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Abstract

We present jigsaw parallelism constraints, a flexible formal tool for
replacing parts of trees with other trees. Jigsaw constraints extend the
Constraint Language for Lambda Structures, a language used in under-
specified semantics to declaratively describe scope, ellipsis, and their in-
teraction, and can be used to improve the coverage of ellipses represented
by CLLS.
Keywords: tree descriptions, ellipsis, underspecified semantics

1 Introduction

In this paper, we define jigsaw parallelism constraints, a versatile tool for re-
placing parts of trees and λ-terms. Jigsaw constraints are a generalization of
the parallelism constraints defined in the framework of the Constraint Language
for Lambda Structures (CLLS, Egg et al. 2001). CLLS is a logical language
interpreted over tree-like structures which can be applied to underspecified se-
mantics.

CLLS has been used for declarative underspecified descriptions of the meaning of
scope, simple anaphora, reinterpretation in lexical semantics (Koller et al. 2000),
and simple ellipses. Inspired by the semantic approaches to ellipsis based on
higher-order logic (Dalrymple et al. 1991; Crouch 1995; Gardent and Kohlhase
1996), the ellipsis theory in the CLLS framework operates on a λ-term rep-
resenting the meaning of the sentence, and then replaces the meaning of the
parallel element in the source sentence by the meaning of the one in the target
sentence. Unlike the HOU-based approaches, this replacement applies directly
to specific nodes in a tree encoding of the term; different occurrences of subterms
are automatically kept apart.

While this approach can account for quite a few examples from the literature, as
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well as their interactions with anaphora and scope, there are ellipses that can-
not be handled in CLLS (but can in principle be handled by some of the other
approaches). The second contribution of this paper is to show how jigsaw par-
allelism can handle these examples. This is possible because jigsaw parallelism
allows a much finer specification of which parts of the tree should be replaced.

The paper is structured as follows. In Section 2, we give a very brief introduction
to the framework of CLLS. Section 3 sketches how ellipses are usually analyzed in
CLLS, and presents some examples that CLLS cannot handle. Then we define
jigsaw parallelism in Section 4 and show how to account for the problematic
sentences in Section 5. Section 6 concludes the paper, presents some thoughts
on the processing of jigsaw parallelism constraints, and sketches an application
of the tree surgery made possible by jigsaw parallelism to TAG.

2 The Constraint Language for Lambda Struc-

tures

The jigsaw parallelism constraints we want to define below are a conservative
extension of the Constraint Language for Lambda Structures (CLLS) and gen-
eralize the parallelism constraints provided there. We give the briefest possible
overview of CLLS; for a more careful introduction (and clean definitions), see
(Egg et al. 2001).

@ •
Mary • lam •

@ •
sleep • var •

Figure 1: Lambda structure representing the λ-term Mary(λx.sleep(x)).

CLLS is a language used for the partial description of lambda structures, which
can be used to encode λ-terms. Lambda structures are ordinary trees which
have been enriched by two partial functions λ (which models variable binding)
and ante (which models anaphoric reference). An example, encoding the λ-term
Mary(λx.sleep(x)), is shown in Fig. 1. Application is represented as the binary
label @. Abstraction and bound variables are represented using the labels lam

and var, and the λ-binding function (indicated by the dashed arrow) is used to
indicate which variable is bound by which binder.

The syntax of CLLS is defined as follows; X, Y , etc. are variables which denote
nodes in a lambda structure; A and B are explained below.

ϕ ::= X:f(X1, . . . , Xn) | X�
∗Y | A ∼ B

| λ(X)=Y | ante(X) = Y | ϕ ∧ ϕ′
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and •
• X1

@ •
Mary • X2 lam •

• X4

@ •
sleep • var •

• Y1

John • Y2

∧ X1/X2∼Y1/Y2

and •
@ •

Mary • lam •
@ •

sleep • var •

@ •
John • lam •

@ •
sleep • var •

Figure 2: A parallelism constraint for (1) and a lambda structure that satisfies
it.

