
A Concurrent Lambda Calculus with Futures

Joachim Niehren1, Jan Schwinghammer2, and Gert Smolka2

1 INRIA Futurs, LIFL, Lille, France
2 Programming Systems Lab, Saarland University, Saarbrücken, Germany

Abstract. We introduce a new concurrent lambda calculus with futures,
λ(fut), to model the operational semantics of Alice, a concurrent exten-
sion of ML. λ(fut) is a minimalist extension of the call-by-value λ-calculus
that yields the full expressiveness to define, combine, and implement a
variety of standard concurrency constructs such as channels, semaphores,
and ports. We present a linear type system for λ(fut) by which the safety
of such definitions and their combinations can be proved: Well-typed im-
plementations cannot be corrupted in any well-typed context.

1 Introduction

The goal of this paper is to model the operational semantics of Alice [23, 2],
a concurrent extension of Standard ML (SML) [17] for typed open distributed
programming. Alice is the first concurrent extension of SML where all synchro-
nisation is based on futures rather than channels [22, 20, 10]. Many ideas in Alice
are inspired by and inherited from the concurrent constraint programming lan-
guage Mozart-Oz [26, 13, 19].

Futures [5, 12] are a restricted form of logic variables, which carefully separate
read and write permissions. In contrast to logic variables, futures grant for static

data flow that can be predicted at compile time. Otherwise, they behave like
the logic variables of concurrent logic and concurrent constraint programming
[25, 24]: A future is a transparent placeholder for a value; it disappears once its
value becomes available. Operations that need the value of a future block until
the value becomes available. Other operations may simply continue with the
placeholder, as long as they do not need its value. This form of automatic data

driven synchronisation is invoked as late as possible, so that the potential for
concurrent and distributed computation is maximised.

Static data flow is an indispensable prerequisite for static typing as in SML,
CAML, or Haskell. This fact is well-known, as it led to serious problems in several
previous approaches to concurrent programming: It prohibited static typing in
programming languages with unrestricted logic variables such as Oz [18, 26] and
in π-calculus based extensions of SML such as Pict [21]. The problem for π-
calculus based channel approaches was solved with the join-calculus [10, 11] and
the corresponding programming language JoCaml [8] which extends on CAML
[7]. The join-calculus, however, does not model futures on which we focus in this
paper.

We introduce a new concurrent lambda calculus with futures λ(fut) that
models the operational semantics of Alice at high level. λ(fut) is a minimalist
extension of the call-by-value λ-calculus that yields the full expressiveness to
define, implement, and combine a variety of standard concurrency constructs,
including channels, semaphores, and ports.

Previous λ-calculi with futures by Felleisen and Flanagan [9] were proposed
to model the parallel execution of otherwise purely functional programs. They too
describe a set of parallel threads that communicate through futures. However,
our very different perspective on futures as a uniform mechanism for introducing

concurrency to Alice necessitates a number of nontrivial extensions:

Indeterminism. Standard concurrency constructs are indeterministic, which is
incompatible with confluence properties enjoyed by previous λ-calculi with
futures. We propose to add indeterminism via reference cells, as these are
already available in SML. Furthermore, we propose handled futures for single
assignment, similarly to the I-structures of Id [4] and promises of [14]. A
handled future comes with a handle that can eventually assign a value to
a future. Any attempt to use the same handle twice raises a programming
error.

Explicit recursion. Similarly to cells, handles permit the construction of cyclic
structures. This raises a number of nontrivial technical problems, some of
which are known from call-by-need λ-calculi with explicit recursion. Indeed,
we can easily extend λ(fut) by lazy threads, so that we obtain an elegant
model for call-by-need [3, 15] mixed with call-by-value computation.

Static typing. We have to add a type system, as previous λ-calculi with futures
were untyped.

We show that λ(fut) can safely express concurrency constructs, so that these
cannot be corrupted in any well-typed context, in that their usage never raises
handle errors. We prove this kind of safety result on basis of a linear type system
we introduce, inspired by [27].

We present λ(fut) in Sects. 2 and 3. The linear type system for λ(fut) that
excludes handle errors is given in Sect. 4. We then express diverse concurrency
constructs in λ(fut) (Sect. 5) and prove their safety (Sect. 6). Finally, we briefly
discuss some implementation issues in Sect. 7.

2 Lambda Calculus with Futures

We present the lambda calculus with futures λ(fut). We start with an untyped
version, discuss its syntax and operational semantics.

2.1 Syntax

Fig. 1 introduces the syntax of λ(fut). This calculus extends the call-by-value λ-
calculus with cells (as featured by SML and CAML) and by concurrent threads,

2

x, y, z ∈ Var

c ∈ Const ::= unit | cell | exch | thread | handle

e ∈ Exp ::= x | c | λx.e | e1 e2

v ∈ Val ::= x | c | λx.e | exch v

C ∈ Config ::= C1 |C2 | (νx)C | x c v | x⇐e | y h x | y h •

Fig. 1. Syntax of λ(fut)

(C1 |C2) |C3 ≡ C1 | (C2 |C3) C1 |C2 ≡ C2 |C1

((νx)C0) |C1 ≡ (νx)(C0 |C1) if x /∈ fv(C1) (νx)(νy)C ≡ (νy)(νx)C

Fig. 2. Structural congruence

futures, and handles. Expressions and values of λ(fut) model sequential higher-
order programming; configurations add the concurrency level.

The expressions e of λ(fut) are standard λ-terms with variables x, y, . . . and
constants ranged over by c. We introduce 5 constants, 3 of which are standard:
unit is a dummy value, cell serves for introducing reference cells, and exch for
atomic exchange of cell values. The new constants thread and handle serve
for introducing threads, futures, and handles. Values v are defined as usual in a
call-by-value λ-calculus.

Configurations C are reminiscent of expressions of the π-calculus. They are
built from base components by parallel composition C1 |C2 and new name op-
erators (νx)C. We distinguish four types of base components: a thread x⇐e is
a concurrent component whose evaluation will eventually bind the future x to
the value of expression e unless it diverges or suspends. We call such variables x
concurrent futures. Note that a concurrent future x may occur in the expression
e whose evaluation computes its future value, i.e., a thread is like a recursive
equation x = e, but directed from right to left. A cell x c v associates a name
x to a cell with value v. A handle component y h x associates a handle y to a
future x, so that y can be used to assign a value to x. We call x a future handled
by y, or more shortly a handled futures. Finally, a used handle component y h •
means that y is a handle that has already been used to bind its future.

We define free and bound variables as usual; the only scope bearing constructs
are λ-binder and new operators (νx). We identify expressions and configurations
up to consistent renaming of bound variables. We write fv(C) and fv(e) for the

free variables of a configuration and expression, resp., and e[e
′

/x] for capture-free
substitution of e′ for x in e.

