
A onstraint-based treatment of desriptionsDenys Duhier and Claire GardentUniversity of the Saarlanddenys.duhier�ps.uni-sb.de, laire�oli.uni-sb.deAbstratBoth in omputational linguistis and in formal semantis, desriptions have beenused whih are stated in terms of dominane. Yet the issue of how suh desriptionsare proessed has been little explored. In this paper, we present a onstraint-basedtreatment of desriptions and apply it to the desription-based treatment of disourseadvoated in [GW98a℄.Keywords: Underspei�ed representations, Constraint programming, Dis-ourse semantis1 IntrodutionBoth in omputational linguistis and in formal semantis, desriptions have been usedwhih are stated in terms of dominane. In the domain of syntati proessing, [MHM83℄used dominane to support deterministi parsing. In the domain of grammar formalisms,[VS92℄ has used dominane to maintain monotoniity within the framework of Feature-Based Tree Adjoining Grammar (FTAG, [VSJ88℄). In formal semantis, [Mus97℄ useddominane to apture semanti underspei�ation and in partiular, sope ambiguitieswhile [ENRX98℄ extends the idea to parallelism and ellipsis. Finally, [GW98a℄ use domi-nane to underspeify the semanti representation of disourse.Yet the issue of how suh desriptions are proessed has been little explored. On theother hand, although dominane-based desriptions have been used for a wide variety ofappliations, the partiulars both of the desriptions used and of the models assumed varyfrom appliation to appliation. For instane, [VS92℄ assumes the models to be quasi-trees(i.e. sets of trees) whereas [GW98a℄ take them to be disourse feature strutures (a speialkind of DAGs) and [ENRX98℄ work with so-alled �-strutures that is, tree struturesextended by a binding and a linking relation. It is therefore partiularly useful to developalgorithms for handling desriptions whih are general enough to be parameterisable forone or another appliation.In this paper, we propose an eÆient and general onstraint-based treatment of de-sriptions. We then speialise it and show that it an be used to implement the treatmentof disourse advoated in [GW98a, BG98℄. The paper is strutured as follows. Setion 2introdues [GW98a, BG98℄'s desription-based treatment of disourse. In Setion 3, a gen-eral treatment of desriptions is given with a tree-based semantis. This approah is then1



generalized to a DAG-based semantis in Setion 4 so as to model [GW98a℄'s DisourseFeature Strutures.2 Desribing disourse meaning[GW98a℄ uses dominane to inrementally build a semanti representation for disourse.The motivation is the same as in [MHM83℄: underspeifying the struture being built per-mits inremental, deterministi proessing despite loal (i.e. temporary) ambiguities. Butwhat are the strutures being desribed? [GW98a℄'s working hypothesis is that the mean-ing of disourse an be represented by a speial kind of DAG (Direted Ayli Graph)namely, a Disourse Feature Struture. The meaning of a disourse is not just the onjun-tion of the meaning of its onstituting sentenes; it also inludes \relational propositions"[MT86℄ that is, omplex assertions whih relate two or more disourse meanings. Forinstane, the meaning of:(1) (a.) He was in a foul humour. (b.) He hadn't slept well that night. (.)His eletriblanket hadn't worked.is not just the onjuntive assertion of (1a), (1b) and (1). It also inludes the inferentialmeaning that (1) aused (1b), and that (1b) aused (1a). [GW98a℄'s assumption is thatthis meaning an be represented by the following DAG:
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ba bb bFurther, [GW98a℄ use desriptions as follows. Eah time a disourse relation is inferredto hold between two disourse meanings, a desription is liensed whih inrements theurrent desription. Interpreting disourse then amounts to omputing the dominane-minimal DFS satisfying the desription. More spei�ally, whenever a disourse relationR is inferred to hold between two disourse meanings a and b, the following desription isliensed: R

b a bbCruially, this desription leaves the relation between the disourse relation R and itsurrent arguments a and b underspei�ed. This is preisely the feature whih permitsboth determinism and monotoniity. In what follows, we list the lasses of ambiguitywhih [GW98b℄ handles. Setion 4 will show how these problems are handled by oursystem and with whih results. 2