That is, a CLLS formula or constraint is a conjunction of atomic literals; it is
satisfied by a lambda structure and a variable assignment iff all these literals are
satisfied in the following sense. A labeling literal X:f(X1, . . . , Xn) is satisfied iff
X denotes a node with label f and children that are denoted by X1, . . . , Xn. A
dominance literal X�

∗Y is satisfied iff X denotes a (reflexive, transitive) ances-
tor of Y in the lambda structure. The binding literals λ(X)=Y and ante(X)=Y
are satisfied iff the respective binding functions map the denotation of X to the
denotation of Y .

@ • X1

• X2 lam • X3

• X4

@ • X5

sleep • var • X6

Figure 3: A CLLS constraint satisfied by the structure in Fig. 1.

We usually draw constraints as constraint graphs, as in Fig. 3. The nodes in
this graph stand for variables in a constraint and the edges and labels represent
different types of literals. This particular graph represents a constraint that
starts X1:@(X2, X3) ∧ X4�

∗X5 ∧ λ(X6)=X3 ∧ . . . and, incidentally, is satisfied
by the lambda structure in Fig. 1.

The most complex, and for this paper the most important, literal is parallelism
A ∼ B. In the original definition, A and B are terms of the form X/Y . This
term denotes a segment of the lambda structure: a pair u/v of a root u and a
hole v such that u⊳∗v holds. Such a pair specifies a part of the lambda structure,
namely all nodes which are below u, but not below v. We write

b−(u/v) := {w | u�
∗w, but not v�

∗w}
b(u/v) := b−(u/v) ∪ {v}
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Two segments are considered parallel iff a correspondence function between
them exists and certain conditions on binding hold, which we cannot go into
here due to lack of space.

Definition 1 A correspondence function between two tree segments u/u′ and
v/v′ is a bijective mapping c : b(u/u′) → b(v/v′) such that for all nodes w ∈
b−(u/u′) and every label f of arity n it holds that:

w:f(w1, . . . , wn) ⇔ c(w):f(c(w1), . . . c(wn)).

3 VP Ellipsis in CLLS

Now we briefly sketch how parallelism constraints are used to model ellipses.
We consider the sentence (1), which is analyzed as the left-hand graph in Fig. 2.
A lambda structure satisfying this constraint is shown on the right.

(1) Mary sleeps. John does too.

A correspondence function between the two segments can only exist if all nodes
below X1 have copies below Y1. Except for X2 (which is the hole), each copy
must have the same label as the original. X2 must correspond to Y2, which has
the label John.

Thus, parallelism constraints allow a very tight control over the copying process;
different occurrences of Mary-labeled nodes are kept strictly apart, and no equiv-
alent of a primary occurrence restriction is needed. As Egg et al. (2001) show,
this analysis can deal with a large class of examples from the literature, includ-
ing e.g. interactions with scope (Hirschbühler 1982) and antecedent-contained
deletion. As for processing complexity, satisfiability of parallelism constraints is
equivalent to context unification, whose decidability is unknown. Semi-decision
procedures exist (Erk et al. 2001), and decidability of a linguistically relevant
fragment is conjectured.

However, there are some examples which are a problem for CLLS.

(2) John went to the station, and every student did too, on a bike.

(3) Every man kissed his wife before John did.

The first sentence exhibits a scope ambiguity between “every student” and “a
bike”. The straightforward CLLS description excludes the weaker reading, as
“on a bike” does not correspond to anything in the source sentence. In the
second sentence, the parallelism constraint forces “every man”, the parallel el-
ement in the source clause, to be dominated by the root of the source clause.
Thus, the reading where “every man” outscopes “before” is lost.
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4 Jigsaw Parallelism

To represent these examples, we generalize ordinary CLLS parallelism to jigsaw
parallelism, which allows much more fine-grained surgery of a lambda structure.
We will first define jigsaw parallelism and then show how the two examples
above can be represented in the next section.

