
Saarland University

Faculty of Natural Sciences and Technology I

Department of Computer Science

Bachelor’s Program in Computer Science

Bachelor’s Thesis

A Semantics for Lazy Types

submitted by

Georg Neis
on September 30, 2006

Supervisor

Prof. Dr. Gert Smolka

Advisor

Dipl.-Inform. Andreas Rossberg

Reviewers

Prof. Dr. Gert Smolka

Prof. Dr. Andreas Zeller

Statement

Hereby I confirm that this thesis is my own work and that I have documented all sources used.

Saarbrücken, September 30, 2006

Acknowledgment

I would like to thank Andreas Rossberg and Prof. Gert Smolka for offering me this topic. I
am particularly grateful for the countless discussions with Andreas—I will miss them. Further
thanks go to Andi Scharfstein for proof-reading the thesis.

Abstract

A central requirement for open and distributed programming is the ability to compose code at
run time. In such programs type safety can no longer be guaranteed by static checks. Additional
type checking at link time is necessary to ensure the integrity of the run-time system. Apart
from that, it is desirable to perform linking as late as possible: this decreases the startup time
of programs, keeps their working set small, and avoids loading unneeded code.

In this thesis, we present a system that is based on Fω and models a language with support
for such type-safe, late dynamic linking in the presence of higher-order polymorphism. Its key
ingredients are intensional type analysis and lazy evaluation. Interesting implications arise from
this combination. Type analysis needs to compare dynamic types, which have to be computed
from (probably higher-order) type expressions that may contain types from other modules. If
lazy linking has delayed the loading of these modules so far, then the corresponding types are
represented by free type variables. For the type-level computation in our model this means that
it may encounter free type variables whose denotation depends on yet unevaluated term-level
expressions. To proceed, it inevitably has to eliminate these variables by triggering the necessary
evaluations on term-level. In other words: type-level computation has to account for lazy types.
We give two strategies for this and show soundness properties for the resulting calculi. The
second strategy is more complicated than the first but provides a higher degree of laziness.

Contents

1 Introduction 2

1.1 Motivation . 2
1.2 Alice ML . 2
1.3 Outline . 3

2 The basic calculus 4

2.1 System Fω . 4
2.2 Pairs . 6
2.3 Existential types . 6
2.4 Typecase . 10
2.5 Lazy evaluation . 11
2.6 Properties . 16

3 Reduction strategies for the type level 23

3.1 Applicative order reduction to normal form . 24
3.1.1 Properties . 25

3.2 Interleaved call-by-name reduction to weak head normal form 30
3.2.1 Properties . 34

4 Related work 43

5 Conclusion and future work 45

A Proofs 49

A.1 The basic calculus . 49
A.2 Applicative order reduction to normal form . 98
A.3 Interleaved call-by-name reduction to weak head normal form 117

1

Chapter 1

Introduction

1.1 Motivation

A central requirement for open and distributed programming is the ability to compose code at
run time. In such programs type safety can no longer be guaranteed by static checks. Additional
type checking at link time is necessary to ensure the integrity of the run-time system. Apart
from that, it is desirable to perform linking as late as possible. This decreases the startup time
of programs, keeps their working set small, and avoids loading unneeded code.

Creating a formal model of a language with support for such type-safe, late dynamic linking
requires two key ingredients:

• intensional type analysis, the ability to inspect the dynamic ‘value’ of type variables,

• laziness, the ability to delay a computation until its result is needed, and to avoid later
recomputation by caching this result once it is available.

The integration of both techniques into a single system has an interesting impact on its dynamic
semantics. Modeling dynamic type checking, type analysis has to compare run-time types in the
form of arbitrary complex expressions, which demands for some form of normalization. Dynamic
loading of code is a term-level operation but may introduce new types. If linking is lazy, however,
then these new types have to be represented by free variables as long as the loading is deferred.
Therefore, the normalization of type expressions may encounter free type variables that denote
yet unknown types. To continue, these variables have to be eliminated by triggering the linking
of the associated code. This necessitates a new concept: lazy types.

1.2 Alice ML

Alice ML [3, 22] is a programming language designed for typed open programming. It is based on
Standard ML [15] and hence comes with a strong static type system. Alice ML provides support
for concurrent, distributed and constraint programming. That in particular includes the ability
to load arbitrary code at run time by importing so-called components [22, 20], which can be
understood as containers for modules. To ensure type safety, Alice ML performs dynamic type
checks in addition to the usual compile-time checking. This requires the availability of run-time
type information.

Another central concept of Alice ML are futures [22, 17]. They come in different flavours, of
which only lazy futures are of interest for us. Lazy futures add lazy evaluation to the language:
using special syntax it is possible to suspend the evaluation of an expression until its value is
actually needed.

2

(* A *)
type t = int
val x : t = 42

(* B *)
import type t; val x : t from ”A”
type u = t
val y : u × u = (x,x)

(* C *)
import type u = int; val y : u × u from ”B”
type v = int
val z = #1 y

Figure 1.1: An example from Alice ML

The mechanism for importing components implicitely makes use of the laziness, i.e., compo-
nents are loaded at the latest possible point in time. This is called lazy linking and provides the
aforementionend benefits such as decreasing the startup time of programs.

Dynamic type checking is carried out when the import of a component is triggered and works
by comparing the run-time signature of the contained module with a statically specified one. The
type expressions that are to be compared may contain free type variables representing types from
modules, which—due to the lazy linking—have not been loaded yet. Hence, in order to obtain
the denotation of these types the import of the respective components has to be triggered first.
Figure 1.1 shows a short example consisting of three components, each of which may reside in a
separate file. What happens when component C is evaluated? Since imports are lazy, the first
declaration at this point only introduces the new names u and y as lazy futures. The definition
of the type alias v has no operational effect either. In the binding of z, the first constituent of y
is requested. This triggers the import from component B. There, the first two statements again
only introduce new names. The tuple (x,x) can be constructed without knowing the proper value
of x, so the binding of y does not cause any evaluation. However, the import of B is not finished
yet. What remains is the dynamic type check: in this case, to make sure that type u really is
equal to type int. Due to the previous examination of B it is already known that u is a lazy
reference to type t, which is imported from component A. For this reason, in order for the type
check to proceed, A has to be loaded as well at this point—even though it is not directly accessed
in C.

1.3 Outline

In this thesis, we develop a calculus that is based on Fω and models the integration of dynamic
type checking with laziness. Our main focus lies on the type-level reduction. We present two
deterministic strategies, which differ significantly in their degree of laziness, and prove soundness
for them.

3

Chapter 2

The basic calculus

2.1 System Fω

We build our calculus on top of Fω , the higher-order polymorphic lambda calculus [11, 18].
This gives us sufficient expressive power to model the ML core language1. Let us examine a
few examples. The identity function, fn x ⇒ x, can be translated into Fω as λα:Ω.λx:α.x. In
contrast to SML, we have to explicitly specify the type parameters of a polymorphic function.
The declaration type (α, β) state = α → α×β introduces a type constructor that corresponds to
the type-level function λα:Ω.λβ:Ω.α → α×β. The application of type constructors is backwards
in SML: the Fω equivalent of the type (int,int) state is (λα:Ω.λβ:Ω.α → α × β) int int. Some
other typical functions are:

fun flip f x y = f y x
 flip = λX :Ω.λY :Ω.λZ:Ω.λf :Y → X → Z.λx:X.λy:Y.f y x

fun compose f g = fn x ⇒ f (g x)
 compose = λX :Ω.λY :Ω.λZ:Ω.λf :Y → Z.λg:X → Y.λx:X.f (g x)

fun compose’ f g = flip compose f g
 compose’ = λX :Ω.λY :Ω.λZ:Ω.flip (Y → Z) (X → Y) (X → Z) (compose X Y Z)

Figure 2.1 shows the syntax of Fω. The operational (small-step) semantics is formalized
with the help of evaluation contexts [10]. Figure 2.2 defines a common left-to-right call-by-value
reduction relation. We write a[b := c] for the capture-free substitution of b by c in a.

term variables x ∈ Var
type variables α ∈ TVar
terms e ::= x | λx:τ.e | e1 e2 | λα:κ.e | e τ
types τ ::= α | τ1 → τ2 | ∀α:κ.τ | λα:κ.τ | τ1 τ2

kinds κ ::= Ω | κ1 → κ2

Figure 2.1: Syntax of Fω

The static semantics is defined by the three judgements Γ ⊢ � (well-formedness of environ-
ments), Γ ⊢ τ : κ (well-formedness of types), and Γ ⊢ e : τ (well-formedness of terms). Figure 2.3
lists the corresponding inference rules. The rules for environments (prefixed with E-) guarantee
that a well-formed environment can be interpreted as a partial function from term and type

1Mainly with regard to the type system. While Fω does not allow the definition of recursive functions, this
will become possible as a side effect of adding a typecase operator.

4

values v ::= λx:τ.e | λα:κ.e

evaluation contexts E ::= | E e | (λx:τ.e) E | E τ

Reduction e −→ e′

R-App E[(λx:τ.e) v] −→ E[e[x := v]]
R-Inst E[(λα:κ.e) τ] −→ E[e[α := τ]]

Figure 2.2: Operational semantics of Fω

Well-formedness of environments Γ ⊢ �

(E-Empty)
· ⊢ �

(E-Type)
Γ ⊢ � α /∈ dom(Γ)

Γ, α:κ ⊢ �

(E-Term)
Γ ⊢ τ : Ω x /∈ dom(Γ)

Γ, x:τ ⊢ �

Well-formedness of types Γ ⊢ τ : κ

(K-Var)
Γ ⊢ �

Γ ⊢ α : Γ(α)
(K-Arrow)

Γ ⊢ τ1 : Ω Γ ⊢ τ2 : Ω

Γ ⊢ τ1 → τ2 : Ω

(K-Univ)
Γ, α:κ ⊢ τ : Ω

Γ ⊢ ∀α:κ.τ : Ω
(K-Abs)

Γ, α:κ ⊢ τ : κ′

Γ ⊢ λα:κ.τ : κ → κ′

(K-App)
Γ ⊢ τ1 : κ2 → κ Γ ⊢ τ2 : κ2

Γ ⊢ τ1 τ2 : κ

Well-formedness of terms Γ ⊢ e : τ

(T-Equiv)
Γ ⊢ e : τ ′ τ ′ ≡ τ Γ ⊢ τ : Ω

Γ ⊢ e : τ
(T-Var)

Γ ⊢ �

Γ ⊢ x : Γ(x)

(T-Abs)
Γ, x:τ ⊢ e : τ ′

Γ ⊢ λx:τ.e : τ → τ ′
(T-App)

Γ ⊢ e1 : τ2 → τ Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ

(T-Gen)
Γ, α:κ ⊢ e : τ

Γ ⊢ λα:κ.e : ∀α:κ.τ
(T-Inst)

Γ ⊢ e : ∀α:κ.τ ′ Γ ⊢ τ : κ

Γ ⊢ e τ : τ ′[α := τ]

Figure 2.3: Static semantics of Fω

5

Equivalence of types τ ≡ τ ′

(Q-Refl)
τ ≡ τ

(Q-Symm)
τ2 ≡ τ1

τ1 ≡ τ2

(Q-Trans)
τ1 ≡ τ2 τ2 ≡ τ3

τ1 ≡ τ3

(Q-Arrow)
τ1 ≡ τ ′

1 τ2 ≡ τ ′

2

τ1 → τ2 ≡ τ ′

1
→ τ ′

2

(Q-Univ)
τ1 ≡ τ2

∀α:κ.τ1 ≡ ∀α:κ.τ2

(Q-Abs)
τ1 ≡ τ2

λα:κ.τ1 ≡ λα:κ.τ2

(Q-App)
τ1 ≡ τ ′

1 τ2 ≡ τ ′

2

τ1 τ2 ≡ τ ′

1
τ ′

2

(Q-Beta)
(λα:κ.τ1) τ2 ≡ τ1[α := τ2]

Figure 2.4: Type equivalence of Fω

variables to types and kinds, respectively, by asserting that no variable is bound twice in the
same environment. We write dom(Γ) to denote the domain of such a function.

The rule T-Equiv accounts for the fact that, due to the existence of type constructors
in Fω, there are type expressions that are syntactically different but semantically equal. The
corresponding type equivalence is defined in figure 2.4.

2.2 Pairs

Even though pairs can be encoded in Fω, we explicitely add them to the language on both term
and type level. By nesting pairs we are then able to represent tuples of arbitrary many terms
(or types):

〈e1, 〈e2, 〈e3, . . .〉〉〉

Figure 2.5 shows the extensions necessary for adding pairs of terms to our calculus. In-
stead of introducing two projection operations—one for extracting the first component of a pair
and one for extracting the second—we use a single construct reminiscent of pattern matching2:
let 〈x1, x2〉 = e1 in e2. x1 is bound to the first constituent of the pair e1 and x2 to the sec-
ond. Their scope is e2. The corresponding reduction rule, R-Proj, is straightforward using
substitution.

The extensions for pairs of types are shown in figure 2.6. Here we decided to use the ordinary
projections τ.1 and τ.2 (where τ must be of type 〈τ1, τ2〉). If κ1 is the kind of τ1 and κ2 the one
of τ2, then the kind of 〈τ1, τ2〉 is κ1 × κ2—analogous to the types of term pairs.

2.3 Existential types

We will now introduce existential types [18, 16]. Intuitively, an element of an existential type is
a pair consisting of a type and a term. This motivates the syntactic form 〈τ, e〉 for constructing
such terms (we call them packages). Their type, ∃α:κ.τ ′, can be read as ”there exists a type,
which we call α, such that the term component has type τ ′” (where α usually occurs freely in τ ′).
Of course, the existentially quantified variable α stands for the type component of the package
and hence the term component has type τ ′[α := τ].

2The reason for the choice of the non-standard projection is its similarity to the construct for opening packages
that we will introduce next.

6

terms e ::= · · · | 〈e1, e2〉 | let 〈x1, x2〉 = e1 in e2

types τ ::= · · · | τ1 × τ2

values v ::= · · · | 〈v1, v2〉

evaluation contexts E ::= · · · | 〈E, e〉 | 〈v, E〉 | let 〈x1, x2〉 = E in e

Reduction e −→ e′

. . .
R-Proj E[let 〈x1, x2〉 = 〈v1, v2〉 in e] −→ E[e[x1 := v1][x2 := v2]]

Well-formedness of types Γ ⊢ τ : κ

. . . (K-Times)
Γ ⊢ τ1 : Ω Γ ⊢ τ2 : Ω

Γ ⊢ τ1 × τ2 : Ω

Well-formedness of terms Γ ⊢ e : τ

. . . (T-Pair)
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ 〈e1, e2〉 : τ1 × τ2

(T-Proj)
Γ ⊢ e1 : τ1 × τ2 Γ, x1:τ1, x2:τ2 ⊢ e2 : τ

Γ ⊢ let 〈x1, x2〉 = e1 in e2 : τ

Equivalence of types τ ≡ τ ′

. . . (Q-Times)
τ1 ≡ τ ′

1 τ2 ≡ τ ′

2

τ1 × τ2 ≡ τ ′

1
× τ ′

2

Figure 2.5: Pairs on term level

7

types τ ::= · · · | 〈τ1, τ2〉 | τ.1 | τ.2

kinds κ ::= · · · | κ1 × κ2

Well-formedness of types Γ ⊢ τ : κ

. . . (K-Pair)
Γ ⊢ τ1 : κ1 Γ ⊢ τ2 : κ2

Γ ⊢ 〈τ1, τ2〉 : κ1 × κ2

(K-Proj1)
Γ ⊢ τ : κ1 × κ2

Γ ⊢ τ.1 : κ1

(K-Proj2)
Γ ⊢ τ : κ1 × κ2

Γ ⊢ τ.2 : κ2

Equivalence of types τ ≡ τ ′

. . . (Q-Pair)
τ1 ≡ τ ′

1 τ2 ≡ τ ′

2

〈τ1, τ2〉 ≡ 〈τ ′

1
, τ ′

2
〉

(Q-Proj1a)
τ ≡ τ ′

τ.1 ≡ τ ′.1
(Q-Proj1b)

〈τ1, τ2〉.1 ≡ τ1

(Q-Proj2a)
τ ≡ τ ′

τ.2 ≡ τ ′.2
(Q-Proj2b)

〈τ1, τ2〉.2 ≡ τ2

Figure 2.6: Pairs on type level

However, the type and term component alone do not uniquely fix the existential type of
a package. For instance3, both ∃α:Ω.int and ∃α:Ω.α are valid types for 〈int, 42〉. For this
reason we explicitely annotate a package with the intended existential type and hence write
e.g. 〈int, 42〉:∃α:Ω.α.

Figure 2.7 shows the required additions to the syntax and semantics definitions. The premise
Γ ⊢ ∃α:κ.τ ′ : Ω of the typing rule T-Close is not strictly necessary. We use it nevertheless
to simplify a later proof (proposition 9). Packages are opened using the let 〈α, x〉 = e1 in e2

construct. Here e1 must evaluate to a package. α is then bound to its type component and x to
its term component and both can be used within e2. The corresponding rule T-Open requires
a side condition, α /∈ ftv(τ), to ensure that α does not leave its scope and appears freely in the
type of the whole expression. ftv(τ) denotes the set of type variables that occur freely in τ .
Later we also use fv(X) as well as btv(X) and bv(X) to refer to the set of free term variables,
bound type variables, and bound term variables, respectively, of some syntactic form X . For
instance, if τ = ∀α:Ω.α and E = x, then btv(τ) = {α} and fv(E) = {x}.

Existential types are mainly used for modeling abstract data types [7, 16]. The type com-
ponent of a package is then understood as the encapsulated representation type and the term
component as the implementation that provides the operations on values of the abstract type.
Since the language offers no way of inspecting the encapsulated type it is impossible to cir-
cumvent the abstraction. However, with the extension we undertake in the next section, this
property does no longer hold for our calculus. Measures of repair are known (see chapter 4) but
they fall outside the scope of this thesis. We therefore use existential types to model simple SML
modules4 without caring about information hiding.

3To make examples more intuitive we often assume that our system has been extended with integers.
4In fact, Fω is expressive enough to encode almost the complete SML module system. The only exception are

8

terms e ::= · · · | 〈τ1, e〉:τ2 | let 〈α, x〉 = e1 in e2

types τ ::= · · · | ∃α:κ.τ

values v ::= · · · | 〈τ1, v〉:τ2

evaluation contexts E ::= · · · | 〈τ1, E〉:τ2 | let 〈α, x〉 = E in e

Reduction e −→ e′

. . .
R-Open E[let 〈α, x〉 = 〈τ, v〉:τ ′ in e] −→ E[e[α := τ][x := v]]

Well-formedness of types Γ ⊢ τ : κ

. . . (K-Exist)
Γ, α:κ ⊢ τ : Ω

Γ ⊢ ∃α:κ.τ : Ω

Well-formedness of terms Γ ⊢ e : τ

. . . (T-Close)
Γ ⊢ τ : κ Γ ⊢ e : τ ′[α := τ] Γ ⊢ ∃α:κ.τ ′ : Ω

Γ ⊢ 〈τ, e〉:∃α:κ.τ ′ : ∃α:κ.τ ′

(T-Open)
Γ ⊢ e1 : ∃α:κ.τ ′ Γ, α:κ, x:τ ′ ⊢ e2 : τ α /∈ ftv(τ)

Γ ⊢ let 〈α, x〉 = e1 in e2 : τ

Equivalence of types τ ≡ τ ′

. . . (Q-Exist)
τ1 ≡ τ2

∃α:κ.τ1 ≡ ∃α:κ.τ2

Figure 2.7: Existential types

9

The following SML code shows a module implementing options :

structure S = struct
datatype α option = None | Some of α
fun ocase None z f = z
| ocase (Some x) z f = f x

end

It can be encoded in our calculus as

S = 〈option, 〈None, 〈Some, ocase〉〉〉:∃O:Ω → Ω.〈None-Type, 〈Some-Type, ocase-Type〉〉

where the occuring abbreviations are defined as follows:

option = λα:Ω.∀β:Ω.β → (α → β) → β
None = λα:Ω.λβ:Ω.λz:β.λf :α → β.z
Some = λα:Ω.λx:α.λβ:Ω.λz:β.λf :α → β.f x
ocase = λα:Ω.λo:(∀β:Ω.β → (α → β) → β).o

None-Type = ∀α:Ω.O α
Some-Type = ∀α:Ω.α → O α
ocase-Type = ∀α:Ω.O α → ∀β:Ω.β → (α → β) → β

It may then be used by simply unpacking it corresponding to its signature (the existential type),
e.g.:

let 〈O, x〉 = S in let 〈None, x′〉 = x in let 〈Some, ocase〉 = x′ in . . .

If a module exports more than one type, then the type component of the package is a tuple—
like the term part in the example above.

A completely different application area for existential types is the representation of dynamics
[1, 2, 13]. A dynamic basically is a pair consisting of a term and its type and has the fixed type
Dynamic. The corresponding existential type therefore is ∃α:Ω.α.

Alice ML’s components are best understood as dynamics that contain a single module together
with its signature.

2.4 Typecase

Dynamics per se are useless without the ability to inspect the run-time type they carry. This
analysis is exactly the purpose of the typecase operator [1]: its behaviour depends on whether
the dynamic type matches a specified one. More concretely, it takes a dynamic, a type, and
two terms. If the embedded type of the dynamic equals the specified type, then the first term
is evaluated, otherwise the second. A typical, illustrating example is a function that returns a
string representation of a dynamic value (written in an imaginary extension of SML):

fun show dyn d =
typecase d of v:int then Int.toString v
else typecase d of v:real then Real.toString v
else typecase d of v:string then ”\””ˆvˆ”\””
else typecase d of v:bool then (if v then ”true” else ”false”)
else ”<unknown>”

transparent signatures, which can be represented with the help of singleton kinds [24].

10

terms e ::= · · · | tcase e:τ1 of x:τ2 then e1 else e2

evaluation contexts E ::= · · · | tcase E:τ1 of x:τ2 then e1 else e2

Well-formedness of terms Γ ⊢ e : τ

. . . (T-Case)
Γ ⊢ e : τ1 Γ, x:τ2 ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ tcase e:τ1 of x:τ2 then e1 else e2 : τ

Figure 2.8: Typecase

We augment our calculus with a typecase construct that is slightly more general insofar that
it is independent from dynamics, and hence fits better into our system. Figure 2.8 shows the
additional syntax and typing rule. The expression e0 in tcase e:τ of x:τ ′ then e1 else e2 must be
of type τ—the type we want to analyse (we could infer it but that would force us to make the
dynamic semantics dependent on the static semantics). If τ equals τ ′, then the whole expression
reduces to e1[x := v] (where v is the value of e), otherwise to e2. The exact rules are given in
chapter 3. Obviously, our strategy must not allow reduction below binders—otherwise a typecase
expression within a polymorphic function may compare the parameter variable instead of the
substituted run-time type.

A shortened version of the print dyn function then looks like:

λx:∃α:Ω.α.tcase x:α of x′:int then Int.toString x′ else ”<unknown>”

This example also makes clear why the tcase has to introduce a new variable: even in the case
of α being dynamically equal to int, Int.toString x is ill-typed because x is statically of type α,
while Int.toString expects an argument of type int.

It is important to note that, due to the introduction of tcase, our calculus is no longer
terminating. It is now possible to express a fixpoint operator5, which allows the construction of
diverging recursive functions.

2.5 Lazy evaluation

The last missing ingredient for our model is lazy evaluation. There are two approaches for
modeling lazy evaluation in a lambda calculus. The first one is to make it implicit by building
the laziness directly into the reduction rule(s). The result is a pure call-by-need calculus like [4].
We choose the second way: our reduction strategy itself stays call-by-value, but we introduce a
lazy construct that allows us to selectively defer the evaluation of expressions as long as possible.
This resembles Alice ML, which is an eager (or strict) language like Standard ML but—thanks
to its features for concurrency programming—provides explicit lazy evaluation in the form of
lazy futures [17]. For example, lazy 3+5 immediately evaluates to such a future, which acts as
a placeholder for the actual value of the sum and can be treated like any other term. When it
is later used in such a way that the result of the addition is required, then the computation is
triggered and its result substitutes the future.

5The idea is similar to constructing a fixpoint operator with the help of recursive types. Details can be found
in [1] (using dynamics) and [6] (using universal types).

11

The natural extension for providing explicit laziness in a lambda calculus on term level is
adding a lazy x = e1 in e2 construct and treating term variables as values. The Alice ML phrase
lazy 3+5 might then be encoded as lazy x = 3 + 5 in x (assuming that we add integers to the
calculus). The idea is that in order to suspend the evaluation of e1 (here the sum) we bind it to
x and then use this variable as a placeholder. Consider the following example:

lazy x = 4 · 7 in (λx′:int.x′ + 1) x

Here the lazy-bound variable x occurs as the right-hand side of an application, the left-hand side
of which is an abstraction. Because x is considered a value, β-reduction can be performed. That
way we successfully avoid to trigger the evaluation of 4 · 7 at this point.

In our system, where the tcase inspects dynamic types, we want to have lazy types as well.
We therefore abandon the simple lazy expression in favour of a lazy variant for opening packages:
lazy 〈ζ, x〉 = e1 in e2. (The different syntax for type variables, ζ, is necessary because we must
be able to distinguish them from normal type variables later.) The idea of achieving laziness
is basically the same as before: the evaluation of e1, which must have an existential type, is
suspended by using ζ and x as deputies for the package’s contents—until their actual value is
required (what exactly that means will be made precise soon). Furthermore, the simple lazy
construct can be emulated by creating a dummy package that contains the term of interest and
some don’t care type.

It is clear that our evaluation contexts must not allow the reduction of e1 in lazy 〈ζ, x〉 = e1 in e2.
On the other hand, it must be possible to reduce e2. We achieve this by introducing a set of
lazy contexts, syntactic shortcuts for chains of lazy bindings, and slightly modifying the existing
reduction rules. For example, the rule for reducing applications will then read

LE[(λx:τ.e) v] −→ LE[e[x := v]]

where L is defined as

L ::= | lazy 〈ζ, x〉 = e in L

and E remains unchanged.
But what happens if e.g. the whole term lazy x = e1 in x is the right-hand side of an

application? Consider (λx:int.x · x) (lazy x = 4 + 9 in x). If we treat lazy expressions as values
too, then β reduction can be performed, yielding (lazy x = 4 + 9 in x) · (lazy x = 4 + 9 in x).
Unfortunately, no sharing takes place here: in the end, 4 + 9 will be calculated twice! For this
reason we do not treat lazy expressions as values but add another reduction rule, R-Suspend:

LE[lazy 〈ζ, x〉 = e1 in e2] −→ L[lazy 〈ζ, x〉 = e1 in E[e2]]

The intuition is the following: whenever reduction comes across a lazy, the binding is lifted
above the surrounding evaluation context while the body is not moved. This is called scope
extrusion and causes the lazy bindings to accumulate at the front of the term as reduction
proceeds. Two side conditions must be taken into accout, though. First of all, E must not be
the trivial (empty) context—otherwise the term will always reduce to itself. Furthermore, neither
ζ nor x may appear in E to avoid capturing. Reducing the previous example by R-Suspend

now has the effect of dragging the abstraction into the body of the lazy expression, leading to
lazy x = 4 + 9 in (λx:int.x · x) x. This term can then be further simplified using R-App to
lazy x = 4+9 in x ·x, thus sharing the computation of 4+9. Figure 2.9 shows a sample sequence
of R-Suspend reductions.

The remaining question is when and how the evaluation of a lazy package is triggered. The
answer to the first part is: it is triggered when reduction hits upon an occurrence of the corre-
sponding lazy type or term variable in a strict position. Lazy type variables are covered in the

12

〈lazy x1 = 8/4 in x1, (λx2:int.5 + x2) (lazy x3 = 2 · 3 in ((lazy x4 = 7 − 4 in x4) − x3))〉
−→ lazy x1 = 8/4 in 〈x1, (λx2:int.5 + x2) (lazy x3 = 2 · 3 in ((lazy x4 = 7 − 4 in x4) − x3))〉
−→ lazy x1 = 8/4 in lazy x3 = 2 · 3 in 〈x1, (λx2:int.5 + x2) ((lazy x4 = 7 − 4 in x4) − x3)〉
−→ lazy x1 = 8/4 in lazy x3 = 2 · 3 in lazy x4 = 7 − 4 in 〈x1, (λx2:int.5 + x2) (x4 − x3)〉

Figure 2.9: Suspension

lazy x1 = 8/4 in lazy x3 = 2 · 3 in lazy x4 = 7 − 4 in 〈x1, (λx2:int.5 + x2) (x4 − x3)〉
−→ lazy x1 = 8/4 in lazy x3 = 2 · 3 in let x4 = 7 − 4 in 〈x1, (λx2:int.5 + x2) (x4 − x3)〉
−→ lazy x1 = 8/4 in lazy x3 = 2 · 3 in let x4 = 3 in 〈x1, (λx2:int.5 + x2) (x4 − x3)〉
−→ lazy x1 = 8/4 in lazy x3 = 2 · 3 in 〈x1, (λx2:int.5 + x2) (x3 − x3)〉
−→ lazy x1 = 8/4 in let x3 = 2 · 3 in 〈x1, (λx2:int.5 + x2) (x3 − x3)〉
−→ lazy x1 = 8/4 in let x3 = 6 in 〈x1, (λx2:int.5 + x2) (x3 − x3)〉
−→ lazy x1 = 8/4 in 〈x1, (λx2:int.5 + x2) (6 − 6)〉
−→∗ lazy x1 = 8/4 in 〈x1, 5〉

Figure 2.10: Triggering

next chapter, here we consider only term variables. The strict positions for them are defined
with the help of yet another set of contexts:

S ::= e | τ | let 〈x1, x2〉 = in e | let 〈α, x〉 = in e

The answer to the second part of the question, how we trigger the evaluation, is easy: we use
the fact that we already have a strict way of opening packages and hence just turn a lazy into a
let. This makes up for the reduction rule R-Trigger:

L1[lazy 〈ζ, x〉 = e in L2ES[x]] −→ L1[let 〈α, x〉 = e in (L2ES[x])[ζ := α]]

This time the rule’s side condition is that x must not be bound by L2, which guarantees that we
transform the appropriate binding. Additionally, our distinction between normal and lazy type
variables requires us to rename ζ at this point.

Figure 2.10 continues the previous example (assuming an analogous trigger-rule for the simple
lazy construct). The first reduction step is performed because x4 occurs in a strict position6 for
E = 〈x1, (λx2:int.5+x2) 〉 and S = −x3. Therefore the lazy that binds x4 becomes a let, which
causes 7 − 4 to be computed. The result is then substituted for x4 and the same game starts
with x3. This example also demonstrates that the results of computations no longer always are
values. In fact, they now have the more general form L[v].

Figures 2.11, 2.12, and 2.13 show our calculus including all the extensions we have made
so far. This is the base for the next chapter. We use ξ to denote both lazy and regular type
variables. btv(L) is defined below. The only missing pieces now are the reduction rules for
the tcase construct and the trigger-rule for lazy types. This is no coincidence, as they are
interdependent.

6We assume that strict contexts are extended with ◦ e and v ◦ for each integer operator ◦.

13

term variables x ∈ Var
regular type variables α ∈ RTVar
lazy type variables ζ ∈ LTVar
terms e ::= x | λx:τ.e | e1 e2 | λα:κ.e | e τ | 〈e1, e2〉 | let 〈x1, x2〉 = e1 in e2 |

〈τ1, e〉:τ2 | let 〈α, x〉 = e1 in e2 | lazy 〈ζ, x〉 = e1 in e2

type variables ξ ::= α | ζ
types τ ::= ξ | τ1 → τ2 | τ1 × τ2 | ∀α:κ.τ | ∃α:κ.τ |

λα:κ.τ | τ1 τ2 | 〈τ1, τ2〉 | τ.1 | τ.2
kinds κ ::= Ω | κ1 → κ2 | κ1 × κ2

values v ::= x | λx:τ.e | λα:κ.e | 〈v1, v2〉 | 〈τ1, v〉:τ2

evaluation contexts E ::= | E e | (λx:τ.e) E | E τ | 〈E, e〉 | 〈v, E〉 | let 〈x1, x2〉 = E in e |
〈τ, E〉:τ | let 〈α, x〉 = E in e

lazy contexts L ::= | lazy 〈ζ, x〉 = e in L
strict contexts S ::= e | τ | let 〈x1, x2〉 = in e | let 〈α, x〉 = in e

Reduction e −→ e′

R-App LE[(λx:τ.e) v] −→ LE[e[x := v]]
R-Inst LE[(λα:κ.e) τ] −→ LE[e[α := τ]]
R-Proj LE[let 〈x1, x2〉 = 〈v1, v2〉 in e] −→ LE[e[x1 := v1][x2 := v2]]
R-Open LE[let 〈α, x〉 = 〈τ, v〉:τ ′ in e] −→ LE[e[α := τ][x := v]]
R-Suspend LE[lazy 〈ζ, x〉 = e1 in e2] −→ L[lazy 〈ζ, x〉 = e1 in E[e2]]

(E 6= ∧ ζ /∈ ftv(E) ∧ x /∈ fv(E))
R-Trigger L1[lazy 〈ζ, x〉 = e in L2ES[x]] −→ L1[let 〈α, x〉 = e in (L2ES[x])[ζ := α]]

(x /∈ btv(L2))

Figure 2.11: Extended calculus (part 1 of 3)

Definition 1 (Variables Bound By Lazy Contexts).

bv()
def
= ∅

bv(lazy 〈ζ, x〉 = e in L)
def
= {x} ∪ bv(L)

btv()
def
= ∅

btv(lazy 〈ζ, x〉 = e in L)
def
= {ζ} ∪ btv(L)

Now we have the necessary machinery to model the combination of lazy linking and dynamic
type checking. We demonstrate this by translating the Alice ML code from figure 1.1 into our
calculus.