Attahment ambiguityAttahment ambiguity stems from inrementality: at some point during proessing, adisourse meaning is known to provide the urrent argument of a given disourse relationbut it is unlear whether it will also be its �nal argument or only part of it. The followingexample illustrates this.(2) a. The trains aren't running now.b. The ondutors' union alled a strike last Sunday.. Then the signalmen's union walked out in sympathy.At the end of (2b), the hearer infers a ausal relation to hold between the meaningsof (2a) and (2b) whih is then revised to hold between (2a) and the sequene of (2b)and (2). [GW98a℄'s observation is that suh revisions however, do not trigger a \repairfeeling". In other words, they do not seem to lead to an inrease in proessing load andtherefore are best modeled by a monotoni proess. The use of dominane permits this.More spei�ally, the derivation for (2) proeeds as follows. As (2a{b) is proessed, aausal relation is inferred to hold between (2a) and(2b) thereby liensing the followingdesription:
b

ause
ba bb (A1)Similarly, on proessing (2) the hearer infers a disourse relation of sequene to holdbetween the meaning b of (2b) and that  of (2) thus liensing the following additions tothe urrent desription.
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ba bb b (A2)Finally, the inferential omponent will identify (2b{) as providing the right-hand argu-ment of the ause relation introdued by the �rst two lauses, whih in [GW98a℄ is takento liense an equality onstraint between the right-hand daughter of the ause node andthe sequene node. The only minimal struture satisfying (A2) and this re-entranyonstraint is the following tree:
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bb b (A3)The point to note is that the initial desription (A1) aptures the loal attahment ambigu-ity triggered by b without introduing non-determinism. Marus's deterministi hypothesis3



is satis�ed: ases of loal attahment ambiguity whih require no onsious reanalysis areproessed deterministially.Relation ambiguityThe disourse relation holding between two disourse meanings may be be ambiguous. Forinstane, in(3) a. Max fellb. Jon pushed him.(3a) and (3b) may be related either by a ausal or by a narrative (i.e. temporally sequen-tial) relation. The �rst reading is obvious, the seond an be illustrated by imagining thefollowing ontinuation:(4) . and he rolled o� the li�.To permit both possibilities, [GW98b℄ propose to represent the ambiguous disourse rela-tion by a variable. Further disourse information might disambiguate this variable, whihis then aptured by adding the relevant information to the desription. In spei�, the�nal desription for (4) is then:
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b
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narrative
ba bb bfor whih the dominane-minimal satisfying DFS is:
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narrative = Rel
ba b

narrative
bb bAs in [MHM83℄'s treatment of oordination, distint variables in the desription may pointto the same node in the struture. In this way, the variable disourse relation Rel an bedisambiguated to narrative.Sope ambiguityDisourse exhibits ases of sope ambiguity muh like sentenes where the ambiguity stemsfrom the respetive sope of disourse relations. For instane, the disourse(5) a. Sarah reads a novel 4



b. if she is bored. or she is unhappy.is ambiguous between a reading (if(a, or(b,))) where Sarah reads a novel if she is eitherbored or unhappy; and a reading (or(if(a,b),)) where if Sarah does not read a novel whenshe is bored, then she is unhappy. This ambiguity is aptured as in [Mus97℄ by leavingthe strutural relations between sope bearing elements underspei�ed. So for instanethe desription for examples suh as (5) has the same struture as given in (A2), but noadditional equality onstraint is added. As a result, the desription has not one but twosatisfying trees, one for eah possible meaning.Embedded/Conjoined ambiguityThe onjoined/embedded ambiguity is spei� to disourse. It is illustrated by the follow-ing example :(6) a. Jon didn't ome to workb. The trains aren't running.. Buses aren't either.Depending on intonation and situational knowledge, (6) is ambiguous between a read-ing (and(ause(a,b), and(b,))) where the ause for Jon not oming to work is that thetrains aren't running { and furthermore we learn that buses aren't running either; anda reading (ause(a,and(b,))) in whih the ause for Jon not oming to work is the on-juntion of (6b) and (6). These two readings are aptured by a desription whose shapeis idential to (A2). The di�erene is that instead of identifying the right-hand daughterof the �rst disourse relation with the node labelled by the seond disourse relation (se-quene in A2), the left-hand argument of the seond disourse relation (and) is identi�edwith the node labelled with b { this aptures the fat that b is the �nal left-hand argumentof and. The desription has two satisfying models: one, tree-like, whih aptures theembedded reading, and the other, graph-like, whih represents the onjoined reading.Garden-path ambiguityFinally, there are ambiguities whih lead the hearer to garden-path that is, to experieneonsious proessing diÆulties. Thus in:(7) a. Suppose the subjet is dangerous.b. If you touh it,. it will blow up.d. Then we should all the polie. 5