Jigsaw parallelism generalizes ordinary parallelism in two ways. First, segments
α, γ are now allowed to have an arbitrary number (even 0) holes. Two distinct
holes u, v of a segment α have to lie in disjoint positions, i.e. neither u⊳∗v nor
v⊳∗u may hold in the lambda structure. We write r(α) for the root and hs(α)
for the set of holes of α. b(α) and b−(α) generalize straightforwardly; we also
write i(α) for b−(α)− {r(α)}. We call α a singleton iff |b(α)| = 1. We say that
segments α, β overlap properly iff either b−(α) ∩ b−(β) 6= ∅, or α is a singleton
with r(α) ∈ i(β).

More interestingly, jigsaw parallelism allows us to exempt parts of segments
from the parallelism condition; we “cut out” smaller segments from the larger,
parallel one. In the simplest case (with a single removed segment), the result is
as defined below.

(We write u⊳+v if u⊳∗v but not v⊳∗u.)

Definition 2 Let α, γ be segments of the same lambda structure. Then α − γ
is a set of segments defined as follows.

1. α − γ = {} if b(α) ⊆ b(γ).

2. α− γ = {α} if either α and γ do not overlap properly, or α is a singleton
with b(α) 6⊆ b(γ).

3. For non-singleton α to which the first two cases do not apply, let

ro(α − γ) =
(
{r(α)} − b−(γ)

)
∪

(
hs(γ) ∩ i(α)

)

ho(α − γ) =
(
hs(α) − i(γ)

)
∪

(
{r(γ)} ∩ i(α)

)

foru ∈ ro(α − γ),
h−of(u, α − γ) = {v ∈ ho(α − γ) | u⊳+v and /∃u′ ∈ ro(α − γ)

such that
(
u⊳+u′⊳+v

)
}

Then
α − γ = {u0/u1, . . . , un | u0 ∈ ro(α − γ), u1, . . . , un are the

members of h−of(u0, α − γ) ordered left to right}.

In the definition, α is broken into pieces by cutting out γ (hence the name). No
two members of α−γ overlap properly; all are contained within α, and together
with γ, they cover all of α.

Lemma 1 For all segments α, γ of a lambda structure, α−γ is a set of segments
that do not overlap properly.
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Proof. Only the third case of Def. 2 is of interest here. If the root of each
segment in α − γ is in hs(γ) ∩ i(α), then the segments lie in disjoint positions.
Now suppose α − γ contains a segment α1 with r(α1) = r(α) 6∈ b−(γ). If α − γ
contains another segment α2 besides α1, then we must have r(α2) ∈ hs(γ)∩ i(α).
Suppose α1 and α2 properly overlap, then r(α1)⊳

+r(α2). As r(α) 6∈ b−(γ) but
r(α) dominates a hole of γ, we must have r(α1)⊳

+r(γ). So we get r(γ) ∈ i(α)
since r(α2) ∈ i(α). Thus, r(γ) ∈ ho(α − γ) and also r(γ) ∈ h−of(r(α1), α − γ)
since it cannot be dominated by any other element of ro(α − γ). Which means
that α1 and α2 do not properly overlap, after all. 2

This is even true of {γ} ∪ (α − γ): the only interesting case is the one where
α − γ contains a segment α1 with r(α1) − r(α) 6∈ b−(γ). Suppose α1 and γ
overlap properly, then r(α1)⊳

∗r(γ). If r(γ) 6∈ ho(α − γ), then there must be
some u ∈ hs(α)∩ h−of(r(α1), α− γ) dominating it. If r(γ) ∈ ho(α− γ), then it
is in h−of(r(α1), α − γ) since r(α1) 6∈ b−(γ).

Lemma 2 Let α − γ = {α1, . . . , αn}. Then
⋃n

i=1 b(αi) ⊆ b(α).

