: one that specifies the constructor
and one that specifies the daughters. A description is now defined by the inductive rule:

¢ = OANG |axaky|la:fla: (w2,

12

If I is an interpretation of ¢, x <xy means that I(x) must dominate I(y), = : f means that
I(x) must be labeled with constructor f, and z : {(z1...x,) means that I(x) is labeled
with an n-ary constructor and has daughters I(x1) through I(x,). In the following, we
write z : f{x1...2,) to abbreviate the common case x : f Az : (x1...2,)

Consider the ‘scope ambiguity’ example on page 4: (a) Sarah reads a novel (b) if she
is bored (c) or she is unhappy. The description is displayed in the box below.

Eef ozEpoer [

Explorer Move Search Modes Hide Options

T : IF<332, 334)

1 IF

v
r3ea

xr7 OR

w8 oY

O xg

vy
$5°b

O xg

v
T9ecC

To <k T3
x3 @ a)
Ty <k Ty
x5 2 b()

r7 : OR(6, T3)
Tg Ik Ty
Ty <k Ig

xg : ()

Time: 80ms (D3 G2 M2 Depth: 3

Additionally to the description, our linguistic application makes the following stipulations:

e there is a unique root: the interpretation of one variable dominates all the others

e a variable which is not assigned a label in the description must be identified with

one that is

The corresponding search tree is displayed in the window on the right: the blue circles
represent choice nodes, the red squares failed nodes, and the green diamonds are the two

solutions. In this example, the full search tree is o

btained in 80ms.

The ability to state constructor and daughter constraints separately allows us to ex-
pression the ‘relation ambiguity’ description of page 4 as follows:

¢ NARRATIVE
L]
567"(g é

x1 Rel 29 NARRATIVE
el

T

r11 O

¥
T12°C

x1 is simply given the daughter constraint x; : (xs

13

(T2,24)

T <k I3

x3 : a)

T4 Sk Ty

Iy b<>

X6 : NARRATIVE(x7, Tg)
X7 <k I3

g <k Tg

Zg : NARRATIVE(x10, ¥11)
10 <k Ty

X

T11 <k T12
219t ()

,SU4>,

but its label remains unspecified.

5 Conclusion

In computational linguistics and formal semantics, descriptions of trees and DAGs stated
in terms of dominance have gained popularity. In this paper, we have contributed a
constraint-based framework for processing such descriptions.

Our approach is purely declarative and formulated in terms of constraints between sets
of variables which straightforwardly capture what it means for two nodes to be part of a
tree (or graph) structure, or to stand in a more specific dominance relationship. By taking
advantage of modern constraint programming technology, this transparent declarative en-
coding, when further equipped with a search strategy, also constitutes an implementation.

For the tree-based semantics, experimental results indicate that even the simplistic
first-fail enumeration of the choice variables gives excellent performance. The NP-hardness
result, however, shows that we cannot expect miracles. From the computational point of
view, constraint programming offers two potential advantages: (1) an efficient implemen-
tation of inference through constraint propagation, and (2) an efficient treatment of value
disjunction through finite domain and finite set variables. It is the job of the search
strategy to take effective advantage of the framework. In the weaker semantic domains of
DAGs, its importance becomes again critical.

A methodological bonus of our declarative approach is that the design of an appro-
priate search strategy can be investigated independently: the search strategy is merely a
parameter of our system. We are currently exploring the effectiveness of more specialized
search trategies.

Finally, our treatement of descriptions is stated in general terms using D-trees as the
basic models. As we showed, the approach can easily be tailored to graphs. But it can also
be tailored to minimal trees or A-structure. Thus it offers a general framework in which the
various description-based approaches mentioned in the introduction can be implemented,
combined and compared.

References

[BGIS] Patrick Blackburn and Claire Gardent. A specification language for discourse.
In Proceedings of LACL’98 (Logical Aspects of Computational Linguistics),
Grenoble, France, 1998.

[ENRX98] M. Egg, J. Niehren, P. Ruhrberg, and F. Xu. Constraints over lambda-
structures in semantic underspecification. In Proceedings of ACL/COLING
’98, Montreal, Canada, 1998.

[GW98a] Claire Gardent and Bonnie Webber. Describing discourse semantics. In Pro-
ceedings of the 4th TAG+ Workshop, University of Pennsylvania, Philadelphia,
1998.

[GWI8b] Claire Gardent and Bonnie Webber. Incremental discourse processing. In
preparation, 1998.

14

[KNT98]

[MHMS3]

IMTS6]

[Mus97]

[RVS92]

[RVSW95]

[Smo95]

[VS92]

[VSJSS]

Alexander Koller, Joachim Niehren, and Ralf Treinen. Dominance constraints:
Algorithms and complexity. In Third International Conference on Logical As-
pects of Computational Linguistics, Grenoble, France, December 1998. Ex-
tended abstract.

M.P.Marcus, D. Hindle, and M.M.Fleck. Talking about talking about trees. In
Proceedings of the 21st Annual Meeting of the Association for Computational
Linguistics, Cambridge, MA, 1983.

William Mann and Sandra Thompson. Relational propositions in discourse.
Discourse Processes, 9:57-90, 1986.

Reinhard Muskens. Order-independence and underspecification. University of
Tilburg, 1997.

James Rogers and K. Vijay-Shanker. Reasoning with descriptions of trees. In
Proc. ACL, 1992,

Owen Rambow, K. Vijay-Shanker, and David Weir. D-tree grammars. In
Proceedings of ACL’95, pages 151-158, MIT, Cambridge, 1995.

Gert Smolka. The oz programming model. In Jan van Leeuwen, editor, Com-
puter Science Today, volume 1000 of LNCS, pages 324-343. Springer Verlag,
1995.

K. Vijay-Shankar. Using descriptions of trees in a tree-adjoining grammar.
Computational Linguistics, (18):481-518, 1992.

K. Vijay-Shanker and Aravind Joshi. Feature based tags. In Proceedings of
the 12th International Conference of the Association for Computational Lin-
guistics, pages 573-577, Budapest, 1988.

15