there seems to be a preferene for inferring that (7b-) provides the seond argument ofthe ondition relation marked by suppose. On hearing (7d), the hearer then realises hermistake and re-analyses (7b-) as elaborating on (7a). [GW98b℄ observes that this typeof ambiguity is in stark ontrast with the previous ones in that it annot be aptured bya single desription. Either (7b-) provides the right-hand argument of the onditionrelation or it funtions as a modi�er of its left-hand argument. In the �rst ase, thedesription liensed by (7b-) must be dominated by the right-hand daughter of the on-dition node whereas in the seond ase, it should be dominated by its left-hand daughter.The two statements are inompatible (there is no struture satisfying both desriptions)and therefore hoosing one over the other may lead to subsequent failure. This is preiselywhat happens with (7): if (7b-) is assumed to provide the right-hand argument of theondition relation, subsequent proessing leads to a desription whih has no satisfyingstruture. \Re-analysis" then takes plae: to obtain an appropriate desription of themeaning of (7), the initial desription must be undone and another onstruted whih thistime, will be satis�able.3 A onstraint-based treatment of desriptionsIn this setion, we present a onstraint-based treatment of desriptions for the semantidomain of �rst-order onstrutor trees. We introdue an intuitive notion of models, alledD-trees, whih are related to quasi-trees [RVS92℄, yet di�er from them in that (1) they arebased on strit dominane and (2) any node may be labelled with a onstrutor of a givenarity. In the next setion, this approah is extended to DAGs and applied to [GW98a℄'streatment of disourse semantis.3.1 The languageDesriptions an be expressed in terms of dominane onstraints. In this setion we presentsuh a formulation, provide an intuitive explanation of what it means to �nd solutions ofa desription problem, and derive a purely delarative, yet very eÆient, onstraint-basedimplementation.The onstraint-based tehnique devised by the �rst author has sine been arefullystudied by [KNT98℄. We follow here their formalization aording to whih a desription� is an arbitrary onjuntion of dominane and labeling onstraints:� ::= � ^ �0 j x /? y j x : f(x1 : : : xn)where x, y, xi are taken from a set of variables and f is an n-ary funtion symbol from agiven signature.The semantis are given by interpretation over �nite tree strutures. A solution to �onsists of a �nite tree T and an interpretation I that maps eah variable in � to a nodein T . x /? y means that, in the solution tree T , I(x) must dominate I(y), whereas thelabeling onstraint x : f(x1 : : : xn) means that I(x) = f(I(x1) : : : I(xn)).6



Complexity result. [KNT98℄ show that the satis�ability of propositional logi for-mulae an be redued to the satis�ability of dominane onstraints over the signatureff : 2; true : 0; false : 0g, thus establishing the NP-hardness result.3.2 A Tree-based SemantisWith semantis based on �nite trees, a solution to a desription � is a tree T and aninterpretation I that maps eah variable of � to a node in T . This has the disadvantagethat every tree T 0 whih ontains T as a subtree is also a solution of �. Thus, there arein�nitely many solutions to �.Consider the example below: a desription � is listed in the box and a solution tree Tis displayed next to it. The interpretation I is represented by listing next to a node thevariables of � whih I maps to it. f f x1g x2f x4 x11 x5 x12  x6 x13 ff x7f x8 x10  f x9 
 x3 x1 : f(x2 x3)x2 /? x4x4 /? x5x4 /? x6x1 /? x7x7 : f(x8 x9)x1 /? x10x2 /? x11x11 : f(x12 x13)x13 : 

There is muh in T whih is not required to model �. In the piture, all superuousinformation is shown in gray. If we remove all the gray parts, we are left with a muhsimpler tree shape: f x1x2f x4 x11x5 x12  x6 x13 f x7x8x10 x9x3
The tree shape ontains two kinds of nodes: (1) losed nodes are labeled and oloredblak; from them emanate solid edges representing immediate dominane; (2) open nodes7