We do not want the order of components in configurations to matter. Fol-
lowing the presentation of π-calculus in [16] we use a structural congruence ≡
to simplify the statement of the operational semantics. This is the least congru-
ence relation on configurations containing the identities in Fig. 2. The first two

3

axioms render parallel composition associative and commutative. The third rule
is known as scope extrusion in π-calculus and allows to extend the scope of a
local variable. The final identity expresses that the order of restricting names
does not matter.

2.2 Operational Semantics

The operational semantics of λ(fut) is given in Figs. 3, 4 and 5 by a binary
relation C1 −→ C2 on configurations called reduction.

The reduction strategy of λ(fut) is specified using the evaluation contexts
defined in Fig. 3. We base it on standard evaluation contexts F for call-by-value
reduction and lift them to threads and configurations. Formally, a context is a
term with a single occurrence of the hole marker [] which is a special constant.
Evaluation contexts F are expressions where some subexpression in call-by-value
reduction position is replaced by the hole marker. A context E is a thread where
a subexpression is left out, and D is a configuration where a subconfiguration is
missing. We write D[C], E[e], and F [e] resp. for the object obtained by filling
the hole in the context with an expression.

A nontrivial question is when to allow to replace futures by their values. The
naive approach to always do so once the value becomes available fails, in that it
introduces non-terminating unfolding in the presence of recursion. For instance,
consider a thread x⇐λy.xy. The thread’s expression contains an occurrence of
the future x whose value the thread has computed. Replacing this occurrence of
x by its value yields x⇐λy.((λy′.xy′) y) which again contains an occurrence of
x because of recursion, so the substitution process can be repeated indefinitely.

Alternatively, one might want to permit future substitution in all evaluation
contexts. This approach, however, yields confluence problems. Suppose that x is
bound to value 5 by some thread x⇐5 and that another thread is evaluating the
expression (λy.λz.z) x which contains an occurrence of x in evaluation position.
We could thus first replace x by 5 and then β-reduce, resulting in λz.5. Or else,
we could β-reduce first, yielding λz.x. Now the problem is that the occurrence
of x has escaped the evaluation context, so that replacing the future by its value
is impossible and we are left with two distinct, irreducible terms.

We propose to replace a future only if its value is needed to proceed with the
computation of the thread. In order specify this need, we define future evaluation

contexts Ef and Ff in Fig. 3 that we will use in the rule (future.deref) of the
operational semantics in Fig. 5. In the version of λ(fut) presented here, the
value of futures x is needed in two situations, in function applications xv and
for cell exchange exchx v in evaluation contexts. Furthermore, note that future
evaluation contexts can equally be used to extend λ(fut) by lazy threads. The
same mechanism has also proved useful to model more implementation oriented
issues in [9]. Future evaluation contexts are called placeholder strict there.

Every reduction step of λ(fut) is defined by an evaluation rule in Fig. 5 which
involves either one or two threads of a configuration. These threads can be freely
selected according to the two inference rules in Fig. 4: given a configuration C
we choose a representation D[C ′] congruent to C and apply a reduction rule

4

D ::= [] | C |D | (νx)D

E ::= x⇐F Ef ::= x⇐Ff

F ::= [] | F e | v F Ff ::= F [[] v] | F [exch [] v]

Fig. 3. Evaluation contexts D, E, F and future evaluation contexts Ef , Ff

C1 ≡ C′

1 C′

1 −→ C ′

2 C′

2 ≡ C2

C1 −→ C2

C1 −→ C2

D[C1] −→ D[C2]

Fig. 4. Selection of threads during reduction

to C ′. Reduction inside threads x⇐e means to reduce a subexpression e′ in an
evaluation context F so that e = F [e′]. Evaluation inside expressions is call-by-
value, i.e., all arguments of a function are evaluated before function application.
This by the standard call-by-value beta reduction rule (beta) in Fig. 5.

Besides β-reduction, there are six other reduction rules in Fig. 5. Concurrent
futures are created by rule (thread.new). Evaluating applications thread λy.e
has the following effects:

– a new concurrent future y is created,
– a new thread y⇐e is spawned which evaluates the expression e concurrently

and eventually assigns its value to y,
– the concurrent future y is returned instantaneously in the original thread.

Note that the expression e may also refer to y, i.e., our notion of thread creation
incorporates explicit recursion.

As an example consider an application f e of some function f , where the
evaluation of the argument e takes considerable time, e.g., a communication
with a remote process or an expensive internal computation. In this case it may
be advantageous to use instead

f (thread λy.e)

which applies f to a fresh future y and delegates the evaluation of e to a con-
current thread y⇐e. The point here is that f will only block on y if it really
needs the value of its argument, so that the latest possible synchronisation is
obtained automatically. The only way we can simulate this effect with channels
is by rewriting the function f (even the argument type of f changes). So what
futures buy us is maximal concurrency without the need to rewrite existing code.

Rule (future.deref) states when to replaces futures y by their value v. It
applies to futures in future evaluation contexts, once the value of the future has
been computed by some concurrent thread y⇐v in the configuration.

Rule (handle.new) introduces a handled future jointly with a handle. The
idea of handled futures appeared before in the form of I-structures [4] and
promises [14]. Evaluating applications handleλx.λy.e has the following effects:

5

(beta) E[(λy.e) v] −→ E[e[v/y]]

(thread.new) E[thread v] −→ (νy)(E[y] | y⇐v y) (y /∈ fv(E[v]))

(future.deref) Ef [y] | y⇐v −→ Ef [v] | y⇐v

(handle.new) E[handle v] −→ (νy)(νz)(E[v y z] | z h y) (y, z /∈ fv(E[v]))

(handle.bind) E[z v] | z h y −→ E[unit] | y⇐v | z h •

(cell.new) E[cell v] −→ (νy)(E[y] | y c v) (y /∈ fv(E[v]))

(cell.exch) E[exch y v1] | y c v2 −→ E[v2] | y c v1

Fig. 5. Reduction rules of operational semantics

– a new handled future x is created,

– a new handle y is created,

– a new handle component y h x associates handle y to future x,

– the current thread continues with expression e.

Handles can be used only once. According to rule (handle.bind) an application
of handle y to value v reduces by binding the future associated to y to v. This
action consumes the handle component y hx; what remains is a used handle
component y h •. Trying to apply a handle a second time leads to handle errors:

D[E[y v] | y h •] (handle error)

We call a configuration C error-free if it cannot be reduced to any erroneous
configuration, i.e., none of its reducts C ′ with C →∗ C ′ is a handle error.

Evaluating cell v with rule (cell.new) creates a new cell y with content
v represented through a cell component y c v. The exchange operation exch y v
writes v to the cell and returns the previous contents. This exchange is atomic,
i.e., no other thread can interfere. The cell exchange operation exch is strict in
its first argument; the definition of strict evaluation contexts Ef expresses this
uniformly. Observe that cells introduce indeterminism since two threads might
compete for access to a cell.