In Alice ML, a component in fact is a higher-order function that takes a ‘link’ procedure and
returns a dynamic that carries a structure. The link function does all the work of acquiring a
component located at a given URL, such as resolving the URL, establishing a network connec-
tion or reading a file, and unpickling some bytecode. Each component inherits it from its parent
and hands it down again to the components it does import itself. We abstract away from this

14

Well-formedness of environments Γ ⊢ �

(E-Empty)
· ⊢ �

(E-Type)
Γ ⊢ � α /∈ dom(Γ)

Γ, α:κ ⊢ �

(E-Term)
Γ ⊢ τ : Ω x /∈ dom(Γ)

Γ, x:τ ⊢ �

Well-formedness of types Γ ⊢ τ : κ

(K-Var)
Γ ⊢ �

Γ ⊢ α : Γ(α)
(K-Arrow)

Γ ⊢ τ1 : Ω Γ ⊢ τ2 : Ω

Γ ⊢ τ1 → τ2 : Ω

(K-Times)
Γ ⊢ τ1 : Ω Γ ⊢ τ2 : Ω

Γ ⊢ τ1 × τ2 : Ω
(K-Univ)

Γ, α:κ ⊢ τ : Ω

Γ ⊢ ∀α:κ.τ : Ω

(K-Exist)
Γ, α:κ ⊢ τ : Ω

Γ ⊢ ∃α:κ.τ : Ω
(K-Abs)

Γ, α:κ ⊢ τ : κ′

Γ ⊢ λα:κ.τ : κ → κ′

(K-App)
Γ ⊢ τ1 : κ2 → κ Γ ⊢ τ2 : κ2

Γ ⊢ τ1 τ2 : κ
(K-Pair)

Γ ⊢ τ1 : κ1 Γ ⊢ τ2 : κ2

Γ ⊢ 〈τ1, τ2〉 : κ1 × κ2

(K-Proj1)
Γ ⊢ τ : κ1 × κ2

Γ ⊢ τ.1 : κ1

(K-Proj2)
Γ ⊢ τ : κ1 × κ2

Γ ⊢ τ.2 : κ2

Well-formedness of terms Γ ⊢ e : τ

(T-Equiv)
Γ ⊢ e : τ ′ τ ′ ≡ τ Γ ⊢ τ : Ω

Γ ⊢ e : τ
(T-Var)

Γ ⊢ �

Γ ⊢ x : Γ(x)

(T-Abs)
Γ, x:τ ⊢ e : τ ′

Γ ⊢ λx:τ.e : τ → τ ′
(T-App)

Γ ⊢ e1 : τ2 → τ Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ

(T-Gen)
Γ, α:κ ⊢ e : τ

Γ ⊢ λα:κ.e : ∀α:κ.τ
(T-Inst)

Γ ⊢ e : ∀α:κ.τ ′ Γ ⊢ τ : κ

Γ ⊢ e τ : τ ′[α := τ]

(T-Pair)
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ 〈e1, e2〉 : τ1 × τ2

(T-Proj)
Γ ⊢ e1 : τ1 × τ2 Γ, x1:τ1, x2:τ2 ⊢ e2 : τ

Γ ⊢ let 〈x1, x2〉 = e1 in e2 : τ

(T-Close)
Γ ⊢ τ : κ Γ ⊢ e : τ ′[α := τ] Γ ⊢ ∃α:κ.τ ′ : Ω

Γ ⊢ 〈τ, e〉:∃α:κ.τ ′ : ∃α:κ.τ ′

(T-Open)
Γ ⊢ e1 : ∃α:κ.τ ′ Γ, α:κ, x:τ ′ ⊢ e2 : τ α /∈ ftv(τ)

Γ ⊢ let 〈α, x〉 = e1 in e2 : τ

(T-Lazy)
Γ ⊢ e1 : ∃α:κ.τ ′ Γ, ζ:κ, x:τ ′[α := ζ] ⊢ e2 : τ ζ /∈ ftv(τ)

Γ ⊢ lazy 〈ζ, x〉 = e1 in e2 : τ

Figure 2.12: Extended calculus (part 2 of 3)

15

Equivalence of types τ ≡ τ ′

(Q-Refl)
τ ≡ τ

(Q-Symm)
τ2 ≡ τ1

τ1 ≡ τ2

(Q-Trans)
τ1 ≡ τ2 τ2 ≡ τ3

τ1 ≡ τ3

(Q-Arrow)
τ1 ≡ τ ′

1 τ2 ≡ τ ′

2

τ1 → τ2 ≡ τ ′

1
→ τ ′

2

(Q-Times)
τ1 ≡ τ ′

1 τ2 ≡ τ ′

2

τ1 × τ2 ≡ τ ′

1
× τ ′

2

(Q-Univ)
τ1 ≡ τ2

∀α:κ.τ1 ≡ ∀α:κ.τ2

(Q-Exist)
τ1 ≡ τ2

∃α:κ.τ1 ≡ ∃α:κ.τ2

(Q-Abs)
τ1 ≡ τ2

λα:κ.τ1 ≡ λα:κ.τ2

(Q-App)
τ1 ≡ τ2 τ ′

1 ≡ τ ′

2

τ1 τ2 ≡ τ ′

1
τ ′

2

(Q-Beta)
(λα:κ.τ1) τ2 ≡ τ1[α := τ2]

(Q-Pair)
τ1 ≡ τ ′

1 τ2 ≡ τ ′

2

〈τ1, τ2〉 ≡ 〈τ ′

1
, τ ′

2
〉

(Q-Proj1a)
τ ≡ τ ′

τ.1 ≡ τ ′.1
(Q-Proj1b)

〈τ1, τ2〉.1 ≡ τ1

(Q-Proj2a)
τ ≡ τ ′

τ.2 ≡ τ ′.2
(Q-Proj2b)

〈τ1, τ2〉.2 ≡ τ2

Figure 2.13: Extended calculus (part 3 of 3)

and simply model components as lazy dynamics. The actual loading—the process that we want
to happen at the latest possible time—then corresponds to the opening of the corresponding
package. Let us summarize our model:

concept representation

dynamics packages of type ∃α:Ω.α
dynamic type checking typecase
modules nested pairs within a package whose existential

type reflects the module’s signature
components lazy dynamics carrying a module

The translation is shown in figure 2.14. In order to improve readability, we take the freedom
to omit the annotated existential type of modules since it already appears as the type component
of the surrounding dynamic. Furthermore we leave out kinds because we are not dealing with
any type constructors here. The three lazy bindings at the top level roughly resemble the table
of Alice ML’s component manager that keeps track of imported components [22, 20].

2.6 Properties

In this section we present several basic properties of the calculus shown in figures 2.11, 2.12, and
2.13. None of them refers to the operational semantics so it does no harm that there are still
some reduction rules missing. We only show a few selected parts of the more interesting proofs
here. The complete proofs can be found in the appendix.

Proposition 1 (Substitution). If ξ1 6= ξ2 and ξ1 /∈ ftv(τ2), then, for all τ and τ1, τ [ξ1 :=
τ1][ξ2 := τ2] = τ [ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]].

Proof. By induction on the structure of τ .

16

lazy 〈αA, xA〉 = 〈∃t.t, 〈int, 42〉〉 in
lazy 〈αB , xB〉 =

lazy 〈t, x〉 = tcase xA:αA of x′

A
:∃t.t then x′

A
else ⊥ in

〈∃u.u × u, 〈t, 〈x, x〉〉〉 in
lazy 〈αC , xC〉 =

lazy 〈u, y〉 =
tcase xB :αB of x′

B
:∃u.u × u then

let 〈u, y〉 = x′

B
in tcase y:u × u of y′:int × int then 〈u, y〉:∃u.int × int else ⊥

else ⊥ in
〈∃v.int, 〈int, let 〈z, 〉 = y′ in z〉〉 in

Figure 2.14: Translation of the Alice ML code from figure 1.1

Proposition 2 (Environment Validity).

1. If Γ ⊢ τ : κ, then Γ ⊢ �.

2. If Γ ⊢ e : τ , then Γ ⊢ �.

Proof. By induction on the derivation.

Proposition 3 (Subenvironment Validity). If Γ1, Γ2 ⊢ �, then Γ1 ⊢ �.

Proof. By induction on the structure of Γ2.

Definition 2 (Environment Inclusion).

Γ ⊆ Γ′
def
⇐⇒ dom(Γ) ⊆ dom(Γ′) ∧ ∀x ∈ dom(Γ) : Γ(x) ≡ Γ′(x) ∧ ∀ξ ∈ dom(Γ) : Γ(ξ) = Γ′(ξ)

Proposition 4 (Variable Containment).

1. If Γ ⊢ τ : κ, then ftv(τ) ⊆ dom(Γ).

2. If Γ ⊢ e : τ , then fv(e) ∪ ftv(τ) ⊆ dom(Γ).

Proof. By induction on the derivation.

2. Let Γ ⊢ e : τ .

• Case T-Case: e = tcase e0:τ0 of x:τ ′

0 then e1 else e2

(a) By inversion:

i. Γ ⊢ e0 : τ0

ii. Γ, x:τ ′

0 ⊢ e1 : τ

iii. Γ ⊢ e2 : τ

(b) By (a) and induction:

i. fv(e0) ⊆ dom(Γ)

ii. fv(e1) ⊆ dom(Γ, x:τ ′

0)

iii. fv(e2) ∪ ftv(τ) ⊆ dom(Γ)

(c) By (a-ii) and Environment Validity: Γ, x:τ ′

0 ⊢ �

(d) By (c) and inversion of E-Term: x /∈ dom(Γ)

(e) By (b-ii) and (d): fv(e1) − {x} ⊆ dom(Γ)

(f) By (b-i), (e), and (b-iii): fv(e0) ∪ (fv(e1) − {x}) ∪ fv(e2) ⊆ dom(Γ)

17

(g) By definition: fv(tcase e0:τ0 of x:τ ′

0 then e1 else e2) = fv(e0) ∪ (fv(e1) − {x}) ∪
fv(e2)

(h) By (g) and (f): fv(tcase e0:τ0 of x:τ ′

0 then e1 else e2) ⊂ dom(Γ)

(i) By (h) and (b-iii): fv(tcase e0:τ0 of x:τ ′

0 then e1 else e2) ∪ ftv(τ) ⊂ dom(Γ)

Proposition 5 (Strengthening).

1. If Γ ⊢ τ : κ and Γ′ ⊆ Γ with Γ′ ⊢ � and ftv(τ) ⊆ dom(Γ′), then Γ′ ⊢ τ : κ.

2. If Γ1, x:τ, Γ2 ⊢ �, then Γ1, Γ2 ⊢ �.

Proof. (1) by induction on the derivation of Γ ⊢ τ : κ. (2) by induction on the structure of
Γ2.

Proposition 6 (Weakening).

1. If Γ ⊢ τ : κ and Γ ⊆ Γ′ where Γ′ ⊢ �, then Γ′ ⊢ τ : κ.

2. If Γ ⊢ e : τ and Γ ⊆ Γ′ where Γ′ ⊢ �, then Γ′ ⊢ e : τ .

Proof. (1) by induction on the derivation of Γ ⊢ τ : κ. (2) by induction on the derivation of
Γ ⊢ e : τ .

Proposition 7 (Type Substitution).

1. If Γ1 ⊢ τ ′ : κ′ and Γ1, ξ:κ
′, Γ2 ⊢ �, then Γ1, Γ2[ξ := τ ′] ⊢ �.

2. If Γ1 ⊢ τ ′ : κ′ and Γ1, ξ:κ
′, Γ2 ⊢ τ : κ, then Γ1, Γ2[ξ := τ ′] ⊢ τ [ξ := τ ′] : κ.

3. If Γ1 ⊢ τ ′ : κ′ and Γ1, ξ:κ
′, Γ2 ⊢ e : τ , then Γ1, Γ2[ξ := τ ′] ⊢ e[ξ := τ ′] : τ [ξ := τ ′].

4. If τ ≡ τ ′′, then τ [ξ := τ ′] ≡ τ ′′[ξ := τ ′].

Proof. (1), (2), and (3) by simultaneous induction on the kinding derivations. (4) by induction
on the derivation.

Proposition 8 (Term Substitution). If Γ ⊢ e′ : τ ′ and Γ, x:τ ′, Γ′ ⊢ e : τ , then Γ, Γ′ ⊢ e[x := e′] :
τ .

Proof. By induction on the derivation of Γ1, x:τ ′, Γ2 ⊢ e : τ .

Proposition 9 (Validity). If Γ ⊢ e : τ , then Γ ⊢ τ : Ω.

Proof. By induction on the derivation. In the case T-Close it becomes apparent why we are
using the additional premise Γ ⊢ ∃α:κ.τ ′ : Ω in this rule. Otherwise we would have to show that
Γ ⊢ τ [α := τ ′] : Ω with Γ ⊢ τ ′ : κ implies Γ, α:κ ⊢ τ : Ω, i.e., parts (1) and (2) of proposition 7
(Type Substitution) would have to be equivalences.

• Case T-Close: e = 〈τ1, e
′〉:τ where τ = ∃α:κ.τ2

1. By inversion: Γ ⊢ ∃α:κ.τ2 : Ω

• Case T-Open: e = let 〈α, x〉 = e1 in e2

1. By inversion: Γ, α:κ, x:τ ′ ⊢ e2 : τ

2. By (1) and induction: Γ, α:κ, x:τ ′ ⊢ τ : Ω

3. By assumption and Environment Validity: Γ ⊢ �

18

4. By assumption and Variable Containment: ftv(τ) ⊆ dom(Γ)

5. By (2), (3), (4), and Strengthening: Γ ⊢ τ : Ω

Given some typing derivation Γ ⊢ e : τ we are not able to tell which rule has been applied
in the last step of that derivation. There are always two possibilities: the canonical one (e.g.,
T-Abs if e is an abstraction) and the equivalence rule T-Equiv. However, we do know that
the derivation tree must end with a use of the canonical rule followed by arbitrary many uses
of T-Equiv. We therefore formulate an inversion lemma that abstracts away the uses of the
equivalence rule and allows us to make use of the premise of the respective canonical rule. Other
judgements, like that defined by the kinding relation, do not require such a lemma since there is
only one rule per syntactic form.

Lemma 1 (Typing Inversion).

• If Γ ⊢ x : τ , then τ ≡ Γ(x) and Γ ⊢ �.

• If Γ ⊢ λx:τ.e : τ ′ and x /∈ dom(Γ), then Γ, x:τ ⊢ e : τ ′′ and τ ′ ≡ τ → τ ′′.

• If Γ ⊢ e1 e2 : τ , then Γ ⊢ e1 : τ ′ → τ and Γ ⊢ e2 : τ ′.

• If Γ ⊢ λα:κ.e : τ and α /∈ dom(Γ), then Γ, α:κ ⊢ e : τ ′ and τ ≡ ∀α:κ.τ ′.

• If Γ ⊢ e τ ′ : τ , then Γ ⊢ e : ∀α:κ.τ1 where α /∈ dom(Γ) and τ ≡ τ1[α := τ ′] where Γ ⊢ τ ′ : κ.

• If Γ ⊢ 〈e1, e2〉 : τ , then Γ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2 where τ ≡ τ1 × τ2.

• If Γ ⊢ 〈τ1, e〉:τ2 : τ , then Γ ⊢ τ1 : κ and Γ ⊢ e : τ3[α := τ1] where τ2 = ∃α:κ.τ3 and τ ≡ τ2

and Γ ⊢ τ2 : Ω.

• If Γ ⊢ let 〈x1, x2〉 = e1 in e2 : τ and {x1, x2} ∩ dom(Γ) = ∅, then Γ ⊢ e1 : τ1 × τ2 and
Γ, x1:τ1, x2:τ2 ⊢ e2 : τ .

• If Γ ⊢ let 〈α, x〉 = e1 in e2 : τ and {α, x} ∩ dom(Γ) = ∅, then Γ ⊢ e1 : ∃α:κ.τ ′ and
Γ, α:κ, x:τ ′ ⊢ e2 : τ ′′ where α /∈ ftv(τ ′′) and τ ′′ ≡ τ .

• If Γ ⊢ lazy 〈ζ, x〉 = e1 in e2 : τ and {ζ, x} ∩ dom(Γ) = ∅, then Γ ⊢ e1 : ∃α:κ.τ ′ where
α /∈ dom(Γ) and Γ, ζ:κ, x:τ ′[α := ζ] ⊢ e2 : τ ′′ where ζ /∈ ftv(τ ′′) and τ ′′ ≡ τ .

• If Γ ⊢ tcase e:τ0 of x:τ ′

0 then e1 else e2 : τ and x /∈ dom(Γ), then Γ ⊢ e : τ0 and
Γ, x:τ ′

0 ⊢ e1 : τ and Γ ⊢ e2 : τ .

Proof. By induction on the corresponding derivation.

Proving lemma 4 (Type Equivalence Inversion) like the Typing Inversion lemma directly by
induction on the derivation is not possible due to the transitivity rule. For this reason, we base
the proof on the parallel reduction relation ⇛ as defined in [18]. We assume that this directed
version of the type equivalence relation is trivially extended to match our system.

Lemma 2 (Parallel Reduction).

• τ1 ≡ τ2 iff τ1 ⇚⇛
∗ τ2

• If τ1 ≡ τ2, then there is some τ such that τ1 ⇛
∗ τ and τ2 ⇛

∗ τ .

Proof. See [18].

Lemma 3 (Preservation of Shapes Under Reduction).

19

1. If ξ ⇛∗ τ ′, then τ ′ = ξ.

2. If τ1 → τ2 ⇛
∗ τ ′, then τ ′ = τ ′

1 → τ ′

2 with τ1 ⇛
∗ τ ′

1 and τ2 ⇛
∗ τ ′

2.

3. If τ1 × τ2 ⇛
∗ τ ′, then τ ′ = τ ′

1 × τ ′

2 with τ1 ⇛
∗ τ ′

1 and τ2 ⇛
∗ τ ′

2.

4. If 〈τ1, τ2〉⇛
∗ τ ′, then τ ′ = 〈τ ′

1, τ
′

2〉 with τ1 ⇛
∗ τ ′

1 and τ2 ⇛
∗ τ ′

2.

5. If ∀α:κ.τ1 ⇛
∗ τ ′, then τ ′ = ∀α:κ.τ ′

1 with τ1 ⇛
∗ τ ′

1.

6. If ∃α:κ.τ1 ⇛
∗ τ ′, then τ ′ = ∃α:κ.τ ′

1 with τ1 ⇛
∗ τ ′

1.

7. If λα:κ.τ1 ⇛
∗ τ ′, then τ ′ = λα:κ.τ ′

1 with τ1 ⇛
∗ τ ′

1.

Proof. See [18].

Lemma 4 (Type Equivalence Inversion).

• If ∃α:κ1.τ1 ≡ ∃α:κ2.τ2, then κ1 = κ2 and τ1 ≡ τ2.

• If τ1 → τ2 ≡ τ ′

1 → τ ′

2, then τ1 ≡ τ ′

1 and τ2 ≡ τ ′

2.

• If ∀α:κ1.τ1 ≡ ∀α:κ2.τ2, then κ1 = κ2 and τ1 ≡ τ2.

• If τ1 × τ2 ≡ τ ′

1 × τ ′

2, then τ1 ≡ τ ′

1 and τ2 ≡ τ ′

2.

• If 〈τ1, τ2〉 ≡ 〈τ ′

1, τ
′

2〉, then τ1 ≡ τ ′

1 and τ2 ≡ τ ′

2.

Proof. Follows from lemma 3 (Preservation of Shapes Under Reduction).

Lemma 5 (Shape Consistency).

• If τ ≡ τ1 → τ2, then τ = τ ′

1 → τ ′

2 or τ = τ ′

1 τ ′

2 or τ = τ ′.1 or τ = τ ′.2.

• If τ ≡ τ1 × τ2, then τ = τ ′

1 × τ ′

2 or τ = τ ′

1 τ ′

2 or τ = τ ′.1 or τ = τ ′.2.

• If τ ≡ ∀α:κ.τ1, then τ = ∀α:κ.τ ′

1 or τ = τ ′

1 τ ′

2 or τ = τ ′.1 or τ = τ ′.2.

• If τ ≡ ∃α:κ.τ1, then τ = ∃α:κ.τ ′

1 or τ = τ ′

1 τ ′

2 or τ = τ ′.1 or τ = τ ′.2.

Proof. By contradiction, using lemma 2 (Parallel Reduction) and 3 (Preservation of Shapes
Under Reduction).

Proposition 10 (Canonical Values). Let Γ ⊢ v : τ where v is not a variable.

• If τ ≡ τ1 → τ2, then v = λx:τ ′

1.e.

• If τ ≡ τ1 × τ2, then v = 〈v1, v2〉.

• If τ ≡ ∀α:κ.τ1, then v = λα:κ.e.

• If τ ≡ ∃α:κ.τ1, then v = 〈τ2, v
′〉:τ ′.

Proof. By induction on the typing derivation.

Proposition 11 (Uniqueness of Kinds). If Γ ⊢ τ : κ and Γ ⊢ τ : κ′, then κ = κ′.

Proof. By induction on the structure of τ .

Definition 3 (Equivalence of Environments).

Γ ≡ Γ′
def
⇐⇒ dom(Γ) = dom(Γ′) ∧ ∀x ∈ dom(Γ) : Γ(x) ≡ Γ′(x) ∧ ∀ξ ∈ dom(Γ) : Γ(ξ) = Γ′(ξ)

20

Proposition 12 (Uniqueness of Types). If Γ ⊢ e : τ and Γ′ ⊢ e : τ ′ with Γ ≡ Γ′, then τ ≡ τ ′.

Proof. By induction on the structure of e.

Lemma 6 (Equivalent Environments).

1. If Γ ⊢ τ : κ and Γ ≡ Γ′ where Γ′ ⊢ �, then Γ′ ⊢ τ : κ.

2. If Γ ⊢ e : τ and Γ ≡ Γ′ where Γ′ ⊢ �, then Γ′ ⊢ e : τ .

Proof. (1) by induction on the kinding derivation. (2) by induction on the typing derivation.

We now introduce another judgement. Informally, Γ ⊢ L : Γ′ holds if Γ′ is the environment
that is generated by the lazy bindings in L (under the assumptions in Γ).

Definition 4 (Typing Judgement for Lazy Contexts). Γ ⊢ L : Γ′

(L-Empty)
Γ ⊢ �

Γ ⊢ : ·

(L-Lazy)
Γ ⊢ e : ∃α:κ.τ Γ′ = ζ:κ, x:τ [α := ζ], Γ′′ Γ, ζ:κ, x:τ [α := ζ] ⊢ L′ : Γ′′

Γ ⊢ lazy 〈ζ, x〉 = e in L′ : Γ′

Lemma 7 (Context Elimination).

1. If Γ ⊢ E[e] : τ , then Γ ⊢ e : τ ′.

2. If Γ ⊢ LE[e] : τ , then Γ ⊢ L[e] : τ ′.

3. If Γ ⊢ LE[e] : τ , then Γ, Γ′ ⊢ e : τ ′ with Γ ⊢ L : Γ′.

Proof. (1) by structural induction on E. (2) and (3) by structural induction on L.

3. Let Γ ⊢ LE[e] : τ .

• Case L = :

(a) By assumption: Γ ⊢ E[e] : τ

(b) By (a) and (1): Γ ⊢ e : τ ′

(c) By assumption and Environment Validity: Γ ⊢ �

(d) Let Γ′ = ·.

(e) By (c), (d), and L-Empty: Γ, Γ′ = Γ and Γ ⊢ L : Γ′

(f) By (b) and (e): Γ, Γ′ ⊢ e : τ ′ and Γ ⊢ L : Γ′

• Case L = lazy 〈ζ, x〉 = e1 in L′:

(a) By assumption: Γ ⊢ lazy 〈ζ, x〉 = e1 in L′E[e] : τ

(b) By (a) and Typing Inversion: Γ ⊢ e1 : ∃α:κ.τ1 and Γ, ζ:κ, x:τ1[α := ζ] ⊢ L′E[e] :
τ ′′ where τ ′′ ≡ τ

(c) By (b) and induction: Γ, ζ:κ, x:τ1[α := ζ], Γ′′ ⊢ e : τ ′ where Γ, ζ:κ, x:τ1[α := ζ] ⊢
L′ : Γ′′

(d) By (b), (c), and L-Lazy: Γ, ζ:κ, x:τ1[α := ζ], Γ′′ ⊢ e : τ ′ and Γ ⊢ L : ζ:κ, x:τ1[α :=
ζ], Γ′′

Lemma 8 (Exchange).

1. If Γ ⊢ E[e] : τ and Γ ⊢ e : τ ′ and Γ, Γ′ ⊢ e′ : τ ′, then Γ, Γ′ ⊢ E[e′] : τ .

21

2. If Γ ⊢ LE[e] : τ and Γ, Γ′ ⊢ e : τ ′ as well as Γ, Γ′ ⊢ e′ : τ ′ and Γ ⊢ L : Γ′, then
Γ ⊢ LE[e′] : τ .

Proof. (1) by structural induction on E, using proposition 12 (Uniqueness of Types). (2) by
structural induction on L, using (1) and lemma 6 (Equivalent Environments).

1. Let Γ ⊢ E[e] : τ , Γ ⊢ e : τ ′, and Γ, Γ′ ⊢ e′ : τ ′.

• Case E = let 〈x1, x2〉 = E′ in e′′ (w.l.o.g. {x1, x2} ∩ dom(Γ, Γ′) = ∅):

(a) By assumption: Γ ⊢ let 〈x1, x2〉 = E′[e] in e′′ : τ

(b) By (a) and Typing Inversion: Γ ⊢ E′[e] : τ1 × τ2 and Γ, x1:τ1, x2:τ2 ⊢ e′′ : τ

(c) By (b), assumption, and induction: Γ, Γ′ ⊢ E′[e′] : τ1 × τ2

(d) By (c) and Validity: Γ, Γ′ ⊢ τ1 × τ2 : Ω

(e) By (d) and inversion of K-Times: Γ, Γ′ ⊢ τ1 : Ω and Γ, Γ′ ⊢ τ2 : Ω

(f) By (e) and E-Term: Γ, Γ′, x1:τ1 ⊢ �

(g) By (e), (f), and Weakening: Γ, Γ′, x1:τ1 ⊢ τ2 : Ω

(h) By (g) and E-Term: Γ, Γ′, x1:τ1, x2:τ2 ⊢ �

(i) By (b), (h), and Weakening: Γ, Γ′, x1:τ1, x2:τ2 ⊢ e′′ : τ

(j) By (c), (i), and T-Proj: Γ, Γ′ ⊢ let 〈x1, x2〉 = E′[e′] in e′′ : τ

(k) By (j): Γ, Γ′ ⊢ E[e′] : τ

Lemma 9 (Lazy Term Variables). If Γ ⊢ LE[x] : τ and x /∈ dom(Γ), then L = L1[lazy 〈ζ, x〉 =
e in L2] where x /∈ bv(L2).

Proof. By structural induction on L.

22

Chapter 3

Reduction strategies for the type

level

A straightforward approach is to associate two reduction rules with tcase: one for the case of the
two types that are compared being equal according to the equivalence relation, and one for the
case of them being different.

R-Case1 LE[tcase v:τ of x:τ ′ then e1 else e2] −→ LE[e1[x := v]] (τ ≡ τ ′)
R-Case2 LE[tcase v:τ of x:τ ′ then e1 else e2] −→ LE[e2] (τ 6≡ τ ′)

This works fine as long as no laziness is involved:

let 〈α, x〉 = 〈int, 5〉:∃α:Ω.α in tcase x:α of x′:int then 1 else 0

The first reduction rule that can be applied is R-Open, with the effect that α is replaced with int.
So, at the time the reduction encounters the tcase expression, int is compared with int—hence
R-Case1 can be applied. But now consider the lazy version of this example:

lazy 〈ζ, x〉 = 〈int, 5〉:∃α:Ω.α in tcase x:ζ of x′:int then 1 else 0

This time no reduction rule can be applied before the tcase is evaluated. This means that ζ and
int have to be compared. Because they are different according to the definitional equivalence
relation, this leads to the application of R-Case2—certainly not what we want.

What we need is a trigger-rule for lazy type variables, analogous to R-Trigger. Since the
tcase is the only construct in our language whose semantics depends on the denotation of types, it
is also the only place where a lazy type variable may occur in a strict position. A naive approach
is therefore to say that a strict position is anywhere within one of the two type expressions of
the tcase construct. This can be formalized by a context that determines the order in which the
types are traversed looking for lazy type variables (it can be considered as the strict context for
lazy types)1.

However, we want to make the equivalence checking explicit. That is, instead of using the
definitional type equivalence relation, we want to give an algorithm that can be implemented.
The standard approach for this purpose is known as normalize-and-compare [8]: the types are
reduced to some normal form and then compared (by checking for syntactic rather than semantic
equality). We still need a second trigger-rule, since these normal forms obviously must not
contain any lazy variables (see above). Therefore, the type-level reduction has to take care of
their elimination and consequently, the degree of laziness depends on the chosen strategy.

1That would also require additional syntax to denote types that do not contain any lazy variables.

23

type reduction contexts T ::= | T → τ | ν → T | T × τ | ν × T | ∀α:κ.T | ∃α:κ.T | λα:κ.T |

T τ | ν T | 〈T, τ〉 | 〈ν, T 〉 | T.1 | T.2

tcase contexts C ::= tcase v: of x:τ then e1 else e2 | tcase v:ν of x: then e1 else e2

RT-App LECT [(λα:κ.ν) ν′] −→ LECT [ν[α := ν′]]
RT-Proj1 LECT [〈ν1, ν2〉.1] −→ LECT [ν1]
RT-Proj2 LECT [〈ν1, ν2〉.2] −→ LECT [ν2]
RT-Trigger L1[lazy 〈ζ, x〉 = e1 in L2ECT [ζ]] −→ L1[let 〈α, x〉 = e1 in (L2ECT [ζ])[ζ := α]]

(ζ /∈ btv(L2))

Figure 3.1: Applicative order reduction to normal form

In the remainder of this chapter we present two such reductions strategies for type expressions
of the tcase construct. Section 3.1 is concerned with a naive strategy that eventually eliminates all
occuring lazy type variables by triggering the corresponding packages. We give a complete proof
of safety properties. Section 3.2 presents a more sophisticated call-by-name strategy that involves
weak head reduction and performs R-Case2 as soon as it becomes clear that the compared types
are of different shape and hence cannot be equal. Again, safety proofs are included.

3.1 Applicative order reduction to normal form

In order to achieve the desired property that two types in normal form are equal if and only
if they are syntactically equal, we have to reduce below binders. That means that e.g. an
abstraction only is in normal form if its body is so. As a consequence of this we have to treat
regular variables as normal forms. On the other hand, lazy type variables must of course not be
considered normal forms (this is the reason why we did introduce the different syntactical forms
for type variables). We therefore define normal forms as follows:

normal forms ν ::= p | ν1 → ν2 | ν1 × ν2 | ∀α:κ.ν | ∃α:κ.ν | λα:κ.ν | 〈ν1, ν2〉

normal paths p ::= α | p ν | p.1 | p.2

Consequently, the main tcase reduction rules are:

R-Case1 LE[tcase v:ν of x:ν then e1 else e2] −→ LE[e1[x := v]]
R-Case2 LE[tcase v:ν of x:ν′ then e1 else e2] −→ LE[e2] (ν 6= ν′)

The normal forms are computed via an applicative order reduction, i.e., via a call-by-value
strategy that reduces below binders (the leftmost innermost redex is reduced first) [23]. It
is shown in figure 3.1. Except for RT-Trigger, all rules are derived directly from the type
equivalence relation.

An example in the form of a sequence of reduction steps is given in figure 3.2. It is interesting
and typical of our system how type- and term-level reduction interleave. First, type-level reduc-
tion encounters the lazy variable and hence triggers the evaluation of the corresponding package
(RT-Trigger for T = int). After it has been opened using R-Open, the type reduction can
continue by applying RT-App. Since this turns the left type into the same normal form that
the right type already is in, it’s then again the turn of term-level reduction (R-Case1).

24

lazy 〈ζ, x〉 = 〈λα′:Ω.α′ × α′, 〈2 + 5, 7 − 4〉〉:∃α:Ω → Ω.α int in
tcase x:ζ int of x′:int × int then 1 else 0

−→ let 〈α, x〉 = 〈λα′:Ω.α′ × α′, 〈2 + 5, 7 − 4〉〉:∃α:Ω → Ω.α int in
tcase x:α int of x′:int × int then 1 else 0

−→∗ let 〈α, x〉 = 〈λα′:Ω.α′ × α′, 〈7, 3〉〉:∃α:Ω → Ω.α int in
tcase x:α int of x′:int × int then 1 else 0

−→ tcase 〈7, 3〉:(λα′:Ω.α′ × α′) int of x′:int × int then 1 else 0
−→ tcase 〈7, 3〉:int × int of x′:int × int then 1 else 0
−→ 1

Figure 3.2: Sample reduction sequence

3.1.1 Properties

We define another judgment, analogous to Γ ⊢ L : Γ′, that is needed to set up suitable context
lemmata for the Preservation proof. The context lemmata for term evaluation contexts, lemma
7 (Context Elimination) and lemma 8 (Exchange), do not require such a judgement, because
E—in contrast to T—does not allow reduction below binders.

Definition 5 (Typing Judgement for Type Reduction Contexts). Γ ⊢ T : Γ′

(TC-Empty)
Γ ⊢ : ·

(TC-Arrow1)
Γ ⊢ T : Γ′

Γ ⊢ T → τ : Γ′
(TC-Arrow2)

Γ ⊢ T : Γ′

Γ ⊢ ν → T : Γ′

(TC-Times1)
Γ ⊢ T : Γ′

Γ ⊢ T × τ : Γ′
(TC-Times2)

Γ ⊢ T : Γ′

Γ ⊢ ν × T : Γ′
(TC-Univ)

Γ, α:κ ⊢ T : Γ′

Γ ⊢ ∀α:κ.T : α:κ, Γ′

(TC-Exist)
Γ, α:κ ⊢ T : Γ′

Γ ⊢ ∃α:κ.T : α:κ, Γ′
(TC-Abs)

Γ, α:κ ⊢ T : Γ′

Γ ⊢ λα:κ.T : α:κ, Γ′

(TC-App1)
Γ ⊢ T : Γ′

Γ ⊢ T τ : Γ′
(TC-App2)

Γ ⊢ T : Γ′

Γ ⊢ ν T : Γ′
(TC-Pair1)

Γ ⊢ T : Γ′

Γ ⊢ 〈T, τ〉 : Γ′

(TC-Pair2)
Γ ⊢ T : Γ′

Γ ⊢ 〈ν, T 〉 : Γ′
(TC-Proj1)

Γ ⊢ T : Γ′

Γ ⊢ T.1 : Γ′
(TC-Proj2)

Γ ⊢ T : Γ′

Γ ⊢ T.2 : Γ′

As in the previous chapter, we only show a few selected parts of the proofs (if at all) and
refer to the appendix for the rest.

Lemma 10 (Type Context Elimination).

1. If Γ ⊢ T [τ] : κ, then Γ, Γ′ ⊢ τ : κ′ where Γ ⊢ T : Γ′.

2. If Γ ⊢ T : Γ′, then dom(Γ′) ∩ LTVar = ∅.

3. If Γ ⊢ C[τ] : τ ′, then Γ ⊢ τ : Ω.

Proof. (1) by induction on the structure of T . (2) follows immediately from the definition of the
Γ ⊢ T : Γ′ judgement. (3) by case analysis on C.

1. Let Γ ⊢ T [τ] : κ

• Case T = ∀α:κ.T ′:

(a) By assumption: Γ ⊢ ∀α:κ.T ′[τ] : κ

(b) By (a) and inversion of K-Univ: Γ, α:κ ⊢ T ′[τ] : Ω

25

(c) By (b) and induction: Γ, α:κ, Γ′′ ⊢ τ : κ′ where Γ ⊢ T ′ : Γ′′

(d) Let Γ′ = α:κ, Γ′′.

(e) By (b), (c), (d), and TC-Univ: Γ, Γ′ ⊢ τ : κ′ where Γ ⊢ ∀α:κ.T ′ : Γ′

Lemma 11 (Wrapping). If τ ≡ τ ′, then, for all T , T [τ] ≡ T [τ ′].

Proof. By structural induction on T .

Lemma 12 (Type Exchange).

1. If Γ ⊢ T [τ] : κ and Γ, Γ′ ⊢ τ : κ and Γ, Γ′ ⊢ τ ′ : κ where Γ ⊢ T : Γ′, then Γ ⊢ T [τ ′] : κ.

2. If Γ ⊢ CT [τ] : τ ′′ and Γ, Γ′ ⊢ τ : κ and Γ, Γ′ ⊢ τ ′ : κ and Γ ⊢ T : Γ′ and τ ≡ τ ′, then
Γ ⊢ CT [τ ′] : τ ′′.

Proof. (1) by structural induction on T . (2) by case analysis on C, using (1), lemma 6 (Equivalent
Environments), and lemma 11 (Wrapping).