Proof. Again, we need only consider the third case of Def. 2. By the definition
of ro(α − γ), α − γ contains no segments the root of which strictly dominates
r(α). It remains to check that no segment of α − γ extends below a hole of α.

Let u ∈ hs(α) with u 6∈ ho(α−γ). Then u ∈ i(γ), so r(γ)⊳+u. Let v ∈ ro(α−γ)
with v⊳∗u. Then v 6∈ hs(γ) by the definition of ’interior’. If v = r(α) then
v 6∈ b−(γ) so v⊳+r(γ) and r(γ) ∈ i(α). So r(γ) ∈ h−of(v, α − γ), and the
segment beginning at v ends above u already.

Now suppose u ∈ hs(α) with u ∈ ho(α−γ). If there is some v ∈ hs(γ)∩ro(α−γ)
with r(α)⊳+v⊳∗u, then u ∈ h−of(v, α − γ) since v ∈ i(α). Otherwise, u ∈
h−of(r(α), α − γ): we have r(α)⊳+u since α is nonempty. 2

Lemma 3 Let α − γ = {α1, . . . , αn}. Then b(α) ⊆ b(γ) ∪
⋃n

i=1 b(αi).

Proof. As above, we need only consider the third case of Def. 2. Suppose
u ∈ b(α) −

⋃n

i=1 b(αi) and u 6∈ b(γ). Then r(α)⊳∗u. There are two cases.

Either r(α) ∈ b−(γ). Then there must be some v ∈ hs(γ) such that v⊳+u. Then
v ∈ i(α), so there exists some j ∈ {1, . . . , n} with v = r(αj). As u 6∈ b(αj), there
must be some w ∈ hs(αj) with w⊳+u. But then by the definition of ho(α − γ),
we must have w ∈ hs(α), hence u 6∈ b(α), a contradiction.

The other case is r(α) 6∈ b−(γ). Then there exists some segment α1 ∈ (α − γ)
with r(α1) = r(α). We have u 6∈ b(α1) so there must be some v ∈ hs(α1) with
v⊳+u. Since u ∈ b(α), it must hold that v 6∈ hs(α), so v = r(γ) ∈ i(α). Now
u 6∈ b(γ), and we can proceed as in the previous case and get a contradiction
the same way. 2
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The definition can be extended to cut out multiple segments from α. Let
α1, . . . , αn, γ be segments of the same λ-structure such that for all 1 ≤ i < j ≤ n,
αi and αj do not properly overlap. Then {α1, . . . , αn} − γ :=

⋃n

i=1 αi − γ.

Definition 3 Let α, γ1, . . . , γn be segments of the same λ-structure. Then ω =

α − (γ1, . . . , γn) :=
((

(α − γ1) − γ2

)
. . .

)

− γn is a jigsaw segment.

We call the elements of ω alpha segments for short, and we call the excluded
segments gamma segments. Also, we write b(ω) =

⋃

α′∈ω b(α′). The above
observations on overlap and coverage still hold. Also, the order in which gamma
segments are subtracted does not matter.

Lemma 4 Let α1, . . . , αn, γ1, γ2 be segments of the same lambda structure such
that for all 1 ≤ i < j ≤ n, αi and αj do not properly overlap. Then

({α1, . . . , αn} − γ1) − γ2 = ({α1, . . . , αn} − γ2) − γ1

Proof. We write ωi = {α1, . . . , αn}−γi, i = 1, 2, for short. Let α′ ∈ (ω1−γ2).
We have to show that α′ ∈ (ω2 − γ1) holds as well. As α′ ∈ (ω1 − γ2), there
must be some α′′ ∈ ω1 with α′ ∈ (α′′ − γ2) and some k, 1 ≤ k ≤ n, with
α′′ ∈ (αk − γ1).