Programs without handle errors and cell exchange are uniformly conflu-
ent [19] and thus confluent. So cell exchange by concurrent threads remains the
sole source of indeterminism in λ(fut). Nevertheless, handles are needed together
with cells in order to safely express nondeterministic concurrency constructs (see
Sect. 5). While handles can be expressed in terms of the other constructs, such
an encoding unnecessarily complicates the formal treatment. In order to rule out
handle errors by means of the linear type system of Sect. 4 we chose to introduce
handled futures as primitive.

6

2.3 Examples

The first example illustrates concurrent threads and data synchronization. Let
I be the lambda expression λz.z. We consider the expression below, and re-
duce it by a thread.new step followed by a trivial beta step. In the previous
explanation of thread creation we left such beta steps implicit.

x⇐(thread (λy.I I)) (I unit) → (νy)(x⇐y (I unit) | y⇐(λy.I I)y)

→ (νy)(x⇐y (I unit) | y⇐I I)

At this point, we can reduce both threads concurrently, i.e., we have a choice of
beta reducing the left or right thread first. We do the former:

(νy)(x⇐y (I unit) | y⇐I I) → (νy)(x⇐y unit | y⇐I I)

→ (νy)(x⇐y unit | y⇐I)

In fact, any other reduction sequence would have given the same result in this
case. At this point, both threads need to synchronize to exchange the value of y
by applying future.deref; this enables a final beta step:

(νy)(x⇐y unit | y⇐I) → (νy)(x⇐I unit | y⇐I)

(νy)(x⇐unit | y⇐I)

The second example illustrates the power of thread creation in λ(fut); in
contrast to all previous future operators, it can express explicit recursion. Indeed,
thread can replace a fixed point operator fix. Consider for instance:

x⇐(threadλf.λx.(f x)) z

Thread creation thread.new yields a thread assigning a recursive value to f ,
so that the original thread can future.deref and beta reduce forever.

(νf) (x⇐f z | f⇐λx.(f x)) → (νf) (x⇐(λx.(f x)) z | f⇐λx.(f x))

→ (νf) (x⇐f z | f⇐λx.(f x))

Indeed, rule future.deref simulates the usual unfold rule for fixed point
operators.

(unfold) fix λf.λx.e → λx.e[fix λf.λx.e/f]

As a final example, consider how handles can introduce cyclic bindings:

x⇐handleλz.λy.y z →3 (νy)(νz)(x⇐y z | y h z)

→ (νy)(νz)(x⇐unit | z⇐z | y h •)

by handle.new and two beta steps. The final step by handle.bind binds the
future z to itself. This is closely related to what is sometimes referred to as
recursion through the store, or implicit recursion.

7

α, β ∈ Type ::= unit | α → β | α ref

unit : unit

thread : (α → α) → α

handle : (α → (α → unit) → β) → β

cell : α → (α ref)

exch : α ref → α → α

Γ ` c : TypeOf(c)

Γ, x:α ` x : α

Γ, x:α ` e : β

Γ ` λx.e : α → β

Γ ` e1 : α → β Γ ` e2 : α

Γ ` e1 e2 : β

Fig. 6. Typing of λ(fut) expressions

3 Typing

Since our intention is to model extensions of the (statically typed) language
ML we restrict our calculus to be typed. Types are function types α → β, the
type α ref of reference cells containing elements of type α, and the single base
type unit. Typing of expressions is standard and integrates well with ML-style
polymorphism and type inference. On the level of configurations, types are used
to ensure a number of well-formedness conditions, and allow us to state a type
preservation property during evaluation.

3.1 Typing of Constants and Expressions

According to the operational semantics described in Sect. 2, the constants obtain
their natural types. For instance, thread has type (α → α) → α for any type α
since its argument must be a function that maps a future of type α to a value
of type α. The operation thread then returns the future of type α. The types
of the other constants are listed in Fig. 6 and can be justified accordingly.

Let Γ and ∆ range over type environments x1:α1 . . . xn:αn, i.e. finite func-
tional relations between Var and Type. In writing Γ1, Γ2 we assume that the
respective domains are disjoint. Writing TypeOf(c) for the type of constant c we
have the usual type inference rules for simply typed lambda calculus (Fig. 6).

3.2 Typing of Configurations

Every future in a configuration is either concurrent or handled, i.e., its status
is unique. Moreover, the binding of a concurrent future must be unique, and
a handle must give reference to a unique future. Since parallel compositions of
components are reminiscent of (mutually recursive) declarations the following
two configurations are ill-typed:

x⇐e1 |x⇐e2 or y hx1 | y hx2 (1)

Therefore, in the type system it will be required that the variables introduced
by C1 and C2 are disjoint in concurrent compositions C1 |C2.

8

Γ, Γ1 ` C1 : Γ2 Γ, Γ2 ` C2 : Γ1

Γ ` C1 |C2 : Γ1, Γ2

Γ, x:α ref ` v : α

Γ ` x c v : (x:α ref)

Γ ` C : Γ ′

Γ ` (νx)C : Γ ′ − x

Γ, x:α ` e : α

Γ ` x⇐e : (x:α)

x, y /∈ dom(Γ)

Γ ` y h x : (x:α, y:α → unit)

y /∈ dom(Γ)

Γ ` y h • : (y:α → unit)

Fig. 7. Typing rules for components

Types are lifted to configurations according to the inference rules in Fig. 7.
The judgment Γ ` C : Γ ′ informally means that given type assumptions Γ
the configuration C is well-typed. The type environment Γ ′ keeps track of the
variables declared by C. In fact, the rules guarantee that dom(Γ ′) is exactly the
set of variables declared by C, and that dom(Γ) ∩ dom(Γ ′) = ∅.

To type a thread x⇐e we can use the environment Γ as well as the binding
x:α that is introduced by the component. Note that writing Γ, x:α in the premise
implies that x is not already declared in Γ . Similarly, when typing a reference cell
x c v both Γ and the assumption x:α ref can be used to derive that the contents
v of the cell has type α. The typing rule for handle components y h x and y h •
take care that the types of the handled future x and its handle y are compatible,
and that they are not already declared in Γ .

A restriction (νx)C is well-typed under assumptions Γ if the configuration
C is. The name x is kept local by removing any occurrence x:α from Γ ′, which
we write Γ ′ − x.

The typing rule for a parallel composition C1 |C2 is reminiscent of the circu-
lar assume-guarantee reasoning used in compositional verification of concurrent
systems [1]. Recall that the combined environment Γ1, Γ2 in the conclusion is
only defined if the variables appearing in Γ1 and Γ2 are disjoint. So the rule
ensures that the sets of variables declared by C2 and C1 resp., are disjoint. Note
how this prevents the ill-formed configurations in (1) to be typed. Moreover, by
typing C1 in the extended environment Γ ,Γ1 the rule allows variables declared
by C2 to be used in C1, and vice versa. For example, we can derive

` (x⇐y unit | y h z) : (x:unit, z:unit, y:unit → unit) (2)

The thread on the left-hand side declares x and can use the assumption y:unit →
unit about the handle declared in the component on the right. No further as-
sumptions are necessary.