2. Let Γ ⊢ CT [τ] : τ ′′ and Γ, Γ′ ⊢ τ : κ and Γ, Γ′ ⊢ τ ′ : κ and Γ ⊢ T : Γ′ and τ ≡ τ ′.

• Case C = tcase e0:τ0 of x: then e1 else e2:

(a) By assumption: Γ ⊢ tcase e0:τ0 of x:T [τ] then e1 else e2 : τ ′′

(b) By (a) and Typing Inversion: Γ ⊢ e0 : τ0 and Γ, x:T [τ] ⊢ e1 : τ ′′ and Γ ⊢ e2 : τ ′′

(c) By (b) and Environment Validity: Γ, x:T [τ] ⊢ �

(d) By (c) and inversion of E-Term: Γ ⊢ T [τ] : Ω and x /∈ dom(Γ)

(e) By (d), assumption, and (1): Γ ⊢ T [τ ′] : Ω

(f) By (e), (d), and E-Term: Γ, x:T [τ ′] ⊢ �

(g) By assumption and Wrapping: T [τ] ≡ T [τ ′]

(h) By (b), (f), (g), and Equivalent Environments: Γ, x:T [τ ′] ⊢ e1 : τ ′′

(i) By (h), (b), and T-Case: Γ ⊢ tcase e0:τ0 of x:T [τ ′] then e1 else e2 : τ ′′

Theorem 1 (Preservation). If Γ ⊢ e : τ and e −→ e′, then Γ ⊢ e′ : τ .

Proof. By case analysis on the applied reduction rule. The basic idea is the same for all cases
where the reduction rule looks like LE[e1] −→ LE[e2]: first, we use Context Elimination to show
that Γ, Γ′ ⊢ e1 : τ ′ with Γ ⊢ L : Γ′. We then show Γ, Γ′ ⊢ e2 : τ ′ and finally use Exchange to get
Γ ⊢ LE[e2] : τ . While it works similar for R-Suspend, the cases R-Trigger, and RT-Trigger

are much more involved.

• Case R-Open: e = LE[let 〈α, x〉 = 〈τ1, v〉:τ ′

1 in e1] and e′ = LE[e1[α := τ1][x := v]]:

1. By Context Elimination: Γ, Γ′ ⊢ let 〈α, x〉 = 〈τ1, v〉:τ ′

1 in e1 : τ ′ where Γ ⊢ L : Γ′

2. We show: Γ, Γ′ ⊢ e1[x1 := v1][x2 := v2] : τ ′

(a) By (1) and Typing Inversion: Γ, Γ′ ⊢ 〈τ1, v〉:τ ′

1 : ∃α:κ.τ2 and Γ, Γ′, α:κ, x:τ2 ⊢ e1 :
τ ′′ where α /∈ ftv(τ ′′) and τ ′′ ≡ τ ′

(b) By (a) and Typing Inversion: Γ, Γ′ ⊢ τ1 : κ′ and Γ, Γ′ ⊢ v : τ2[α := τ1] where
τ ′

1 = ∃α:κ′.τ ′

2 and ∃α:κ.τ2 ≡ ∃α:κ′.τ ′

2 and Γ ⊢ τ ′

1 : Ω

(c) By (b) and Type Equivalence Inversion: κ = κ′ and τ2 ≡ τ ′

2

(d) By (a), (b), (c), and Type Substitution: Γ, Γ′, x:τ2[α := τ1] ⊢ e1[α := τ1] : τ ′′[α :=
τ1]

26

(e) By (d), (b), and Term Substitution: Γ, Γ′ ⊢ e1[α := τ1][x := v] : τ ′′[α := τ1]

(f) By (a) and (e): Γ, Γ′ ⊢ e1[α := τ1][x := v] : τ ′′

(g) By (1) and Validity: Γ, Γ′ ⊢ τ ′ : Ω

(h) By (a), (f), (g), and T-Equiv: Γ, Γ′ ⊢ e1[α := τ1][x := v] : τ ′

3. By assumption, (1), (2), and Exchange: Γ ⊢ LE[e1[α := κ][x := v]] : τ

• Case RT-Trigger: e = L[lazy 〈ζ, x〉 = e1 in L′ECT [ζ]] and e′ = L[let 〈ζ, x〉 = e1 in
(L′ECT [ζ])[ζ := α]]

1. By assumption: Γ ⊢ L[lazy 〈ζ, x〉 = e1 in L′ECT [ζ]] : τ

2. By (1) and Context Elimination: Γ, Γ′ ⊢ lazy 〈ζ, x〉 = e1 in L′ECT [ζ] : τ ′ where
Γ ⊢ L : Γ′

3. By (2) and Typing Inversion: Γ, Γ′ ⊢ e1 : ∃α:κ.τ1 and Γ, Γ′, ζ:κ, x:τ1[α := ζ] ⊢
L′ECT [ζ] : τ ′′ where ζ /∈ ftv(τ ′′) and τ ′′ ≡ τ ′

4. We show: Γ, Γ′, α:κ ⊢ α : κ

(a) By (3) and Validity: Γ, Γ′ ⊢ ∃α:κ.τ1 : Ω

(b) By (a) and inversion of K-Exist: Γ, Γ′, α:κ ⊢ τ1 : Ω

(c) By (b) and Environment Validity: Γ, Γ′, α:κ ⊢ �

(d) By (c): Γ, Γ′, α:κ ⊢ α : κ

5. We show: Γ, Γ′, α:κ, ζ:κ, x:τ1[α := ζ] ⊢ L′ECT [ζ] : τ ′′

(a) By (3) and Environment Validity: Γ, Γ′, ζ:κ, x:τ1[α := ζ] ⊢ �

(b) By (a) and inversion of E-Term: Γ, Γ′, ζ:κ ⊢ τ1[α := ζ] : Ω and x /∈ dom(Γ, Γ′, ζ:κ)

(c) By (b) and Environment Validity: Γ, Γ′, ζ:κ ⊢ �

(d) By (c) and inversion of E-Type: Γ, Γ′ ⊢ � and ζ /∈ dom(Γ, Γ′)

(e) By (4c) and inversion of E-Type: α /∈ dom(Γ, Γ′)

(f) By (d), (e), and E-Type: Γ, Γ′, α:κ ⊢ �

(g) By (d): ζ /∈ dom(Γ, Γ′, α:κ)

(h) By (f), (g), and E-Type: Γ, Γ′, α:κ, ζ:κ ⊢ �

(i) By (b), (h), and Weakening: Γ, Γ′, α:κ, ζ:κ ⊢ τ1[α := ζ] : Ω

(j) By (b): x /∈ dom(Γ, Γ′, α:κ, ζ:κ)

(k) By (i), (j), and E-Term: Γ, Γ′, α:κ, ζ:κ, x:τ1[α := ζ] ⊢ �

(l) By (3), (k), and Weakening: Γ, Γ′, α:κ, ζ:κ, x:τ1[α := ζ] ⊢ L′ECT [ζ] : τ ′′

6. By (4), (5), and Type Substitution:
Γ, Γ′, α:κ, x:τ1[α := ζ][ζ := α] ⊢ (L′ECT [ζ])[ζ := α] : τ ′′[ζ := α]

7. We show: ζ /∈ ftv(τ1)

(a) By (4b) and Variable Containment: ftv(τ1) ⊆ dom(Γ, Γ′, α:κ)

(b) By (5d): ζ /∈ dom(Γ, Γ′, α:κ)

(c) By (a) and (b): ζ /∈ ftv(τ1)

8. By (6) and (7): Γ, Γ′, α:κ, x:τ1 ⊢ (L′ECT [ζ])[ζ := α] : τ ′′[ζ := α]

9. By (3) and (8): Γ, Γ′, α:κ, x:τ1 ⊢ (L′ECT [ζ])[ζ := α] : τ ′′

10. We show: α /∈ ftv(τ ′′)

(a) By (3) and Variable Containment: ftv(τ ′′) ⊆ dom(Γ, Γ′, ζ:κ, x:τ1[α := ζ])

(b) By (5e): α /∈ dom(Γ, Γ′, ζ:κ, x:τ1[α := ζ])

(c) By (a) and (b): α /∈ ftv(τ ′′)

27

11. By (3), (9), (10), and T-Open: Γ, Γ′ ⊢ let 〈α, x〉 = e1 in (L′ECT [ζ])[ζ := α] : τ ′′

12. By (2) and Validity: Γ, Γ′ ⊢ τ ′ : Ω

13. By (3), (11), (12), and T-Equiv: Γ, Γ′ ⊢ let 〈α, x〉 = e1 in (L′ECT [ζ])[ζ := α] : τ ′

14. By (1), (2), (13), and Exchange: Γ ⊢ L[let 〈α, x〉 = e1 in (L′ECT [ζ])[ζ := α]] : τ

Lemma 13 (Lazy Type Variables). If Γ ⊢ LCT [ζ] : τ and ζ /∈ dom(Γ), then L = L1[lazy 〈ζ, x〉 =
e in L2] where ζ /∈ btv(L2).

Proof. By structural induction on L.

Proposition 13 (Canonical Normal Forms). Let Γ ⊢ ν : κ where ν is not a normal path.

• If κ = κ1 → κ2, then ν = λα:κ.ν′.

• If κ = κ1 × κ2, then ν = 〈ν1, ν2〉.

Proof. Follows from the definition of the kinding relation.

Proposition 14 (Type Progress). If · ⊢ LCT [τ] : τ ′ and τ is not a normal form, then
LCT [τ] −→ e.

Proof. By structural induction on τ , using lemma 13 (Lazy Type Variables).

• Case τ = τ1.1:

– Subcase τ1 is not a normal form:

1. Let T ′ = T [.1]. Then: LCT [τ] = LCT ′[τ1]

2. By (1) and induction: LCT [τ] −→ e

– Subcase τ1 = ν1:

∗ Subsubcase ν1 is not a path:

1. By assumption and Context Elimination: Γ ⊢ CT [ν1.1] : τ ′′

2. By (1) and Type Context Elimination: Γ′ ⊢ T [ν1.1] : Ω

3. By (2) and Type Context Elimination: Γ, Γ′ ⊢ ν1.1 : κ

4. By (3) and inversion of K-Proj1: Γ, Γ′ ⊢ ν1 : κ × κ2

5. By (4) and Canonical Normal Forms: ν1 = 〈ν11, ν12〉

6. By (5) and RT-Proj1: LCT [τ] = LCT [〈ν11, ν12〉.1] −→ LCT [ν11]

∗ Subsubcase ν1 = p: not possible since p.1 is a normal form

Lemma 14 (Context Extension). If L[e] −→ e′ and e is not a lazy expression, then for all E
exists an e′′ such that LE[e] −→ e′′.

Proof. By case analysis on the applied reduction rule.

The most standard formulation of Progress would look like

If e 6= L[v] and · ⊢ e : τ , then e → e′.

However, this cannot be proven directly by induction on the structure of e: if e = lazy 〈ζ, x〉 = e1 in
e2 and we assume that no trigger-rule can be applied, then we know that e2 can be reduced.
However, we cannot make use of the induction hypothesis, because e2 may contain free vari-
ables (namely ζ and x). We therefore do not analyze the whole source term but only the part
within the (maximal) surrounding lazy context. That way it is impossible that the term we are
analyzing is a lazy expression.

28

Theorem 2 (Progress). If · ⊢ L[e] : τ where e is neither a value nor a lazy expression, then
L[e] −→ e′.

Proof. By structural induction on e, using proposition 10 (Canonical Values) and lemma 9 (Lazy
Term Variables). The case where e is a tcase expression uses proposition 14 (Type Progress).

• Case e = E[lazy 〈ζ, x〉 = e1 in e2] (w.l.o.g. ζ /∈ ftv(E) and x /∈ fv(E)):

1. By assumption: E 6=

2. By (1) and R-Suspend: L[e] −→ L[lazy 〈ζ, x〉 = e1 in E[e2]]

• Case e 6= E[lazy . . .] ∧ e = e1 e2:

– Subcase e1 is not a value:

1. Let E1 = e2.

2. By (1) and assumption: · ⊢ LE1[e1] : τ

3. By (2) and Context Elimination: · ⊢ L[e1] : τ ′

1

4. By assumption: e1 is not a lazy expression

5. By (3), (4), and induction: L[e1] −→ e′1
6. By (4), (5), and Context Extension: L[e] = LE1[e1] −→ e′

– Subcase e1 = v1:

∗ Subsubcase v1 is not a variable:

1. By assumption and Context Elimination: Γ ⊢ v1 e2 : τ ′ where · ⊢ L : Γ

2. By (1) and Typing Inversion: Γ ⊢ v1 : τ2 → τ ′

3. By (2) and Canonical Values: v1 = λx:τ ′

2.e
′

4. By (3) and R-App: L[e] = L[(λx:τ2.e
′) v2] −→ L[e′[x := v2]]

∗ Subsubcase v1 = x:

1. Let S = e2 and C = S. Then: e = S[x] = C[x]

2. By (1) and assumption: · ⊢ LC[x] : τ

3. By (2) and Lazy Term Variables: L = L1[lazy 〈ζ, x〉 = e′ in L2] where x /∈
bv(L2)

4. By (1), (3), and R-Trigger: L[e] = L1[lazy 〈ζ, x〉 = e′ in L2S[x]] −→
L1[let 〈α, x〉 = e′ in (L2S[x])[ζ := α]]

• Case e 6= E[lazy . . .] ∧ e = tcase e0:τ0 of x:τ ′

0 then e1 else e2:

– Subcase e0 is not a value:

1. Let E0 = tcase :τ0 of x:τ ′

0 then e1 else e2.

2. By (1) and assumption: · ⊢ LE0[e0] : τ

3. By (2) and Context Elimination: · ⊢ L[e0] : τ ′′

0

4. By assumption: e0 is not a lazy expression

5. By (3), (4), and induction: L[e0] −→ e′0
6. By (4), (5), and Context Extension: L[e] = LE0[e0] −→ e′

– Subcase e0 = v and τ0 is not a normal form:

1. Let C = tcase v: of x:τ ′

0 then e1 else e2. Then: L[e] = LC[τ0]

2. By (1) and Type Progress: L[e] −→ e′

– Subcase e0 = v and τ0 = ν:

∗ Subsubcase τ ′

0 is not a normal form:

29

1. Let C = tcase v:τ0 of x: then e1 else e2. Then: L[e] = LC[τ ′

0]

2. By (1) and Type Progress: L[e] −→ e′

∗ Subsubcase τ ′

0 = ν:

1. By R-Case1: L[e] = L[tcase v:ν of x:ν then e1 else e2] −→ L[e1[x := v]]

∗ Subsubcase τ ′

0 = ν′ 6= ν:

1. By R-Case2: L[e] = L[tcase v:ν of x:ν′ then e1 else e2] −→ L[e2]

As another consequence of the nature of our reduction relation, the progress proof is not as
constructive as usual. For instance, if L[e] = L[〈e1, e2〉], then we cannot conclude e′ = L[〈e′1, e2〉]
or e′ = L[〈e1, e

′

2〉] since the applicable rule may have been R-Suspend, R-Trigger, or RT-

Trigger. However, the case analysis in the proof still shows implicitly that our reduction is
fully deterministic.

3.2 Interleaved call-by-name reduction to weak head nor-

mal form

One might argue that the previous strategy is not lazy at all, because all occuring lazy type
variables are eliminated (by opening the corresponding packages). Still, it is lazy in so far
that RT-Trigger is only applied when reduction cannot proceed otherwise. Admittedly, the
reduction is not very smart. Consider the following example:

lazy 〈ζ, x〉 = e in tcase x:(λα:Ω.int) ζ of x′:int then e1 else e2

It is obvious that the proper value of ζ is not needed here at all. Nevertheless, our reduction
relation would trigger the evaluation and opening of e because it tries to reduce the argument
of the application to a normal form before executing RT-App. This can be avoided by using
call-by-name instead of call-by-value, i.e., by allowing β reduction to be performed even when
the argument is not in normal form. (To maintain determinism the definition of type reduction
contexts needs to be adapted as well.)

Looking at another example gives us insight on how to get an even lazier strategy:

lazy 〈ζ, x〉 = e in tcase x:ζ → int of x′:int × int then e1 else e2

According to the reduction relation, e must be evaluated and opened to eliminate ζ, because
ζ → int is not in normal form yet. It is, however, already clear that the two type expressions can
never be equal: one is an arrow type and the other a product type—and this will not change, no
matter what ζ is replaced with. An algorithm that is aware of such implications not only does
lead to a faster termination but also avoids unnecessary triggering of lazy packages and thus
provides a higher degree of laziness.

This section presents a strategy that makes use of these two techniques. In short, the idea is
that we repeatedly perform a combination of weak head reduction, comparison, and descent—
until we either obtain two identical normal forms or discover that the types cannot be equal.
The R-Case1 rule remains unchanged.

An expression is in weak head normal form [12, 23], if and only if it has no top-level redex. In
our calculus we extend this definition to exclude lazy variables, i.e., all type expressions except
lazy variables, applications, and projections are always in weak head normal form. An application
is in weak head normal form iff β-reduction cannot be performed because the left-hand side is

30

a variable or itself an expression that cannot be reduced. The like holds for a projection. We
make this formal with the following syntax definitions:

weak head normal forms ω ::= q | τ1 → τ2 | τ1 × τ2 | ∀α:κ.τ | ∃α:κ.τ | λα:κ.τ | 〈τ1, τ2〉

weak head normal paths q ::= α | q τ | q.1 | q.2

When we have to evaluate a tcase expression, i.e., when we have to compare two type expres-
sions τ1 and τ2, then we first reduce them to weak head normal forms ω1 and ω2. Afterwards,
we compare their heads, and, in case of existential and universal types, the kinds of the bound
variables as well2. If they are different (written ω1 6∼ ω2, see below), then, knowing that the
types never can be equal, we abort using a R-Case2 rule like

LE[tcase v:ω of x:ω′ then e1 else e2] −→ E[e2] (ω 6∼ ω′)

where the ∼ relation is defined as follows:

ω ∼ ω′
def
⇐⇒ ω = q ∧ ω′ = q′ ∧ q ∼ q′

∨ ω = τ1 → τ2 ∧ ω′ = τ ′

1 → τ ′

2

∨ ω = τ1 × τ2 ∧ ω′ = τ ′

1 × τ ′

2

∨ ω = ∀α:κ.τ ∧ ω′ = ∀α:κ.τ ′

∨ ω = ∃α:κ.τ ∧ ω′ = ∃α:κ.τ ′

∨ ω = λα:κ.τ ∧ ω′ = λα:κ.τ ′

∨ ω = 〈τ1, τ2〉 ∧ ω′ = 〈τ ′

1, τ
′

2〉

q ∼ q′
def
⇐⇒ q = α = q′

∨ q = q1 τ ∧ q′ = q′1 τ ′

∨ q = q1.1 ∧ q′ = q′1.1
∨ q = q1.2 ∧ q′ = q′1.2

But how do we continue if ω ∼ ω′? Let us consider an example:

lazy 〈ζ, x〉 = e0 in tcase x:∃α:Ω.α of x′:∃α:Ω.ζ then e1 else e2

We would like to reduce the problem of comparing ∃α:Ω.α and ∃α:Ω.ζ to the problem of com-
paring α and ζ, because the latter are equal if and only if the former are. We therefore need a
way to descend into the existential types and start the whole procedure again on their bodies
until we either abort or reach two identical normal forms ν1 and ν2 (as defined in the previous
section) in which case we use R-Case1. Obviously, we cannot simply throw away the quantifiers
by reducing the term to

lazy 〈ζ, x〉 = e0 in tcase x:α of x′:ζ then e1 else e2

because that breaks the preservation property (the term is no longer well-typed since x has
type ∃α:Ω.α, not type α). Instead, we once again make use of contexts and define a set of
binary contexts B that allow us to descend into two weak head normal forms of the same shape.
Unfortunately, the required grammar is not context-free this time. However, we still present it
in the usual BNF style, because the meaning is obvious:

B ::= tcase v: of x: then e1 else e2 |

B[→ τ1][→ τ2] | B[ν →][ν →] |

B[× τ1][× τ2] | B[ν ×][ν ×] |

B[∀α:κ.][∀α:κ.] | B[∃α:κ.][∃α:κ.] | B[λα:κ.][λα:κ.] |

B[〈 , τ1〉][〈 , τ2〉] | B[〈ν, 〉][〈ν, 〉]

2This is not necessary for abstractions. We define the system such that, in a well-formed term, we are never
comparing types of different kinds—aside from variables.

31

tcase v:∃α1:Ω.∀α2:Ω.α1 of x:∃α1:Ω.∀α2:Ω.α2 then e1 else e2

= B0[∃α1:Ω.∀α2:Ω.α1][∃α1:Ω.∀α2:Ω.α2]
= B1[∀α2:Ω.α1][∀α2:Ω.α2]
= B2[α1][α2]

where B0 = tcase v: of x: then e1 else e2

B1 = B0[∃α1:Ω.][∃α1:Ω.]
B2 = B1[∀α2:Ω.][∀α2:Ω.]

Figure 3.3: Sample decomposition using binary contexts

Note that e.g. in B[ν →][ν →] the two ν really stand for one and the same normal form.
These binary contexts (which we also call comparison contexts) can be defined accurately as a
set of functions that take two types and yield a term:

B ∈ BContext
def
=

{λ τ1, τ2 ∈ Ty. tcase v:τ1 of x:τ2 then e1 else e2 | v ∈ Val; x ∈ Var; e1, e2 ∈ Ter}
∪ {λ τ1, τ2 ∈ Ty. B (τ1 → τ ′

1) (τ2 → τ ′

2) | τ ′

1, τ
′

2 ∈ Ty; B ∈ BContext}
∪ {λ τ1, τ2 ∈ Ty. B (ν → τ1) (ν → τ2) | ν ∈ NF; B ∈ BContext}
∪ {λ τ1, τ2 ∈ Ty. B (τ1 × τ ′

1) (τ2 × τ ′

2) | τ ′

1, τ
′

2 ∈ Ty; B ∈ BContext}
∪ {λ τ1, τ2 ∈ Ty. B (ν × τ1) (ν × τ2) | ν ∈ NF; B ∈ BContext}
∪ {λ τ1, τ2 ∈ Ty. B (∀α:κ.τ1) (∀α:κ.τ2) | α ∈ RTVar; κ ∈ Ki; B ∈ BContext}
∪ {λ τ1, τ2 ∈ Ty. B (∃α:κ.τ1) (∃α:κ.τ2) | α ∈ RTVar; κ ∈ Ki; B ∈ BContext}
∪ {λ τ1, τ2 ∈ Ty. B (λα:κ.τ1) (λα:κ.τ2) | α ∈ RTVar; κ ∈ Ki; B ∈ BContext}
∪ {λ τ1, τ2 ∈ Ty. B 〈τ1, τ

′

1〉 〈τ2, τ
′

2〉 | τ ′

1, τ
′

2 ∈ Ty; B ∈ BContext}
∪ {λ τ1, τ2 ∈ Ty. B 〈ν, τ1〉 〈ν, τ2〉 | ν ∈ NF; B ∈ BContext}

(Where Ty denotes the set of types, Val the set of values, Ter the set of terms, NF the set of
normal forms, and Ki the set of kinds.)

Figure 3.3 illustrates the decomposition of a tcase expression with the help of our new com-
parison contexts. Using an R-Case2 rule like

LE[tcase v:τ0 of x:τ ′

0 then e1 else e2] −→ LE[e2]
((tcase v:τ0 of x:τ ′

0 then e1 else e2) = B[ω1][ω2] and ω1 6∼ ω2)

B2[α1][α2] now reduces to e2, as α1 and α2 are weak head normal forms with different heads.
More examples follow as we proceed.

Figure 3.4 specifies the reduction that is responsible for producing weak head normal forms.
It is a call-by-name reduction, i.e., the leftmost outermost redex not below a binder is reduced
first [23]. As stated at the end of the previous section, call-by-name avoids unnecessary triggering
if an abstraction is applied to a lazy variable. Similar, we perform projection as soon as possible,
in the hope that this throws away a lazy variable (for instance, 〈ζ1, ζ2〉.1 is reduced to ζ1).
Consequently, RT-Trigger is only applied if it is indispensable in order to compute a weak
head normal form. The C contexts determine that the left type of a tcase expression is reduced
before the right type. We reuse the names C and T here, because this makes large parts of some
proofs identical to the corresponding proofs for the applicative order reduction.

Together with our way of descending, the whole strategy can also be seen as a normal order
reduction, since effectively the leftmost outermost redex is reduced first and the types end up in
normal form (if they are equal).

The binary contexts are defined such that, when comparing arrow types, pair types, or type
pairs, we may only descend into the right component if the left component already is in normal

32

tcase contexts C ::= B[][τ] | B[ω][]

type reduction contexts T ::= | T τ | T.1 | T.2

RT-App LECT [(λα:κ.τ1) τ2] −→ LECT [τ1[α := τ2]]
RT-Proj1 LECT [〈τ1, τ2〉.1] −→ LECT [τ1]
RT-Proj2 LECT [〈τ1, τ2〉.2] −→ LECT [τ2]
RT-Trigger L1[lazy 〈ζ, x〉 = e1 in L2ECT [ζ]] −→ L1[let 〈α, x〉 = e1 in (L2ECT [ζ])[ζ := α]]

(ζ /∈ btv(L2))

Figure 3.4: Call-by-name reduction to weak head normal form

form. The idea is that we first process the left part and there, by recursion, either can apply
R-Case2 at some point or end up with the same normal form on both sides. In the latter case
we are then able to construct a B that allows us to delve into the right part. In other words, our
binary contexts force a left-to-right depth-first traversal. Consider the following term:

tcase v:(∃α:Ω.(λα′:Ω.α′) α) × τ ′

1 of x:(∃α:Ω.α) × τ ′

2 then e1 else e2

It is easy to see that whether the two types are equal solely depends on whether τ ′

1 and τ ′

2 are
equal, hence we would like to find a binary context that lets us compare them. We start with
B0 = tcase v: of x: then e1 else e2. Looking at B0[(∃α:Ω.(λα′:Ω.α′) α)× τ ′

1][(∃α:Ω.α)× τ ′

2] now,
it becomes apparent that we cannot focus on τ ′

1 and τ ′

2 already because ∃α:Ω.(λα′:Ω.α′) α is not
in normal form yet. We therefore have to choose B1 = B0[× τ ′

1][× τ ′

2] and thus to first descend
into the left part of the type pair. This lets us view the term as B1[∃α:Ω.(λα′:Ω.α′) α][∃α:Ω.α].
Using B2 = B1[∃α:Ω.][∃α:Ω.], we descend once more. For T = and C = B2[][α] we are
now able to reduce B2[(λα′:Ω.α′) α][α] to B2[α][α] by using the RT-App rule. Having arrived
at two identical normal forms, we now ascend again to B0. This time, however, we are looking
at B0[(∃α:Ω.α) × τ ′

1][(∃α:Ω.α) × τ ′

2]. ∃α:Ω.α is a normal form and hence we can finally choose
B′

1 = B0[(∃α:Ω.α) ×][(∃α:Ω.α) ×] and thus compare τ ′

1 and τ ′

2.
What about applications and projections in weak head normal form? So far we have ignored

them. Consider the term B[α1 (α2 α3)][α1 α3] (for some B). It suggests itself to extend the
binary contexts with B[p][p] (again, the left and the right p denote the same normal path).
We have to use p instead of ν here to exclude abstractions. Choosing B′ = B[α1][α1], we
can then view the term as B′[α2 α3][α3] and reduce it to e2 because α2 α3 6∼ α3. Now consider
the term B[(α1 (α2 α3)) α2][(α1 α3) α2]. We have just seen that the left-hand sides of the
outermost applications are not equal, hence these applications cannot be equal either. But how
do we show it this time? At a first glance one might be tempted to add B[τ1][τ2] to the
definition of comparison contexts. Indeed this would allow us to descend into the left-hand
sides (B′ = B[α2][α2]) and then to continue as above. Nevertheless this extension has fatal
implications! Suppose that we have to evaluate tcase v:∃α:(Ω → Ω) × Ω.α.1 α.2 of x:∃α:(Ω →
Ω) × Ω.(λα′:Ω → Ω.α′ α.2) α.1 then e1 else e2. Obviously the comparison should be successful,
leading to the execution of R-Case1. Choosing B = (tcase v: of x: then e1 else e2)[∃α:(Ω →
Ω)×Ω.][∃α:(Ω → Ω)×Ω.], T = , and C = B[α.1 α.2][], we can view the term as CT [(λα′:Ω →
Ω.α′ α.2) α.1] and hence reduce it to tcase v:∃α:(Ω → Ω) × Ω.α.1 α.2 of x:∃α:(Ω → Ω) ×
Ω.α.1 α.2 then e1 else e2. Using R-Case1, this term can be further reduced to e1[x := v] as
expected. However, due to the previous extension there is a second possibility: if we choose
B′ = B[α.2][α.1], then the term is equal to B′[α.1][λα′:Ω → Ω.α′ α.2]. Because obviously

33

α.1 6∼ λα′:Ω → Ω.α′ α.2, it can therefore be reduced to e2 by R-Case2. So the extension not
only made the reduction nondeterministic but also non-confluent.

The problem is that we may only descend into the left part of an application if we know for
sure that it is a path, i.e., that the leftmost innermost constituent of the type expression is a
regular variable. We can express this, and thus solve the problem, by introducing a set of path
comparison contexts:

P ::= B | P [τ1][τ2] | P [.1][.1] | P [.2][.2]

The previous harmful extension to the definition of regular comparison contexts is now replaced
with P [p][p]. Since each regular comparison context also is a path comparison context, we
can discard the first extension again, which was B[p][p]. All in all, the comparison contexts
now are defined as follows:

B ::= tcase v: of x: then e1 else e2 |

B[→ τ1][→ τ2] | B[ν →][ν →] |

B[× τ1][× τ2] | B[ν ×][ν ×] |

B[∀α:κ.][∀α:κ.] | B[∃α:κ.][∃α:κ.] |

B[λα:κ.][λα:κ.] | P [p][p] |

B[〈 , τ1〉][〈 , τ2〉] | B[〈ν, 〉][〈ν, 〉]

P ::= B | P [τ1][τ2] | P [.1][.1] | P [.2][.2]

(The direct set definition can be trivially extended to match this updated version.)
As can be seen easily, there is now only the one, intended, reduction possible for the previous

sample term. Let us look again at the example that took us here, B[(α1 (α2 α3)) α2][(α1 α3) α2].
With the help of path contexts we are now able to find a B′ such that the term can be viewed
as B′[α2 α3][α3], which makes R-Case2 applicable:

P = B
P ′ = P [α2][α2]
B′ = P ′[α1][α1]

There is still one case that is not covered, though. Consider an example where we are
comparing two paths whose roots3 differ: B[α.1.2][α.2.2]. There is only one possibility for
descending: for P = B and P ′ = P [.2][.2] we can view the term as P ′[α.1][α.2]. Clearly we
would like to apply R-Case2 now, but its side condition is not fulfilled. We overcome this by
modifying the rule:

LE[tcase v:τ0 of x:τ ′

0 then e1 else e2] −→ LE[e2]
((tcase v:τ0 of x:τ ′

0 then e1 else e2) = B[ω][ω′] and ω 6∼ ω′

or (tcase v:τ0 of x:τ ′

0 then e1 else e2) = P [q][q′] and q 6∼ q′)

It is important that only weak head normal paths may be compared via path contexts—otherwise
we encounter the same problem as before.

3.2.1 Properties

Definition 6 (Typing Judgement for comparison contexts). Γ ⊢ B : Γ′

(B-Case)
Γ ⊢ tcase v: of x: then e1 else e2 : ·

3We call the ‘leftmost’ variable in a path root. For instance, α is the root of both α τ1 τ2 and α.2 α
′
.1.1.

34

(B-Arrow1)
Γ ⊢ B : Γ′

Γ ⊢ B[→ τ1][→ τ2] : Γ′
(B-Arrow2)

Γ ⊢ B : Γ′

Γ ⊢ B[ν →][ν →]

(B-Times1)
Γ ⊢ B : Γ′

Γ ⊢ B[× τ1][× τ2] : Γ′
(B-Times2)

Γ ⊢ B : Γ′

Γ ⊢ B[ν ×][ν ×]

(B-Univ)
Γ ⊢ B : Γ′

Γ ⊢ B[∀α:κ.][∀α:κ.] : Γ′, α:κ
(B-Exist)

Γ ⊢ B : Γ′

Γ ⊢ B[∃α:κ.][∃α:κ.] : Γ′, α:κ

(B-Abs)
Γ ⊢ B : Γ′

Γ ⊢ B[λα:κ.][λα:κ.] : Γ′, α:κ
(B-Path)

Γ ⊢ P : Γ′

Γ ⊢ P [p][p] : Γ′

(B-Pair1)
Γ ⊢ B : Γ′

Γ ⊢ B[〈 , τ1〉][〈 , τ2〉] : Γ′
(B-Pair2)

Γ ⊢ B : Γ′

Γ ⊢ B[〈ν, 〉][〈ν, 〉] : Γ′

Γ ⊢ P : Γ′

(P-B)
Γ ⊢ B : Γ′

Γ ⊢ B : Γ′
(P-App)

Γ ⊢ P : Γ′

Γ ⊢ P [τ1][τ2] : Γ′

(P-Proj1)
Γ ⊢ P : Γ′

Γ ⊢ P [.1][.1] : Γ′
(P-Proj2)

Γ ⊢ P : Γ′

Γ ⊢ P [.2][.2] : Γ′

Proposition 15 (Uniqueness of Environments).

1. If Γ ⊢ B : Γ1 and Γ ⊢ B : Γ2, then Γ1 = Γ2.

2. If Γ ⊢ P : Γ1 and Γ ⊢ P : Γ2, then Γ1 = Γ2.

Proof. Simultaneous, by induction on the generation of B and P .

Like before, the preservation proof requires various context lemmata.

Lemma 15 (Type Context Elimination).

1. If Γ ⊢ B[τ1][τ2] : τ , then Γ, Γ′ ⊢ τ1 : κ and Γ, Γ′ ⊢ τ2 : κ where Γ ⊢ B : Γ′.

2. If Γ ⊢ P [τ1][τ2] : τ , then Γ, Γ′ ⊢ τ1 : κ1 and Γ, Γ′ ⊢ τ2 : κ2 where Γ ⊢ P : Γ′.

3. If Γ ⊢ B : Γ′, then dom(Γ′) ∩ LTVar = ∅.

4. If Γ ⊢ C[τ] : τ ′, then Γ, Γ′ ⊢ τ : κ and dom(Γ′) ∩ LTVar = ∅.

5. If Γ ⊢ T [τ] : κ, then Γ ⊢ τ : κ′.

Proof. (1) and (2) simultaneous, by induction on the generation of B and P . (3) follows imme-
diately from the definition of the Γ ⊢ B : Γ′ judgement. (4) by case analysis on C, using (1). (5)
by structural induction on T .