are not labeled and hollow; from them emanate dotted edges representing strit dominaneto an arbitrary distane.The formal notion of a tree shape is alled a D-tree [RVSW95℄ and allows us to de�nea more eonomial semantis by interpretation over �nite D-tree strutures on a givensignature. A D-tree T is de�ned by the indutive rule:T ::= f(T1 : : : Tn) j fT1 : : : TmgThe �rst alternative stands for a losed node and the seond for an open node. Thesemantis of D-trees are given by interpretation over �nite trees relative to the samesignature. If I is suh an interpretation, we have:I(f(T1 : : : Tn)) = f(I(T1) : : : I(Tn))Open nodes have somewhat less diret semantis: I(fT1 : : : Tmg) must be a tree whihhas I(T1), . . . , I(Tm) as subtrees. These notions an be made preise and formal, but theexerise lies beyond the sope of this artile.Obviously all trees are also D-trees: so what have we gained? The answer is that wean now de�ne the notion of a minimal D-tree model. First, we notie that there is apartial order of speialization on D-trees: T1 is said to be an instane of T2 if, by erasingsome information, like we did with the gray bits in the earlier piture, we an transformT1 into T2. Again, this ould be made formal.If we have a D-tree model of �, all its instanes are also models of �, but not allits generalizations. There exists a unique one whih is the most general: this we all aminimal D-tree model of �.In a minimal D-tree model of �, all nodes interpret at least one variable in �. Sinethere are �nitely many of them, � has �nitely many D-tree models.It may be helpful to draw an analogy between minimal D-tree models andmost generaluni�ers. Muh like a most general uni�er instantiates two terms only as far as neessaryto make them equal, a minimal D-tree model expliitates only as muh of the tree shapeas is neessary to model �.We have stated (without proof) that for every tree model of � there is a unique minimalD-tree model of whih it is an instane. What about the reverse diretion? Is it the asethat for every D-tree model of � there exists a �nite tree whih is a ground instane ofthat model?Obviously the signature must ontain at least one onstant  (nullary funtion symbol),else we ould not onstrut a leaf node.1 If the signature ontains at least one binaryfuntion symbol2 f , then we an replae any open node fg by , fT1g by f(T1 ), andfT1 T2 : : :g by f(T1 f(T2 : : :)). By repeating this proedure, we obtain a ground instane.Thus, under the reasonable assumption that the signature ontains at least one nullaryfuntion  and one n-ary funtion f with n � 2, every D-tree model of � denotes a non-empty family of ground tree models of �.1The domain of interpretation would be empty.2or n-ary, with n � 2, in whih ase we an arbitrarily set n�2 arguments to  and obtain the equivalentof a binary funtion symbol. 8



Thus we have established that to enumerate the minimal D-tree models is both om-plete and sound with respet to the original tree-based semantis. It also has the verydesirable properties of being �nite and systemati (no repeats).One last remark onerns a tehnial infeliity in the notion of minimal D-tree model.A D-tree model of � must onsist of a set of D-trees: typially the set is a singleton, butnot neessarily as the example below illustrates:ff  f  f  f 3.3 A onstraint-based ApproahOur goal is now to devise a omputationally e�etive method to enumerate the minimal D-tree models of a desription �. We are going to do this by representing the interpretation ofa variable x of � as an underspei�ed termNx in a onstraint programming language. Thisis what Prolog programmers have been doing for years when representing underspei�edtrees using terms ontaining variables. The searh proedure will simply look for allpossible arrangements of these representations into D-trees that model �.The idea is that every onstraint in � involving x and y will be translated into aonstraint involving terms Nx and Ny. For this strategy to be e�etive, the translatedonstraints must involve quantities whih are loal to Nx and Ny. The most importantonstraint is that of dominane, and, in this respet, it is ruial to notie that every twonodes Nx and Ny of a D-tree always stand in one of four mutually exlusive relationships:Nx = Ny they are equalNx /+Ny Nx stritly dominates NyNy /+Nx Ny stritly dominates NxNx ?Ny they are unrelatedFor every Nx we an keep trak of all variables whose interpretation is equal to, stritlydominates, is stritly dominated, or is unrelated to that of x.In earlier pitures, we represented an interpretation I by deorating eah node of a D-tree with the set of variables of � that I maps to it. Now, we simply extend this deorationwith the set of variables that are above, below, and unrelated.We assume a onstraint language that supports set variables. Most readers will befamiliar with the idea of �nite domain variable, i.e. a variable that denotes an integer andan be onstrained (e.g. x < y). Set variables are just the same idea but ranging over sets.Our implementation language (Oz, [Smo95℄) supports only �nite sets of integers, whoseonstraint theory has an extremely eÆient implementation. However, the formulationwhih we present here does not depend on this restrition.The idea is that for every node Nx, we make expliit the set of variables whose inter-pretations are equal, above, below, and unrelated to Nx. We represent Nx by the feature9