Theorem 1 (Subject Reduction). If Γ ` C1 : Γ ′ and C1 −→ C2 then Γ `
C2 : Γ ′.

Program errors are notorious even for a statically typed programming lan-
guage. Indeed it turns out that the class of handle errors is not excluded by the
type system just presented.

9

Multiplicities κ ::= 1 | ω

Linear types α, β ∈ LinType ::= unit | α
κ

−→ β | α ref

Multiplicities of linear types

|unit|
def
= ω, |α

κ

−→ β|
def
= κ, |α ref|

def
= ω

Typing of constants where κ, κ′, κ′′ arbitrary

unit : unit

thread : (α
κ

−→ α)
κ
′

−→ α where |α| = ω

handle : (α
κ

−→ (α
1

−→ unit)
κ
′

−→ β)
κ
′′

−−→ β where |α| = ω

cell : α
κ

−→ (α ref)

exch : α ref
κ

−→ α
κ
′

−→ α

Operations on type environments

once(Γ)
def
= {x | x:α in Γ, |α| = 1}

Γ1 ·Γ2

def
= Γ1 ∪ Γ2 provided Γ1 ∩ Γ2 = {x:α | x:α ∈ Γ1 ∪ Γ2, |α| = ω}

Fig. 8. Linear types

4 Linear Types for Handles

We refine the type system to prevent handle errors. We see this system as a
proof tool to facilitate reasoning about the absence of handle errors; we do not

want to argue that the linear types should be used in practice. We do also not
discuss how to deal with handle errors in a concrete programming language.

Most previous uses of linear type systems in functional languages, such as
the uniqueness typing of Clean [6], aimed at preserving referential transparency
in the presence of side-effects, and taking advantage of destructive updates for
efficiency reasons. In contrast, our system rules out a class of programming
errors, by enforcing the single-assignment property for handled futures.

The linear type system will be sufficiently expressive to type a variety of
concurrency abstractions (Sects. 5 and 6). Moreover, the linear types of the
handles implementing these abstractions will be encapsulated. Thus, users of
these abstractions need not know about linear types at all.

We annotate types with usage information in the sense of [27]. In our case it is
sufficient to distinguish between linear (i.e., exactly one) and nonlinear (i.e., any
number of times) uses. Multiplicities 1 and ω are ranged over by κ. Moreover,
for our purposes of ruling out handle errors we annotate only function types,
values of other types can always be used non-linearly (recall that handles have

functional types α −→ unit). In particular, α
κ
−→ β denotes functions from α to β

that can be used κ times, and so α
ω
−→ β corresponds to the usual function type.

We write |α| for the multiplicity attached to a type α (see Fig. 8).
For a context Γ we write once(Γ) for the set of variables occuring in Γ with

linear multiplicity. If Γ can be split into Γ1 and Γ2 that both contain all the
variables of Γ with multiplicity ω and a partition of once(Γ) we write Γ = Γ1·Γ2.

10

once(Γ) = ∅

Γ ` c : TypeOf(c)

once(Γ) = ∅

Γ, x:α ` x : α

Γ, x:α ` e : β once(Γ) = ∅

Γ ` λx.e : α
ω

−→ β

Γ, x:α ` e : β

Γ ` λx.e : α
1

−→ β

Γ1 ` e1 : α
κ

−→ β Γ2 ` e2 : α

Γ1 ·Γ2 ` e1 e2 : β

Γ, x:α ` e : α |α| = ω

Γ ` x⇐e : (x:α; x:α)

Γ, x:α ref ` v : α

Γ ` x c v : (x:α ref; x:α ref)

x, y /∈ dom(Γ) |α| = ω

Γ ` y h x : (x:α, y:α
1

−→ unit; x:α, y:α
1

−→ unit)

y /∈ dom(Γ)

Γ ` y h • : (y:α
1

−→ unit; ∅)

Γ ` C : Γ1; Γ2

Γ ` (νx)C : Γ1 − x; Γ2 − x

Γ, ∆2 ` C1 : Γ1; Γ2 ·Γ3 ∆, Γ2 ` C2 : ∆1; ∆2 ·∆3

Γ ·∆ ` C1 |C2 : Γ1, ∆1; Γ3 ·∆3

„

dom(Γ) ∩ dom(∆1) = ∅
dom(∆) ∩ dom(Γ1) = ∅

«

Fig. 9. Linear typing rules for λ(fut) expressions and configurations

The types of the term constants are now refined to reflect that handles must

be used linearly. However, we do not want to restrict access to futures through
the rule (future.deref). Hence it must be guaranteed that futures will never
be replaced by values of types with linear multiplicity. This is done by restricting
the types of thread and handle by the condition |α| = ω. On the other hand,
note that no such restriction is necessary for cells which may contain values of
any (i.e., multiplicity 1 or ω) type. Intuitively this is sound because cells can
be accessed only by the exchange operation. In particular, the contents of a cell
(potentially having multiplicity 1) cannot be copied through cell access.

The type rules for expressions are given in Fig. 9. The rules guarantee that
every variable of type α in Γ with |α| = 1 appears exactly once in the term: In the
rules for constants and variables, the side-condition once(Γ) = ∅ ensures that Γ
contains only variables with use ω. There are two rules for abstraction, reflecting
the fact that we have function types with multiplicities 1 and ω. The condition
once(Γ) = ∅ in the first abstraction rule allows us to derive a type α

ω
−→ β only

if e does not contain any free variables with multiplicity 1. However, with the

second rule it is always possible to derive a type α
1
−→ β. Finally, the rule for

application splits the linearly used variables of the environment. The annotation
κ is irrelevant here, but the type of function and argument must match exactly.

The rules for configurations (Fig. 9) have changed: Judgments are now of
the form Γ ` C : ∆1;∆2, and the type system maintains the invariants (i)
Γ ∩ ∆1 = ∅ and (ii) ∆2 ⊆ ∆1. The intended meaning is the following.

– As before, Γ contains the type assumptions and ∆1 is used to keep track
of the variables which C provides bindings for. In particular, the use of ∆1

allows to ensure the well-formedness conditions in configurations (cf. the
configurations (1) on page 8) by means of invariant (i).

11

– Variables with multiplicity 1 declared by C may not be used both by a
surrounding configuration and within C. The environment ∆2 ⊆ ∆1 lists
those variables “available for use” to the outside.

The example configuration (2) on page 9 shows the need for the additional
environment ∆2: Although a binding for the handle y is provided in y h z, y is
already used internally to bind its future, in the thread x⇐y unit.

The rules for typing thread and handle components now contain the side con-
dition |α| = ω corresponding to the type restriction of the respective constants.
Moreover, the type of y in y hx must have multiplicity 1. Note that in each case
we have ∆1 = ∆2, i.e., all the declared variables are available.