1. Let Γ ⊢ B[τ1][τ2] : τ .

• Case B = tcase v: of x: then e1 else e2:

(a) By Typing Inversion: Γ ⊢ v : τ1 and Γ, x:τ2 ⊢ e1 : τ

(b) By (a) and Validity: Γ ⊢ τ1 : Ω

(c) By (a) and Environment Validity: Γ, x:τ2 ⊢ �

(d) By (c) and inversion of E-Term: Γ ⊢ τ2 : Ω

(e) By B-Case: Γ ⊢ tcase v: of x: then e1 else e2 : ·

35

• Case B = B′[→ τ ′

1][→ τ ′

2]:

(a) By induction: Γ, Γ′ ⊢ τ1 → τ ′

1 : κ and Γ, Γ′ ⊢ τ2 → τ ′

2 : κ where Γ ⊢ B′ : Γ′

(b) By (a) and inversion of K-Arrow: Γ, Γ′ ⊢ τ1 : Ω and Γ, Γ′ ⊢ τ2 : Ω

(c) By (a) and B-Arrow1: Γ ⊢ B′[→ τ ′

1][→ τ ′

2] : Γ′

Lemma 16 (Type Exchange).

1. If Γ ⊢ T [τ] : κ and Γ ⊢ τ : κ′ as well as Γ ⊢ τ ′ : κ′, then Γ ⊢ T [τ ′] : κ.

2. If Γ ⊢ B[τ1][τ2] : τ and Γ, Γ′ ⊢ τ1 : κ and Γ, Γ′ ⊢ τ ′

1 : κ and τ1 ≡ τ ′

1 and Γ, Γ′ ⊢ τ2 : κ and
Γ, Γ′ ⊢ τ ′

2 : κ and τ2 ≡ τ ′

2 and Γ ⊢ B : Γ′, then Γ ⊢ B[τ ′

1][τ
′

2].

3. If Γ ⊢ P [τ1][τ2] : τ and Γ, Γ′ ⊢ τ1 : κ and Γ, Γ′ ⊢ τ ′

1 : κ and τ1 ≡ τ ′

1 and Γ, Γ′ ⊢ τ2 : κ and
Γ, Γ′ ⊢ τ ′

2 : κ and τ2 ≡ τ ′

2 and Γ ⊢ P : Γ′, then Γ ⊢ P [τ ′

1][τ
′

2].

Proof. (1) by structural induction on T . (2) and (3) simultaneous by induction on the derivation
of B and P , using proposition 15 (Uniqueness of Environments) and lemma 15 (Type Context
Elimination).

2. Let Γ ⊢ B[τ1][τ2] : τ and Γ, Γ′ ⊢ τ1 : κ and Γ, Γ′ ⊢ τ ′

1 : κ and τ1 ≡ τ ′

1 and Γ, Γ′ ⊢ τ2 : κ and
Γ, Γ′ ⊢ τ ′

2 : κ and τ2 ≡ τ ′

2 and Γ ⊢ B : Γ′.

• Case B = tcase v : of x : then e1 else e2 (w.l.o.g. x /∈ dom(Γ)):

(a) By Typing Inversion:

i. Γ ⊢ v : τ1

ii. Γ, x:τ2 ⊢ e1 : τ

iii. Γ ⊢ e2 : τ

(b) By inversion of B-Case: Γ′ = ·

(c) We show: Γ ⊢ v : τ ′

1

i. By (a-i) and Validity: Γ ⊢ τ1 : Ω

ii. By (i), (b), assumption, and Uniqueness of Kinds: κ = Ω

iii. By (ii), (b), and assumption: Γ ⊢ τ ′

1 : Ω

iv. By (a-i), (iii), assumption, and TEquiv: Γ ⊢ v : τ ′

1

(d) We show: Γ, x:τ ′

2 ⊢ e1 : τ

i. By (c-ii), (b), and assumption: Γ ⊢ τ ′

2 : Ω

ii. By (i) and ETerm: Γ, x:τ ′

2 ⊢ �

iii. By assumption: Γ, x:τ2 ≡ Γ, x:τ ′

2

iv. By (a-ii), (ii), (iv), and Equivalent Environments: Γ, x:τ ′

2 ⊢ e1 : τ

(e) By (c), (d), (a-iii), and TCase: Γ ⊢ tcase v : τ ′

1 of x : τ ′

2 then e1 else e2 : τ

• Case B = B′[→ τ ′′

1][→ τ ′′

2]:

(a) By inversion of B-Arrow1: Γ ⊢ B′ : Γ′

(b) By Type Context Elimination: Γ, Γ′′ ⊢ τ1 → τ ′′

1 : κ′ and Γ, Γ′′ ⊢ τ2 → τ ′′

2 : κ′

where Γ ⊢ B′ : Γ′′

(c) By (a), (b), and Uniqueness of Environments: Γ′ = Γ′′

(d) By (b), (c), and inversion of K-Arrow: κ′ = Ω and Γ, Γ′ ⊢ τ1 : Ω and Γ, Γ′ ⊢
τ ′′

1 : Ω and Γ, Γ′ ⊢ τ2 : Ω and Γ, Γ′ ⊢ τ ′′

2 : Ω

(e) By (d), assumption, and Uniqueness of Kinds: κ = Ω

36

(f) By (d), (e), assumption, and K-Arrow: Γ, Γ′ ⊢ τ ′

1 → τ ′′

1 : Ω and Γ, Γ′ ⊢ τ ′

2 →
τ ′′

2 : Ω

(g) By assumption, Q-Refl, and Q-Arrow: τ1 → τ ′′

1 ≡ τ ′

1 → τ ′′

1 and τ2 → τ ′′

2 ≡
τ ′

2 → τ ′′

2

(h) By assumption, (a), (d), (f), (g), and induction: Γ ⊢ B′[τ ′

1 → τ ′′

1][τ ′

2 → τ ′′

2] : τ

(i) By (h): Γ ⊢ B[τ ′

1][τ
′

2] : τ

Lemma 17 (Wrapping). If τ ≡ τ ′, then, for all T , T [τ] ≡ T [τ ′].

Proof. By structural induction on T .

Theorem 3 (Preservation). If Γ ⊢ e : τ and e −→ e′, then Γ ⊢ e′ : τ .

Proof. By case analysis on the applied reduction rule, using the context lemmata. Obviously,
the proof can differ from the first preservation proof only for the tcase-related rules. Since we
are reusing the names C and T , even the part for RT-Trigger can be adopted one-to-one.
Thus, the only cases that need to be dealt with here are application and projection on type
level—because of slightly different type context lemmata in comparison to the other strategy.

• Case RT-Proj2: e = LECT [〈τ1, τ2〉.2] and e′ = LECT [τ2]

1. By Context Elimination: Γ, Γ′ ⊢ CT [〈τ1, τ2〉.2] : τ ′ where Γ ⊢ L : Γ′

2. We show: Γ, Γ′ ⊢ CT [τ2] : τ ′

– Subcase C = B[][τ3]:

(a) By (1): Γ, Γ′ ⊢ B[T [〈τ1, τ2〉.2][τ3] : τ ′

(b) By (a) and Type Context Elimination: Γ, Γ′, Γ′′ ⊢ T [〈τ1, τ2〉.2] : κ′ and
Γ, Γ′, Γ′′ ⊢ τ3 : κ′ where Γ, Γ′ ⊢ B : Γ′′

(c) By (b) and Type Context Elimination: Γ, Γ′, Γ′′ ⊢ 〈τ1, τ2〉.2 : κ′′

(d) By (c) and inversion of K-Proj2: Γ, Γ′, Γ′′ ⊢ 〈τ1, τ2〉 : κ′′′ × κ′′

(e) By (d) and inversion of K-Pair: Γ, Γ′, Γ′′ ⊢ τ2 : κ′′

(f) By (b), (c), (e), and Type Exchange: Γ, Γ′, Γ′′ ⊢ T [τ2] : κ′

(g) By Q-Proj1b: 〈τ1, τ2〉.2 ≡ τ2

(h) By (g) and Wrapping: T [〈τ1, τ2〉.2] ≡ T [τ2]

(i) By (a), (b), (f), (h), and Type Exchange: Γ, Γ′ ⊢ B[T [τ2]][τ3] : τ ′

(j) By (i): Γ, Γ′ ⊢ CT [τ2] : τ ′

– Subcase C = B[ω][]: analogous

3. By assumption, (1), (2), and Exchange: Γ ⊢ LECT [τ2] : τ

Lemma 18 (Lazy Type Variables). If Γ ⊢ LCT [ζ] : τ and ζ /∈ dom(Γ), then L = L1[lazy 〈ζ, x〉 =
e in L2] where ζ /∈ btv(L2).

Proof. By structural induction on L.

For the progress proof we need a lemma (let us call it lemma 1 for now) stating that, if
LB[τ1][τ2] is a closed and well-formed term, then it can be reduced. Unfortunately, this cannot
be proven by induction on the size or structure of τ1 or τ2. The problem4 arises if the analysed
type is a variable and thus a normal form. What can we say about a term like LB[ν][ν]? Another

4We simplify matters a bit here.

37

lemma (lemma 2 for now) is required that states the following. One possibility is that no type-
level reduction can be performed since the types are already in normal form. If these normal
forms are different, then we can find a comparison context such that R-Case2 is applicable.
Otherwise the term can be viewed as tcase v:ν of x:ν then e1 else e2, in which case we happily
apply R-Case1. The second possibility is that, by further traversing the type expressions, we
can find a B′ such that B[ν][ν] = B′[τ ′

1][τ
′

2] for some τ ′

1 and τ ′

2 of which at least one is not in
normal form yet. However, this fact does not help us much, because this type is not necessarily
a part of ν (consider B = B′′[〈 , τ ′

1〉][〈 , τ ′

2〉] and B′ = B′′[〈ν, 〉][〈ν, 〉]), and so, in the proof of
lemma 1, we cannot make use of the induction hypothesis. For a similar reason induction on the
generation of B is not possible either.

Definition 7 (Decompositions). Let X range over B and P . We call (X, τ1, τ2) a decomposition
of a term e, if e = X [τ1][τ2]. Furthermore, we say that (X ′, τ ′

1, τ
′

2) is a deeper decomposition
than (X, τ1, τ2), if both decompose the same term e, and X ′ emerges from X by descending deeper
into e.

We therefore construct a special function, weight(B, τ1, τ2) (and analogous weight(P, τ1, τ2)),
that weights the decomposition of a term into a context and the resulting types. The general idea
is that we prove lemma 1 by induction on the weight of the decomposition. In the case LB[ν][ν]
we use lemma 2, which either tells us directly that the term can be reduced or otherwise gives
us a decomposition that has a lighter weight than (B, ν, ν) and therefore allows us to use the
induction hypothesis.

The weight function has to reflect that our comparison contexts force a traversal that re-
sembles left-to-right depth-first search: assuming B[τ1][τ2] = B′[τ ′

1][τ
′

2], then weight(B, τ1, τ2) <
weight(B′, τ ′

1, τ
′

2) iff τ1 is a predecessor of τ ′

1 in the preorder projection of the whole type’s syntax
tree.

38

Definition 8 (Weight of decompositions).

For regular comparison contexts:

weight(tcase v: of x: then e1 else e2, τ1, τ2)
def
= size(τ1)

weight(B[→ τ ′

1][→ τ ′

2], τ1, τ2)
def
= weight(B, τ1 → τ ′

1, τ2 → τ ′

2) − size(τ ′

1)

weight(B[ν →][ν →], τ1, τ2)
def
= weight(B, ν → τ1, ν → τ2) − size(ν) − size(τ1)

weight(B[× τ ′

1][× τ ′

2], τ1, τ2)
def
= weight(B, τ1 × τ ′

1, τ2 × τ ′

2) − size(τ ′

1)

weight(B[ν ×][ν ×], τ1, τ2)
def
= weight(B, ν × τ1, ν × τ2) − size(ν) − size(τ1)

weight(B[∀α:κ.][∀α:κ.], τ1, τ2)
def
= weight(B, ∀α:κ.τ1, ∀α:κ.τ2) − 1

weight(B[∃α:κ.][∃α:κ.], τ1, τ2)
def
= weight(B, ∃α:κ.τ1, ∃α:κ.τ2) − 1

weight(B[λα:κ.][λα:κ.], τ1, τ2)
def
= weight(B, λα:κ.τ1, λα:κ.τ2) − 1

weight(P [p][p], τ1, τ2)
def
= weight(P, p τ1, p τ2) − size(p) − size(τ1)

weight(B[〈 , τ ′

1〉][〈 , τ ′

2〉], τ1, τ2)
def
= weight(B, 〈τ1, τ

′

1〉, 〈τ2, τ
′

2〉) − size(τ ′

1)

weight(B[〈ν, 〉][〈ν, 〉], τ1, τ2)
def
= weight(B, 〈ν, τ1〉, 〈ν, τ2〉) − size(ν) − size(τ1)

For path comparison contexts:

weight(B, τ1, τ2)
def
= weight(B, τ1, τ2)

weight(P [.1][.1], τ1, τ2)
def
= weight(P, τ1.1, τ2.1) − 1

weight(P [.2][.2], τ1, τ2)
def
= weight(P, τ1.2, τ2.2) − 1

weight(P [τ ′

1][τ ′

2], τ1, τ2)
def
= weight(P, τ1 τ ′

1, τ2 τ ′

2) − size(τ ′

1)

Definition 9 (Size of types).

size(ξ)
def
= 1

size(τ1 → τ2)
def
= 2 · size(τ1) + 2 · size(τ2)

size(τ1 × τ2)
def
= 2 · size(τ1) + 2 · size(τ2)

size(∀α:κ.τ)
def
= 2 + size(τ)

size(∃α:κ.τ)
def
= 2 + size(τ)

size(λα:κ.τ)
def
= 2 + size(τ)

size(τ1 τ2)
def
= 2 · size(τ1) + 2 · size(τ2)

size(〈τ1, τ2〉)
def
= 2 · size(τ1) + 2 · size(τ2)

size(τ.1)
def
= 2 + size(τ)

size(τ.2)
def
= 2 + size(τ)

39

The proof of lemma 2 is by induction on the generation of B. But consider for instance the case
B = B′′[∀α:κ.][∀α:κ.]. The induction hypothesis yields that either the term can be reduced or
is equal to LB′[τ1][τ2] with weight(B′, τ1, τ2) < weight(B′′, ∀α:κ.ν, ∀α:κ.ν). In the latter case we
need to show that weight(B′, τ1, τ2) is also less than weight(B′′[∀α:κ.][∀α:κ.], ν, ν). However, all
we know is that, by definition, weight(B′′[∀α:κ.][∀α:κ.], ν, ν) < weight(B′′, ∀α:κ.ν, ∀α:κ.ν) and
this obviously is of no use here. To come up with a proof we must strengthen the induction hy-
pothesis such that, at this point, we not only know weight(B′, τ1, τ2) < weight(B′′, ∀α:κ.ν, ∀α:κ.ν)
but even weight(B′, τ1, τ2) < weight(B′′′, τ ′

1, τ
′

2), for all deeper decompositions (B′′′, τ ′

1, τ
′

2) of
(B′′, ∀α:κ.ν, ∀α:κ.ν). The cases that do not use induction but directly construct a lighter de-
composition therefore require part (3) of the following proposition.

Proposition 16 (Weight Property). Let X range over B and P .

1. If (X ′, τ ′

1, τ
′

2) is equal to or a deeper decomposition than (X, τ1, τ2), then weight(X, τ1, τ2)−
weight(X ′, τ ′

1, τ
′

2) ≤ size(τ1) − size(τ ′

1).

2. If τ = X [τ1][τ2], then weight(X, τ1, τ2) > 0.

3. Let (X1, ν1, ν1) be equal to or a deeper decomposition than (B′, ν, ν) and similar (X2, ν2, ν2)
equal to or a deeper decomposition than (P ′, p, p).

• If B′ = B[→ τ1][→ τ2], then weight(B[ν →][ν →], τ1, τ2) < weight(X1, ν1, ν1).

• If B′ = B[× τ1][× τ2], then weight(B[ν ×][ν ×], τ1, τ2) < weight(X1, ν1, ν1).

• If B′ = B[〈 , τ1〉][〈 , τ2〉], then weight(B[〈ν, 〉][〈ν, 〉], τ1, τ2) < weight(X1, ν1, ν1).

• If B′ = B[〈 , τ1〉][〈 , τ2〉], then weight(B[〈ν, 〉][〈ν, 〉], τ1, τ2) < weight(X1, ν1, ν1).

• If P ′ = P [τ1][τ2], then weight(P [p][p], τ1, τ2) < weight(X2, ν2, ν2).

Proof. (1) by induction on the generation of X . (2) follows from (1). (3) follows from (1) and
the definition of the size function.

1. Let (X ′, τ ′

1, τ
′

2) be equal to or a deeper decomposition than (X, τ1, τ2).

• Case X ′ = X ′′[ν×][ν×] and (X ′′, ν×τ ′

1, ν×τ ′

2) is equal to or a deeper decomposition
than (X, τ1, τ2):

(a) By induction: weight(X, τ1, τ2)−weight(X ′′, ν×τ ′

1, ν×τ ′

2) ≤ size(τ1)−size(ν×τ ′

1)

(b) By definition of weight and size: weight(X ′′, ν × τ ′

1, ν × τ ′

2)−weight(X ′′[ν ×][ν ×
], τ ′

1, τ
′

2) = size(ν) + size(τ ′

1) < 2 · size(ν) + size(τ ′

1) = size(ν × τ ′

1) − size(τ ′

1)

(c) By (a) and (b): weight(X, τ1, τ2) − weight(X ′′[ν ×][ν ×], τ ′

1, τ
′

2) ≤ size(τ1) −
size(τ ′

1)

2. Let (X, τ ′

1, τ
′

2) be a decomposition of e.

(a) By definition of binary contexts: e = tcase v:τ1 of x:τ2 then e1 else e2

(b) By (a) and (1): weight(tcase v: of x: then e1 else e2, τ1, τ2) − weight(X, τ ′

1, τ
′

2) ≤
size(τ1) − size(τ ′

1)

(c) By (b): weight(X, τ ′

1, τ
′

2) ≥ weight(tcase v: of x: then e1 else e2, τ1, τ2) − size(τ1) +
size(τ ′

1)

(d) By (c) and definition: weight(X, τ ′

1, τ
′

2) ≥ size(τ ′

1)

(e) By (d) and definition: weight(X, τ ′

1, τ
′

2) > 0

3. Let (X1, ν1, ν1) be equal to or a deeper decomposition than (B′, ν, ν) and similar (X2, p
′, p′)

equal to or a deeper decomposition than (P ′, p, p).

40

• Assume B′ = B[→ τ1][→ τ2].

(a) By (1): weight(B[→ τ1][→ τ2], ν, ν) − weight(X1, ν1, ν1) ≤ size(ν) − size(ν1) <
size(ν)

(b) By definition: weight(B[→ τ1][→ τ2], ν, ν) − weight(B[ν →][ν →], τ1, τ2) =
size(ν)

(c) By (a) and (b): weight(B[ν →][ν →], τ1, τ2) < weight(X1, ν1, ν1).

Definition 10 (Relation for decompositions). Let (X, τ1, τ2) and (X ′, τ ′

1, τ
′

2) be two decomposi-
tions of the same term (where X again ranges over P and B). We write (X, τ1, τ2) ≪ (X ′, τ ′

1, τ
′

2)
iff weight(X, τ1, τ2) < weight(X ′, τ ′

1, τ
′

2) and, for all decompositions (X ′′, τ ′′

1 , τ ′′

2) that are deeper
than (X ′, τ ′

1, τ
′

2), weight(X, τ1, τ2) < weight(X ′′, τ ′′

1 , τ ′′

2).

Intuitively, (X, τ1, τ2) ≪ (X ′, τ ′

1, τ
′

2) holds iff (X ′, τ ′

1, τ
′

2) is a successor of (X, τ1, τ2) in the
depth-first traversal but not deeper than (X, τ1, τ2). For example, if e1 = B1[ν → τ1][ν → τ2],
then (B1[ν →][ν →], τ1, τ2) ≪ (B1[→ τ1][→ τ2], ν, ν). However, if e2 = B2[∀α:Ω.τ1][∀α:Ω.τ2],
then (B2[∀α:Ω.][∀α:Ω.], τ1, τ2) 6≪ (B2, ∀α:Ω.τ1, ∀α:Ω.τ2), because B2[∀α:Ω.][∀α:Ω.] is a de-
scendant of B2 and therefore (B2[∀α:Ω.][∀α:Ω.], τ1, τ2) deeper than (B2, ∀α:Ω.τ1, ∀α:Ω.τ2).

Proving that a closed and well-formed term LB[τ1][τ2] can be reduced actually requires a
few lemmata, namely parts (1) to (4) of the following proposition. While our reduction is
deterministic, this is unfortunately not immediately clear from looking at these proofs.

Proposition 17 (Type Progress).

1. If · ⊢ LCT [τ0] : τ and τ0 is not in weak head normal form, then LCT [τ0] −→ e.

2. If e = LP [p][p], then there exists a decomposition (B, τ1, τ2) ≪ (P, p, p) or (P, p, p) is equal
to or deeper than some decomposition (B, p′, p′).

3. If e = LB[ν][ν], then e −→ e′ or there exists a decomposition (B′, τ1, τ2) ≪ (B, ν, ν).

4. If e = LP [q1][q2], then e −→ e′ or there exists a decomposition (B, τ1, τ2) of P [q1][q2] with
weight(B, τ1, τ2) < weight(P, q1, q2).

5. If · ⊢ LB[τ1][τ2] : τ , then LB[τ1][τ2] −→ e.

Proof. (1) by structural induction on τ0. (2) by induction on the generation of P . (3) by induction
on the generation of B. (4) by structural induction on q1. (5) by induction on weight(B, τ1, τ2).

1. Let · ⊢ LCT [τ0] : τ where τ0 is not in weak head normal form.

• Case τ0 = τ ′

0.1:

– Subcase τ ′

0 = 〈τ1, τ2〉:

(a) By RT-Proj1: LCT [τ0] = LCT [〈τ1, τ2〉.1] −→ LCT [τ1]

– Subcase τ ′

0 is not a type pair:

(a) By assumption and Context Elimination: Γ ⊢ CT [τ ′

0.1] : τ ′

(b) By (a) and Type Context Elimination: Γ, Γ′ ⊢ T [τ ′

0.1] : κ

(c) By (b) and Type Context Elimination: Γ, Γ′ ⊢ τ ′

0.1 : κ′

(d) By (c) and inversion of K-Proj1: Γ ⊢ τ ′

0 : κ′ × κ2

(e) By (d) and definition of the kinding relation: τ ′

0 = α or τ ′

0 = 〈τ1, τ2〉 or
τ ′

0 = τ ′

1 τ ′

2 or τ ′

0 = τ ′

1.1 or τ ′

0 = τ ′

1.2

(f) τ ′

0 = α is not possible since α.1 is in weak head normal form

41

(g) By (e), (f), and subcase assumption: τ ′

0 is not in weak head normal form

(h) Let T ′ = T [.1]. Then: LCT [τ0] = LCT ′[τ ′

0]

(i) By (g), (h), assumption, and induction: LCT [τ0] = LCT ′[τ ′

0] −→ e

3. Let e = LB[ν][ν].

• Case B = tcase v: of x: then e1 else e2:

(a) By R-Case1: e −→ L[e1[x := v]]

• Case B = B′[→ τ1][→ τ2]:

(a) Let B′′ = B′[ν →][ν →]. Then: LB[ν][ν] = LB′′[τ1][τ2]

(b) By (a) and Weight Property: (B′′, τ1, τ2) ≪ (B, ν, ν)

• Case B = B′[ν′ →][ν′ →]:

(a) By induction: LB′[ν′ → ν][ν′ → ν] −→ e′ or there exists a decomposition
(B′′, τ1, τ2) ≪ (B′, ν′ → ν, ν′ → ν)

– If LB′[ν′ → ν][ν′ → ν] −→ e′, then: LB[ν][ν] −→ e′

– If (B′′, τ1, τ2) ≪ (B′, ν′ → ν, ν′ → ν), then also (B′′, τ1, τ2) ≪ (B, ν, ν), since
(B, ν, ν) is deeper than (B′, ν′ → ν, ν′ → ν)

Lemma 19 (Context Extension). If L[e] −→ e′ and e is not a lazy expression, then for all E
exists an e′′ such that LE[e] −→ e′′.

Proof. By case analysis on the applied reduction rule.

Given all the previous preparations, the actual progress proof is now trivial. The only case
that differs from the progress proof for the applicative order strategy is that e is a tcase expression.
It uses part (5) of proposition 17 (Type Progress).

Theorem 4 (Progress). If · ⊢ L[e] : τ where e is neither a value nor a lazy expression, then
L[e] −→ e′.

Proof. By structural induction on e.

• Case e 6= E[lazy . . .] ∧ e = tcase e0:τ0 of x:τ ′

0 then e1 else e2:

– Subcase e0 is not a value:

1. Let E0 = tcase :τ0 of x:τ ′

0 then e1 else e2.

2. By (1) and assumption: · ⊢ LE0[e0] : τ

3. By (2) and Context Elimination: · ⊢ L[e0] : τ ′′

0

4. By assumption: e0 is not a lazy expression

5. By (3), (4), and induction: L[e0] −→ e′0
6. By (4), (5), and Context Extension: L[e] = LE0[e0] −→ e′

– Subcase e0 = v:

1. Let B = tcase v: of x: then e1 else e2.

2. By (1) and assumption: · ⊢ LB[τ0][τ
′

0] : τ

3. By (2) and Type Progress: L[e] = LB[τ0][τ
′

0] −→ e′

42

Chapter 4

Related work

Implicit lazy evaluation was thoroughly investigated by Zena Ariola, Matthias Felleisen, John
Maraist, Martin Odersky, and Philip Wadler in the form of an untyped call-by-need calculus
[14, 4, 5]. They in particular prove it sound and complete with respect to the call-by-name
lambda calculus.

An overview of various reduction strategies for the untyped lambda calculus is given by Peter
Sestoft in [23], though he does not consider any form of lazy evaluation. The different reduction
relations are specified by a big-step semantics and can be classified as either uniform or hybrid
strategies. Applicative order reduction to normal form, for instance, is uniform, because its
definition does not use any other reduction relation. On the other hand, normal order reduction
to normal form is hybrid: in order to always reduce the leftmost outermost redex first, it has to
use call-by-name to reduce the left-hand side of an application to an abstraction. Our second
strategy resembles normal order reduction because repeatedly descending and performing call-
by-name reduction produces normal forms in the end (assuming the compared types turn out to
be equal).

Equivalence checking on term level (in the absence of laziness) is introduced by Karl Crary
in [8]. He shortly presents the normalize-and-compare approach but then extends his system in
a way that requires a different algorithm. This sort of algorithm is called type-driven, because
it depends on the types of the terms that are being checked. Its completeness proof requires the
concept of logical relations, on which Crary then elaborates. In [25], Christopher A. Stone and
Robert Harper investigate type equivalence checking in a system with singleton kinds, using a
similar but more involved algorithm. They prove it correct and terminating. In comparison, our
algorithm does not always terminate—due to the simple fact that the type-level normalization
may trigger a diverging term-level reduction.

Intensional type analysis in statically typed languages is covered e.g. in [1] by Mart́ın Abadi,
Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Their typecase operator only applies to
dynamics but is more expressive than ours: by using so-called pattern variables, it allows to
match subexpressions of the embedded type. That way it is for example possible to extend our
string representation function from section 2.4 to handle pairs as well, by recursively applying
it to a dynamic of each component. A later paper, [2], deals with extending the mechanism of
pattern variables to account for polymorphic types. In [13], Xavier Leroy and Michel Mauny
show how to augment ML with dynamics, where the typecase is integrated into the usual pattern
matching.

If a typecase operator is added to a calculus that uses existential types to encode abstract
types, then it becomes possible to inspect such types and thus to break the abstraction layer.
This can be repaired by dynamically generating new type names, as shown by Andreas Rossberg
in [19].

43

The combination of lazy linking and dynamic type checking has been modeled before by
Matthias Berg [6]—however, not in the presence of higher-order polymorphism but based on
System F . Of course, in such a calculus type equivalence checking is trivial. While Berg is
using the same approach regarding lazy evaluation, i.e., providing a lazy construct for opening
packages, he does not define the operational semantics with the help of lazy and strict contexts.
Instead, his reduction relation depends on a stack and a partial function that models a global
state. The stack determines the lazy variable that is needed next and the state maps it to its
associated term. The specification of the static semantics therefore requires additional definitions
for the well-formedness of these configurations.

Extensive notes on the design and implementation of Alice ML can be found in [21] and [20].

44

Chapter 5

Conclusion and future work

We have given a calculus that models the integration of dynamic type checking with lazy linking
into a language that provides higher-order polymorphism. It is based on system Fω and its
key ingredients are existential types, intensional type analysis in form of a simplistic typecase
operator, and lazy evaluation in the form of a lazy construct for unpacking elements of existential
types.

The evaluation of a typecase expression depends on the equivalence of type expressions, which
may contain lazy variables. Formulating an appropriate algorithm for type equivalence checking
requires reduction on type level. We have presented two strategies for this. The naive one
normalizes the type expressions using applicative order reduction. Lazy variables are eliminated
(by opening their associated package) when reduction encounters them. The second, smarter,
algorithm achieves a much higher degree of laziness by interleaving call-by-name reduction with
comparison of weak head normal forms. It is formulated with the help of special binary contexts
that determine how to descent into type expressions of the same shape.

Both reduction relations have been proven sound. While the proofs for the first one were
mostly straightforward, the progress proof for the smarter algorithm were much more involved
and required a sophisticated weight-function for doing induction.

The alert reader might have noticed that our calculus completely ignored any form of eta
equivalence regarding types. Neither the definitional type equivalence nor the type-level reduction
strategies let us conclude that a type τ of kind κ1 → κ2 is equal to λα:κ1.τ α (assuming
α /∈ ftv(τ)), altough they behave identically in any context. Similarly, if τ is a type pair, then it
cannot be semantically distinguished from 〈τ.1, τ.2〉, but again our system considers both types
to be different. It is trivial to add appropriate inference rules to the definition of the type
equivalence relation. However, it is nontrivial to integrate eta equivalence into the type-level
reduction. A more practical approach is to restrict the system such that it allows only types in
long-eta normal form.

Even though our second strategy is clearly more lazy than the first, it is still not perfect. For
instance it may happen that normalizing the left-hand sides of two arrow types requires multiple
triggering while it is already clear that the types are different from looking at the right-hand side.
Obviously, using a right-to-left reduction instead will not solve the general problem. It may be
interesting, however, to formulate a breadth-first algorithm (and probably more complicated).

Various other ideas come to mind for future work:

• Providing a richer typecase, with support for pattern matching. This should not impose
any major problems.

• Adding subtyping. Nothing would change for the applicative order type-reduction if the
subtype check is performed after normalization. With regard to our second strategy, how-

45

ever, it is not clear at all how to handle subtyping (consider the contravariant part of arrow
types).

• Incorporating Alice ML’s concept of futures [17]. This requires additional machinery like
configurations to handle concurrent computations.

• Allowing a type-erasure[9] implementation by representing run-time types as terms, thus
making the model more realistic. Of course this makes the concept of lazy types redundant
again.

46

Bibliography

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically typed
language. ACM Transactions on Programming Languages and Systems, 13(2):237–268, April
1991.

[2] M. Abadi, L. Cardelli, B. Pierce, G. Plotkin, and D. Rémy. Dynamic typing in polymorphic
languages. In Proceedings of the ACM SIGPLAN Workshop on ML and its Applications,
San Francisco, June 1992.

[3] Alice Team. The Alice system, 2003. http://www.ps.uni-sb.de/alice/.

[4] Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. Journal of Functional
Programming, 7(3):265–301, 1997.

[5] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call-by-need lambda
calculus. In Proceedings of 22nd Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL), pages 233–246, 1995.

[6] M. Berg. Polymorphic lambda calculus with dynamic types, Oct. 2004.
http://www.ps.uni-sb.de/∼berg/fopra.html.

[7] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4):471–522, 1985.

[8] K. Crary. Logical relations and a case study in equivalence checking. In B. C. Pierce, editor,
Advanced topics in types and programming languages. MIT Press, 2005.

[9] K. Crary, S. Weirich, and J. G. Morrisett. Intensional polymorphism in type-erasure seman-
tics. In International Conference on Functional Programming, pages 301–312, 1998.

[10] M. Felleisen and R. Hieb. A revised report on the syntactic theories of sequential control
and state. Theoretical Computer Science, 103(2):235–271, 1992.

[11] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

[12] S. L. P. Jones. The Implementation of Functional Programming Languages (Prentice-Hall
International Series in Computer Science). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1987.

[13] X. Leroy and M. Mauny. Dynamics in ML. In J. Hughes, editor, Functional Programming
Languages and Computer Architecture, 5th ACM Conference, volume 523, pages 406–426.
Springer-Verlag, Berlin, Heidelberg, New York, 1991.

[14] J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda calculus, 1994.

47

http://www.ps.uni-sb.de/alice/
http://www.ps.uni-sb.de/~berg/fopra.html

[15] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML - Revised.
The MIT Press, May 1997.

[16] J. C. Mitchell and G. D. Plotkin. Abstract types have existential type. ACM Trans. Program.
Lang. Syst., 10(3):470–502, July 1988.

[17] J. Niehren, J. Schwinghammer, and G. Smolka. A concurrent lambda calculus with futures.
In B. Gramlich, editor, 5th International Workshop on Frontiers in Combining Systems,
volume 3717 of Lecture Notes in Computer Science, pages 248–263. Springer, Aug. 2005.

[18] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[19] A. Rossberg. Generativity and dynamic opacity for abstract types. In D. Miller, editor,
Proceedings of the 5th International ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming, Uppsala, Sweden, Aug. 2003. ACM Press.

[20] A. Rossberg. The missing link - dynamic components for ML. In 11th International Con-
ference on Functional Programming, Portland, Oregon, USA, Sept. 2006. ACM Press.

[21] A. Rossberg. Typed open programming. PhD thesis, Programming Systems Lab, Universität
des Saarlandes, 2006. To appear.

[22] A. Rossberg, D. L. Botlan, G. Tack, T. Brunklaus, and G. Smolka. Alice Through the Looking
Glass, volume 5 of Trends in Functional Programming, pages 79–96. Intellect Books, Bristol,
UK, ISBN 1-84150144-1, Munich, Germany, Feb. 2006.

[23] P. Sestoft. Demonstrating lambda calculus reduction. In The essence of computation:
complexity, analysis, transformation, pages 420–435. Springer-Verlag New York, Inc., 2002.

[24] C. A. Stone. Type definitions. In B. C. Pierce, editor, Advanced topics in types and pro-
gramming languages. MIT Press, 2005.

[25] C. A. Stone and R. Harper. Deciding type equivalence in a language with singleton
kinds. In ACM Symposium on Principles of Programming Languages (POPL), Boston,
Massachusetts, pages 214–227, 2000.

48

Appendix A

Proofs

A.1 The basic calculus

term variables x ∈ Var
regular type variables α ∈ RTVar
lazy type variables ζ ∈ LTVar
terms e ::= x | λx:τ.e | e1 e2 | λα:κ.e | e τ | 〈e1, e2〉 | let 〈x1, x2〉 = e1 in e2 |

〈τ1, e〉:τ2 | let 〈α, x〉 = e1 in e2 | lazy 〈ζ, x〉 = e1 in e2

type variables ξ ::= α | ζ
types τ ::= ξ | τ1 → τ2 | τ1 × τ2 | ∀α:κ.τ | ∃α:κ.τ |

λα:κ.τ | τ1 τ2 | 〈τ1, τ2〉 | τ.1 | τ.2
kinds κ ::= Ω | κ1 → κ2 | κ1 × κ2

values v ::= x | λx:τ.e | λα:κ.e | 〈v1, v2〉 | 〈τ1, v〉:τ2

evaluation contexts E ::= | E e | (λx:τ.e) E | E τ | 〈E, e〉 | 〈v, E〉 | let 〈x1, x2〉 = E in e |
〈τ, E〉:τ | let 〈α, x〉 = E in e

lazy contexts L ::= | lazy 〈ζ, x〉 = e in L
strict contexts S ::= e | τ | let 〈x1, x2〉 = in e | let 〈α, x〉 = in e

Figure A.1: The basic calculus (syntax)

Proposition 1 (Substitution). If ξ1 6= ξ2 and ξ1 /∈ ftv(τ2), then, for all τ and τ1, τ [ξ1 :=
τ1][ξ2 := τ2] = τ [ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]].