Suppose α′′ = αk. Then αk and γ1 do not overlap properly, and neither do α′

and γ1. So α′ ∈ (αk − γ2) and also α′ ∈
(
(αk − γ2) − γ1

)
.

Now suppose otherwise. W.l.o.g. we consider the case that r(α′′) = r(αk) but
r(γ1) ∈ hs(α′′). (The case where r(α′′) ∈ hs(γ1) and hs(α′′) ⊆ hs(αk) is
analogous.)

If r(γ1) 6∈ b(α′), then α′ ∈ ω2 already, and α′ and γ1 do not overlap properly,
so α′ ∈ (ω2 − γ1). Now suppose r(γ1) ∈ b(α′). If additionally b(γ2)∩ b(α′) = ∅,
then α′ = α′′ and there are two possibilities: either γ2 does not properly overlap
αk, i.e. αk ∈ ω2, so α′ ∈ (ω2 − γ1); or r(γ1)⊳

∗r(γ2) and there exists a segment
α′′′ ∈ ω2 with r(γ2) ∈ hs(α′′′) and α′ ∈ (α′′′ − γ1).

Now suppose r(γ1) ∈ b(α′) as well as b(γ2) ∩ b(α′) 6= ∅. Then there are two
possibilities: either r(γ1) = r(γ2) and α′′ = α′ ∈ ω2 as well as α′ ∈ (ω2 − γ1);
or γ1, γ2 do not overlap properly, that is, they subtract pieces of αk that do not
overlap properly either, so the order in which the two subtractions take place
does not matter. 2

Lemma 5 Let ω = α − (γ1, . . . , γn). Lemmas 3 and 2 scale up:

1. b(ω) ⊆ b(α).

2. b(α) ⊆
⋃n

i=1 b(γi) ∪ b(ω).

Proof.
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γ1

2γ 3γ

α

1 2 3γ1

3γ
α1

α4
2γ

α3α2

α4α3α2

2γ

α1

γ1

3γ

Figure 4: Jigsaw segments and alpha-gamma trees.

1. Suppose the first claim is true for α− (γ1, . . . , γℓ) = {α′
1, . . . , α

′
k} for some

ℓ, 1 ≤ ℓ < n. Then for each 1 ≤ i ≤ k, b(α′
i − γℓ+1) ⊆ b(α′

i) by Lemma 2.
Hence, b(α − (γ1, . . . , γℓ+1)) ⊆ b(α − (γ1, . . . , γℓ)) ⊆ b(α).

2. Suppose the second claim is true for α − (γ1, . . . , γℓ) = {α′
1, . . . , α

′
k} for

some ℓ, 1 ≤ ℓ < n. Then for each 1 ≤ i ≤ k, b(α′
i) ⊆ b(γℓ+1) ∪

b(α′
i − (γ1, . . . , γℓ+1)) by Lemma 3. Hence, b(α) ⊆

⋃ℓ+1
i=1 b(γi) ∪ b(α −

(γ1, . . . , γℓ+1)).

2

The process of cutting out gamma segments is illustrated in Fig. 4. (1) is a
schematic diagram of a segment α with two holes, from which segments γ1, γ2, γ3

are being cut out. γ1 overlaps only partially with α, and γ3 is a singleton
segment. If we compute the set {α1, α2, α3, α4} = α − (γ1, γ2, γ3) according to
Def. 3, we obtain a picture as in (2): α is cut along the gammas. Note that
adjacent segments generally share a node, which is the root of one and a hole
of the other segment.

The way that the alpha and gamma segments are plugged into each other is
represented in the alpha-gamma tree shown in (3). An alpha-gamma tree is a
tree which contains exactly one node with label αi for each i, at most one node
with label γi for each i, and nodes with label • for holes outside b−(α) of alpha
or gamma segments (in Fig. 4 represented as ◦). The children of each node are
the segments plugged into the holes of the corresponding segment, in the correct
left-to-right order.