In y h • the variable y is declared, but not available anymore, i.e. it cannot be
used in a surrounding configuration at all. Thus ∆2 = ∅. The rule for restriction
keeps declarations local by removing all occurrences of x from ∆1 and ∆2.

The rule for parallel composition is the most complex one. Compared to the
corresponding inference scheme of the previous section, it splits the linearly used
assumptions (in Γ ·∆) as well as the linearly used variables available from each
of the two constituent configurations (Γ2·Γ3 and ∆2·∆3, resp.). A variable with
multiplicity 1 declared by C1 can then either be used in C2 (via Γ2), or is made
available to a surrounding configuration (via Γ3) but not both. The environment
of declared variables of C1 |C2 is Γ1,∆1 and therefore contains all the variables
declared in C1 (i.e., those in Γ1) and C2 (in ∆1) as before. By our convention,
this ensures in particular that C1 and C2 do not contain multiple bindings for
the same variable. Finally, the side-condition of the rule is necessary to establish
the invariant (i).

Theorem 2 (Subject Reduction). If Γ ` C1 : ∆1;∆2 and C1 → C2 then

Γ ` C2 : ∆1;∆2.

Error-freeness of well-typed configurations follows by combining the absence
of handle errors in the immediate configuration and Subject Reduction as usual.

Corollary 1 (Absence of Handle Errors). If Γ ` C : ∆1;∆2 then C is

error-free.

5 Concurrency Constructs

We now show how to express various concurrency abstractions in λ(fut) which
demonstrates the power of handled futures. We use some syntactic sugar, writing
let x1=e1 in e for (λx1.e) e1, λ .e for λx.e where x is not free in e, and e1; e2 for
(λ .e2) e1. We also extend λ(fut) with products and lists.

Mutual Exclusion. When concurrent threads access shared data it is necessary
that they do not interfere in order to prevent any data inconsistencies. We can
implement an operation mutex of type (unit → α) → α that applies its argument
under mutual exclusion. We use a strict context to synchronize several threads
wishing to access a critical region.

12

let r = cell (λy.y)
in λa.handle(λxλbindx. (exch r x) (unit);

(let v=a (unit) in bindx (λy.y); v))

Before running the function a that is given as argument (the critical region),
a handled future (of type unit → unit) is stored in the reference cell r. This
future is bound (to the identity function) only after the argument is evaluated.
Moreover, before this happens, the previous contents of the cell r cannot be an
unbound future anymore since the function application (exch r x) (unit) is strict
in its arguments. Consequently, threads cannot interfere when evaluating a.

Ports. We assume that there are pairs and a list data type, and write v :: l for
the list with first element v, followed by the list l. A stream is a “open-ended”
list v1:: · · · ::vn::x where x is a (handled) future. The stream can be extended
arbitrarily often by using the handle of the future, provided each new element is
again of the form v::x′, with x′ a handled future. We call the elements v1, . . . , vn

on a stream messages.

A function newPort that creates a new port can be implemented as follows.

λ .handle(λsλbinds.
let putr = cell binds

put = λx.handle(λsλbinds.(exch putr binds) (x :: s))
in (s, put))

The port consists of a stream s and an operation put to put new messages
onto the stream. The stream is ended by a handled future, which in the beginning
is s itself. Its handle binds is stored in the cell putr and used in put to send the
next message to the port. put introduces a new handled future before writing
the new value to the end of the stream. The new handle is stored in the cell.

Channels. By extending ports with a receive operation of type unit → α we ob-
tain channels, which provide for indeterministic many to many communication.
A function newChannel that generates channels is

λ .handle(λinitλbindinit.
let putr = cell bindinit

getr = cell init

put = λx.handle(λnλbindn.(exch putr bindn) (x :: n))
get = λ .handle(λnλbindn.case(exch getr n))

of x :: c ⇒ bindn(c);x)
in (put, get))

Given a stream, applying get yields the next message on the stream. If the
stream contains no further messages, get blocks: We assume that the matching
against the pattern x :: c is strict. Note how get uses a handled future in the same
way as the mutual exclusion above to make the implementation thread-safe.

13

α, β ∈ LinType ::= . . . | α ×κ β | α listκ such that |α| = 1 or |β| = 1 =⇒ κ = 1

Γ1 ` e1 : α Γ2 ` e2 : β

Γ1 ·Γ2 ` (e1, e2) : α ×κ β

Γ1 ` e1 : α ×κ β Γ2, x:α, y:β ` e2 : γ

Γ1 ·Γ2 ` case e1 of (x, y) ⇒ e2 : γ

Γ1 ` e1 : α Γ2 ` e2 : α listκ

Γ1 ·Γ2 ` e1::e2 : α listκ

Γ1 ` e1 : α listκ Γ2, x:α, y:α listκ ` e2 : β

Γ1 ·Γ2 ` case e1 of x::y ⇒ e2 : β

Fig. 10. Typing rules for products and lists

6 Proving Safety

The three abstractions defined in the previous section are safe, in the sense that
no handle errors are raised by using them. For instance, we can always send
to the port without running into an error. Intuitively, this holds since nobody
can access the (local) handle to the future at the end of the stream s, and the
implementation itself uses each handle only once.

The linear type system can be used to make this intuition formal: By the
results of Sect. 4 typability guarantees the absence of handle errors. Moreover,
all three abstractions obtain “non-linear” types with multiplicity ω. The use of
handled futures is thus properly encapsulated and not observable from the types.
This suggests to provide concurrency abstractions through safe libraries to users.

Mutual Exclusion. The mutual exclusion mutex can be typed as

` mutex : (unit
κ
−→ α)

ω
−→ α

in the linear type system. In fact, in a derivation there is no constraint on the
multiplicity κ which can be chosen as either 1 or ω. More importantly, the type
of mutex itself has multiplicity ω, which allows mutex to be applied any number
of times.

Ports and Channels. We only sketch how to extend the linear type system to deal
with pairs and lists. The details of such an extension are quite standard (see [27],
for instance). Just as with function types these new types are annotated with
multiplicities. We can devise the inference rules in Fig. 10 for the new types. If
the constructs are given the usual operational semantics, the subject reduction
theorem can be extended, as can Corollary 1. For the port abstraction, we derive

` newPort : unit
ω
−→ (α listω ×κ α

ω
−→ unit) (|α| = ω)

for any κ. In particular, both newPort itself and the put operation (the second
component of the result pair) can be used unrestrictedly. Similarly, for |α| = ω,

` newChannel : unit
ω
−→ ((α

ω
−→ unit) ×ω (unit

ω
−→ α))

can be derived for the implementation of channels.

14

7 Implementation View

An implementation of futures has to deal with placeholder objects and deref-
erencing to obtain the value associated with a future. Further, in the case of
lazy futures it must perform the triggering of computations. All these aspects
are visible on the level of the compiler only; futures are transparent from the
programmer’s point of view. Therefore, these touch operations are introduced
by the compiler rather than the programmer.