struture below: 26664 = : Nx=/+ : Nx/++. : Nx+.? : Nx? 37775we write Nx� to notate feature � of term Nx. Here, Nx= is the set of variables whoseinterpretations are equal to that of x. In earlier pitures, we represented this set by listingthe variables to the right of the node. Nx/+ is the set of variables whose interpretations arestritly dominated by the interpretation of x, and Nx? are these variables whose interpre-tations neither dominate nor are dominated by the interpretation of x: we say that theirinterpretations are unrelated.Sine the interpretations of any two variables must stand in one of the mutually exlu-sive relationships desribed earlier, the sets Nx=, Nx/+, Nx+. and Nx? must form a partitionof the set V of variables of �: V = N= ℄N/+ ℄N+. ℄N?where ℄ denotes disjoint union. Furthermore, x must be in the set of variables mappedto Nx: x 2 Nx=For onveniene, we de�ne N/? = N= [ N/+ and N?. = N= [ N+.. The dominaneonstraint x /? y translates to the onstraint Nx /? Ny:Nx /? Ny � 8><>: Nx/? � Ny/?Nx?. � Ny?.Nx? � Ny?To aount for the labeling onstraint x : f(x1 : : : xn), we equip nodes with the additionalfeature `. The labeling onstraint translates as follows:N x̀ = f(Nx1 : : : Nxn)Nx/+ = Nx1/? ℄ : : : ℄Nxn/?Nx?. = Nx1+. = : : : = Nxn+.The �rst line serves two purposes: it guarantees that two equal nodes (1) must be labeledwith the same onstrutor, (2) must have (pairwise) equal daughters.The tree struture is guaranteed by requiring that every pair of nodes Nx and Nystand in one of the four mutually exlusive relationships desribed earlier:Nx = Ny _ Nx /+Ny _ Nx +. Ny _ Nx ?Ny (�)These alternatives an be translated aording to the following de�nitions:Nx = Ny � unify(Nx; Ny)Nx 6= Ny � Nx= \Ny= = ;Nx /+Ny � Nx /? Ny ^ Nx 6= NyNx ?Ny � Nx/? � Ny? ^ Ny/? � Nx?10



The �rst alternative involves uni�ation of set variables: when the element domain onsistsof terms, this is a very expensive AC-uni�ation problem; when the elements are integers,it is a very eÆient or-like operation. We assume the latter: in our enoding, every variableis represented by a distint integer.Note that the only soure of disjuntion omes from formula shema (�): thus, simplyby arbitrarily hoosing the relationship in whih every two nodes stand, we obtain apurely onjuntive formula. Inferential losure (onstraint propagation) either derives aontradition or onstruts a minimal D-tree model (a solved form).3.4 EÆient ImplementationSo far, we have spei�ed delaratively what all the onstraints should be. Every solutionof this onstraint system represents a D-tree model of �. We now explain how to eÆientlyenumerate all and only the minimal D-tree models.In a minimal D-tree model, the relationship in whih any two nodes Nx and Ny standis determined. We an make this hoie expliit in (�) by introduing a �nite domainvariable Cx;y 2 f1::4g: Cx;y = 1 ^ Nx = Ny_ Cx;y = 2 ^ Nx /+Ny_ Cx;y = 3 ^ Nx +. Ny_ Cx;y = 4 ^ Nx ?NyThis does not hange the solutions sine the alternatives are mutually exlusive. ChoosingCx;y selets preisely one alternative; the others beome inonsistent. In every D-treemodel, Cx;y must be determined. By making no further hoies, we enumerate only mini-mal D-tree models. Thus, the problem of searhing for a solution to the initial dominanedesription has been redued to the searh for a onsistent assignment to the hoie vari-ables Cx;y 8x; y 2 V.Computationally, we are going to make these hoies in an inremental sequene. Assoon as one hoie has been deided, the onstraint of the seleted alternative strengthensthe partial desription of the solution. Often, the urrently known onstraints are suÆientto eliminate all but one of the alternatives in a disjuntion. It is desirable to notie thisas soon as possible and add the remaining alternative to the global desription.The programming language Oz makes this possible. Disjuntions are implemented asonurrent agents that speulatively investigate their alternatives.3 When only a singleonsistent alternative remains, it is automatially ommitted (hosen).A disadvantage of the 4-way disjuntion (�) is that it an only ontribute to the globalonstraints when it has been fully deided. A more e�etive formulation separates thealternatives into 4 onurrent agents:Cx;y = 1 ^Nx = Ny _ Cx;y 6= 1 ^Nx 6= NyCx;y = 2 ^Nx /+Ny _ Cx;y 6= 2 ^Nx /6 +NyCx;y = 3 ^Ny /+Nx _ Cx;y 6= 3 ^Ny /6 +NxCx;y = 4 ^Nx ?Ny _ Cx;y 6= 4 ^Nx ?6 Ny3This generalizes the idea of deep guards. 11