Proof. By induction on the structure of τ .

• Case τ = ξ:

– Subcase ξ = ξ1:

1. ξ1[ξ1 := τ1][ξ2 := τ2] = τ1[ξ2 := τ2] = ξ1[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

– Subcase ξ = ξ2:

1. ξ2[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]] = τ2[ξ1 := τ1[ξ2 := τ2]]

2. By assumption: τ2[ξ1 := τ1[ξ2 := τ2]] = τ2

49

Well-formedness of environments Γ ⊢ �

(E-Empty)
· ⊢ �

(E-Type)
Γ ⊢ � α /∈ dom(Γ)

Γ, α:κ ⊢ �

(E-Term)
Γ ⊢ τ : Ω x /∈ dom(Γ)

Γ, x:τ ⊢ �

Well-formedness of types Γ ⊢ τ : κ

(K-Var)
Γ ⊢ �

Γ ⊢ α : Γ(α)
(K-Arrow)

Γ ⊢ τ1 : Ω Γ ⊢ τ2 : Ω

Γ ⊢ τ1 → τ2 : Ω

(K-Times)
Γ ⊢ τ1 : Ω Γ ⊢ τ2 : Ω

Γ ⊢ τ1 × τ2 : Ω
(K-Univ)

Γ, α:κ ⊢ τ : Ω

Γ ⊢ ∀α:κ.τ : Ω

(K-Exist)
Γ, α:κ ⊢ τ : Ω

Γ ⊢ ∃α:κ.τ : Ω
(K-Abs)

Γ, α:κ ⊢ τ : κ′

Γ ⊢ λα:κ.τ : κ → κ′

(K-App)
Γ ⊢ τ1 : κ2 → κ Γ ⊢ τ2 : κ2

Γ ⊢ τ1 τ2 : κ
(K-Pair)

Γ ⊢ τ1 : κ1 Γ ⊢ τ2 : κ2

Γ ⊢ 〈τ1, τ2〉 : κ1 × κ2

(K-Proj1)
Γ ⊢ τ : κ1 × κ2

Γ ⊢ τ.1 : κ1

(K-Proj2)
Γ ⊢ τ : κ1 × κ2

Γ ⊢ τ.2 : κ2

Figure A.2: The basic calculus (static semantics, part 1 of 2)

3. By (1) and (2): ξ2[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]] = τ2 = ξ2[ξ1 := τ1][ξ2 := τ2]

– Subcase ξ 6= ξ1 and ξ 6= ξ2:

1. ξ[ξ1 := τ1][ξ2 := τ2] = ξ = ξ1[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

• Case τ = τ ′ → τ ′′:

1. (τ ′ → τ ′′)[ξ1 := τ1][ξ2 := τ2] = τ ′[ξ1 := τ1][ξ2 := τ2] → τ ′′[ξ1 := τ1][ξ2 := τ2]

2. By induction: τ ′[ξ1 := τ1][ξ2 := τ2] = τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

3. By induction: τ ′′[ξ1 := τ1][ξ2 := τ2] = τ ′′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

4. (τ ′ → τ ′′)[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]] =
τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]] → τ ′′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

5. By (1), (2), (3), and (4):
(τ ′ → τ ′′)[ξ1 := τ1][ξ2 := τ2] = (τ ′ → τ ′′)[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

• Case τ = τ ′ × τ ′′:

1. (τ ′ × τ ′′)[ξ1 := τ1][ξ2 := τ2] = τ ′[ξ1 := τ1][ξ2 := τ2] × τ ′′[ξ1 := τ1][ξ2 := τ2]

2. By induction: τ ′[ξ1 := τ1][ξ2 := τ2] = τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

3. By induction: τ ′′[ξ1 := τ1][ξ2 := τ2] = τ ′′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

4. (τ ′ × τ ′′)[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]] =
τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]] × τ ′′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

5. By (1), (2), (3), and (4):
(τ ′ × τ ′′)[ξ1 := τ1][ξ2 := τ2] = (τ ′ × τ ′′)[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

50

Well-formedness of terms Γ ⊢ e : τ

(T-Equiv)
Γ ⊢ e : τ ′ τ ′ ≡ τ Γ ⊢ τ : Ω

Γ ⊢ e : τ
(T-Var)

Γ ⊢ �

Γ ⊢ x : Γ(x)

(T-Abs)
Γ, x:τ ⊢ e : τ ′

Γ ⊢ λx:τ.e : τ → τ ′
(T-App)

Γ ⊢ e1 : τ2 → τ Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ

(T-Gen)
Γ, α:κ ⊢ e : τ

Γ ⊢ λα:κ.e : ∀α:κ.τ
(T-Inst)

Γ ⊢ e : ∀α:κ.τ ′ Γ ⊢ τ : κ

Γ ⊢ e τ : τ ′[α := τ]

(T-Pair)
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ 〈e1, e2〉 : τ1 × τ2

(T-Proj)
Γ ⊢ e1 : τ1 × τ2 Γ, x1:τ1, x2:τ2 ⊢ e2 : τ

Γ ⊢ let 〈x1, x2〉 = e1 in e2 : τ

(T-Close)
Γ ⊢ τ : κ Γ ⊢ e : τ ′[α := τ] Γ ⊢ ∃α:κ.τ ′ : Ω

Γ ⊢ 〈τ, e〉:∃α:κ.τ ′ : ∃α:κ.τ ′

(T-Open)
Γ ⊢ e1 : ∃α:κ.τ ′ Γ, α:κ, x:τ ′ ⊢ e2 : τ α /∈ ftv(τ)

Γ ⊢ let 〈α, x〉 = e1 in e2 : τ

(T-Lazy)
Γ ⊢ e1 : ∃α:κ.τ ′ Γ, ζ:κ, x:τ ′[α := ζ] ⊢ e2 : τ ζ /∈ ftv(τ)

Γ ⊢ lazy 〈ζ, x〉 = e1 in e2 : τ

Equivalence of types τ ≡ τ ′

(Q-Refl)
τ ≡ τ

(Q-Symm)
τ2 ≡ τ1

τ1 ≡ τ2

(Q-Trans)
τ1 ≡ τ2 τ2 ≡ τ3

τ1 ≡ τ3

(Q-Arrow)
τ1 ≡ τ ′

1 τ2 ≡ τ ′

2

τ1 → τ2 ≡ τ ′

1
→ τ ′

2

(Q-Times)
τ1 ≡ τ ′

1 τ2 ≡ τ ′

2

τ1 × τ2 ≡ τ ′

1
× τ ′

2

(Q-Univ)
τ1 ≡ τ2

∀α:κ.τ1 ≡ ∀α:κ.τ2

(Q-Exist)
τ1 ≡ τ2

∃α:κ.τ1 ≡ ∃α:κ.τ2

(Q-Abs)
τ1 ≡ τ2

λα:κ.τ1 ≡ λα:κ.τ2

(Q-App)
τ1 ≡ τ2 τ ′

1 ≡ τ ′

2

τ1 τ2 ≡ τ ′

1
τ ′

2

(Q-Beta)
(λα:κ.τ1) τ2 ≡ τ1[α := τ2]

(Q-Pair)
τ1 ≡ τ ′

1 τ2 ≡ τ ′

2

〈τ1, τ2〉 ≡ 〈τ ′

1
, τ ′

2
〉

(Q-Proj1a)
τ ≡ τ ′

τ.1 ≡ τ ′.1
(Q-Proj1b)

〈τ1, τ2〉.1 ≡ τ1

(Q-Proj2a)
τ ≡ τ ′

τ.2 ≡ τ ′.2
(Q-Proj2b)

〈τ1, τ2〉.2 ≡ τ2

Figure A.3: The basic calculus (static semantics, part 2 of 2)

51

• Case τ = ∀α:κ.τ ′ (w.l.o.g. α /∈ {ξ1, ξ2} and α /∈ ftv(τ1) ∪ ftv(τ2)):

1. (∀α:κ.τ ′)[ξ1 := τ1][ξ2 := τ2] = ∀α:κ.τ ′[ξ1 := τ1][ξ2 := τ2]

2. By induction: τ ′[ξ1 := τ1][ξ2 := τ2] = τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

3. (∀α:κ.τ ′)[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]] = ∀α:κ.τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

4. By (1), (2), and (3): (∀α:κ.τ ′)[ξ1 := τ1][ξ2 := τ2] = (∀α:κ.τ ′)[ξ2 := τ2][ξ1 := τ1[ξ2 :=
τ2]]

• Case τ = ∃α:κ.τ ′ (w.l.o.g. α /∈ {ξ1, ξ2} and α /∈ ftv(τ1) ∪ ftv(τ2)):

1. (∃α:κ.τ ′)[ξ1 := τ1][ξ2 := τ2] = ∃α:κ.τ ′[ξ1 := τ1][ξ2 := τ2]

2. By induction: τ ′[ξ1 := τ1][ξ2 := τ2] = τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

3. (∃α:κ.τ ′)[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]] = ∃α:κ.τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

4. By (1), (2), and (3): (∃α:κ.τ ′)[ξ1 := τ1][ξ2 := τ2] = (∃α:κ.τ ′)[ξ2 := τ2][ξ1 := τ1[ξ2 :=
τ2]]

• Case τ = λα:κ.τ ′ (w.l.o.g. α /∈ {ξ1, ξ2} and α /∈ ftv(τ1) ∪ ftv(τ2)):

1. (λα:κ.τ ′)[ξ1 := τ1][ξ2 := τ2] = λα:κ.τ ′[ξ1 := τ1][ξ2 := τ2]

2. By induction: τ ′[ξ1 := τ1][ξ2 := τ2] = τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

3. (λα:κ.τ ′)[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]] = λα:κ.τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

4. By (1), (2), and (3): (λα:κ.τ ′)[ξ1 := τ1][ξ2 := τ2] = (λα:κ.τ ′)[ξ2 := τ2][ξ1 := τ1[ξ2 :=
τ2]]

• Case τ = τ ′ τ ′′:

1. (τ ′ τ ′′)[ξ1 := τ1][ξ2 := τ2] = τ ′[ξ1 := τ1][ξ2 := τ2] τ ′′[ξ1 := τ1][ξ2 := τ2]

2. By induction: τ ′[ξ1 := τ1][ξ2 := τ2] = τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

3. By induction: τ ′′[ξ1 := τ1][ξ2 := τ2] = τ ′′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

4. (τ ′ τ ′′)[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]] =
τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]] τ ′′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

5. By (1), (2), (3), and (4):
(τ ′ τ ′′)[ξ1 := τ1][ξ2 := τ2] = (τ ′ τ ′′)[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

• Case τ = 〈τ ′, τ ′′〉:

1. 〈τ ′, τ ′′〉[ξ1 := τ1][ξ2 := τ2] = 〈τ ′[ξ1 := τ1][ξ2 := τ2], τ
′′[ξ1 := τ1][ξ2 := τ2]〉

2. By induction: τ ′[ξ1 := τ1][ξ2 := τ2] = τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

3. By induction: τ ′′[ξ1 := τ1][ξ2 := τ2] = τ ′′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

4. 〈τ ′, τ ′′〉[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]] =
〈τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]], τ

′′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]〉

5. By (1), (2), (3), and (4):
〈τ ′, τ ′′〉[ξ1 := τ1][ξ2 := τ2] = 〈τ ′, τ ′′〉[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

• Case τ = τ ′.1:

1. (τ ′.1)[ξ1 := τ1][ξ2 := τ2] = τ ′[ξ1 := τ1][ξ2 := τ2].1

2. By induction: τ ′[ξ1 := τ1][ξ2 := τ2] = τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

3. (τ ′.1)[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]] = τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]].1

52

4. By (1), (2), and (3): (τ ′.1)[ξ1 := τ1][ξ2 := τ2] = (τ ′.1)[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

• Case τ = τ ′.2:

1. (τ ′.2)[ξ1 := τ1][ξ2 := τ2] = τ ′[ξ1 := τ1][ξ2 := τ2].2

2. By induction: τ ′[ξ1 := τ1][ξ2 := τ2] = τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

3. (τ ′.2)[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]] = τ ′[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]].2

4. By (1), (2), and (3): (τ ′.2)[ξ1 := τ1][ξ2 := τ2] = (τ ′.2)[ξ2 := τ2][ξ1 := τ1[ξ2 := τ2]]

Proposition 2 (Environment Validity).

1. If Γ ⊢ τ : κ, then Γ ⊢ �.

2. If Γ ⊢ e : τ , then Γ ⊢ �.

Proof. By induction on the derivation.

1. Let Γ ⊢ τ : κ.

• Case K-Var:

(a) By inversion: Γ ⊢ �

• Case K-Arrow: τ = τ1 → τ2

(a) By inversion: Γ ⊢ τ1 : Ω

(b) By (a) and induction: Γ ⊢ �

• Case K-Times: τ = τ1 × τ2

(a) By inversion: Γ ⊢ τ1 : Ω

(b) By (a) and induction: Γ ⊢ �

• Case K-Univ: τ = ∀α:κ′.τ ′

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : Ω

(b) By (a) and induction: Γ, α:κ′ ⊢ �

(c) By (b) and inversion of E-Type: Γ ⊢ �

• Case K-Exist: τ = ∃α:κ′.τ ′

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : Ω

(b) By (a) and induction: Γ, α:κ′ ⊢ �

(c) By (b) and inversion of E-Type: Γ ⊢ �

• Case K-Abs: τ = λα:κ′.τ ′

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : κ′′

(b) By (a) and induction: Γ, α:κ′ ⊢ �

(c) By (b) and inversion of E-Type: Γ ⊢ �

• Case K-App: τ = τ1 τ2

(a) By inversion: Γ ⊢ τ2 : κ′

(b) By (a) and induction: Γ ⊢ �

• Case K-Pair: τ = 〈τ1, τ2〉

(a) By inversion: Γ ⊢ τ1 : κ1

(b) By (a) and induction: Γ ⊢ �

53

• Case K-Proj1: τ = τ ′.1

(a) By inversion: Γ ⊢ τ ′ : κ1 × κ2

(b) By (a) and induction: Γ ⊢ �

• Case K-Proj2: τ = τ ′.2

(a) By inversion: Γ ⊢ τ ′ : κ1 × κ2

(b) By (a) and induction: Γ ⊢ �

2. Let Γ ⊢ e : τ .

• Case T-Equiv:

(a) By inversion: Γ ⊢ e : τ ′

(b) By (a) and induction: Γ ⊢ �

• Case T-Var:

(a) By inversion: Γ ⊢ �

• Case T-Abs: e = λx:τ1.e1

(a) By inversion: Γ, x:τ1 ⊢ e1 : τ2

(b) By (a) and induction: Γ, x:τ1 ⊢ �

(c) By (b) and inversion of E-Term: Γ ⊢ τ1 : Ω

(d) By (c) and (1): Γ ⊢ �

• Case T-App: e = e1 e2

(a) By inversion: Γ ⊢ e2 : τ ′

(b) By (a) and induction: Γ ⊢ �

• Case T-Gen: e = λα:κ.e1

(a) By inversion: Γ, α:κ ⊢ e1 : τ1

(b) By (a) and induction: Γ, α:κ ⊢ �

(c) By (b) and inversion of E-Type: Γ ⊢ �

• Case T-Inst: e = e1 τ2

(a) By inversion: Γ ⊢ τ2 : κ

(b) By (a) and (1): Γ ⊢ �

• Case T-Pair: e = 〈e1, e2〉

(a) By inversion: Γ ⊢ e1 : τ1

(b) By (a) and induction: Γ ⊢ �

• Case T-Proj: e = let 〈x1, x2〉 = e1 in e2

(a) By inversion: Γ ⊢ e1 : τ1 × τ2

(b) By (a) and induction: Γ ⊢ �

• Case T-Close: e = 〈τ1, e
′〉:τ

(a) By inversion: Γ ⊢ τ : Ω

(b) By (a) and (1): Γ ⊢ �

• Case T-Open: e = let 〈α, x〉 = e1 in e2

(a) By inversion: Γ ⊢ e1 : ∃α:κ.τ ′

(b) By (a) and induction: Γ ⊢ �

• Case T-Lazy: e = lazy 〈ζ, x〉 = e1 in e2

54

(a) By inversion: Γ ⊢ e1 : ∃α:κ.τ ′

(b) By (a) and induction: Γ ⊢ �

• Case T-Case: e = tcase e0:τ0 of x:τ ′

0 then e1 else e2

(a) By inversion: Γ ⊢ e0 : τ0

(b) By (a) and induction: Γ ⊢ �

Proposition 3 (Subenvironment Validity). If Γ1, Γ2 ⊢ �, then Γ1 ⊢ �.

Proof. By induction on the structure of Γ2.

• Case Γ2 = ·:

1. By assumption: Γ1 ⊢ �

• Case Γ2 = Γ′

2, ξ:κ:

1. By inversion of E-Type: Γ1, Γ
′

2 ⊢ �

2. By (1) and induction: Γ1 ⊢ �

• Case Γ2 = Γ′

2, x:τ :

1. By inversion of E-Term: Γ1, Γ
′

2 ⊢ τ : Ω

2. By (1) and Environment Validity: Γ1, Γ
′

2 ⊢ �

3. By (2) and induction: Γ1 ⊢ �

Proposition 4 (Variable Containment).

1. If Γ ⊢ τ : κ, then ftv(τ) ⊆ dom(Γ).

2. If Γ ⊢ e : τ , then fv(e) ∪ ftv(τ) ⊆ dom(Γ).

Proof. By induction on the derivation.

1. Let Γ ⊢ τ : κ.

• Case K-Var: τ = ξ

(a) By inversion: κ = Γ(ξ), hence ξ ∈ dom(Γ)

(b) By definition: ftv(ξ) = {ξ}

(c) By (b) and (a): ftv(ξ) ⊆ dom(Γ)

• Case K-Arrow: τ = τ1 → τ2

(a) By inversion: Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω

(b) By (a) and induction: ftv(τ1) ⊆ dom(Γ) and ftv(τ2) ⊆ dom(Γ)

(c) By definition: ftv(τ1 → τ2) = ftv(τ1) ∪ ftv(τ2)

(d) By (c) and (b): ftv(τ1 → τ2) ⊆ dom(Γ)

• Case K-Times: τ = τ1 × τ2

(a) By inversion: Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω

(b) By (a) and induction: ftv(τ1) ⊆ dom(Γ) and ftv(τ2) ⊆ dom(Γ)

(c) By definition: ftv(τ1 × τ2) = ftv(τ1) ∪ ftv(τ2)

55

(d) By (c) and (b): ftv(τ1 × τ2) ⊆ dom(Γ)

• Case K-Univ: τ = ∀α:κ′.τ ′

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : Ω

(b) By (a) and induction: ftv(τ ′) ⊆ dom(Γ, α:κ′)

(c) By (a) and Environment Validity: Γ, α:κ′ ⊢ �

(d) By (c) and inversion of E-Type: α /∈ dom(Γ)

(e) By (b) and (d): ftv(τ ′) − {α} ⊆ dom(Γ)

(f) By definition: ftv(∀α:κ′.τ ′) = ftv(τ ′) − {α}

(g) By (f) and (e): ftv(∀α:κ′.τ ′) ⊆ dom(Γ)

• Case K-Exist: τ = ∃α:κ′.τ ′

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : Ω

(b) By (a) and induction: ftv(τ ′) ⊆ dom(Γ, α:κ′)

(c) By (a) and Environment Validity: Γ, α:κ′ ⊢ �

(d) By (c) and inversion of E-Type: α /∈ dom(Γ)

(e) By (b) and (d): ftv(τ ′) − {α} ⊆ dom(Γ)

(f) By definition: ftv(∃α:κ′.τ ′) = ftv(τ ′) − {α}

(g) By (f) and (e): ftv(∃α:κ′.τ ′) ⊆ dom(Γ)

• Case K-Abs: τ = λα:κ′.τ ′

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : κ′′

(b) By (a) and induction: ftv(τ ′) ⊆ dom(Γ, α:κ′)

(c) By (a) and Environment Validity: Γ, α:κ′ ⊢ �

(d) By (c) and inversion of E-Type: α /∈ dom(Γ)

(e) By (b) and (d): ftv(τ ′) − {α} ⊆ dom(Γ)

(f) By definition: ftv(λα:κ′.τ ′) = ftv(τ ′) − {α}

(g) By (f) and (e): ftv(λα:κ′.τ ′) ⊆ dom(Γ)

• Case K-App: τ = τ1 τ2

(a) By inversion: Γ ⊢ τ1 : κ′ → κ and Γ ⊢ τ2 : κ′

(b) By (a) and induction: ftv(τ1) ⊆ dom(Γ) and ftv(τ2) ⊆ dom(Γ)

(c) By definition: ftv(τ1 τ2) = ftv(τ1) ∪ ftv(τ2)

(d) By (c) and (b): ftv(τ1 τ2) ⊆ dom(Γ)

• Case K-Pair: τ = 〈τ1, τ2〉

(a) By inversion: Γ ⊢ τ1 : κ1 and Γ ⊢ τ2 : κ2

(b) By (a) and induction: ftv(τ1) ⊆ dom(Γ) and ftv(τ2) ⊆ dom(Γ)

(c) By definition: ftv(〈τ1, τ2〉) = ftv(τ1) ∪ ftv(τ2)

(d) By (c) and (b): ftv(〈τ1, τ2〉) ⊆ dom(Γ)

• Case K-Proj1: τ = τ ′.1

(a) By inversion: Γ ⊢ τ ′ : κ1 × κ2

(b) By (a) and induction: ftv(τ ′) ⊆ dom(Γ)

(c) By definition: ftv(τ ′.1) = ftv(τ ′)

(d) By (c) and (b): ftv(τ ′.1) ⊆ dom(Γ)

• Case K-Proj2: τ = τ ′.2

(a) By inversion: Γ ⊢ τ ′ : κ1 × κ2

(b) By (a) and induction: ftv(τ ′) ⊆ dom(Γ)

56

(c) By definition: ftv(τ ′.2) = ftv(τ ′)

(d) By (c) and (b): ftv(τ ′.2) ⊆ dom(Γ)

2. Let Γ ⊢ e : τ .

• Case T-Equiv:

(a) By inversion: Γ ⊢ e : τ ′ and Γ ⊢ τ : Ω

(b) By (a) and induction: fv(e) ⊆ dom(Γ)

(c) By (a) and (1): ftv(τ) ⊆ dom(Γ)

(d) By (b) and (c): fv(e) ∪ ftv(τ) ⊆ dom(Γ)

• Case T-Var: e = x

(a) By inversion: Γ ⊢ � and τ = Γ(x)

(b) By (a): x ∈ dom(Γ), hence Γ = Γ1, x:τ, Γ2

(c) By definition: fv(x) = {x}

(d) By (c) and (b): fv(x) ⊆ dom(Γ)

(e) By (a), (b), and Subenvironment Validity: Γ1, x:τ ⊢ �

(f) By (e) and inversion of E-Term: Γ1 ⊢ τΩ

(g) By (f) and (1): ftv(τ) ⊆ dom(Γ1)

(h) By (g) and (b): ftv(τ) ⊆ dom(Γ)

(i) By (d) and (h): fv(x) ∪ ftv(τ) ⊆ dom(Γ)

• Case T-Abs: e = λx:τ1.e1 and τ = τ1 → τ2

(a) By inversion: Γ, x:τ1 ⊢ e1 : τ2

(b) By (a) and induction: fv(e1) ∪ ftv(τ2) ⊆ dom(Γ, x:τ1)

(c) By (a) and Environment Validity: Γ, x:τ1 ⊢ �

(d) By (c) and inversion of E-Term: x /∈ dom(Γ) and Γ ⊢ τ1 : Ω

(e) By (b) and (d): fv(e1) − {x} ⊆ dom(Γ)

(f) By definition: fv(λx:τ1.e1) = fv(e1) − {x}

(g) By (d) and (1): ftv(τ1) ⊆ dom(Γ)

(h) By (b): ftv(τ2) ⊆ dom(Γ)

(i) By definition: ftv(τ1 → τ2) = ftv(τ1) ∪ ftv(τ2)

(j) By (f), (e), (i), (g), and (h): fv(λx:τ1.e1) ∪ ftv(τ1 → τ2) ⊆ dom(Γ)

• Case T-App: e = e1 e2

(a) By inversion: Γ ⊢ e1 : τ ′ → τ and Γ ⊢ e2 : τ ′

(b) By (a) and induction: fv(e1) ∪ ftv(τ ′ → τ) ⊆ dom(Γ) and fv(e2) ⊆ dom(Γ)

(c) By definition: fv(e1 e2) = fv(e1) ∪ fv(e2)

(d) By (b) and (c): fv(e1 e2) ⊆ dom(Γ)

(e) By definition: ftv(τ ′ → τ) = ftv(τ ′) ∪ ftv(τ)

(f) By (e) and (b): ftv(τ) ⊆ dom(Γ)

(g) By (d) and (f): fv(e1 e2) ∪ ftv(τ) ⊆ dom(Γ)

• Case T-Gen: e = λα:κ.e1 and τ = ∀α:κ.τ ′

(a) By inversion: Γ, α:κ ⊢ e1 : τ ′

(b) By (a) and induction: fv(e1) ∪ ftv(τ ′) ⊆ dom(Γ, α:κ)

(c) By definition: fv(λα:κ.e1) = fv(e1)

(d) By (c) and (b): fv(λα:κ.e1) ⊆ dom(Γ)

57

(e) By (a) and Environment Validity: Γ, α:κ ⊢ �

(f) By (e) and inversion of E-Type: α /∈ dom(Γ)

(g) By (b) and (f): ftv(τ ′) − {α} ⊆ dom(Γ)

(h) By definition: ftv(∀α:κ.τ ′) = ftv(τ ′) − {α}

(i) By (g) and (f): ftv(∀α:κ.τ ′) ⊆ dom(Γ)

(j) By (d) and (h): fv(λα:κ.e1) ∪ ftv(∀α:κ.τ ′) ⊆ dom(Γ)

• Case T-Inst: e = e1 τ2 and τ = τ ′[α := τ2]

(a) By inversion: Γ ⊢ e1 : ∀α:κ.τ ′ and Γ ⊢ τ2 : κ

(b) By (a) and induction: fv(e1) ∪ ftv(∀α:κ.τ ′) ⊆ dom(Γ)

(c) By definition: fv(e1 τ2) = fv(e1)

(d) By (c) and (b): fv(e1 τ2) ⊆ dom(Γ)

(e) By definition: ftv(∀α:κ.τ ′) = ftv(τ ′) − {α}

(f) By (b) and (e): ftv(τ ′) − {α} ⊆ dom(Γ)

(g) By (a) and (1): ftv(τ2) ⊆ dom(Γ)

(h) By (f) and (g): ftv(τ ′[α := τ2]) ⊆ dom(Γ)

(i) By (d) and (h): fv(e1 τ2) ∪ ftv(τ ′[α := τ2]) ⊆ dom(Γ)

• Case T-Pair: e = 〈e1, e2〉 and τ = τ1 × τ2

(a) By inversion: Γ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2

(b) By (a) and induction: fv(e1)∪ ftv(τ1) ⊆ dom(Γ) and fv(e2)∪ ftv(τ2) ⊆ dom(Γ)

(c) By definition: fv(〈e1, e2〉) = fv(e1) ∪ fv(e2)

(d) By (c) and (b): fv(〈e1, e2〉) ⊆ dom(Γ)

(e) By definition: ftv(τ1 × τ2) = ftv(τ1) ∪ ftv(τ2)

(f) By (e) and (b): ftv(τ × τ2) ⊆ dom(Γ)

(g) By (d) and (f): fv(〈e1, e2〉) ∪ ftv(τ × τ2) ⊆ dom(Γ)

• Case T-Proj: e = let 〈x1, x2〉 = e1 in e2

(a) By inversion: Γ ⊢ e1 : τ1 × τ2 and Γ, x1:τ1, x2:τ2 ⊢ e2 : τ

(b) By (a) and induction: fv(e1) ∪ ftv(τ1 × τ2) ⊆ dom(Γ) and fv(e2) ∪ ftv(τ) ⊆
dom(Γ, x1:τ1, x2:τ2)

(c) By (a) and Environment Validity: Γ, x1:τ1, x2:τ2 ⊢ �

(d) By (c) and inversion of E-Term: Γ, x1:τ1 ⊢ τ2 : Ω and x2 /∈ dom(Γ, x1:τ2)

(e) By (d) and Environment Validity: Γ, x1:τ1 ⊢ �

(f) By (e) and inversion of E-Term: x1 /∈ dom(Γ)

(g) By (b), (d), and (f): fv(e2) − {x1, x2} ⊆ dom(Γ)

(h) By (b) and (g): fv(e1) ∪ (fv(e2) − {x1, x2}) ⊆ dom(Γ)

(i) By definition: fv(let 〈x1, x2〉 = e1 in e2) = fv(e1) ∪ (fv(e2) − {x1, x2})

(j) By (i) and (h): fv(let 〈x1, x2〉 = e1 in e2) ⊆ dom(Γ)

(k) By (b): ftv(τ) ⊆ dom(Γ)

(l) By (j) and (k): fv(let 〈x1, x2〉 = e1 in e2) ∪ ftv(τ) ⊆ dom(Γ)

• Case T-Close: e = 〈τ1, e
′〉:τ where τ = ∃α:κ.τ2

(a) By inversion: Γ ⊢ e′ : τ2[α := τ1] and Γ ⊢ ∃α:κ.τ2 : Ω

(b) By (a) and induction: fv(e′) ∪ ftv(τ2[α := τ1] ⊆ dom(Γ)

(c) By definition: fv(〈τ1, e
′〉:τ) = fv(e′)

(d) By (c) and (b): fv(〈τ1, e
′〉:τ) ⊆ dom(Γ)

(e) By (a) and (1): ftv(α:κ.τ2) ⊆ dom(Γ)

58

(f) By (d) and (e): fv(〈τ1, e
′〉:τ) ∪ ftv(α:κ.τ2) ⊆ dom(Γ)

• Case T-Open: e = let 〈α, x〉 = e1 in e2

(a) By inversion: Γ ⊢ e1 : ∃α:κ.τ ′ and Γ, α:κ, x:τ ′ ⊢ e2 : τ where α /∈ ftv(τ)

(b) By (a) and induction: fv(e1) ∪ ftv(∃α:κ.τ ′) ⊆ dom(Γ) and fv(e2) ∪ ftv(τ) ⊆
dom(Γ, α:κ, x:τ ′)

(c) By (a) and Environment Validity: Γ, α:κ, x:τ ′ ⊢ �

(d) By (c) and inversion of E-Term: x /∈ dom(Γ, α:κ)

(e) By (b) and (d): fv(e2) − {x} ⊆ dom(Γ)

(f) By (b) and (e): fv(e1) ∪ (fv(e2) − {x}) ⊆ dom(Γ)

(g) By definition: fv(let 〈α, x〉 = e1 in e2) = fv(e1) ∪ (fv(e2) − {x})

(h) By (g) and (f): fv(let 〈α, x〉 = e1 in e2) ⊆ dom(Γ)

(i) By (b) and (a): ftv(τ) ⊆ dom(Γ)

(j) By (h) and (i): fv(let 〈α, x〉 = e1 in e2) ∪ ftv(τ) ⊆ dom(Γ)

• Case T-Lazy: e = lazy 〈ζ, x〉 = e1 in e2

(a) By inversion: Γ ⊢ e1 : ∃α:κ.τ ′ and Γ, ζ:κ, x:τ ′[α := ζ] ⊢ e2 : τ where ζ /∈ ftv(τ)

(b) By (a) and induction: fv(e1) ∪ ftv(∃α:κ.τ ′) ⊆ dom(Γ) and fv(e2) ∪ ftv(τ) ⊆
dom(Γ, ζ:κ, x:τ ′[α := ζ])

(c) By (a) and Environment Validity: Γ, ζ:κ, x:τ ′[α := ζ] ⊢ �

(d) By (c) and inversion of E-Term: x /∈ dom(Γ, ζ:κ)

(e) By (b) and (d): fv(e2) − {x} ⊆ dom(Γ)

(f) By (b) and (e): fv(e1) ∪ (fv(e2) − {x}) ⊆ dom(Γ)

(g) By definition: fv(lazy 〈ζ, x〉 = e1 in e2) = fv(e1) ∪ (fv(e2) − {x})

(h) By (g) and (f): fv(lazy 〈ζ, x〉 = e1 in e2) ⊆ dom(Γ)

(i) By (b) and (a): ftv(τ) ⊆ dom(Γ)

(j) By (h) and (i): fv(lazy 〈ζ, x〉 = e1 in e2) ∪ ftv(τ) ⊆ dom(Γ)

• Case T-Case: e = tcase e0:τ0 of x:τ ′

0 then e1 else e2

(a) By inversion:

i. Γ ⊢ e0 : τ0

ii. Γ, x:τ ′

0 ⊢ e1 : τ

iii. Γ ⊢ e2 : τ

(b) By (a) and induction:

i. fv(e0) ⊆ dom(Γ)

ii. fv(e1) ⊆ dom(Γ, x:τ ′

0)

iii. fv(e2) ∪ ftv(τ) ⊆ dom(Γ)

(c) By (a-ii) and Environment Validity: Γ, x:τ ′

0 ⊢ �

(d) By (c) and inversion of E-Term: x /∈ dom(Γ)

(e) By (b-ii) and (d): fv(e1) − {x} ⊆ dom(Γ)

(f) By (b-i), (e), and (b-iii): fv(e0) ∪ (fv(e1) − {x}) ∪ fv(e2) ⊆ dom(Γ)

(g) By definition: fv(tcase e0:τ0 of x:τ ′

0 then e1 else e2) = fv(e0) ∪ (fv(e1) − {x}) ∪
fv(e2)

(h) By (g) and (f): fv(tcase e0:τ0 of x:τ ′

0 then e1 else e2) ⊂ dom(Γ)

(i) By (h) and (b-iii): fv(tcase e0:τ0 of x:τ ′

0 then e1 else e2) ∪ ftv(τ) ⊂ dom(Γ)

59

Proposition 5 (Strengthening).

1. If Γ ⊢ τ : κ and Γ′ ⊆ Γ with Γ′ ⊢ � and ftv(τ) ⊆ dom(Γ′), then Γ′ ⊢ τ : κ.

2. If Γ1, x:τ, Γ2 ⊢ �, then Γ1, Γ2 ⊢ �.

Proof. (1) by induction on the derivation of Γ ⊢ τ : κ. (2) by induction on the structure of Γ2.