Definition 4 Let ω = α − (γ1, . . . , γn) be a jigsaw segment of a lambda struc-
ture. Let S = ω ∪ {γi | i ∈ {1, . . . , n}, γi and α overlap properly}. Then a tree
θ is an alpha-gamma tree for ω iff

1. the nodes in θ all bear labels from the set S ∪ {•};
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2. for all β ∈ S, there is exactly one node labeled β in θ;

3. for all β ∈ S, the node labeled β has exactly |hs(β)| children;

4. if a node labeled β has as its i-th child a node labeled β′, then the i-th hole
of the segment β (in left-to-right order) is r(β′); if a node labeled β has
as its i-child a node labeled •, then the i-th hole of β is not in b−(α).

If the gamma segments do not overlap properly, such an alpha-gamma tree
always exists. If they exist, alpha-gamma trees are unique up to permutations
of equal singleton gamma segments.

Lemma 6 Let ω = α − (γ1, . . . , γn) be a jigsaw segment of a lambda structure
such that for all 1 ≤ i < j ≤ n, γi and γj do not overlap properly. Then ω
possesses an alpha-gamma tree.

Proof. We proceed by induction on n.

n = 1: Then ω = α−γ. If ω = {} then θ = γ(•, . . . , •) is the only alpha-gamma
tree for ω. If ω = {α} then θ = α(•, . . . , •) is the only alpha-gamma tree
for ω.

Now suppose α is not a singleton, and the two first cases of Def. 2 do
not apply. Then there exists a single alpha-gamma tree θ for ω, which is
constructed as follows: let the holes of α, ordered left to right in the tree,
be u1, . . . , um, and the holes of γ, similarly ordered, v1, . . . , vℓ. Suppose
there exists some α1 ∈ (α−γ) with r(α1) = r(α). Then there exist 1 ≤ i <
j ≤ m such that hs(α1), ordered left to right, is u1, . . . , ui, r(γ), uj , . . . , um.
Then θ has the form

α1(•, . . . , •,
︸ ︷︷ ︸

i times

γ(θ1, . . . , θℓ), •, . . . , •
︸ ︷︷ ︸

(m−j+1) times

)

for trees θ1, . . . , θℓ that we explain below. If, on the other hand, there
exists no such α1, then θ has the form γ(θ1, . . . , θℓ) for trees θ1, . . . , θℓ

that we explain next.

For 1 ≤ i ≤ ℓ, if vi = r(α′) for some α′ ∈ ω, then θi = α′( •, . . . , •
︸ ︷︷ ︸

|hs(α′)| times

).

Otherwise, θi = •.

(n − 1) → n: Let θ′ be an alpha-gamma tree for ω′ = α − (γ1, . . . , γn−1). Such
a tree exists by the inductive hypothesis. There are three possibilities: (1)
γn and α do not overlap properly; or (2) γn and α overlap properly, but
there exists no α′ ∈ ω′ such that γn and α′ overlap properly; or (3) there
exists exactly one segment α′ ∈ ω′ such that γn and α′ overlap properly.
No further cases exist: any two segments in ω′ must be separated by some
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γi, 1 ≤ i ≤ n, otherwise they would not be separate segments, but γn does
not properly overlap with any other γi.

In case (1), θ′ is also an alpha-gamma tree for ω. Case (2) implies that γn

must be a singleton segment, and that there exists some j, 1 ≤ j ≤ n− 1,
such that either (2a) r(γn) = r(γj) or (2b) r(γn) ∈ hs(γj). (There may be
more than one such j.) In case (2a), θ′ contains a subtree γj(θj) for some
θj . Replacing this subtree by γn(γj(θj)), we obtain an alpha-gamma tree
for ω. In case (2b), suppose r(γn) is the i-th hole of γj . θ′ has a subtree
γj(. . . , θi, . . .), where the root of θi is the i-th child of the node labeled γj .
Replacing θi by γn(θi), we obtain an alpha-gamma tree for ω.