As soon as one alternative beomes inonsistent, its negation is added to the global store.With this enoding, the standard �rst-fail searh strategy appears to give rather goodresults.4 Appliation to disourseWe now show how the onstraint-based approah desribed above an be extended tomodel [GW98a℄'s treatment of disourse. First, we tailor the above framework to a DAG-based semantis as advoated in [BG98℄. Then, we desribe its use for implementing[GW98a℄'s aount.4.1 A DAG-based SemantisWe an develop a similar framework with semantis based on �nite DAGs. It an beobtained by weakening the previous formulation (trees are a subset of dags), and we shallbe looking for minimal D-dag models de�ned analogously to minimal D-tree models.Due to the requirement of ayliity, it is still the ase that:V = N= ℄N/+ ℄N+. ℄N?Thus, both our �rst equation and our searh strategy remain unhanged. However, thetranslation of Nx/?Ny looses the 3rd onstraint sine nothing an be onluded onerningthe sets Nx? and Ny?: Nx /? Ny � ( Nx/? � Ny/?Nx?. � Ny?.Finally, for the labeling onstraint x : f(x1 : : : xn), it is no longer the ase that Nx1 . . .Nxn must be disjoint subtrees. However our linguisti appliation stipulates that no siblingmay dominate another. Thus the translation beomes:N x̀ = f(Nx1 : : : Nxn)Nx/+ = Nx1/? [ : : : [Nxn/?; = Nxi= \Nxj?. 8i 6= j 2 1::nNothing else need hange. Results of ompleteness, soundness, �niteness and systematiitystill hold.4.2 Treatment of Disourse DesriptionsDisourse desriptions are given dag-based semantis as outlined in the previous setion.To aount for ertain phenomena, we have found it onvenient to deompose the labelingonstraint x : f(x1 : : : xn) into two simpler onstraints: one that spei�es the onstrutorand one that spei�es the daughters. A desription is now de�ned by the indutive rule:� ::= � ^ �0 j x /? y j x : f j x : hx1 : : : xni12



If I is an interpretation of �, x/? y means that I(x) must dominate I(y), x : f means thatI(x) must be labeled with onstrutor f , and x : hx1 : : : xni means that I(x) is labeledwith an n-ary onstrutor and has daughters I(x1) through I(xn). In the following, wewrite x : fhx1 : : : xni to abbreviate the ommon ase x : f ^ x : hx1 : : : xniConsider the `sope ambiguity' example on page 4: (a) Sarah reads a novel (b) if sheis bored () or she is unhappy. The desription is displayed in the box below.
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x1 if
b