With an explicit touch operator “?” the expression ?x waits for the value
of the future x, forces its evaluation if necessary, and returns the value once
available. To improve efficiency, a compiler should be able to remove as many
redundant touches as possible. That this can be done by strictness analysis
was an important achievement of previous work on futures by Felleisen and
Flanagan [9]. In this paper, we did not deal with touches and their optimization.
We expect that the analysis of [9] can be extended to our calculus, but leave this
for future work.

8 Conclusion

We have presented the lambda calculus with futures λ(fut) which serves as a
semantics for concurrent extensions of ML where all synchronization is based on
futures. We assumed call-by-value evaluation, static typing, and state. We have
demonstrated how the handled futures of λ(fut) provide an elegant, unifying
mechanism to express various concurrency abstractions.

We have proved the safety of these implementations on basis of a linear type
system. Hence, handle errors cannot arise when using handles only through safe
libraries. As a consequence, handled futures can be safely incorporated into a
strongly typed ML-style programming language without imposing changes in
the type system. An ML extension called Alice [2] along these lines is available.

In future work, we intend to develop a strictness analysis for improving the
efficiency of implementations of λ(fut). We plan to investigate operational equiv-
alences as a further tool in reasoning about λ(fut) programs.

Acknowledgements We would like to thank the anonymous referees for their
detailed comments and feedback.

References

1. M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems, 17(3):507–534, 1995.

2. The Alice Project. Web site at the Programming Systems Lab, Universität des
Saarlandes, http://www.ps.uni-sb.de/alice, 2005.

3. Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. Journal of
Functional Programming, 7(3):265–301, 1997.

4. Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data structures for par-
allel computing. ACM Transactions on Programming Languages and Systems,
11(4):598–632, 1989.

15

5. H. Baker and C. Hewitt. The incremental garbage collection of processes. ACM
Sigplan Notices, 12:55–59, Aug. 1977.

6. E. Barendsen and S. Smetsers. Uniqueness type inference. In Proc. PLILP’95,
volume 982 of LNCS, pages 189–206. Springer, 1995.

7. E. Chailloux, P. Manoury, and B. Pagano. Developing Applications With Objective
Caml. O’Reilly, 2000. Available online at http://caml.inria.fr/oreilly-book.

8. S. Conchon and F. L. Fessant. Jocaml: Mobile agents for Objective-Caml. In First
International Symposium on Agent Systems and Applications (ASA’99)/Third In-
ternational Symposium on Mobile Agents (MA’99), 1999.

9. C. Flanagan and M. Felleisen. The semantics of future and an application. Journal
of Functional Programming, 9(1):1–31, 1999.

10. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In Proc. POPL’96, pages 372–385. ACM Press, 1996.

11. C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Implicit typing à la ML for
the join-calculus. In Proc. CONCUR’97, volume 1243 of LNCS, pages 196–212.
Springer, 1997.

12. R. H. Halstead, Jr. Multilisp: A Language for Concurrent Symbolic Computation.
ACM Transactions on Programming Languages and Systems, 7(4):501–538, 1985.

13. S. Haridi, P. V. Roy, P. Brand, M. Mehl, R. Scheidhauer, and G. Smolka. Efficient
logic variables for distributed computing. ACM Transactions on Programming
Languages and Systems, 21(3):569–626, 1999.

14. B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. SIGPLAN Notices, 23(7):260–268, 1988.

15. J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda calculus. Journal
of Functional Programming, 8(3):275–317, 1998.

16. R. Milner. The polyadic π-calculus: A tutorial. In F. L. Bauer, W. Brauer, and
H. Schwichtenberg, editors, Logic and Algebra of Specification, Proc. Marktoberdorf
Summer School, pages 203–246. Springer, 1993.

17. R. Milner, M. Tofte, R. Harper, and D. B. MacQueen. The Standard ML Program-
ming Language (Revised). MIT Press, 1997.

18. M. Müller. Set-based Failure Diagnosis for Concurrent Constraint Programming.
PhD thesis, Universität des Saarlandes, Saarbrücken, 1998.

19. J. Niehren. Uniform confluence in concurrent computation. Journal of Functional
Programming, 10(5):453–499, 2000.

20. F. Nielson, editor. ML with Concurrency: Design, Analysis, Implementation, and
Application. Monographs in Computer Science. Springer, 1997.

21. B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-
calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

22. J. H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.
23. A. Rossberg, D. L. Botlan, G. Tack, T. Brunklaus, and G. Smolka. Alice Through

the Looking Glass, volume 5 of Trends in Functional Programming. Intellect, Mu-
nich, Germany, 2004.

24. V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concur-
rent constraint programming. In Proc. POPL’91, pages 333–352. ACM Press.

25. E. Shapiro. The family of concurrent logic programming languages. ACM Comput.
Surv., 21(3):413–510, 1989.

26. G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer
Science Today, volume 1000 of LNCS, pages 324–343. Springer, 1995.

27. D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In Proc. 7th ICFPCA,
pages 1–11. ACM Press, 1995.

16

A Proofs

In this section we provide the proof for the subject reduction theorem of the
linear type system (Theorem 2). We start with a number of lemmas relating to
(linear) variables in contexts and substitution. All of these are fairly standard.

Lemma 1. If Γ ` v : α then once(Γ) 6= ∅ implies |α| = 1.

Proof. The proof is by induction on the type derivation for Γ ` v : α.

– Case v is c: Then always once(Γ) = ∅.
– Case v is x: Then Γ, x:α ` x : α with once(Γ) = ∅, and so if once(Γ, x:α) 6= ∅

we have necessarily |α| = 1.
– Case v is λx.e: This follows immediately from the rules for abstraction. If

once(Γ) 6= ∅ only the second one of the two abstraction rule applies, and so
|α| = 1.

– Case v is exch v′: Suppose Γ ` exch v′ : α. Then α is β
κ
−→ β, and we have

Γ1 ` exch : β ref
κ

′

−→ β
κ
−→ β and Γ2 ` v′ : β ref where Γ1 · Γ2 = Γ . As in the

constant case, once(Γ1) = ∅, and since |β ref| = ω the inductive hypothesis
implies once(Γ2) = ∅. Hence once(Γ) = ∅. ut

Lemma 2. If Γ ` e : α and |β| = ω then Γ, x:β ` e : α.

Proof. The proof is by a straightforward induction on Γ ` e : α. ut

Lemma 3. Suppose Γ ` e : α.

1. If x does not occur in Γ then x is not free in e.
2. If x:β ∈ Γ with |β| = 1 then there is exactly one free occurrence of x in e.
3. If Γ, x:β ` e : α and x /∈ fv(e) then Γ ` e : α.

Proof. Again, by an induction on Γ ` e : α.