We now consider case (3). Let θnew be the only alpha-gamma tree for
α′ − γn constructed as shown above. θ′ contains a subtree α′(θ1, . . . , θm)
for some m and some trees θ1, . . . , θm. For 1 ≤ i ≤ m, let βi be the label
of the root of θi. Now for each β ∈ (α′ − γn) ∪ {γn}, let u be the node in
θnew labeled u; if the j-th hole of β is equal to r(βi), then exchange the
j-th child of u by θi. (In that case, the j-th child of u must be labeled
• in θnew.) Let θ′new be the tree that results from all these substitutions.
(Note that if for some i ∈ {1, . . . , m}, θi did not get picked, then θi = •
because γn does not overlap any segments of ω′ except α′.) Then the tree
θ obtained from θ′ by replacing the subtree α′(θ1, . . . , θm) by θ′new is an
alpha-gamma tree for ω.

2

Lemma 7 Let ω = α− (γ1, . . . , γn) be an jigsaw segment which admits two dif-
ferent alpha-gamma trees θ1, θ2. Then θ2 can be obtained from θ1 by permuting
the singleton γi labels.

Proof. This follows from the proof of the previous lemma: The only case in
the construction of an alpha-gamma tree where we had any choice was case (2),
the choice of γj for the case where γn was singleton. 2

Now we can use alpha-gamma trees to define jigsaw correspondence functions,
correspondence functions between jigsaw segments. Two jigsaw segments corre-
spond iff first, gamma segments with the same index are in the same positions
in the alpha-gamma trees, and second, alpha segments in the same positions
correspond in the ordinary sense.

Definition 5 A jigsaw correspondence function between jigsaw segments ω =
α−(γ1, . . . , γn) and ω′ = α′−(γ′

1, . . . , γ
′
n) is a bijective mapping c : b(ω) → b(ω′)

which satisfies the following conditions:

1. There are isomorphic alpha-gamma trees θ, θ′ of ω and ω′; call the (tree)
isomorphism h.
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and •
• X1

• X3

• X4

@ •
john • X2 lam •

•
@ • X5

go to st • var •

• Y1

@ • Y3

@ •
a • bike •

lam •
• Y ′

3

@ • Y4

@ •
on • var •

• Y ′
4

@ •
@ • Y2

ev • std •
lam •

•

X1/X2 − (X3/X3, X4/X4) ∼ Y1/Y2 − (Y3/Y ′
3 , Y4/Y ′

4)

Figure 5: Constraint for sentence (2).

2. Every node u of θ is labeled γj iff h(u) is labeled γ′
j; u is labeled by an

alpha segment iff h(u) is; and u is labeled • iff h(u) is.

3. For every i, the restriction of c to b(αi) is an ordinary correspondence
function between αi and h(αi).

Jigsaw parallelism is obtained by simply replacing the words “segment” and
“correspondence function” in the definition of ordinary parallelism by “jigsaw
segment” and “jigsaw correspondence function”. We extend the syntax of CLLS
by jigsaw parallelism literals in the straightforward way.

5 VP Ellipsis Using Jigsaw Parallelism

We will now apply jigsaw parallelism constraints to describe the meanings of
(2) and (3).

A constraint for (2) is shown in Fig. 5; X1 will denote the root of the source
sentence, Y1 that of the target sentence. As in Fig. 2, the constraint contains
an explicit description of the source clause, descriptions of the parallel elements
in the target clause, and a (jigsaw) parallelism constraint. The first parts of
this constraint (before the minus symbols) work exactly as before, establishing
equality of the semantics except for “John” and “every student”.