1. Let Γ ⊢ τ : κ and Γ′ ⊆ Γ and Γ′ ⊢ � and ftv(τ) ⊆ dom(Γ′).

• Case K-Var: τ = ξ

(a) By inversion: κ = Γ(ξ)

(b) By (a) and assumption: Γ′(ξ) = κ

(c) By (b), assumption, and K-Var: Γ′ ⊢ ξ : κ

• Case K-Arrow: τ = τ1 → τ2 where κ = Ω

(a) By inversion: Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω

(b) By assumption: ftv(τ1) ⊆ dom(Γ′) and ftv(τ2) ⊆ dom(Γ′)

(c) By (a), assumption, (b), and induction: Γ′ ⊢ τ1 : Ω and Γ′ ⊢ τ2 : Ω

(d) By (c) and K-Arrow: Γ′ ⊢ τ1 → τ2 : Ω

• Case K-Times: τ = τ1 × τ2 where κ = Ω

(a) By inversion: Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω and κ = Ω

(b) By assumption: ftv(τ1) ⊆ dom(Γ′) and ftv(τ2) ⊆ dom(Γ′)

(c) By (a), assumption, (b), and induction: Γ′ ⊢ τ1 : Ω and Γ′ ⊢ τ2 : Ω

(d) By (c) and K-Times: Γ′ ⊢ τ1 × τ2 : Ω

• Case K-Univ: τ = ∀α:κ′.τ ′ where κ = Ω

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : Ω

(b) By definition: ftv(τ ′) ⊆ ftv(τ) ∪ {α}

(c) By (b) and assumption: ftv(τ ′) ⊆ dom(Γ′, α:κ′)

(d) By (a) and Environment Validity: Γ, α:κ′ ⊢ �

(e) By (d) and inversion of E-Type: α /∈ dom(Γ)

(f) By (e) and assumption: α /∈ dom(Γ′)

(g) By (e), (f), and assumption: Γ′, α:κ′ ⊆ Γ, α:κ′

(h) By (f), assumption, and E-Type: Γ′, α:κ′ ⊢ �

(i) By (a), (g), (h), (c), and induction: Γ′, α:κ′ ⊢ τ ′ : Ω

(j) By (i) and K-Univ: Γ′ ⊢ ∀α:κ′.τ ′ : Ω

• Case K-Exist: τ = ∃α:κ′.τ ′ where κ = Ω

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : Ω

(b) By definition: ftv(τ ′) ⊆ ftv(τ) ∪ {α}

(c) By (b) and assumption: ftv(τ ′) ⊆ dom(Γ′, α:κ′)

(d) By (a) and Environment Validity: Γ, α:κ′ ⊢ �

(e) By (d) and inversion of E-Type: α /∈ dom(Γ)

(f) By (e) and assumption: α /∈ dom(Γ′)

(g) By (e), (f), and assumption: Γ′, α:κ′ ⊆ Γ, α:κ′

(h) By (f), assumption, and E-Type: Γ′, α:κ′ ⊢ �

(i) By (a), (g), (h), (c), and induction: Γ′, α:κ′ ⊢ τ ′ : Ω

(j) By (i) and K-Exist: Γ′ ⊢ ∃α:κ′.τ ′ : Ω

60

• Case K-Abs: τ = λα:κ′.τ ′ where κ = κ′ → κ′′

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : κ′′

(b) By definition: ftv(τ ′) ⊆ ftv(τ) ∪ {α}

(c) By (b) and assumption: ftv(τ ′) ⊆ dom(Γ′, α:κ′)

(d) By (a) and Environment Validity: Γ, α:κ′ ⊢ �

(e) By (d) and inversion of E-Type: α /∈ dom(Γ)

(f) By (e) and assumption: α /∈ dom(Γ′)

(g) By (e), (f), and assumption: Γ′, α:κ′ ⊆ Γ, α:κ′

(h) By (f), assumption, and E-Type: Γ′, α:κ′ ⊢ �

(i) By (a), (g), (h), (c), and induction: Γ′, α:κ′ ⊢ τ ′ : κ′′

(j) By (i) and K-Abs: Γ′ ⊢ λα:κ′.τ ′ : κ′ → κ′′

• Case K-App: τ = τ1 τ2

(a) By inversion: Γ ⊢ τ1 : κ′ → κ and Γ ⊢ τ2 : κ′

(b) By assumption: ftv(τ1) ⊆ dom(Γ′) and ftv(τ2) ⊆ dom(Γ′)

(c) By (a), assumption, (b), and induction: Γ′ ⊢ τ1 : κ′ → κ and Γ′ ⊢ τ2 : κ′

(d) By (c) and K-App: Γ′ ⊢ τ1 τ2 : κ

• Case K-Pair: τ = 〈τ1, τ2〉 where κ = κ1 × κ2

(a) By inversion: Γ ⊢ τ1 : κ1 and Γ ⊢ τ2 : κ2

(b) By assumption: ftv(τ1) ⊆ dom(Γ′) and ftv(τ2) ⊆ dom(Γ′)

(c) By (a), assumption, (b), and induction: Γ′ ⊢ τ1 : κ1 and Γ′ ⊢ τ2 : κ2

(d) By (c) and K-Pair: Γ′ ⊢ 〈τ1, τ2〉 : κ1 × κ2

• Case K-Proj1: τ = τ ′.1

(a) By inversion: Γ ⊢ τ ′ : κ × κ2

(b) By assumption: ftv(τ ′) ⊆ dom(Γ′)

(c) By (a), assumption, (b), and induction: Γ′ ⊢ τ ′ : κ × κ2

(d) By (c) and K-Proj1: Γ′ ⊢ τ ′.1 : κ

• Case K-Proj2: τ = τ ′.2

(a) By inversion: Γ ⊢ τ ′ : κ1 × κ

(b) By assumption: ftv(τ ′) ⊆ dom(Γ′)

(c) By (a) and induction: Γ′ ⊢ τ ′ : κ1 × κ

(d) By (c) and K-Proj2: Γ′ ⊢ τ ′.2 : κ

2. Let Γ1, x:τ, Γ2 ⊢ �.

• Case Γ2 = ·:

(a) By inversion of E-Term: Γ1 ⊢ τ : Ω

(b) By (a) and Environment Validity: Γ1 ⊢ �

• Case Γ2 = Γ′

2, ξ:κ:

(a) By inversion of E-Type: Γ1, x:τ, Γ′

2 ⊢ � and ξ /∈ dom(Γ1, x:τ, Γ′

2)

(b) By (a) and induction: Γ1, Γ
′

2 ⊢ �

(c) By (a): ξ /∈ dom(Γ1, Γ
′

2)

(d) By (b), (c), and E-Type: Γ1, Γ
′

2, ξ:κ ⊢ �

• Case Γ2 = Γ′

2, x
′:τ ′:

(a) By inversion of E-Term: Γ1, x:τ, Γ′

2 ⊢ τ ′ : Ω and x′ /∈ dom(Γ1, x:τ, Γ′

2)

61

(b) By (a) and Environment Validity: Γ1, x:τ, Γ′

2 ⊢ �

(c) By (b) and induction: Γ1, Γ
′

2 ⊢ �

(d) By (a) and Variable Containment: ftv(τ ′) ⊆ dom(Γ1, x:τ, Γ′

2)

(e) By (d): ftv(τ ′) ⊆ dom(Γ1, Γ
′

2)

(f) By (a), (c), (e), and (1): Γ1, Γ
′

2 ⊢ τ ′ : Ω

(g) By (a): x′ /∈ dom(Γ1, Γ
′

2)

(h) By (f), (g), and E-Term: Γ1, Γ
′

2, x
′:τ ′ ⊢ �

Proposition 6 (Weakening).

1. If Γ ⊢ τ : κ and Γ ⊆ Γ′ where Γ′ ⊢ �, then Γ′ ⊢ τ : κ.

2. If Γ ⊢ e : τ and Γ ⊆ Γ′ where Γ′ ⊢ �, then Γ′ ⊢ e : τ .

Proof. (1) by induction on the derivation of Γ ⊢ τ : κ. (2) by induction on the derivation of
Γ ⊢ e : τ .

1. Let Γ ⊢ τ : κ with Γ ⊆ Γ′ and Γ′ ⊢ � where w.l.o.g. bv() ∩ dom(′) = ∅.

• Case K-Var: τ = ξ

(a) By inversion: κ = Γ(ξ)

(b) By assumption: Γ′(ξ) = Γ(ξ)

(c) By (b), (a), assumption, and K-Var: Γ′ ⊢ ξ : κ

• Case K-Arrow: τ = τ1 → τ2 and κ = Ω

(a) By inversion: Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω

(b) By (a), assumption, and induction: Γ′ ⊢ τ1 : Ω and Γ′ ⊢ τ2 : Ω

(c) By (b) and K-Arrow: Γ′ ⊢ τ1 → τ2 : Ω

• Case K-Times: τ = τ1 × τ2 and κ = Ω

(a) By inversion: Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω

(b) By (a), assumption, and induction: Γ′ ⊢ τ1 : Ω and Γ′ ⊢ τ2 : Ω

(c) By (b) and K-Arrow: Γ′ ⊢ τ1 × τ2 : Ω

• Case K-Univ: τ = ∀α:κ′.τ ′ and κ = Ω

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : Ω

(b) By assumption: α /∈ dom(Γ′) and hence Γ, α:κ′ ⊆ Γ′, α:κ′

(c) By (b), assumption, and E-Type: Γ′, α:κ′ ⊢ �

(d) By (a), (b), (c), and induction: Γ′, α:κ′ ⊢ τ ′ : Ω

(e) By (d) and K-Univ: Γ′ ⊢ ∀α:κ′.τ ′ : Ω

• Case K-Exist: τ = ∃α:κ′.τ ′ and κ = Ω

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : Ω

(b) By assumption: α /∈ dom(Γ′) and hence Γ, α:κ′ ⊆ Γ′, α:κ′

(c) By (b), assumption, and E-Type: Γ′, α:κ′ ⊢ �

(d) By (a), (b), (c), and induction: Γ′, α:κ′ ⊢ τ ′ : Ω

(e) By (d) and K-Exist: Γ′ ⊢ ∃α:κ′.τ ′ : Ω

• Case K-Abs: τ = λα:κ′.τ ′ and κ = κ′ → κ′′

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : κ′′

62

(b) By assumption: α /∈ dom(Γ′) and hence Γ, α:κ′ ⊆ Γ′, α:κ′

(c) By (b), assumption, and E-Type: Γ′, α′:κ′ ⊢ �

(d) By (a), (b), (c), and induction: Γ′, α:κ′ ⊢ τ ′ : κ′′

(e) By (d) and K-Abs: Γ′ ⊢ λα:κ′.τ ′ : κ′ → κ′′

• Case K-App: τ = τ1 τ2

(a) By inversion: Γ ⊢ τ1 : κ′ → κ and Γ ⊢ τ2 : κ′

(b) By (a), assumption, and induction: Γ′ ⊢ τ1 : κ′ → κ and Γ′ ⊢ τ2 : κ′

(c) By (b) and K-App: Γ′ ⊢ τ1 τ2 : κ

• Case K-Pair: τ = 〈τ1, τ2〉 and κ = κ1 × κ2

(a) By inversion: Γ ⊢ τ1 : κ1 and Γ ⊢ τ2 : κ2

(b) By (a), assumption, and induction: Γ′ ⊢ τ1 : κ1 and Γ′ ⊢ τ2 : κ2

(c) By (b) and K-Pair: Γ′ ⊢ 〈τ1, τ2〉 : κ1 × κ2

• Case K-Proj1: τ = τ ′.1

(a) By inversion: Γ ⊢ τ ′ : κ × κ2

(b) By (a), assumption, and induction: Γ′ ⊢ τ ′ : κ × κ2

(c) By (b) and K-Proj1: Γ′ ⊢ τ ′.1 : κ

• Case K-Proj2: τ = τ ′.2

(a) By inversion: Γ ⊢ τ ′ : κ1 × κ

(b) By (a), assumption, and induction: Γ′ ⊢ τ ′ : κ1 × κ

(c) By (b) and K-Proj2: Γ′ ⊢ τ ′.2 : κ

2. Let Γ ⊢ e : τ and Γ ⊆ Γ′ and Γ′ ⊢ �.

• Case T-Equiv:

(a) By inversion: Γ ⊢ e : τ ′ and Γ ⊢ τ : Ω where τ ′ ≡ τ

(b) By (a), assumption, and induction: Γ′ ⊢ e : τ ′

(c) By (a), assumption and (1): Γ′ ⊢ τ : Ω

(d) By (b), (a), (c), and T-Equiv: Γ′ ⊢ e : τ

• Case T-Var: e = x

(a) By inversion: Γ(x) = τ

(b) By assumption: Γ′(x) = Γ(x)

(c) By (b), (a), assumption, and T-Var: Γ′ ⊢ x : τ

• Case T-Abs: e = λx:τ1.e1 and τ = τ1 → τ2

(a) By inversion: Γ, x:τ1 ⊢ e1 : τ2

(b) By assumption: x /∈ dom(Γ′) and hence Γ, x:τ1 ⊆ Γ′, x:τ1

(c) By (a) and Environment Validity: Γ ⊢ τ1 : Ω

(d) By (c), assumption, and (1): Γ′ ⊢ τ1 : Ω

(e) By (b) and E-Term: Γ′, x:τ1 ⊢ �

(f) By (a), (b), (e), and induction: Γ′, x:τ1 ⊢ e1 : τ2

(g) By (f) and T-Abs: Γ′ ⊢ λx:τ1.e1 : τ1 → τ2

• Case T-App: e = e1 e2

(a) By inversion: Γ ⊢ e1 : τ ′ → τ and Γ ⊢ e2 : τ ′

(b) By (a), assumption, and induction: Γ′ ⊢ e1 : τ ′ → τ and Γ′ ⊢ e2 : τ ′

(c) By (b) and T-App: Γ′ ⊢ e1 e2 : τ

63

• Case T-Gen: e = λα:κ.e1 and τ = ∀α:κ.τ1

(a) By inversion: Γ, α:κ ⊢ e1 : τ1

(b) By assumption: α /∈ dom(Γ′) and hence Γ, α:κ ⊆ Γ′, α:κ

(c) By (b), assumption, and E-Type: Γ′, α:κ ⊢ �

(d) By (a), (b), (c), and induction: Γ′, α:κ ⊢ e1 : τ1

(e) By (d) and T-Gen: Γ′ ⊢ λα:κ.e1 : ∀α:κ.τ1

• Case T-Inst: e = e1 τ2

(a) By inversion: Γ ⊢ e1 : ∀α:κ.τ1 and Γ ⊢ τ2 : κ where τ = τ1[α := τ2]

(b) By (a), assumption, and induction: Γ′ ⊢ e1 : ∀α:κ.τ1

(c) By (a) and (1): Γ′ ⊢ τ2 : κ

(d) By (b), (c), and T-Inst: Γ′ ⊢ e1 τ2 : τ1[α := τ2]

• Case T-Pair: e = 〈e1, e2〉 and τ = τ1 × τ2

(a) By inversion: Γ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2

(b) By (a), assumption, and induction: Γ′ ⊢ e1 : τ1 and Γ′ ⊢ e2 : τ2

(c) By (b) and T-Pair: Γ′ ⊢ 〈e1, e2〉 : τ1 × τ2

• Case T-Proj: e = let 〈x1, x2〉 = e1 in e2

(a) By inversion: Γ ⊢ e1 : τ1 × τ2 and Γ, x1:τ1, x2:τ2 ⊢ e2 : τ

(b) By assumption: {x1, x2} ∩ dom(Γ′) = ∅ and hence Γ, x1:τ1 ⊆ Γ′, x1:τ1 and
Γ, x1:τ1, x2:τ2 ⊆ Γ′, x1:τ1, x2:τ2

(c) By (a) and Environment Validity: Γ, x1:τ1, x2:τ2 ⊢ �

(d) By (c) and inversion of E-Term: Γ, x1:τ1 ⊢ τ2 : Ω

(e) By (d) and Environment Validity: Γ, x1:τ1 ⊢ �

(f) By (e) and inversion of E-Term: Γ ⊢ τ1 : Ω

(g) By (f), assumption, and (1): Γ′ ⊢ τ1 : Ω

(h) By (g), (b), and E-Term: Γ′, x1:τ1 ⊢ �

(i) By (d), (h), (b), and induction: Γ′, x1:τ1 ⊢ τ2 : Ω

(j) By (i), (b), and E-Term: Γ′, x1:τ1, x2:τ2 ⊢ �

(k) By (j), (a), (b), and induction: Γ′, x1:τ1, x2:τ2 ⊢ e2 : τ

(l) By (a), assumption, and induction: Γ′ ⊢ e1 : τ1 × τ2

(m) By (k), (l), and T-Proj: Γ′ ⊢ let 〈x1, x2〉 = e1 in e2 : τ

• Case T-Close: e = 〈τ1, e
′〉:τ and τ = ∃α:κ.τ2

(a) By inversion: Γ ⊢ τ1 : κ and Γ ⊢ e′ : τ2[α := τ1] and Γ ⊢ ∃α:κ.τ2 : Ω

(b) By (a), assumption, and induction: Γ′ ⊢ e′ : τ2[α := τ1]

(c) By (a), assumption, and (1): Γ′ ⊢ τ1 : κ and Γ′ ⊢ ∃α:κ.τ2 : Ω

(d) By (b), (c), and T-Close: Γ′ ⊢ 〈τ1, e
′〉:∃α:κ.τ2 : ∃α:κ.τ2

• Case T-Open: e = let 〈α, x〉 = e1 in e2

(a) By inversion: Γ ⊢ e1 : ∃α:κ.τ ′ and Γ, α:κ, x:τ ′ ⊢ e2 : τ where α /∈ ftv(τ)

(b) By assumption: {α, x}∩dom(Γ′) = ∅ and hence Γ, α:κ ⊆ Γ′, α:κ and Γ, α:κ, x:τ ′ ⊆
Γ′, α:κ, x:τ ′

(c) By (a) and Environment Validity: Γ, α:κ, x:τ ′ ⊢ �

(d) By (c) and inversion of E-Type: Γ, α:κ ⊢ τ ′ : Ω

(e) By (b), assumption, and E-Type: Γ′, α:κ ⊢ �

(f) By (d), (e), (b), and induction: Γ′, α:κ ⊢ τ ′ : Ω

64

(g) By (f), (b), and E-Term: Γ′, α:κ, x:τ ′ ⊢ �

(h) By (g), (a), (b), and induction: Γ′, α:κ, x:τ ′ ⊢ e2 : τ

(i) By (a), assumption, and induction: Γ′ ⊢ e1 : ∃α:κ.τ ′

(j) By (h), (i), (a), and T-Open: Γ′ ⊢ let 〈α, x〉 = e1 in e2 : τ

• Case T-Lazy: e = lazy 〈ζ, x〉 = e1 in e2

(a) By inversion: Γ ⊢ e1 : ∃α:κ.τ ′[α := ζ] and Γ, ζ:κ, x:τ ′[α := ζ][α := ζ] ⊢ e2 : τ
where ζ /∈ ftv(τ)

(b) By assumption: {ζ, x}∩dom(Γ′) = ∅ and hence Γ, ζ:κ ⊆ Γ′, ζ:κ and Γ, ζ:κ, x:τ ′[α :=
ζ] ⊆ Γ′, ζ:κ, x:τ ′[α := ζ]

(c) By (a) and Environment Validity: Γ, ζ:κ, x:τ ′[α := ζ] ⊢ �

(d) By (c) and inversion of E-Term: Γ, ζ:κ ⊢ τ ′[α := ζ] : Ω

(e) By (b), assumption, and E-Type: Γ′, ζ:κ ⊢ �

(f) By (d), (e), (b), and induction: Γ′, ζ:κ ⊢ τ ′[α := ζ] : Ω

(g) By (f), (b), and E-Term: Γ′, ζ:κ, x:τ ′[α := ζ] ⊢ �

(h) By (g), (a), (b), and induction: Γ′, ζ:κ, x:τ ′[α := ζ] ⊢ e2 : τ

(i) By (a), assumption, and induction: Γ′ ⊢ e1 : ∃α:κ.τ ′

(j) By (h), (i), (a), and T-Lazy: Γ′ ⊢ lazy 〈ζ, x〉 = e1 in e2 : τ

• Case T-Case: e = tcase e0:τ0 of x:τ ′

0 then e1 else e2

(a) By inversion:

i. Γ ⊢ e0 : τ0

ii. Γ, x:τ ′

0 ⊢ e1 : τ

iii. Γ ⊢ e2 : τ

(b) By assumption: x /∈ dom(Γ′) and hence Γ, x:τ ′

0 ⊆ Γ′, x:τ ′

0

(c) By (a-ii) and Environment Validity: Γ, x:τ ′

0 ⊢ �

(d) By (c) and inversion of E-Term: Γ ⊢ τ ′

0 : Ω

(e) By (d), assumption, and (1): Γ′ ⊢ τ ′

0 : Ω

(f) By (e), (b), and E-Term: Γ′, x:τ ′

0 ⊢ �

(g) By (f), (a-ii), (b), and induction: Γ′, x:τ ′

0 ⊢ e1 : τ

(h) By (a-i), assumption, and induction: Γ′ ⊢ e0 : τ0

(i) By (a-iii), assumption, and induction: Γ′ ⊢ e2 : τ

(j) By (h), (g), (i), and T-Case: Γ′ ⊢ tcase e0:τ0 of x:τ ′

0 then e1 else e2 : τ

Proposition 7 (Type Substitution).

1. If Γ1 ⊢ τ ′ : κ′ and Γ1, ξ:κ
′, Γ2 ⊢ �, then Γ1, Γ2[ξ := τ ′] ⊢ �.

2. If Γ1 ⊢ τ ′ : κ′ and Γ1, ξ:κ
′, Γ2 ⊢ τ : κ, then Γ1, Γ2[ξ := τ ′] ⊢ τ [ξ := τ ′] : κ.

3. If Γ1 ⊢ τ ′ : κ′ and Γ1, ξ:κ
′, Γ2 ⊢ e : τ , then Γ1, Γ2[ξ := τ ′] ⊢ e[ξ := τ ′] : τ [ξ := τ ′].

4. If τ ≡ τ ′′, then τ [ξ := τ ′] ≡ τ ′′[ξ := τ ′].

Proof. (1), (2), and (3) by simultaneous induction on the kinding derivations. (4) by induction
on the derivation.

1. Let Γ1 ⊢ τ ′ : κ′ and Γ1, ξ:κ
′, Γ2 ⊢ �.

• Case E-Empty: not possible

65

• Case E-Type:

– Subcase Γ2 = ·:

(a) By inversion: Γ1 ⊢ �

– Subcase Γ2 = Γ′

2, ξ
′:κ′′:

(a) By inversion: Γ1, ξ:κ
′, Γ′

2 ⊢ � and ξ′ /∈ dom(Γ1, ξ:κ
′, Γ′

2)

(b) By (a): ξ′ /∈ dom(Γ1, Γ
′

2[ξ := τ ′])

(c) By (a) and induction: Γ1, Γ
′

2[ξ := τ ′] ⊢ �

(d) By (c), (b), and E-Type: Γ1, Γ
′

2[ξ := τ ′], ξ′:κ′′ ⊢ �

(e) By (d): Γ1, (Γ
′

2, ξ
′:κ′′)[ξ := τ ′] ⊢ �

• Case E-Term: Γ2 = Γ′

2, x:τ ′′

(a) By inversion: Γ1, ξ:κ
′, Γ′

2 ⊢ τ ′′ : Ω and x /∈ dom(Γ1, ξ:κ
′, Γ′

2)

(b) By (a): x /∈ dom(Γ1, Γ
′

2[ξ := τ ′])

(c) By (a) and induction: Γ1, Γ
′

2[ξ := τ ′] ⊢ τ ′′[ξ := τ ′] : Ω

(d) By (c), (b), and E-Type: Γ1, Γ
′

2[ξ := τ ′], x:τ ′′[ξ := τ ′] ⊢ �

(e) By (d): Γ1, (Γ
′

2, x:τ ′′)[ξ := τ ′] ⊢ �

2. Let Γ1 ⊢ τ ′ : κ′ and Γ1, ξ:κ
′, Γ2 ⊢ τ : κ.

• Case K-Var:

– Subcase τ = ξ

(a) By inversion: Γ1, ξ:κ
′, Γ2 ⊢ � and κ = κ′

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ �

(c) By (b), assumption, and Weakening: Γ1, Γ2[ξ := τ ′] ⊢ τ ′ : κ

(d) τ ′ = ξ[ξ := τ ′]

– Subcase τ = ξ′ 6= ξ

(a) By inversion: Γ1, ξ:κ
′, Γ2 ⊢ �

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ �

(c) κ = (Γ1, ξ:κ
′, Γ2)(ξ

′) = (Γ1, Γ2[ξ := τ ′])(ξ′)

(d) By (b), (c), and K-Var: Γ1, Γ2[ξ := τ ′] ⊢ ξ′ : κ

(e) ξ′ = ξ′[ξ := τ ′]

• Case K-Arrow: τ = τ1 → τ2 and κ = Ω

(a) By inversion: Γ1, ξ:κ
′, Γ2 ⊢ τ1 : Ω and Γ1, ξ:κ

′, Γ2 ⊢ τ2 : Ω.

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ τ1[ξ := τ ′] : Ω and Γ1, Γ2[ξ := τ ′] ⊢ τ2[ξ :=
τ ′] : Ω

(c) By (b) and K-Arrow: Γ1, Γ2[ξ := τ ′] ⊢ τ1[ξ := τ ′] → τ2[ξ := τ ′] : Ω

(d) τ1[ξ := τ ′] → τ2[ξ := τ ′] = (τ1 → τ2)[ξ := τ ′]

• Case K-Times: τ = τ1 × τ2 and κ = Ω

(a) By inversion: Γ1, ξ:κ
′, Γ2 ⊢ τ1 : Ω and Γ1, ξ:κ

′, Γ2 ⊢ τ2 : Ω.

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ τ1[ξ := τ ′] : Ω and Γ1, Γ2[ξ := τ ′] ⊢ τ2[ξ :=
τ ′] : Ω

(c) By (b) and K-Times: Γ1, Γ2[ξ := τ ′] ⊢ τ1[ξ := τ ′] × τ2[ξ := τ ′] : Ω

(d) τ1[ξ := τ ′] × τ2[ξ := τ ′] = (τ1 × τ2)[ξ := τ ′]

• Case K-Univ: τ = ∀α:κ′′.τ ′′ and κ = Ω

(a) By inversion: Γ1, ξ:κ
′, Γ2, α:κ′′ ⊢ τ ′′ : Ω

(b) By (a) and induction: Γ1, (Γ2, α:κ′′)[ξ := τ ′] ⊢ τ ′′[ξ := τ ′] : Ω

66

(c) By (b): Γ1, Γ2[ξ := τ ′], α:κ′′ ⊢ τ ′′[ξ := τ ′] : Ω

(d) By (c) and K-Univ: Γ1, Γ2[ξ := τ ′] ⊢ ∀α:κ′′.τ ′′[ξ := τ ′] : Ω

(e) By (a) and Environment Validity: Γ1, ξ:κ
′, Γ2, α:κ′′ ⊢ �

(f) By (e) and inversion of E-Type: α /∈ dom(Γ1, ξ:κ
′, Γ2) and hence α 6= ξ

(g) By assumption and Variable Containment: ftv(τ ′) ⊆ dom(Γ1)

(h) By (f) and (g): α /∈ ftv(τ ′)

(i) By (d), (f), and (h): Γ1, Γ2[ξ := τ ′] ⊢ (∀α:κ′′.τ ′′)[ξ := τ ′] : Ω

• Case K-Exist: τ = ∃α:κ′′.τ ′′ and κ = Ω

(a) By inversion: Γ1, ξ:κ
′, Γ2, α:κ′′ ⊢ τ ′′ : Ω

(b) By (a) and induction: Γ1, (Γ2, α:κ′′)[ξ := τ ′] ⊢ τ ′′[ξ := τ ′] : Ω

(c) By (b): Γ1, Γ2[ξ := τ ′], α:κ′′ ⊢ τ ′′[ξ := τ ′] : Ω

(d) By (c) and K-Exist: Γ1, Γ2[ξ := τ ′] ⊢ ∃α:κ′′.τ ′′[ξ := τ ′] : Ω

(e) By (a) and Environment Validity: Γ1, ξ:κ
′, Γ2, α:κ′′ ⊢ �

(f) By (e) and inversion of E-Type: α /∈ dom(Γ1, ξ:κ
′, Γ2) and hence α 6= ξ

(g) By assumption and Variable Containment: ftv(τ ′) ⊆ dom(Γ1)

(h) By (f) and (g): α /∈ ftv(τ ′)

(i) By (d), (f), and (h): Γ1, Γ2[ξ := τ ′] ⊢ (∃α:κ′′.τ ′′)[ξ := τ ′] : Ω

• Case K-Abs: τ = λα:κ1.τ
′′ and κ = κ1 → κ2

(a) By inversion: Γ1, ξ:κ
′, Γ2, α:κ1 ⊢ τ ′′ : κ2

(b) By (a) and induction: Γ1, (Γ2, α:κ1)[ξ := τ ′] ⊢ τ ′′[ξ := τ ′] : κ2

(c) By (b): Γ1, Γ2[ξ := τ ′], α:κ1 ⊢ τ ′′[ξ := τ ′] : κ2

(d) By (a) and Environment Validity: Γ1, ξ:κ
′, Γ2, α:κ1 ⊢ �

(e) By (e) and inversion of E-Type: α /∈ dom(Γ1, ξ:κ
′, Γ2) and hence α 6= ξ

(f) By assumption and Variable Containment: ftv(τ ′) ⊆ dom(Γ1)

(g) By (f) and (g): α /∈ ftv(τ ′)

(h) By (d), (f), and (h): Γ1, Γ2[ξ := τ ′] ⊢ (λα:κ1.τ
′′)[ξ := τ ′] : κ1 → κ2

• Case K-App: τ = τ1 τ2

(a) By inversion: Γ1, ξ:κ
′, Γ2 ⊢ τ1 : κ′′ → κ and Γ1, ξ:κ

′, Γ2 ⊢ τ2 : κ′′

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ τ1[ξ := τ ′] : κ′′ → κ and Γ1, Γ2[ξ := τ ′] ⊢
τ2[ξ := τ ′] : κ′′

(c) By (b) and K-App: Γ1, Γ2[ξ := τ ′] ⊢ τ1[ξ := τ ′] τ2[ξ := τ ′] : κ

(d) τ1[ξ := τ ′] τ2[ξ := τ ′] = (τ1 τ2)[ξ := τ ′]

• Case K-Pair: τ = 〈τ1, τ2〉

(a) By inversion: Γ1, ξ:κ
′, Γ2 ⊢ τ1 : κ1 and Γ1, ξ:κ

′, Γ2 ⊢ τ2 : κ2 where κ = κ1 × κ2.