– Case e is c: Clearly no variable is free in e in this case, and once(Γ) = ∅ by
the typing rule for constants, so for all x:β ∈ Γ we have |β| = ω. Finally,
Γ ` c : TypeOf(c) for any Γ with once(Γ) = ∅.

– Case e is y: Necessarily y:α in Γ, y:α, and no x 6= y is free in e. Moreover,
there is exactly one occurrence of y in e ≡ y, and for all x 6= y with x:β in
Γ the condition once(Γ) = ∅ implies |β| = ω. Finally, x not free in e implies
x 6= y, so Γ − x ` y : α.

– Case e is e1 e2: Then Γ1 ` e1 : α′
κ
−→ α and Γ2 ` e2 : α′ where Γ1·Γ2 = Γ . By

induction hypothesis, if x not in Γ (hence not in Γ1 and Γ2) then x is not
free in e ≡ e1 e2.
Moreover, if x:β ∈ Γ with |β| = 1 then x:β in exactly one of Γ1 and Γ2.
Suppose x:β ∈ Γ1, then by induction there is exactly one occurrence of x in
e1, and by the previous observation x is not free in e2. So there is exactly
one occurrence in e1 e2. The case where x:β ∈ Γ2 is symmetric.
The last claim follows immediately by induction.

17

– Case e is λy.e1: All claims follow immediately from the inductive hypothesis.
ut

Lemma 4 (Substitution). Suppose Γ, x:β ` e : α and Γ ′ ` v : β. Then

Γ ·Γ ′ ` e[v/x] : α.

Proof. By induction on Γ, x:β ` e : α.

– Case e is c: By the rule for constants, once(Γ) = ∅ and |β| = ω. Clearly
Γ ` e : α by the constant rule. By Lemma 1 |β| = ω implies once(Γ ′) = ∅,
and so by repeated applications of Lemma 2 and the fact e[v/x] ≡ c we
obtain Γ ·Γ ′ ` e[v/x] : α.

– Case e is y: If x = y then once(Γ) = ∅ and α = β by the type rule for
variables. But then e[v/x] ≡ v and repeated applications of Lemma 2 yield
the desired result.
If x 6= y then by the rule for variables |β| = ω. So by Lemma 1 this yields
once(Γ ′) = ∅, and Lemma 2 and e[v/x] ≡ y gives Γ ·Γ ′ ` e[v/x] : α.

– Case e is e1 e2: If |β| = ω then there are Γ1 and Γ2 such that Γ = Γ1 ·Γ2

and we have Γ1, x:β ` e1 : α′
κ
−→ α and Γ2, x:β ` e2 : α′. By induction,

Γ1 ·Γ
′ ` e1[v/x] : α′

κ
−→ α and Γ2 ·Γ

′ ` e2[v/x] : α′. By |β| = ω Lemma 1
implies once(Γ ′) = ∅. Hence, Γ ·Γ ′ ` (e1 e2)[v/x] : α.

If |β| = 1 then Γ1 ` e1 : α′
κ
−→ α and Γ2 ` e2 : α′ where Γ1 ·Γ2 is defined

and x:β occurs in exactly one of Γ1 and Γ2. Suppose x:β ∈ Γ1. Then by
induction hypothesis, (Γ1 − x)·Γ ′ ` e1[v/x] : α′

κ
−→ α. Also, by the first part

of Lemma 3 we know e2[v/x] ≡ e2. Using Lemma 2 on Γ2 ` e2 : α′ (with the
non-linear variables of Γ ′) we obtain Γ ·Γ ′ ` (e1 e2)[v/x] : α. The case where
x:β ∈ Γ2 is symmetric.

– Case e is λy.e1: Suppose Γ, x:β ` λy.e1 : α1

κ
−→ α2. By bound renaming, we

can assume that y is different from x and all the variables declared in Γ and
Γ ′. By either rule for abstraction we get Γ, x:β, y:α1 ` e1 : α2. By induction,
(Γ, y:α1)·Γ

′ ` e1[v/x] : α2. Now if κ = ω then the condition in the abstraction
rule implies once(Γ) = ∅ and |β| = ω. Hence by Lemma 1 once(Γ ′) = ∅ as

well. So for any κ we can derive Γ ·Γ ′ ` (λy.e1)[v/x] : α1

κ
−→ α2. ut

Lemma 5 (Context). If Γ ` F [e] : α then there exist Γ1, Γ2 and β such that

Γ = Γ1 ·Γ2 and Γ1, x:β ` F [x] : α and Γ2 ` e : β.

Proof. The proof is by induction on the evaluation context F .

– Case F is []: Choose β = α, Γ1 the empty environment and Γ2 = Γ .

– Case F is F ′ e′: By the application rule, Γ ′ ` F ′[e] : α′
κ
−→ α and Γ ′′ ` e′ : α′

for some Γ ′ and Γ ′′ with Γ = Γ ′ ·Γ ′′.
By induction, exists β, Γ ′

1 and Γ2 with Γ ′ = Γ ′

1 ·Γ2 and Γ ′

1, x:β ` F ′[x] :

α′
κ
−→ α and Γ2 ` e : β. So the result follows by choosing Γ1 = Γ ′′ ·Γ ′

1 since
then by the type rule for application Γ1, x:β ` F ′[x] e′ : α.

– Case F is v F ′: This case is analogous to the previous case. ut

18

Note that this result also holds for strict evaluation contexts Ff since these
form a subset of evaluation contexts.

Lemma 6. If Γ ` C : ∆1;∆2 then

1. dom(Γ) ∩ dom(∆1) = ∅
2. ∆2 ⊆ ∆1

3. if x is not in Γ and ∆1, and |α| = ω, then Γ, x:α ` C : ∆1;∆2

4. if x is not free in C then Γ − x ` C : ∆1;∆2.

Proof. The proof is by an easy induction on Γ ` C : ∆1;∆2. ut

Note that without the side condition dom(Γ ·∆) ∩ dom(Γ1,∆1) = ∅ in the rule
for parallel composition the first claim of Lemma 6 will be false in general. To
see this, observe that

y:unit
1
−→ unit ` x⇐y unit : (x:unit; x:unit)

and

` y h x′ : (x′:unit, y:unit
1
−→ unit; x′:unit, y:unit

1
−→ unit)

and so without the side condition

y:unit
1
−→ unit ` (x⇐y unit | y hx′) : ∆;∆

where ∆ = x:unit, x′:unit, y:unit
1
−→ unit contains y as well.

Lemma 7 (Congruence). If Γ ` C1 : ∆1;∆2 and C1 ≡C2 then Γ ` C2 :
∆1;∆2.

Proof. By induction of the derivation of C1 ≡C2. We consider only the cases of
the four axioms listed in Fig. 2, the cases of the congruence rules are straight-
forward.