x7 orx2 x4 x6 x8x3 ba x5 bb x9 b
x1 : ifhx2; x4ix2 /? x3x3 : ahix4 /? x5x5 : bhix7 : orhx6; x8ix6 /? x5x8 /? x9x9 : hiAdditionally to the desription, our linguisti appliation makes the following stipulations:� there is a unique root: the interpretation of one variable dominates all the others� a variable whih is not assigned a label in the desription must be identi�ed withone that isThe orresponding searh tree is displayed in the window on the right: the blue irlesrepresent hoie nodes, the red squares failed nodes, and the green diamonds are the twosolutions. In this example, the full searh tree is obtained in 80ms.The ability to state onstrutor and daughter onstraints separately allows us to ex-pression the `relation ambiguity' desription of page 4 as follows:
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x6 narrativex7 x8
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x1 Rel
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x9 narrativex2 x4 x10 x11x3 ba x5 bb x12 b
x1 : hx2; x4ix2 /? x3x3 : ahix4 /? x5x5 : bhix6 : narrativehx7; x8ix7 /? x3x8 /? x9x9 : narrativehx10; x11ix10 /? x5x11 /? x12x12 : hix1 is simply given the daughter onstraint x1 : hx2; x4i, but its label remains unspei�ed.
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5 ConlusionIn omputational linguistis and formal semantis, desriptions of trees and DAGs statedin terms of dominane have gained popularity. In this paper, we have ontributed aonstraint-based framework for proessing suh desriptions.Our approah is purely delarative and formulated in terms of onstraints between setsof variables whih straightforwardly apture what it means for two nodes to be part of atree (or graph) struture, or to stand in a more spei� dominane relationship. By takingadvantage of modern onstraint programming tehnology, this transparent delarative en-oding, when further equipped with a searh strategy, also onstitutes an implementation.For the tree-based semantis, experimental results indiate that even the simplisti�rst-fail enumeration of the hoie variables gives exellent performane. The NP-hardnessresult, however, shows that we annot expet mirales. From the omputational point ofview, onstraint programming o�ers two potential advantages: (1) an eÆient implemen-tation of inferene through onstraint propagation, and (2) an eÆient treatment of valuedisjuntion through �nite domain and �nite set variables. It is the job of the searhstrategy to take e�etive advantage of the framework. In the weaker semanti domains ofDAGs, its importane beomes again ritial.A methodologial bonus of our delarative approah is that the design of an appro-priate searh strategy an be investigated independently: the searh strategy is merely aparameter of our system. We are urrently exploring the e�etiveness of more speializedsearh trategies.Finally, our treatement of desriptions is stated in general terms using D-trees as thebasi models. As we showed, the approah an easily be tailored to graphs. But it an alsobe tailored to minimal trees or �-struture. Thus it o�ers a general framework in whih thevarious desription-based approahes mentioned in the introdution an be implemented,ombined and ompared.Referenes[BG98℄ Patrik Blakburn and Claire Gardent. A spei�ation language for disourse.In Proeedings of LACL'98 (Logial Aspets of Computational Linguistis),Grenoble, Frane, 1998.[ENRX98℄ M. Egg, J. Niehren, P. Ruhrberg, and F. Xu. Constraints over lambda-strutures in semanti underspei�ation. In Proeedings of ACL/COLING'98, Montreal, Canada, 1998.[GW98a℄ Claire Gardent and Bonnie Webber. Desribing disourse semantis. In Pro-eedings of the 4th TAG+ Workshop, University of Pennsylvania, Philadelphia,1998.[GW98b℄ Claire Gardent and Bonnie Webber. Inremental disourse proessing. Inpreparation, 1998. 14



[KNT98℄ Alexander Koller, Joahim Niehren, and Ralf Treinen. Dominane onstraints:Algorithms and omplexity. In Third International Conferene on Logial As-pets of Computational Linguistis, Grenoble, Frane, Deember 1998. Ex-tended abstrat.[MHM83℄ M.P.Marus, D. Hindle, and M.M.Flek. Talking about talking about trees. InProeedings of the 21st Annual Meeting of the Assoiation for ComputationalLinguistis, Cambridge, MA, 1983.[MT86℄ William Mann and Sandra Thompson. Relational propositions in disourse.Disourse Proesses, 9:57{90, 1986.[Mus97℄ Reinhard Muskens. Order-independene and underspei�ation. University ofTilburg, 1997.[RVS92℄ James Rogers and K. Vijay-Shanker. Reasoning with desriptions of trees. InPro. ACL, 1992.[RVSW95℄ Owen Rambow, K. Vijay-Shanker, and David Weir. D-tree grammars. InProeedings of ACL'95, pages 151{158, MIT, Cambridge, 1995.[Smo95℄ Gert Smolka. The oz programming model. In Jan van Leeuwen, editor, Com-puter Siene Today, volume 1000 of LNCS, pages 324{343. Springer Verlag,1995.[VS92℄ K. Vijay-Shankar. Using desriptions of trees in a tree-adjoining grammar.Computational Linguistis, (18):481{518, 1992.[VSJ88℄ K. Vijay-Shanker and Aravind Joshi. Feature based tags. In Proeedings ofthe 12th International Conferene of the Assoiation for Computational Lin-guistis, pages 573{577, Budapest, 1988.

15