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ τ1[ξ := τ ′] : κ1 and Γ1, Γ2[ξ := τ ′] ⊢
τ2[ξ := τ ′] : κ2

(c) By (b) and K-Pair: Γ1, Γ2[ξ := τ ′] ⊢ 〈τ1[ξ := τ ′], τ2[ξ := τ ′]〉 : κ1 × κ2

(d) 〈τ1[ξ := τ ′], τ2[ξ := τ ′]〉 = 〈τ1, τ2〉[ξ := τ ′]

• Case K-Proj1: τ = τ ′′.1

(a) By inversion: Γ1, ξ:κ
′, Γ2 ⊢ τ ′′ : κ × κ2

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ τ ′′[ξ := τ ′] : κ × κ2

(c) By (b) and K-Proj1: Γ1, Γ2[ξ := τ ′] ⊢ τ ′′[ξ := τ ′].1 : κ

(d) τ ′′[ξ := τ ′].1 = τ ′′.1[ξ := τ ′]

67

• Case K-Proj2: τ = τ ′′.2

(a) By inversion: Γ1, ξ:κ
′, Γ2 ⊢ τ ′′ : κ1 × κ

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ τ ′′[ξ := τ ′] : κ1 × κ

(c) By (b) and K-Proj2: Γ1, Γ2[ξ := τ ′] ⊢ τ ′′[ξ := τ ′].2 : κ

(d) τ ′′[ξ := τ ′].2 = τ ′′.2[ξ := τ ′]

3. Let Γ1 ⊢ τ ′ : κ′ and Γ1, ξ:κ
′, Γ2 ⊢ e : τ .

• Case T-Equiv:

(a) By inversion:

i. Γ1, ξ:κ
′, Γ2 ⊢ e : τ1

ii. τ1 ≡ τ

iii. Γ1, ξ:κ
′, Γ2 ⊢ τ : Ω

(b) By (a) and induction:

i. Γ1, Γ2[ξ := τ ′] ⊢ e[ξ := τ ′] : τ1[ξ := τ ′]

ii. τ1[ξ := τ ′] ≡ τ [ξ := τ ′]

iii. Γ1, Γ2[ξ := τ ′] ⊢ τ [ξ := τ ′] : Ω

(c) By (b) and T-Equiv: Γ1, Γ2[ξ := τ ′] ⊢ e[ξ := τ ′] : τ [ξ := τ ′]

• Case T-Var: e = x

(a) By inversion: τ = (Γ1, ξ:κ
′, Γ2)(x) and Γ1, ξ:κ

′, Γ2 ⊢ �

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ �

(c) We show: (Γ1, Γ2[ξ := τ ′])(x) = τ [ξ := τ ′]

– Subcase Γ1(x) = τ :

i. By (a) and Subenvironment Validity: Γ1, ξ:κ
′ ⊢ �

ii. By (b) and inversion of E-Type: Γ1 ⊢ � and ξ /∈ dom(Γ1)

iii. By (ii) and T-Var: Γ1 ⊢ x : τ

iv. By (iii) and Variable Containment: ftv(τ) ⊆ dom(Γ1)

v. By (ii) and (iv): ξ /∈ ftv(τ) and hence τ [ξ := τ ′] = τ

vi. By (v): (Γ1, Γ2[ξ := τ ′])(x) = τ [ξ := τ ′]

– Subcase Γ2(x) = τ :

i. Then: Γ2[ξ := τ ′](x) = τ [ξ := τ ′]

ii. By (i): (Γ1, Γ2[ξ := τ ′])(x) = τ [ξ := τ ′]

(d) By (b), (c), and T-Var: Γ1, Γ2[ξ := τ ′] ⊢ x : τ [ξ := τ ′]

• Case T-Abs: e = λx:τ1.e
′ and τ = τ1 → τ2

(a) By inversion: Γ1, ξ:κ
′, Γ2, x:τ1 ⊢ e′ : τ2

(b) By (a) and induction: Γ1, (Γ2, x:τ1)[ξ := τ ′] ⊢ e′[ξ := τ ′] : τ2[ξ := τ ′]

(c) By (b): Γ1, Γ2[ξ := τ ′], x:τ1[ξ := τ ′] ⊢ e′[ξ := τ ′] : τ2[ξ := τ ′]

(d) By (c) and T-Abs: Γ1, Γ2[ξ := τ ′] ⊢ λx:τ1[ξ := τ ′].e′[ξ := τ ′] : τ1[ξ := τ ′] →
τ2[ξ := τ ′]

(e) By (d): Γ1, Γ2[ξ := τ ′] ⊢ (λx:τ1.e
′)[ξ := τ ′] : (τ1 → τ2)[ξ := τ ′]

• Case T-App: e = e1 e2

(a) By inversion: Γ1, ξ:κ
′, Γ2 ⊢ e1 : τ2 → τ and Γ1, ξ:κ

′, Γ2 ⊢ e2 : τ2

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ e1[ξ := τ ′] : (τ2 → τ)[ξ := τ ′] and
Γ1, Γ2[ξ := τ ′] ⊢ e2[ξ := τ ′] : τ2[ξ := τ ′]

(c) By (b): Γ1, Γ2[ξ := τ ′] ⊢ e1[ξ := τ ′] : τ2[ξ := τ ′] → τ [ξ := τ ′]

68

(d) By (c), (b), and T-App: Γ1, Γ2[ξ := τ ′] ⊢ e1[ξ := τ ′] e2[ξ := τ ′] : τ [ξ := τ ′]

(e) By (d): Γ1, Γ2[ξ := τ ′] ⊢ (e1 e2)[ξ := τ ′] : τ [ξ := τ ′]

• Case T-Gen: e = λα:κ.e1 and τ = ∀α:κ.τ1

(a) By inversion: Γ1, ξ:κ
′, Γ2, α:κ ⊢ e1 : τ1

(b) By (a) and induction: Γ1, (Γ2, α:κ)[ξ := τ ′] ⊢ e1[ξ := τ ′] : τ1[ξ := τ ′]

(c) By (b): Γ1, Γ2[ξ := τ ′], α:κ ⊢ e1[ξ := τ ′] : τ1[ξ := τ ′]

(d) By (d) and T-Gen: Γ1, Γ2[ξ := τ ′] ⊢ λα:κ.e1[ξ := τ ′] : ∀α:κ.τ1[ξ := τ ′]

(e) By (a) and Environment Validity: Γ1, ξ:κ
′, Γ2, α:κ ⊢ �

(f) By (f) and inversion of E-Type: α /∈ dom(Γ1, ξ:κ
′, Γ2) and hence α 6= ξ

(g) By (e) and (g): Γ1, Γ2[ξ := τ ′] ⊢ (λα:κ.e1)[ξ := τ ′] : (∀α:κ.τ1)[ξ := τ ′]

• Case T-Inst: e = e′ τ2

(a) By inversion: Γ1, ξ:κ
′, Γ2 ⊢ e′ : ∀α:κ.τ1 (w.l.o.g. α 6= ξ and α /∈ ftv(τ ′)) and

Γ1, ξ:κ
′, Γ2 ⊢ τ2 : κ where τ = τ1[α := τ2]

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ e′[ξ := τ ′] : (∀α:κ.τ1)[ξ := τ ′] and
Γ1, Γ2[ξ := τ ′] ⊢ τ2[ξ := τ ′] : κ

(c) By (b) and (a): Γ1, Γ2[ξ := τ ′] ⊢ e′[ξ := τ ′] : ∀α:κ.τ1[ξ := τ ′]

(d) By (c), (b), and T-Inst: Γ1, Γ2[ξ := τ ′] ⊢ e′[ξ := τ ′] τ2[ξ := τ ′] : τ1[ξ := τ ′][α :=
τ2[ξ := τ ′]]

(e) By (d): Γ1, Γ2[ξ := τ ′] ⊢ (e′ τ2)[ξ := τ ′] : τ1[ξ := τ ′][α := τ2[ξ := τ ′]]

(f) By (e), (a), and Substitution: Γ1, Γ2[ξ := τ ′] ⊢ (e′ τ2)[ξ := τ ′] : τ1[α := τ2][ξ := τ ′]

• Case T-Pair: e = 〈e1, e2〉 and τ = τ1 × τ2

(a) By inversion: Γ1, ξ:κ
′, Γ2 ⊢ e1 : τ1 and Γ1, ξ:κ

′, Γ2 ⊢ e2 : τ2

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ e1[ξ := τ ′] : τ1[ξ := τ ′] and Γ1, Γ2[ξ :=
τ ′] ⊢ e2[ξ := τ ′] : τ2[ξ := τ ′]

(c) By (b) and T-Pair: Γ1, Γ2[ξ := τ ′] ⊢ 〈e1[ξ := τ ′], e2[ξ := τ ′]〉 : τ1[ξ := τ ′]×τ2[ξ :=
τ ′]

(d) By (c): Γ1, Γ2[ξ := τ ′] ⊢ 〈e1, e2〉[ξ := τ ′] : (τ1 × τ2)[ξ := τ ′]

• Case T-Proj: e = let 〈x1, x2〉 = e1 in e2

(a) By inversion: Γ1, ξ:κ
′, Γ2 ⊢ e1 : τ1 × τ2 and Γ1, ξ:κ

′, Γ2, x1:τ1, x2:τ2 ⊢ e2 : τ

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ e1[ξ := τ ′] : (τ1 × τ2)[ξ := τ ′] and
Γ1, (Γ2, x1:τ1, x2:τ2)[ξ := τ ′] ⊢ e2[ξ := τ ′] : τ [ξ := τ ′]

(c) By (b): Γ1, Γ2[ξ := τ ′] ⊢ e1[ξ := τ ′] : τ1[ξ := τ ′] × τ2[ξ := τ ′] and Γ1, Γ2[ξ :=
τ ′], x1:τ1[ξ := τ ′], x2:τ2[ξ := τ ′] ⊢ e2[ξ := τ ′] : τ [ξ := τ ′]

(d) By (c) and T-Proj: Γ1, Γ2[ξ := τ ′] ⊢ let 〈x1, x2〉 = e1[ξ := τ ′] in e2[ξ := τ ′] :
τ [ξ := τ ′]

(e) By (d): Γ1, Γ2[ξ := τ ′] ⊢ let 〈x1, x2〉 = e1 in e2[ξ := τ ′] : τ [ξ := τ ′]

• Case T-Close: e = 〈τ1, e
′〉:τ and τ = ∃α:κ.τ2 (w.l.o.g. α 6= ξ)

(a) By inversion:

i. Γ1, ξ:κ
′, Γ2 ⊢ τ1 : κ

ii. Γ1, ξ:κ
′, Γ2 ⊢ e′ : τ2[α := τ1]

iii. Γ1, ξ:κ
′, Γ2 ⊢ ∃α:κ.τ2 : Ω

(b) By (a) and induction:

i. Γ1, Γ2[ξ := τ ′] ⊢ τ1[ξ := τ ′] : κ

ii. Γ1, Γ2[ξ := τ ′] ⊢ e′[ξ := τ ′] : (τ2[α := τ1])[ξ := τ ′]

69

iii. Γ1, Γ2[ξ := τ ′] ⊢ (∃α:κ.τ2)[ξ := τ ′] : Ω

(c) By (b-iii): Γ1, Γ2[ξ := τ ′] ⊢ ∃α:κ.τ2[ξ := τ ′] : Ω

(d) By (b-i), (b-ii), (c), and T-Close:
Γ1, Γ2[ξ := τ ′] ⊢ 〈τ1[ξ := τ ′], e′[ξ := τ ′]〉:∃α:κ.τ2[ξ := τ ′] : ∃α:κ.τ2[ξ := τ ′]

(e) By (d): Γ1, Γ2[ξ := τ ′] ⊢ 〈τ1[ξ := τ ′], e′[ξ := τ ′]〉:(∃α:κ.τ2)[ξ := τ ′] : (∃α:κ.τ2)[ξ :=
τ ′]

(f) By (e): Γ1, Γ2[ξ := τ ′] ⊢ (〈τ1, e
′〉:∃α:κ.τ2)[ξ := τ ′] : (∃α:κ.τ2)[ξ := τ ′]

• Case T-Open: e = let 〈α, x〉 = e1 in e2

(a) By inversion: Γ1, ξ:κ
′, Γ2 ⊢ e1 : ∃α:κ.τ1 and Γ1, ξ:κ

′, Γ2, α:κ, x:τ1 ⊢ e2 : τ where
α /∈ ftv(τ)

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ e1[ξ := τ ′] : (∃α:κ.τ1)[ξ := τ ′] and
Γ1, (Γ2, α:κ, x:τ1)[ξ := τ ′] ⊢ e2[ξ := τ ′] : τ [ξ := τ ′]

(c) By (a) and Environment Validity: Γ1, ξ:κ
′, Γ2, α:κ, x:τ1 ⊢ �

(d) By (c) and Subenvironment Validity: Γ1, ξ:κ
′, Γ2, α:κ ⊢ �

(e) By (d) and inversion of E-Type: α /∈ dom(Γ1, ξ:κ
′, Γ2) and hence α 6= ξ

(f) By assumption and Variable Containment: ftv(τ ′) ⊆ dom(Γ1)

(g) By (f) and (e): α /∈ ftv(τ ′)

(h) By (b), (e), and (g): Γ1, Γ2[ξ := τ ′] ⊢ e1[ξ := τ ′] : ∃α:κ.τ1[ξ := τ ′]

(i) By (b): Γ1, Γ2[ξ := τ ′], α:κ, x:τ1[ξ := τ ′] ⊢ e2[ξ := τ ′] : τ [ξ := τ ′]

(j) By (a) and (g): α /∈ ftv(τ [ξ := τ ′])

(k) By (h), (i), (j), and T-Open: Γ1, Γ2[ξ := τ ′] ⊢ let 〈α, x〉 = e1[ξ := τ ′] in e2[ξ :=
τ ′] : τ [ξ := τ ′]

(l) By (k) and (e): Γ1, Γ2[ξ := τ ′] ⊢ (let 〈α, x〉 = e1 in e2)[ξ := τ ′] : τ [ξ := τ ′]

• Case T-Lazy: e = lazy 〈ζ, x〉 = e1 in e2

(a) By inversion: Γ1, ξ:κ
′, Γ2 ⊢ e1 : ∃α:κ.τ1 (w.l.o.g. α 6= ξ and α /∈ ftv(τ ′)) and

Γ1, ξ:κ
′, Γ2, ζ:κ, x:τ1[α := ζ] ⊢ e2 : τ where ζ /∈ ftv(τ)

(b) By (a) and induction: Γ1, Γ2[ξ := τ ′] ⊢ e1[ξ := τ ′] : (∃α:κ.τ1)[ξ := τ ′] and
Γ1, (Γ2, ζ:κ, x:τ1[α := ζ])[ξ := τ ′] ⊢ e2[ξ := τ ′] : τ [ξ := τ ′]

(c) By (b) and (a): Γ1, Γ2[ξ := τ ′] ⊢ e1[ξ := τ ′] : ∃α:κ.τ1[ξ := τ ′]

(d) By (b): Γ1, Γ2[ξ := τ ′], ζ:κ, x:τ1[α := ζ][ξ := τ ′] ⊢ e2[ξ := τ ′] : τ [ξ := τ ′]

(e) By (a) and Environment Validity: Γ1, ξ:κ
′, Γ2, ζ:κ, x:τ1[α := ζ] ⊢ �

(f) By (e) and Subenvironment Validity: Γ1, ξ:κ
′, Γ2, ζ:κ ⊢ �

(g) By (f) and inversion of E-Type: ζ /∈ dom(Γ1, ξ:κ
′, Γ2) and hence ζ 6= ξ

(h) By assumption and Variable Containment: ftv(τ ′) ⊆ dom(Γ1)

(i) By (h) and (g): ζ /∈ ftv(τ ′)

(j) By (i) and (a): ζ /∈ ftv(τ [ξ := τ ′])

(k) By (c), (d), (j), and T-Open: Γ1, Γ2[ξ := τ ′] ⊢ lazy 〈ζ, x〉 = e1[ξ := τ ′] in e2[ξ :=
τ ′] : τ [ξ := τ ′]

(l) By (k) and (g): Γ1, Γ2[ξ := τ ′] ⊢ (lazy 〈ζ, x〉 = e1 in e2)[ξ := τ ′] : τ [ξ := τ ′]

• Case T-Case: e = tcase e0:τ0 of x:τ ′

0 then e1 else e2

(a) By inversion:

i. Γ1, ξ:κ
′, Γ2 ⊢ e0 : τ0

ii. Γ1, ξ:κ
′, Γ2, x:τ ′

0 ⊢ e1 : τ

iii. Γ1, ξ:κ
′, Γ2 ⊢ e2 : τ

(b) By (a) and induction:

70

i. Γ1, Γ2[ξ := τ ′] ⊢ e0[ξ := τ ′] : τ0[ξ := τ ′]

ii. Γ1, (Γ2, x:τ ′

0)[ξ := τ ′] ⊢ e1[ξ := τ ′] : τ [ξ := τ ′]

iii. Γ1, Γ2[ξ := τ ′] ⊢ e2[ξ := τ ′] : τ [ξ := τ ′]

(c) By (b-ii): Γ1, Γ2[ξ := τ ′], x:τ ′

0[ξ := τ ′] ⊢ e1[ξ := τ ′] : τ [ξ := τ ′]

(d) By (b-i), (c), (b-iii), and T-Case: Γ1, Γ2[ξ := τ ′] ⊢ tcase e0[ξ := τ ′]:τ0[ξ :=
τ ′] of x:τ ′

0[ξ := τ ′] then e1[ξ := τ ′] else e2[ξ := τ ′] : τ [ξ := τ ′]

(e) By (d): Γ1, Γ2[ξ := τ ′] ⊢ (tcase e0:τ0 of x:τ ′

0 then e1 else e2)[ξ := τ ′] : τ [ξ := τ ′]

4. Let τ ≡ τ ′′ and w.l.o.g. (btv(τ) ∪ btv(τ ′)) ∩ {ξ} ∪ ftv(τ ′) = ∅.

• Case Q-Refl:

(a) By inversion: τ = τ ′′

(b) By (a): τ [ξ := τ ′] = τ ′′[ξ := τ ′]

(c) By (b) and Q-Refl: τ [ξ := τ ′] ≡ τ ′′[ξ := τ ′]

• Case Q-Symm:

(a) By inversion: τ ′′ ≡ τ

(b) By (a) and induction: τ ′′[ξ := τ ′] ≡ τ [ξ := τ ′]

(c) By (b) and Q-Symm: τ [ξ := τ ′] ≡ τ ′′[ξ := τ ′]

• Case Q-Trans:

(a) By inversion: τ ≡ τ1 and τ1 ≡ τ ′′

(b) By (a) and induction: τ [ξ := τ ′] ≡ τ1[ξ := τ ′] and τ1[ξ := τ ′] ≡ τ ′′[ξ := τ ′]

(c) By (b) and Q-Trans: τ [ξ := τ ′] ≡ τ ′′[ξ := τ ′]

• Case Q-Arrow: τ = τ1 → τ2 and τ ′′ = τ ′

1 → τ ′

2

(a) By inversion: τ1 ≡ τ ′

1 and τ2 ≡ τ ′

2

(b) By (a) and induction: τ1[ξ := τ ′] ≡ τ ′

1[ξ := τ ′] and τ2[ξ := τ ′] ≡ τ ′

2[ξ := τ ′]

(c) By (b) and Q-Arrow: τ1[ξ := τ ′] → τ2[ξ := τ ′] ≡ τ ′

1[ξ := τ ′] → τ ′

2[ξ := τ ′]

(d) By (c): (τ1 → τ2)[ξ := τ ′] ≡ (τ ′

1 → τ ′

2)[ξ := τ ′]

• Case Q-Times: τ = τ1 × τ2 and τ ′′ = τ ′

1 × τ ′

2

(a) By inversion: τ1 ≡ τ ′

1 and τ2 ≡ τ ′

2

(b) By (a) and induction: τ1[ξ := τ ′] ≡ τ ′

1[ξ := τ ′] and τ2[ξ := τ ′] ≡ τ ′

2[ξ := τ ′]

(c) By (b) and Q-Times: τ1[ξ := τ ′] × τ2[ξ := τ ′] ≡ τ ′

1[ξ := τ ′] × τ ′

2[ξ := τ ′]

(d) By (c): (τ1 × τ2)[ξ := τ ′] ≡ (τ ′

1 × τ ′

2)[ξ := τ ′]

• Case Q-Univ: τ = ∀α:κ.τ1 and τ ′′ = ∀α:κ.τ2

(a) By inversion: τ1 ≡ τ2

(b) By (a) and induction: τ1[ξ := τ ′] ≡ τ2[ξ := τ ′]

(c) By (b) and Q-Univ: ∀α:κ.τ1[ξ := τ ′] ≡ ∀α:κ.τ2[ξ := τ ′]

(d) By (c) and assumption: (∀α:κ.τ1)[ξ := τ ′] ≡ (∀α:κ.τ2[α := α′])[ξ := τ ′]

• Case Q-Exist: τ = ∃α:κ.τ1 and τ ′′ = ∃α:κ.τ2

(a) By inversion: τ1 ≡ τ2

(b) By (a) and induction: τ1[ξ := τ ′] ≡ τ2[ξ := τ ′]

(c) By (b) and Q-Exist: ∃α:κ.τ1[ξ := τ ′] ≡ ∃α:κ.τ2[ξ := τ ′]

(d) By (c) and assumption: (∃α:κ.τ1)[ξ := τ ′] ≡ (∃α:κ.τ2)[ξ := τ ′]

• Case Q-Abs: τ = λα:κ.τ1 and τ ′′ = λα:κ.τ2

(a) By inversion: τ1 ≡ τ2

71

(b) By (a) and induction: τ1[α := α′][ξ := τ ′] ≡ τ2[α := α′][ξ := τ ′]

(c) By (b) and Q-Abs: λα:κ.τ1[ξ := τ ′] ≡ λα:κ.τ2[ξ := τ ′]

(d) By (c) and assumption: (λα:κ.τ1)[ξ := τ ′] ≡ (λα:κ.τ2)[ξ := τ ′]

• Case Q-App: τ = τ1 τ2 and τ ′′ = τ ′

1 τ ′

2

(a) By inversion: τ1 ≡ τ ′

1 and τ2 ≡ τ ′

2

(b) By (a) and induction: τ1[ξ := τ ′] ≡ τ ′

1[ξ := τ ′] and τ2[ξ := τ ′] ≡ τ ′

2[ξ := τ ′]

(c) By (b) and Q-App: τ1[ξ := τ ′] τ2[ξ := τ ′] ≡ τ ′

1[ξ := τ ′] τ ′

2[ξ := τ ′]

(d) By (c): (τ1 τ2)[ξ := τ ′] ≡ (τ ′

1 τ ′

2)[ξ := τ ′]

• Case Q-Beta: τ = (λα:κ.τ1) τ2 and τ ′′ = τ1[α := τ2] (w.l.o.g. α /∈ ftv(τ ′) and α 6= ξ)

(a) By Q-Beta: (λα:κ.τ1[ξ := τ ′]) τ2[ξ := τ ′] ≡ τ1[ξ := τ ′][α := τ2[ξ := τ ′]]

(b) By (a) and Substitution: (λα:κ.τ1[ξ := τ ′]) τ2[ξ := τ ′] ≡ τ1[α := τ2][ξ := τ ′]

(c) By (b): (λα:κ.τ1)[ξ := τ ′] τ2[ξ := τ ′] ≡ τ1[α := τ2][ξ := τ ′]

(d) By (c): ((λα:κ.τ1) τ2)[ξ := τ ′] ≡ τ1[α := τ2][ξ := τ ′]

• Case Q-Pair: τ = 〈τ1, τ2〉 and τ ′′ = 〈τ ′

1, τ
′

2〉

(a) By inversion: τ1 ≡ τ ′

1 and τ2 ≡ τ ′

2

(b) By (a) and induction: τ1[ξ := τ ′] ≡ τ ′

1[ξ := τ ′] and τ2[ξ := τ ′] ≡ τ ′

2[ξ := τ ′]

(c) By (b) and Q-Pair: 〈τ1[ξ := τ ′], τ2[ξ := τ ′]〉 ≡ 〈τ ′

1[ξ := τ ′], τ ′

2[ξ := τ ′]〉

(d) By (c): 〈τ1, τ2〉[ξ := τ ′] ≡ 〈τ ′

1, τ
′

2〉[ξ := τ ′]

• Case Q-Proj1a: τ = τ1.1 and τ ′′ = τ2.1

(a) By inversion: τ1 ≡ τ2

(b) By (a) and induction: τ1[ξ := τ ′] ≡ τ2[ξ := τ ′]

(c) By (b) and Q-Proj1a: τ1[ξ := τ ′].1 ≡ τ2[ξ := τ ′].1

(d) By (c): τ1.1[ξ := τ ′] ≡ τ2.1[ξ := τ ′]

• Case Q-Proj1b: τ = 〈τ ′, τ2〉.1

(a) By Q-Proj1b: 〈τ ′[ξ := τ ′], τ2[ξ := τ ′]〉.1 ≡ τ ′[ξ := τ ′]

(b) By (a): 〈τ ′, τ2〉.1[ξ := τ ′] ≡ τ ′[ξ := τ ′]

• Case Q-Proj2a: τ = τ1.2 and τ ′ = τ2.2

(a) By inversion: τ1 ≡ τ2

(b) By (a) and induction: τ1[ξ := τ ′] ≡ τ2[ξ := τ ′]

(c) By (b) and Q-Proj2a: τ1[ξ := τ ′].2 ≡ τ2[ξ := τ ′].2

(d) By (c): τ1.2[ξ := τ ′] ≡ τ2.2[ξ := τ ′]

• Case Q-Proj2b: τ = 〈τ1, τ
′〉.2

(a) By Q-Proj2b: 〈τ1[ξ := τ ′], τ ′[ξ := τ ′]〉.2 ≡ τ ′[ξ := τ ′]

(b) By (a): 〈τ1, τ
′〉.2[ξ := τ ′] ≡ τ ′[ξ := τ ′]

Proposition 8 (Term Substitution). If Γ ⊢ e′ : τ ′ and Γ, x:τ ′, Γ′ ⊢ e : τ , then Γ, Γ′ ⊢ e[x := e′] :
τ .

Proof. By induction on the derivation of Γ1, x:τ ′, Γ2 ⊢ e : τ .

• Case T-Equiv:

1. By inversion: Γ1, x:τ ′, Γ2 ⊢ e : τ1 and τ1 ≡ τ and Γ1, x:τ ′, Γ2 ⊢ τ : Ω

2. By (1), assumption, and induction: Γ1, Γ2 ⊢ e[x := e′] : τ1

72

3. By (2) and Environment Validity: Γ1, Γ2 ⊢ �

4. By (1) and Variable Containment: ftv(τ) ⊆ dom(Γ1, x:τ ′, Γ2) and hence ftv(τ) ⊆
dom(Γ1, Γ2)

5. By (1), (3), (4), and Strengthening: Γ1, Γ2 ⊢ τ : Ω

6. By (2), (1), (5), and T-Equiv: Γ1, Γ2 ⊢ e[x := e′] : τ

• Case T-Var:

– Subcase e = x and hence τ = τ ′:

1. By inversion: Γ1, x:τ ′, Γ2 ⊢ �

2. By assumption: Γ1 ⊢ e′ : τ

3. By assumption and Environment Validity: Γ1, x:τ ′, Γ2 ⊢ �

4. By (3) and Strengthening: Γ1, Γ2 ⊢ �

5. By (2), (4), and Weakening: Γ1, Γ2 ⊢ e′ : τ

– Subcase e = x′ 6= x:

1. By inversion: τ = (Γ1, x:τ ′, Γ2)(x
′) and Γ1, x:τ ′, Γ2 ⊢ �

2. By (1): (Γ1, Γ2)(x
′) = τ

3. By (1) and Strengthening: Γ1, Γ2 ⊢ �

4. By (2), (3), and T-Var: Γ1, Γ2 ⊢ x′ : τ

• Case T-Abs: e = λx′:τ1.e1 and τ = τ1 → τ2

1. By inversion: Γ1, x:τ ′, Γ2, x
′:τ1 ⊢ e1 : τ2

2. By (1), assumption, and induction: Γ1, Γ2, x
′:τ1 ⊢ e1[x := e′] : τ2

3. By (2) and T-Abs: Γ1, Γ2 ⊢ λx′:τ1.e1[x := e′] : τ1 → τ2

4. By (1) and Environment Validity: Γ1, x:τ ′, Γ2, x
′:τ1 ⊢ �

5. By (4) and inversion of E-Term: x′ /∈ dom(Γ1, x:τ ′, Γ2, x
′:τ1) and hence x′ 6= x

6. By assumption and Variable Containment: fv(e′) ⊆ dom(Γ1)

7. By (5) and (6): x′ /∈ fv(e′)

8. By (3), (5), and (7): Γ1, Γ2 ⊢ (λx′:τ1.e1)[x := e′] : τ1 → τ2

• Case T-App: e = e1 e2

1. By inversion: Γ1, x:τ ′, Γ2 ⊢ e1 : τ2 → τ and Γ1, x:τ ′, Γ2 ⊢ e2 : τ2

2. By (1), assumption, and induction: Γ1, Γ2 ⊢ e1[x := e′] : τ2 → τ and Γ1, Γ2 ⊢ e2[x :=
e′] : τ2

3. By (2) and T-App: Γ1, Γ2 ⊢ e1[x := e′] e2[x := e′] : τ

4. By (3): Γ1, Γ2 ⊢ (e1 e2)[x := e′] : τ

• Case T-Gen: e = λα:κ.e1 and τ = ∀α:κ.τ1

1. By inversion: Γ1, x:τ ′, Γ2, α:κ ⊢ e1 : τ1

2. By (1), assumption, and induction: Γ1, Γ2, α:κ ⊢ e1[x := e′] : τ1

3. By (2) and T-Gen: Γ1, Γ2 ⊢ λα:κ.e1[x := e′] : ∀α:κ.τ1

4. By (3): Γ1, Γ2 ⊢ (λα:κ.e1)[x := e′] : ∀α:κ.τ1

• Case T-Inst: e = e1 τ2

73

1. By inversion: Γ1, x:τ ′, Γ2 ⊢ e1 : ∀α:κ.τ1 and Γ1, x:τ ′, Γ2 ⊢ τ2 : κ where τ = τ1[α := τ2]

2. By (1), assumption, and induction: Γ1, Γ2 ⊢ e1[x := e′] : ∀α:κ.τ1

3. By (2) and Environment Validity: Γ1, Γ2 ⊢ �

4. By (1) and Variable Containment: ftv(τ2) ⊆ dom(Γ1, x:τ ′, Γ2) and hence ftv(τ2) ⊆
dom(Γ1, Γ2)

5. By (1), (3), (4), and Strengthening: Γ1, Γ2 ⊢ τ2 : κ

6. By (2), (5), and T-Inst: Γ1, Γ1 ⊢ e1[x := e′] τ2 : τ1[α := τ2]

7. By (6): Γ1, Γ1 ⊢ (e1 τ2)[x := e′] : τ1[α := τ2]

• Case T-Pair: e = 〈e1, e2〉 and τ = τ1 × τ2

1. By inversion: Γ1, x:τ ′, Γ2 ⊢ e1 : τ1 and Γ1, x:τ ′, Γ2 ⊢ e2 : τ2

2. By (1), assumption, and induction: Γ1, Γ2 ⊢ e1[x := e′] : τ1 and Γ1, Γ2 ⊢ e2[x := e′] :
τ2

3. By (2) and T-Pair: Γ1, Γ2 ⊢ 〈e1[x := e′], e2[x := e′]〉 : τ

4. By (3): Γ1, Γ2 ⊢ 〈e1, e2〉[x := e′] : τ

• Case T-Proj: e = let 〈x1, x2〉 = e1 in e2

1. By inversion: Γ1, x:τ ′, Γ2 ⊢ e1 : τ1 × τ2 and Γ1, x:τ ′, Γ2, x1:τ1, x2:τ2 ⊢ e2 : τ

2. By (1), assumption, and induction: Γ1, Γ2 ⊢ e1[x := e′] : τ1×τ2 and Γ1, Γ2, x1:τ1, x2:τ2 ⊢
e2[x := e′] : τ

3. By (2) and T-Proj: Γ1, Γ2 ⊢ let 〈x1, x2〉 = e1[x := e′] in e2[x := e′] : τ

4. By (1) and Environment Validity: Γ1, x:τ ′, Γ2, x1:τ1, x2:τ2 ⊢ �

5. By (4) and inversion of E-Term: x2 /∈ dom(Γ1, x:τ ′, Γ2, x1:τ1) and hence x2 6= x

6. By (4) and Subenvironment Validity: Γ1, x:τ ′, Γ2, x1:τ1 ⊢ �

7. By (6) and inversion of E-Term: x1 /∈ dom(Γ1, x:τ ′, Γ2) and hence x1 6= x

8. By assumption and Variable Containment: fv(e′) ⊆ dom(Γ1)

9. By (5), (7), and (8): x1 /∈ fv(e′) and x2 /∈ fv(e′)

10. By (3), (5), (7), and (9): Γ1, Γ2 ⊢ (let 〈x1, x2〉 = e1 in e2)[x := e′] : τ

• Case T-Close: e = 〈τ1, e
′〉:τ where τ = ∃α:κ.τ2

1. By inversion:

(a) Γ1, x:τ ′, Γ2 ⊢ τ1 : κ

(b) Γ1, x:τ ′, Γ2 ⊢ e′ : τ2[α := τ1]

(c) Γ1, x:τ ′, Γ2 ⊢ τ : Ω

2. By (1-b) and induction: Γ1, Γ2 ⊢ e′[x := e′] : τ2[α := τ1]

3. By (2) and Environment Validity: Γ1, Γ2 ⊢ �

4. By (1-a) and Variable Containment: ftv(τ1) ⊆ dom(Γ1, x:τ ′, Γ2) and hence ftv(τ1) ⊆
dom(Γ1, Γ2)

5. By (1-a), (3), (4), and Strengthening: Γ1, Γ2 ⊢ τ1 : κ

6. By (1-c) and Variable Containment: ftv(τ) ⊆ dom(Γ1, x:τ ′, Γ2) and hence ftv(τ) ⊆
dom(Γ1, Γ2)

7. By (1-c), (3), (6), and Strengthening: Γ1, Γ2 ⊢ τ : Ω

74

8. By (5), (2), (7), and T-Close: Γ1, Γ2 ⊢ 〈τ1, e[x := e′]〉:∃α:κ.τ2 : ∃α:κ.τ2

9. By (8): Γ1, Γ2 ⊢ (〈τ1, e〉:∃α:κ.τ2)[x := e′] : ∃α:κ.τ2

• Case T-Open: e = let 〈α, x′〉 = e1 in e2

1. By inversion: Γ1, x:τ ′, Γ2 ⊢ e1 : ∃α:κ.τ1 and Γ1, x:τ ′, Γ2, α:κ, x′:τ1 ⊢ e2 : τ where
α /∈ ftv(τ)

2. By (1), assumption, and induction: Γ1, Γ2 ⊢ e1[x := e′] : ∃α:κ.τ1 and Γ1, Γ2, α:κ, x′:τ1 ⊢
e2[x := e′] : τ

3. By (2), (1), and T-Open: Γ1, Γ2 ⊢ let 〈α, x′〉 = e1[x := e′] in e2[x := e′] : τ

4. By (1) and Environment Validity: Γ1, x:τ ′, Γ2, α:κ, x′:τ1 ⊢ �

5. By (4) and inversion of E-Term: x′ /∈ dom(Γ1, x:τ ′, Γ2, α:κ) and hence x′ 6= x

6. By assumption and Variable Containment: fv(e′) ⊆ dom(Γ1)

7. By (5) and (6): x′ /∈ ftv(e′)

8. By (3), (5), and (7): Γ1, Γ2 ⊢ (let 〈α, x′〉 = e1 in e2)[x := e′] : τ

• Case T-Lazy: e = lazy 〈ζ, x′〉 = e1 in e2

1. By inversion: Γ1, x:τ ′, Γ2 ⊢ e1 : ∃α:κ.τ1 and Γ1, x:τ ′, Γ2, ζ:κ, x′:τ1[α := ζ] ⊢ e2 : τ
where ζ /∈ ftv(τ)

2. By (1), assumption, and induction:
Γ1, Γ2 ⊢ e1[x := e′] : ∃α:κ.τ1 and Γ1, Γ2, ζ:κ, x′:τ1[α := ζ] ⊢ e2[x := e′] : τ

3. By (2), (1), and T-Lazy: Γ1, Γ2 ⊢ lazy 〈ζ, x′〉 = e1[x := e′] in e2[x := e′] : τ

4. By (1) and Environment Validity: Γ1, x:τ ′, Γ2, ζ:κ, x′:τ1[α := ζ] ⊢ �

5. By (4) and inversion of E-Term: x′ /∈ dom(Γ1, x:τ ′, Γ2, ζ:κ) and hence x′ 6= x

6. By assumption and Variable Containment: fv(e′) ⊆ dom(Γ1)

7. By (5) and (6): x′ /∈ ftv(e′)

8. By (3) and (5): Γ1, Γ2 ⊢ (lazy 〈ζ, x′〉 = e1 in e2)[x := e′] : τ

• Case T-Case: e = tcase e0:τ0 of x′:τ ′

0 then e1 else e2

1. By inversion:

(a) Γ1, x:τ ′, Γ2 ⊢ e0 : τ0

(b) Γ1, x:τ ′, Γ2, x
′:τ ′

0 ⊢ e1 : τ

(c) Γ1, x:τ ′, Γ2 ⊢ e2 : τ

2. By (1), assumption, and induction:

(a) Γ1, Γ2 ⊢ e0[x := e′] : τ0

(b) Γ1, Γ2, x
′:τ ′

0 ⊢ e1[x := e′] : τ

(c) Γ1, Γ2 ⊢ e2[x := e′] : τ

3. By (2) and T-Case: Γ1, Γ2 ⊢ tcase e0[x := e′]:τ0 of x′:τ ′

0 then e1[x := e′] else e2[x :=
e′] : τ

4. By (1-b) and Environment Validity: Γ1, x:τ ′, Γ2, x
′:τ ′

0 ⊢ �

5. By (4) and inversion of E-Term: x′ /∈ dom(Γ1, x:τ ′, Γ2) and hence x′ 6= x

6. By assumption and Variable Containment: fv(e′) ⊆ dom(Γ1)

7. By (5) and (6): x′ /∈ ftv(e′)

75

8. By (3) and (5): Γ1, Γ2 ⊢ (tcase e0:τ0 of x′:τ ′

0 then e1 else e2)[x := e′] : τ

Proposition 9 (Validity). If Γ ⊢ e : τ , then Γ ⊢ τ : Ω.

Proof. By induction on the derivation.