– Commutativity: Follows since the rule for parallel composition is symmetric.
– Associativity: Follows from the rule for parallel composition and the fact

that all operations on contexts are associative.
– New names: If Γ ` (νx)(νy)C1 : ∆1;∆2 then Γ ` C1 : ∆′

1;∆
′

2 where ∆i =
∆′

i
− y − x = ∆′

i
− x − y. Hence also Γ ` (νy)(νx)C1 : ∆1;∆2.

– Scope extrusion: By bound renaming, we can assume x does not appear in
any of the contexts. Suppose Γ ·∆ ` ((νx)C1) |C2 : Γ1,∆1; Γ3,∆3, with
• Γ,∆2 ` (νx)C1 : Γ1;Γ2 ·Γ3

• ∆,Γ2 ` C2 : ∆1;∆2 ·∆3 and
• dom(Γ) ∩ dom(∆1) = ∅ and dom(Delta) ∩ dom(Γ1) = ∅.

So Γ,∆2 ` C1 : Γ ′

1;Γ
′

2 ·Γ
′

3 such that Γ ′

1 − x = Γ1 and Γ ′

2 ·Γ
′

3 − x = Γ2 ·Γ3.
Since x not in ∆,Γ2 we also have ∆,Γ ′

2 ` C2 : ∆1;∆2 ·∆3 by Lemma 6
(3), and so Γ ·∆ ` (C1 |C2) : Γ ′

1,∆1; Γ ′

3,∆3. Hence, Γ ·∆ ` (νx)(C1 |C2) :
Γ1,∆1; Γ3,∆3.
The direction from right to left is similar, using Lemma 6 (4). ut

19

Lemma 8 (Context). Suppose Γ ` D[C1] : ∆1;∆2. Then there are Γ ′,∆′

1 and

∆′

2 such that

1. Γ ′ ` C1 : ∆′

1;∆
′

2, and

2. whenever Γ ′ ` C2 : ∆′

1;∆
′

2 then Γ ` D[C2] : ∆1;∆2.

Proof. By induction on the context D. ut

Theorem 3 (Subject Reduction). If Γ ` C1 : ∆1;∆2 and C1 → C2 then

Γ ` C2 : ∆1;∆2.

Proof. Consider cases for reduction (cf. Fig. 5).

– Case (beta): So x⇐F [(λy.e) v] reduces to x⇐F [e[v/y]]. By the typing rule
for threads,

Γ, x:α ` F [(λy.e) v] : α

with |α| = ω and ∆1 = ∆2 = x:α. By Lemma 5, Γ1, x:α, y:β ` F [y] : α
and Γ2, x:α ` (λy.e) v : β where Γ = Γ1 ·Γ2. Hence Γ ′

2, x:α, y:β′ ` e : β and
Γ ′′

2 , x:α ` v : β′ for some β′ and Γ2 = Γ ′

2·Γ
′′

2 . By Lemma 4, Γ2, x:α ` e[v/y] : β
and then

Γ, x:α ` F [e[v/y]] : α

So Γ ` x⇐F [e[v/y]] : ∆1;∆2 by the typing rule for threads.
– Case (thread.new): So x⇐F [thread v] reduces to the configuration C2 ≡

(νy)(E[y] | y⇐v y) where E is x⇐F and x 6= y /∈ fv(F [v]). By Lemma 5,
Γ1, x:α, y:β ` F [y] : α and Γ2, x:α ` thread v : β where Γ = Γ1 ·Γ2 and

∆1 = ∆2 = x:α. Hence, Γ2, x:α ` v : β
κ
−→ β with |β| = ω by the rules for

application and constants. We obtain Γ2, x:α, y:β ` y⇐v y : (y:β; y:β) by the
application and thread rules, and

Γ ` (x⇐F [y] | y⇐v y) : (x:α, y:β;x:α, y:β)

by thread and composition. By restriction Γ ` (νy)(E[y] | y⇐v y) : ∆1;∆2

follows.
– Case (future.deref): By the definition, (x⇐Ff [y] | y⇐v) reduces to and

(x⇐Ff [v] | y⇐v). By the parallel composition rule and Lemma 5,

Γ1, y:β, x:α ` Ff [y] : α and Γ2, x:α, y:β ` v : β

where |α| = |β| = ω, Γ = Γ1 ·Γ2 and ∆1 = ∆2 = x:α, y:β. By Lemma 1,
once(Γ2) = ∅, so Γ2 ⊆ Γ1 and by Lemma 4 Γ1, x:α, y:β ` Ff [v] : α. So

Γ ` (x⇐Ff [v] | y⇐v) : ∆1;∆2

– Case (handle.new): Similar to the case for (thread.new).

20

– Case (handle.bind): So (x⇐F [z v] | z h y) is reduced to (x⇐F [unit] | y⇐v | z h •).

Then ∆2 = x:α, y:β and ∆1 = ∆2, z:β
1
−→ unit, and

Γ1, y:β, z:β
1
−→ unit, x:α ` F [z v] : α and Γ2 ` z h y : ∆′;∆′

for Γ = Γ1 ·Γ2 with x, y /∈ Γ2 and ∆′ = y:β, z:β
1
−→ unit. By Lemma 5 and

Lemma 4, also

Γ ′

1, y:β, x:α ` F [unit] : α and Γ ′′

1 , y:β, x:α ` v : β

for Γ1 = Γ ′

1 ·Γ
′′

1 . Hence

Γ1 ` (x⇐F [unit] | y⇐v) : ∆2;∆2

and

Γ ` (x⇐F [unit] | y⇐v | z h •) : ∆1;∆2

– Case (cell.new): Similar to (thread.new) and (handle.new).
– Case (cell.exch): Similar to the case (handle.bind). ut

The theorem now follows from Lemma 7 and Lemma 8 which show the sound-
ness of the rules in Fig. 4.

Corollary 2 (Absence of Handle Errors). If Γ ` C : ∆1;∆2 then C is

error-free.

Proof. Suppose C has an error, i.e.,

C ≡ D[Ef [y v] | y h •]

Further, suppose Γ ` C : ∆1;∆2, so there exists Γ ′,∆′

1 and ∆′

2 such that

Γ ′ ` (z⇐Ff [y v] | y h •) : ∆′

1;∆
′

2

In fact, ∆′

2 = z:α and ∆′

1 = ∆′

2, y:β
1
−→ unit.

By parallel composition and thread, for some Γ1 and Γ2 such that Γ ′ = Γ1·Γ2

we have

Γ1, z:α ` Ff [y v] : α

Now y ∈ fv(Ff [y v]) since evaluation contexts do not involve any bindings. By
Lemma 3, y must occur in Γ1 ⊆ Γ ′. By Lemma 6, dom(Γ ′) ∩ dom(∆′

1) = ∅, a

contradiction to y:β
1
−→ unit ∈ ∆′

1.
Hence, C cannot be typable whenever it has an error. By Subject Reduction

(Theorem 3), this proves that Γ ` C : ∆1;∆2 implies C is error-free. ut

21