But now jigsaw parallelism allows us to exempt the two segments that constitute
the meaning of “on a bike” from the parallelism. This is done by subtracting
the segment terms Y3/Y ′

3 and Y4/Y ′
4 on the right-hand side. The corresponding

gamma segments on the left-hand side are simply appropriate singletons. They
designate the position that Y3/Y ′

3 and Y4/Y ′
4 must occupy: in any solution of

the constraint, the target Y1/Y2 must contain a copy of the ”go to st” fragment.
And to correctly represent the semantics of sentence (2), this copy must be
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@ • X3

@ • X2

ev • man •
lam •

• X4

john • Y2

before •
• X1

@ •
@ •

wife of • ana •
lam •

•

• Y1

@ •
@ •

kiss • var •
var • X5

X1/ − X2/ ∼ Y1/ − Y2/ ∧ X3/X2, X4 ∼ Y3/Y2, Y4

Figure 6: Constraint for sentence (3)

dominated by Y ′
4 . This is ensured by the fact that X3 and X4 dominate X5. As

the alpha-gamma trees of source and target must be isomorphic, corresponding
gamma segments must occupy the same positions.

The analysis of (3) is shown in Fig. 6. Ignoring the anaphoric reference here
(which leads to a strict/sloppy ambiguity correctly resolved through the mech-
anisms in (Egg et al. 2001)), let us take a quick look at the reading in which
“every man” takes narrowest scope and the reading in which “every man” takes
widest scope (even over the “before”).

In the narrowest-scope reading, X2 is dominated by X1, and the first jigsaw
literal behaves exactly like the ordinary parallelism constraint X1/X2∼Y1/Y2,
which is the original analysis. The second literal is necessarily satisfied in this
case.

The wide-scope reading, with X4�
∗X1, is more interesting. Consider the first

conjunct, which now enforces that the lambda structures below X1 and X2

must be completely parallel. As the denotation of X2/ is not part of the alpha-
gamma tree of the left-hand jigsaw segment, Y2 cannot be below X2 either. The
second conjunct, involving fresh variables Y3, Y4, ensures that the application
and abstraction around “every man” have correspondents in the target seman-
tics; these correspondents must be around “John” because Y2 is a hole of this
segment.

The correct binding of the correspondent of X5 is ensured through the bind-
ing rules we have omitted in the definition of parallelism. This binding also
automatically entails that Y4 really dominates this correspondent.1

1In fact, we have been somewhat imprecise here, again for lack of space. The original
definition of parallelism does not allow binding across different parallelism literals. This is
remedied by using group parallelism (Bodirsky et al. 2001), into which jigsaw segments and
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6 Conclusion

We have shown how to represent some previously difficult cases of VP ellipsis
in an extension of CLLS. We have achieved this by defining jigsaw parallelism,
a generalization of the original parallelism in CLLS which allows us to cut out
parts of the corresponding segments.

Jigsaw parallelism is a very versatile tool for tree surgery, which we expect
has uses outside of ellipsis. For instance, the TAG operations of substitution,
adjunction, and sister adjunction can all be represented using jigsaw parallelism
constraints. Adjunction, for example, is expressed by the constraint α − γ ∼
α′ − γ′ where α, α′ are the complete trees before and after the adjunction, γ
is a singleton segment at the adjunction site, and γ′ is the tree that is to be
adjoined.

The next question that needs to be considered is how to process jigsaw paral-
lelism constraints. As soon as it is known whether the gamma segments are in
α or not, jigsaw parallelism can be almost completely reduced to a group par-
allelism constraint (Bodirsky et al. 2001) of the alpha segments, but there are
some subtleties with binding. This should make it easy to obtain a sound and
complete solution procedure from known procedures from group parallelism, but
we believe that jigsaw parallelism avoids some hard instances of group paral-
lelism and may thus be amenable to more efficient specific techniques.

Finally, while we have shown how to represent some cases of ellipsis, we have
said nothing about how to obtain these representations from a syntactic analysis.
First steps towards this goal in the CLLS framework have been taken in (Egg
and Erk 2001); we expect that the great flexibility of jigsaw parallelism will
simplify the interface design.
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