• Case T-Equiv:

1. By inversion: Γ ⊢ τ : Ω

• Case T-Var: e = x

1. By inversion: τ = Γ(x) and Γ ⊢ �

2. By (1): Γ = Γ1, x:τ, Γ2

3. By (1), (2), and Subenvironment Validity: Γ1, x:τ ⊢ �

4. By (3) and inversion of E-Term: Γ1 ⊢ τ : Ω

5. By (1), (2), (4), and Weakening: Γ ⊢ τ : Ω

• Case T-Abs: e = λx:τ1.e1 and τ = τ1 → τ2

1. By inversion: Γ, x:τ1 ⊢ e1 : τ2

2. By (1) and induction: Γ, x:τ1 ⊢ τ2 : Ω

3. By assumption and Environment Validity: Γ ⊢ �

4. By (2) and Variable Containment: ftv(τ2) ⊆ dom(Γ, x:τ1) and hence ftv(τ2) ⊆
dom(Γ)

5. By (2), (3), (4), and Strengthening: Γ ⊢ τ2 : Ω

6. By (2) and Environment Validity: Γ, x:τ1 ⊢ �

7. By (6) and inversion of E-Term: Γ ⊢ τ1 : Ω

8. By (5), (7), and K-Arrow: Γ ⊢ τ1 → τ2 : Ω

• Case T-App: e = e1 e2

1. By inversion: Γ ⊢ e1 : τ ′ → τ

2. By (1) and induction: Γ ⊢ τ ′ → τ : Ω

3. By (2) and inversion of K-Arrow: Γ ⊢ τ : Ω

• Case T-Gen: e = λα:κ.e1 and τ = ∀α:κ.τ1

1. By inversion: Γ, α:κ ⊢ e1 : τ1

2. By (1) and induction: Γ, α:κ ⊢ τ1 : Ω

3. By (2) and K-Univ: Γ ⊢ ∀α:κ.τ1 : Ω

• Case T-Inst: e = e1 τ2

1. By inversion: Γ ⊢ e1 : ∀α:κ.τ1 and Γ ⊢ τ2 : κ where τ = τ1[α := τ2] (w.l.o.g.
α /∈ dom(Γ))

2. By (1) and induction: Γ ⊢ ∀α:κ.τ1 : Ω

3. By (2), (1), and inversion of K-Univ: Γ, α:κ ⊢ τ1 : Ω

4. By (3), (1), and Type Substitution: Γ ⊢ τ1[α := τ2] : Ω

76

• Case T-Pair: e = 〈e1, e2〉 and τ = τ1 × τ2

1. By inversion: Γ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2

2. By (1) and induction: Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω

3. By (2) and K-Times: Γ ⊢ τ1 × τ2 : Ω

• Case T-Proj: e = let 〈x1, x2〉 = e1 in e2

1. By inversion: Γ, x1:τ1, x2:τ2 ⊢ e2 : τ

2. By (1) and induction: Γ, x1:τ1, x2:τ2 ⊢ τ : Ω

3. By assumption and Environment Validity: Γ ⊢ �

4. By (2) and Variable Containment: ftv(τ) ⊆ dom(Γ, x1:τ1, x2:τ2) and hence ftv(τ) ⊆
dom(Γ)

5. By (2), (3), (4), and Strengthening: Γ ⊢ τ : Ω

• Case T-Close: e = 〈τ1, e
′〉:τ where τ = ∃α:κ.τ2

1. By inversion: Γ ⊢ ∃α:κ.τ2 : Ω

• Case T-Open: e = let 〈α, x〉 = e1 in e2

1. By inversion: Γ, α:κ, x:τ ′ ⊢ e2 : τ

2. By (1) and induction: Γ, α:κ, x:τ ′ ⊢ τ : Ω

3. By assumption and Environment Validity: Γ ⊢ �

4. By assumption and Variable Containment: ftv(τ) ⊆ dom(Γ)

5. By (2), (3), (4), and Strengthening: Γ ⊢ τ : Ω

• Case T-Lazy: e = lazy 〈ζ, x〉 = e1 in e2

1. By inversion: Γ, ζ:κ, x:τ ′[α := ζ] ⊢ e2 : τ

2. By (1) and induction: Γ, ζ:κ, x:τ ′[α := ζ] ⊢ τ : Ω

3. By assumption and Environment Validity: Γ ⊢ �

4. By assumption and Variable Containment: ftv(τ) ⊆ dom(Γ)

5. By (2), (3), (4), and Strengthening: Γ ⊢ τ : Ω

• Case T-Case: e = tcase e0:τ0 of x:τ ′

0 then e1 else e2

1. By inversion: Γ ⊢ e2 : τ

2. By (1) and induction: Γ ⊢ τ : Ω

Lemma 1 (Typing Inversion).

• If Γ ⊢ x : τ , then τ ≡ Γ(x) and Γ ⊢ �.

• If Γ ⊢ λx:τ.e : τ ′ and x /∈ dom(Γ), then Γ, x:τ ⊢ e : τ ′′ and τ ′ ≡ τ → τ ′′.

• If Γ ⊢ e1 e2 : τ , then Γ ⊢ e1 : τ ′ → τ and Γ ⊢ e2 : τ ′.

• If Γ ⊢ λα:κ.e : τ and α /∈ dom(Γ), then Γ, α:κ ⊢ e : τ ′ and τ ≡ ∀α:κ.τ ′.

• If Γ ⊢ e τ ′ : τ , then Γ ⊢ e : ∀α:κ.τ1 where α /∈ dom(Γ) and τ ≡ τ1[α := τ ′] where Γ ⊢ τ ′ : κ.

77

• If Γ ⊢ 〈e1, e2〉 : τ , then Γ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2 where τ ≡ τ1 × τ2.

• If Γ ⊢ 〈τ1, e〉:τ2 : τ , then Γ ⊢ τ1 : κ and Γ ⊢ e : τ3[α := τ1] where τ2 = ∃α:κ.τ3 and τ ≡ τ2

and Γ ⊢ τ2 : Ω.

• If Γ ⊢ let 〈x1, x2〉 = e1 in e2 : τ and {x1, x2} ∩ dom(Γ) = ∅, then Γ ⊢ e1 : τ1 × τ2 and
Γ, x1:τ1, x2:τ2 ⊢ e2 : τ .

• If Γ ⊢ let 〈α, x〉 = e1 in e2 : τ and {α, x} ∩ dom(Γ) = ∅, then Γ ⊢ e1 : ∃α:κ.τ ′ and
Γ, α:κ, x:τ ′ ⊢ e2 : τ ′′ where α /∈ ftv(τ ′′) and τ ′′ ≡ τ .

• If Γ ⊢ lazy 〈ζ, x〉 = e1 in e2 : τ and {ζ, x} ∩ dom(Γ) = ∅, then Γ ⊢ e1 : ∃α:κ.τ ′ where
α /∈ dom(Γ) and Γ, ζ:κ, x:τ ′[α := ζ] ⊢ e2 : τ ′′ where ζ /∈ ftv(τ ′′) and τ ′′ ≡ τ .

• If Γ ⊢ tcase e:τ0 of x:τ ′

0 then e1 else e2 : τ and x /∈ dom(Γ), then Γ ⊢ e : τ0 and
Γ, x:τ ′

0 ⊢ e1 : τ and Γ ⊢ e2 : τ .

Proof. By induction on the corresponding derivation.

• Let Γ ⊢ x : τ .

– Case T-Var: τ = Γ(x)

1. By inversion: Γ ⊢ �

2. By Q-Refl: τ ≡ Γ(x) and Γ ⊢ �

– Case T-Equiv:

1. By inversion: Γ ⊢ x : τ ′ and τ ′ ≡ τ

2. By (1) and induction: τ ′ ≡ Γ(x) and Γ ⊢ �

3. By (1), (2), Q-Symm, and Q-Trans: τ ≡ Γ(x)

• Let Γ ⊢ λx:τ.e : τ ′ where x /∈ dom(Γ).

– Case T-Abs: τ ′ = τ → τ ′′

1. By inversion: Γ, x:τ ⊢ e : τ ′′

2. By Q-Refl: τ ′ ≡ τ → τ ′′

– Case T-Equiv:

1. By inversion: Γ ⊢ λx:τ.e : τ1 and τ1 ≡ τ ′

2. By (1) and induction: Γ, x:τ ⊢ e : τ ′′ and τ1 ≡ τ → τ ′′

3. By (1), (2), Q-Symm, and Q-Trans: τ ′ ≡ τ → τ ′′

• Let Γ ⊢ e1 e2 : τ .

– Case T-App:

1. By inversion: Γ ⊢ e1 : τ ′ → τ and Γ ⊢ e2 : τ ′

– Case T-Equiv:

1. By inversion: Γ ⊢ e1 e2 : τ ′′ and τ ′′ ≡ τ where Γ ⊢ τ : Ω

2. By (1) and induction: Γ ⊢ e1 : τ ′ → τ ′′ and Γ ⊢ e2 : τ ′

3. By (1), (2), Q-Refl, and Q-Arrow: τ ′ → τ ′′ ≡ τ ′ → τ

4. By (2) and Validity: Γ ⊢ τ ′ : Ω

5. By (1), (4), and K-Arrow: Γ ⊢ τ ′ → τ : Ω

6. By (2), (3), (5), and T-Equiv: Γ ⊢ e1 : τ ′ → τ

• Let Γ ⊢ λα:κ.e : τ where α /∈ dom(Γ).

78

– Case T-Gen: τ = ∀α:κ.τ ′

1. By inversion: Γ, α:κ ⊢ e : τ ′

2. By Q-Refl: τ ≡ ∀α:κ.τ ′

– Case T-Equiv:

1. By inversion: Γ ⊢ λα:κ.e : τ ′′ and τ ′′ ≡ τ

2. By (1) and induction: Γ, α:κ ⊢ e : τ ′ and τ ′′ ≡ ∀α:κ.τ ′

3. By (1), (2), Q-Symm, and Q-Trans: τ ≡ ∀α:κ.τ ′

• Let Γ ⊢ e τ ′ : τ .

– Case T-Inst:

1. By inversion: Γ ⊢ e : ∀α:κ.τ1 (w.l.o.g. α /∈ dom(Γ)) and τ = τ1[α := τ ′] where
Γ ⊢ τ ′ : κ

2. By (1) and Q-Refl: τ ≡ τ1[α := τ ′]

– Case T-Equiv:

1. By inversion: Γ ⊢ e τ ′ : τ ′′ and τ ′′ ≡ τ

2. By (1) and induction: Γ ⊢ e : ∀α:κ.τ1 where α /∈ dom(Γ) and τ ′′ ≡ τ1[α := τ ′]
where Γ ⊢ τ ′ : κ

3. By (1), (2), Q-Symm, and Q-Trans: τ ≡ τ1[α := τ ′]

• Let Γ ⊢ 〈e1, e2〉 : τ .

– Case T-Pair: τ = τ1 × τ2

1. By inversion: Γ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2

2. By (1) and Q-Refl: τ ≡ τ1 × τ2

– Case T-Equiv:

1. By inversion: Γ ⊢ 〈e1, e2〉 : τ ′ and τ ′ ≡ τ

2. By (1) and induction: Γ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2 where τ ′ ≡ τ1 × τ2

3. By (1), (2), Q-Symm, and Q-Trans: τ ≡ τ1 × τ2

• Let Γ ⊢ 〈τ1, e〉:τ2 : τ .

– Case T-Close: τ = τ2 = ∃α:κ.τ3

1. By inversion: Γ ⊢ τ1 : κ and Γ ⊢ e : τ3[α := τ1] where Γ ⊢ τ2 : Ω

2. By Q-Refl: τ ≡ τ2

– Case T-Equiv:

1. By inversion: Γ ⊢ 〈τ1, e〉:τ2 : τ ′ and τ ′ ≡ τ

2. By (1) and induction: Γ ⊢ τ1 : κ and Γ ⊢ e : τ3[α := τ1] where τ2 = ∃α:κ.τ3 and
τ ′ ≡ τ2 and Γ ⊢ τ2 : Ω.

3. By (1), (2), Q-Symm, and Q-Trans: τ ≡ τ2

• Let Γ ⊢ let 〈x1, x2〉 = e1 in e2 : τ where {x1, x2} ∩ dom(Γ) = ∅.

– Case T-Proj:

1. By inversion: Γ ⊢ e1 : τ1 × τ2 and Γ, x1:τ1, x2:τ2 ⊢ e2 : τ

– Case T-Equiv:

1. By inversion: Γ ⊢ let 〈x1, x2〉 = e1 in e2 : τ ′ and τ ′ ≡ τ where Γ ⊢ τ : Ω

2. By (1) and induction: Γ ⊢ e1 : τ1 × τ2 and Γ, x1:τ1, x2:τ2 ⊢ e2 : τ ′

79

3. By (2) and Environment Validity: Γ, x1:τ1, x2:τ2 ⊢ �

4. By (1), (3), and Weakening: Γ, x1:τ1, x2:τ2 ⊢ τ : Ω

5. By (1), (2), (4), and T-Equiv: Γ, x1:τ1, x2:τ2 ⊢ e2 : τ

• Let Γ ⊢ let 〈α, x〉 = e1 in e2 : τ where {α, x} ∩ dom(Γ) = ∅.

– Case T-Open:

1. By inversion: Γ ⊢ e1 : ∃α:κ.τ1 and Γ, α:κ, x:τ1 ⊢ e2 : τ where α /∈ ftv(Γ)

2. By Q-Refl: τ ≡ τ

– Case T-Equiv:

1. By inversion: Γ ⊢ let 〈α, x〉 = e1 in e2 : τ ′ and τ ′ ≡ τ

2. By (1) and induction: Γ ⊢ e1 : ∃α:κ.τ1 and Γ, α:κ, x:τ1 ⊢ e2 : τ ′ where α /∈ ftv(τ ′)

• Let Γ ⊢ lazy 〈ζ, x〉 = e1 in e2 : τ where {ζ, x} ∩ dom(Γ) = ∅.

– Case T-Lazy:

1. By inversion: Γ ⊢ e1 : ∃α:κ.τ1 (w.l.o.g. α /∈ dom(Γ)) and Γ, ζ:κ, x:τ1[α := ζ] ⊢
e2 : τ where ζ /∈ ftv(Γ)

2. By Q-Refl: τ ≡ τ

– Case T-Equiv:

1. By inversion: Γ ⊢ lazy 〈ζ, x〉 = e1 in e2 : τ ′ and τ ′ ≡ τ

2. By (1) and induction: Γ ⊢ e1 : ∃α:κ.τ1 with α /∈ dom(Γ) and Γ, ζ:κ, x:τ1[α := ζ] ⊢
e2 : τ ′ where ζ /∈ ftv(τ ′)

• Let Γ ⊢ tcase e0:τ0 of x:τ ′

0 then e1 else e2 : τ where x /∈ dom(Γ).

– Case T-Case:

1. By inversion:

(a) Γ ⊢ e0 : τ0

(b) Γ, x:τ ′

0 ⊢ e1 : τ

(c) Γ ⊢ e2 : τ

– Case T-Equiv:

1. By inversion: Γ ⊢ tcase e0:τ0 of x:τ ′

0 then e1 else e2 : τ ′ where τ ′ ≡ τ and Γ ⊢ τ : Ω

2. By (1) and induction:

(a) Γ ⊢ e0 : τ0

(b) Γ, x:τ ′

0 ⊢ e1 : τ ′

(c) Γ ⊢ e2 : τ ′

3. By (2b) and Environment Validity: Γ, x:τ ′

0 ⊢ �

4. By (3), (1), and Weakening: Γ, x:τ ′

0 ⊢ τ : Ω

5. By (4), (1), (2b), and T-Equiv: Γ, x:τ ′

0 ⊢ e1 : τ

6. By (1), (2c), and T-Equiv: Γ ⊢ e2 : τ

Lemma 2 (Parallel Reduction). • τ1 ≡ τ2 iff τ1 ⇚⇛
∗ τ2

• If τ1 ≡ τ2, then there is some τ such that τ1 ⇛
∗ τ and τ2 ⇛

∗ τ .

Proof. See [18].

80

Lemma 3 (Preservation of Shapes Under Reduction).

1. If ξ ⇛∗ τ ′, then τ ′ = ξ.

2. If τ1 → τ2 ⇛
∗ τ ′, then τ ′ = τ ′

1 → τ ′

2 with τ1 ⇛
∗ τ ′

1 and τ2 ⇛
∗ τ ′

2.

3. If τ1 × τ2 ⇛
∗ τ ′, then τ ′ = τ ′

1 × τ ′

2 with τ1 ⇛
∗ τ ′

1 and τ2 ⇛
∗ τ ′

2.

4. If 〈τ1, τ2〉⇛∗ τ ′, then τ ′ = 〈τ ′

1, τ
′

2〉 with τ1 ⇛
∗ τ ′

1 and τ2 ⇛
∗ τ ′

2.

5. If ∀α:κ.τ1 ⇛
∗ τ ′, then τ ′ = ∀α:κ.τ ′

1 with τ1 ⇛
∗ τ ′

1.

6. If ∃α:κ.τ1 ⇛
∗ τ ′, then τ ′ = ∃α:κ.τ ′

1 with τ1 ⇛
∗ τ ′

1.

7. If λα:κ.τ1 ⇛
∗ τ ′, then τ ′ = λα:κ.τ ′

1 with τ1 ⇛
∗ τ ′

1.

Proof. See [18].

Lemma 4 (Type Equivalence Inversion).

• If ∃α:κ1.τ1 ≡ ∃α:κ2.τ2, then κ1 = κ2 and τ1 ≡ τ2.

• If τ1 → τ2 ≡ τ ′

1 → τ ′

2, then τ1 ≡ τ ′

1 and τ2 ≡ τ ′

2.

• If ∀α:κ1.τ1 ≡ ∀α:κ2.τ2, then κ1 = κ2 and τ1 ≡ τ2.

• If τ1 × τ2 ≡ τ ′

1 × τ ′

2, then τ1 ≡ τ ′

1 and τ2 ≡ τ ′

2.

• If 〈τ1, τ2〉 ≡ 〈τ ′

1, τ
′

2〉, then τ1 ≡ τ ′

1 and τ2 ≡ τ ′

2.

Proof. Follows from lemma 3 (Preservation of Shapes Under Reduction).

• Let ∃α:κ1.τ1 ≡ ∃α:κ2.τ2.

1. By Parallel Reduction: ∃α:κ1.τ1 ⇛
∗ τ and ∃α:κ2.τ2 ⇛

∗ τ .

2. By (1) and Preservation of Shapes Under Reduction: τ = ∃α:κ1.τ
′

1 with τ1 ⇛
∗ τ ′

1 and
τ = ∃α:κ2.τ

′

2 with τ2 ⇛
∗ τ ′

2

3. By (2): κ1 = κ2 and τ ′

1 = τ ′

2

4. By (3) and (2): τ1 ⇚⇛
∗ τ2

5. By (4) and Parallel Reduction: τ1 ≡ τ2

• Other parts analogous.

Lemma 5 (Shape Consistency).

• If τ ≡ τ1 → τ2, then τ = τ ′

1 → τ ′

2 or τ = τ ′

1 τ ′

2 or τ = τ ′.1 or τ = τ ′.2.

• If τ ≡ τ1 × τ2, then τ = τ ′

1 × τ ′

2 or τ = τ ′

1 τ ′

2 or τ = τ ′.1 or τ = τ ′.2.

• If τ ≡ ∀α:κ.τ1, then τ = ∀α:κ.τ ′

1 or τ = τ ′

1 τ ′

2 or τ = τ ′.1 or τ = τ ′.2.

• If τ ≡ ∃α:κ.τ1, then τ = ∃α:κ.τ ′

1 or τ = τ ′

1 τ ′

2 or τ = τ ′.1 or τ = τ ′.2.

Proof.

• Let τ ≡ τ1 → τ2. We show that any other possibility leads to a contradiction.

– Assume τ = ξ:

81

1. By Parallel Reduction: ξ ⇛ τ ′ and τ1 → τ2 ⇛ τ ′

2. By (1) and Preservation of Shapes Under Reduction: ξ = τ ′ = τ11 → τ22, which
is syntactically impossible

– Assume τ = τ ′

1 × τ ′

2:

1. By Parallel Reduction: τ ′

1 × τ ′

2 ⇛ τ ′ and τ1 → τ2 ⇛ τ ′

2. By (1) and Preservation of Shapes Under Reduction: τ ′

11 × τ ′

22 = τ ′ = τ11 → τ22,
which is syntactically impossible

– Assume τ = ∀α:κ.τ ′:

1. By Parallel Reduction: ∀α:κ.τ ′

1 ⇛ τ ′ and τ1 → τ2 ⇛ τ ′

2. By (1) and Preservation of Shapes Under Reduction: ∀α:κ.τ ′

2 = τ ′ = τ11 → τ22,
which is syntactically impossible

– Assume τ = ∃α:κ.τ ′:

1. By Parallel Reduction: ∃α:κ.τ ′

1 ⇛ τ ′ and τ1 → τ2 ⇛ τ ′

2. By (1) and Preservation of Shapes Under Reduction: ∃α:κ.τ ′

2 = τ ′ = τ11 → τ22,
which is syntactically impossible

– Assume τ = λα:κ.τ ′:

1. By Parallel Reduction: λα:κ.τ ′

1 ⇛ τ ′ and τ1 → τ2 ⇛ τ ′

2. By (1) and Preservation of Shapes Under Reduction: λα:κ.τ ′

2 = τ ′ = τ11 → τ22,
which is syntactically impossible

– Assume τ = 〈τ ′

1, τ
′

2〉:

1. By Parallel Reduction: 〈τ ′

1, τ
′

2〉⇛ τ ′ and τ1 → τ2 ⇛ τ ′

2. By (1) and Preservation of Shapes Under Reduction: 〈τ ′

11, τ22〉′ = τ ′ = τ11 → τ22,
which is syntactically impossible

• Other parts analogous.

Proposition 10 (Canonical Values). Let Γ ⊢ v : τ where v is not a variable.

• If τ ≡ τ1 → τ2, then v = λx:τ ′

1.e.

• If τ ≡ τ1 × τ2, then v = 〈v1, v2〉.

• If τ ≡ ∀α:κ.τ1, then v = λα:κ.e.

• If τ ≡ ∃α:κ.τ1, then v = 〈τ2, v
′〉:τ ′.

Proof. By induction on the typing derivation.

• Let τ ≡ τ1 → τ2.

– By Shape Consistency: τ = τ ′

1 → τ ′

2 or τ = τ ′

1 τ ′

2 or τ = τ ′.1 or τ = τ ′.2

– Subcase τ = τ ′

1 → τ ′

2 and T-Arrow: v = λx:τ ′

1.e

– Subcase τ = τ ′

1 → τ ′

2 and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′ where τ ′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′ ≡ τ1 → τ2

3. By (1), (2), and induction: v = λx:τ ′′

1 .e

– Subcase τ = τ ′

1 τ ′

2 and T-Equiv:

82

1. By inversion: Γ ⊢ v : τ ′ where τ ′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′ ≡ τ1 → τ2

3. By (1), (2), and induction: v = λx:τ ′′

1 .e

– Subcase τ = τ ′.1 and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′′ where τ ′′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′′ ≡ τ1 → τ2

3. By (1), (2), and induction: v = λx:τ ′′

1 .e

– Subcase τ = τ ′.2 and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′′ where τ ′′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′′ ≡ τ1 → τ2

3. By (1), (2), and induction: v = λx:τ ′′

1 .e

• Let τ ≡ τ1 × τ2.

– By Shape Consistency: τ = τ ′

1 × τ ′

2 or τ = τ ′

1 τ ′

2 or τ = τ ′.1 or τ = τ ′.2

– Subcase τ = τ ′

1 × τ ′

2 and TTimes: v = 〈v1, v2〉

– Subcase τ = τ ′

1 × τ ′

2 and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′ where τ ′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′ ≡ τ1 × τ2

3. By (1), (2), and induction: v = 〈v1, v2〉

– Subcase τ = τ ′

1 τ ′

2 and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′ where τ ′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′ ≡ τ1 × τ2

3. By (1), (2), and induction: v = 〈v1, v2〉

– Subcase τ = τ ′.1 and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′′ where τ ′′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′′ ≡ τ1 × τ2

3. By (1), (2), and induction: v = 〈v1, v2〉

– Subcase τ = τ ′.2 and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′′ where τ ′′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′′ ≡ τ1 × τ2

3. By (1), (2), and induction: v = 〈v1, v2〉

• Let τ ≡ ∀α:κ.τ ′.

– By Shape Consistency: τ = ∀α:κ.τ ′ or τ = τ1 τ2 or τ = τ ′′.1 or τ = τ ′′.2

– Subcase τ = ∀α:κ.τ ′ and T-Gen: v = λα:κ.e

– Subcase τ = ∀α:κ.τ ′ and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′′ where τ ′′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′′ ≡ ∀α:κ.τ ′

3. By (1), (2), and induction: v = λα:κ.e

– Subcase τ = τ1 τ2 and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′′ where τ ′′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′′ ≡ ∀α:κ.τ ′

83

3. By (1), (2), and induction: v = λα:κ.e

– Subcase τ = τ ′′.1 and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′′′ where τ ′′′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′′′ ≡ ∀α:κ.τ ′

3. By (1), (2), and induction: v = λα:κ.e

– Subcase τ = τ ′′.2 and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′′′ where τ ′′′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′′′ ≡ ∀α:κ.τ ′

3. By (1), (2), and induction: v = λα:κ.e

• Let τ ≡ ∃α:κ.τ ′.

– By Shape Consistency: τ = ∃α:κ.τ ′ or τ = τ1 τ2 or τ = τ ′′.1 or τ = τ ′′.2

– Subcase τ = ∃α:κ.τ ′ and T-Close: v = 〈τ1, v
′〉:τ2

– Subcase τ = ∃α:κ.τ ′ and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′′ where τ ′′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′′ ≡ ∃α:κ.τ ′

3. By (1), (2), and induction: v = 〈τ1, v
′〉:τ2

– Subcase τ = τ1 τ2 and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′′ where τ ′′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′′ ≡ ∃α:κ.τ ′

3. By (1), (2), and induction: v = 〈τ1, v
′〉:τ2

– Subcase τ = τ ′′.1 and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′′′ where τ ′′′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′′′ ≡ ∃α:κ.τ ′

3. By (1), (2), and induction: v = 〈τ1, v
′〉:τ2

– Subcase τ = τ ′′.2 and T-Equiv:

1. By inversion: Γ ⊢ v : τ ′′′ where τ ′′′ ≡ τ

2. By (1), assumption, and Q-Trans: τ ′′′ ≡ ∃α:κ.τ ′

3. By (1), (2), and induction: v = 〈τ1, v
′〉:τ2

Proposition 11 (Uniqueness of Kinds). If Γ ⊢ τ : κ and Γ ⊢ τ : κ′, then κ = κ′.

Proof. By induction on the structure of τ .

• Case τ = ξ:

1. By inversion of K-Var (1st derivation): κ = Γ(ξ)

2. By inversion of K-Var (2nd derivation): κ′ = Γ(ξ)

3. By (1) and (2): κ = κ′

• Case τ = τ1 → τ2:

1. By inversion of K-Arrow (1st derivation): κ = Ω

2. By inversion of K-Arrow (2nd derivation): κ′ = Ω

84

3. By (1) and (2): κ = κ′

• Case τ = τ1 × τ2:

1. By inversion of K-Times (1st derivation): κ = Ω

2. By inversion of K-Times (2nd derivation): κ′ = Ω

3. By (1) and (2): κ = κ′

• Case τ = ∀α:κ1.τ
′ (w.l.o.g. α /∈ dom(Γ)):

1. By inversion of K-Univ (1st derivation): κ = Ω

2. By inversion of K-Univ (2nd derivation): κ′ = Ω

3. By (1) and (2): κ = κ′

• Case τ = ∃α:κ1.τ
′ (w.l.o.g. α /∈ dom(Γ)):

1. By inversion of K-Exist (1st derivation): κ = Ω

2. By inversion of K-Exist (2nd derivation): κ′ = Ω

3. By (1) and (2): κ = κ′

• Case τ = λα:κ1.τ
′ (w.l.o.g. α /∈ dom(Γ)):

1. By inversion of K-Abs (1st derivation): κ = κ1 → κ2 and Γ, α:κ1 ⊢ τ ′ : κ2

2. By inversion of K-Abs (2nd derivation): κ′ = κ1 → κ′

2 and Γ, α:κ1 ⊢ τ ′ : κ′

2

3. By (1), (2), and induction: κ2 = κ′

2

4. By (1), (2), and (3): κ = κ′

• Case τ = τ1 τ2:

1. By inversion of K-App (1st derivation): Γ ⊢ τ1 : κ1 → κ

2. By inversion of K-App (2nd derivation): Γ ⊢ τ1 : κ′

1 → κ′

3. By (1), (2), and induction: κ1 → κ = κ′

1 → κ′ and hence κ = κ′

• Case τ = 〈τ1, τ2〉:

1. By inversion of K-Pair (1st derivation): κ = κ1 × κ2 and Γ ⊢ τ1 : κ1 and Γ ⊢ τ2 : κ2

2. By inversion of K-Pair (2nd derivation): κ′ = κ′

1×κ′

2 and Γ ⊢ τ1 : κ′

1 and Γ ⊢ τ2 : κ′

2

3. By (1), (2), and induction: κ1 = κ′

1 and κ2 = κ′

2

4. By (1), (2), and (3): κ = κ′

• Case τ = τ ′.1:

1. By inversion of K-Proj1 (1st derivation): Γ ⊢ τ ′ : κ × κ2

2. By inversion of K-Proj1 (2nd derivation): Γ ⊢ τ ′ : κ′ × κ′

2

3. By (1), (2), and induction: κ × κ2 = κ′ × κ′

2 and hence κ = κ′

• Case τ = τ ′.2:

1. By inversion of K-Proj2 (1st derivation): Γ ⊢ τ ′ : κ1 × κ

2. By inversion of K-Proj2 (2nd derivation): Γ ⊢ τ ′ : κ′

1 × κ′

3. By (1), (2), and induction: κ1 × κ = κ′

1 × κ′ and hence κ = κ′

85

Proposition 12 (Uniqueness of Types). If Γ ⊢ e : τ and Γ′ ⊢ e : τ ′ with Γ ≡ Γ′, then τ ≡ τ ′.

Proof. By induction on the structure of e.

• Case e = x:

1. By Typing Inversion (1st derivation): τ = Γ(x)

2. By Typing Inversion (2nd derivation): τ ′ = Γ′(x)

3. By (1), (2), and assumption: τ ≡ τ ′

• Case e = λx:τ1.e
′ (w.l.o.g. x /∈ dom(Γ)):

1. By Typing Inversion (1st derivation): Γ, x:τ1 ⊢ e′ : τ2 and τ ≡ τ1 → τ2

2. By Typing Inversion (2nd derivation): Γ′, x:τ1 ⊢ e′ : τ ′

2 and τ ′ ≡ τ1 → τ ′

2

3. By assumption: Γ, x:τ1 ≡ Γ′, x:τ1

4. By (1), (2), (3), and induction: τ2 ≡ τ ′

2

5. By (1), (2), (4), Q-Symm, Q-Refl, Q-Arrow, and Q-Trans: τ ≡ τ ′

• Case e = e1 e2:

1. By Typing Inversion (1st derivation): Γ ⊢ e1 : τ2 → τ

2. By Typing Inversion (2nd derivation): Γ′ ⊢ e1 : τ ′

2 → τ ′

3. By (1), (2), assumption, and induction: τ2 → τ ≡ τ ′

2 → τ ′

4. By (4) and Type Equivalence Inversion: τ ≡ τ ′

• Case e = 〈e1, e2〉:

1. By Typing Inversion (1st derivation): Γ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2 where τ ≡ τ1 × τ2

2. By Typing Inversion (2nd derivation): Γ′ ⊢ e1 : τ ′

1 and Γ ⊢ e2 : τ ′

2 where τ ′ ≡ τ ′

1 × τ ′

2

3. By (1), (2), assumption, and induction: τ1 ≡ τ ′

1 and τ2 ≡ τ ′

2

4. By (3) and Q-Times: τ1 × τ2 ≡ τ ′

1 × τ ′

2

5. By (1), (2), (4), Q-Symm, and Q-Trans: τ ≡ τ ′

• Case e = λα:κ.e′ (w.l.o.g. α /∈ dom(Γ)):

1. By Typing Inversion (1st derivation): Γ, α:κ ⊢ e′ : τ1 and τ ≡ ∀α:κ.τ1

2. By Typing Inversion (2nd derivation): Γ′, α:κ ⊢ e′ : τ2 and τ ′ ≡ ∀α:κ.τ2

3. By assumption: Γ, α:κ ≡ Γ′, α:κ

4. By (1), (2), (3), and induction: τ1 ≡ τ2

5. By (1), (2), (4), Q-Symm, Q-Trans, and Q-Univ: τ ≡ τ ′

• Case e = e′ τ ′′:

1. By Typing Inversion (1st derivation): Γ ⊢ e′ : ∀α:κ1.τ1 and Γ ⊢ τ ′′ : κ1 where
τ ≡ τ1[α := τ ′′]

2. By Typing Inversion (2nd derivation): Γ′ ⊢ e′ : ∀α:κ2.τ2 and Γ′ ⊢ τ ′′ : κ2 where
τ ′ ≡ τ2[α := τ ′′]

3. By (1), (2), assumption, and induction: ∀α:κ1.τ1 ≡ ∀α:κ2.τ2

86

4. By (3) and Type Equivalence Inversion: κ1 = κ2 and τ1 ≡ τ2

5. By (4) and Type Substitution: τ1[α := τ ′′] ≡ τ2[α := τ ′′]

6. By (1), (2), Q-Trans, and Q-Symm: τ ≡ τ ′

• Case e = 〈τ1, e
′〉:τ2:

1. By Typing Inversion (1st derivation): τ ≡ τ2

2. By Typing Inversion (2nd derivation): τ ′ ≡ τ2

3. By (1), (2), Q-Symm, and Q-Trans: τ ≡ τ ′

• Case e = let 〈x1, x2〉 = e1 in e2 (w.l.o.g. {x1, x2} 6⊆ dom(Γ)):

1. By Typing Inversion (1st derivation): Γ ⊢ e1 : τ1 × τ2 and Γ, x1:τ1, x2:τ2 ⊢ e2 : τ

2. By Typing Inversion (2nd derivation): Γ′ ⊢ e1 : τ ′

1 × τ ′

2 and Γ, x1:τ
′

1, x2:τ
′

2 ⊢ e2 : τ ′

3. By (1), (2), assumption, and induction: τ1 × τ2 ≡ τ ′

1 × τ ′

2

4. By (3) and Type Equivalence Inversion: τ1 ≡ τ ′

1 and τ2 ≡ τ ′

2

5. By (4) and assumption: Γ, x1:τ1, x2:τ2 ≡ Γ′, x1:τ
′

1, x2:τ
′

2

6. By (1), (2), (5), and induction: τ ≡ τ ′

• Case e = let 〈α, x〉 = e1 in e2 (w.l.o.g. {α, x} 6⊆ dom(Γ)):

1. By Typing Inversion (1st derivation): Γ ⊢ e1 : ∃α:κ1.τ1 and Γ, α:κ1, x:τ1 ⊢ e2 : τ

2. By Typing Inversion (2nd derivation): Γ′ ⊢ e1 : ∃α:κ2.τ2 and Γ′, α:κ2, x:τ2 ⊢ e2 : τ ′

3. By (1), (2), assumption, and induction: ∃α:κ1.τ1 ≡ ∃α:κ2.τ2

4. By (3) and Type Equivalence Inversion: κ1 = κ2 and τ1 ≡ τ2

5. By (4) and assumption: Γ, α:κ1, x:τ1 ≡ Γ′, α:κ2, x:τ2

6. By (1), (2), (5), and induction: τ ≡ τ ′

• Case e = lazy 〈ζ, x〉 = e1 in e2 (w.l.o.g. {ζ, x} 6⊆ dom(Γ)):

1. By Typing Inversion (1st derivation): Γ ⊢ e1 : ∃α:κ1.τ1 and Γ, ζ:κ1, x:τ1[α := ζ] ⊢ e2 :
τ

2. By Typing Inversion (2nd derivation): Γ′ ⊢ e1 : ∃α:κ2.τ2 and Γ′, ζ:κ2, x:τ2[α := ζ] ⊢
e2 : τ ′

3. By (1), (2), assumption, and induction: ∃α:κ1.τ1 ≡ ∃α:κ2.τ2

4. By (3) and Type Equivalence Inversion: κ1 = κ2 and τ1 ≡ τ2

5. By (4) and Type Substitution: τ1[α := ζ] ≡ τ2[α := ζ]

6. By (4), (5), and assumption: Γ, ζ:κ1, x:τ1[α := ζ] ≡ Γ′, ζ:κ2, x:τ2[α := ζ]

7. By (1), (2), (6), and induction: τ ≡ τ ′

• Case e = tcase e0:τ0 of x:τ ′

0 then e1 else e2:

1. By Typing Inversion (1st derivation): Γ ⊢ e2 : τ

2. By Typing Inversion (2nd derivation): Γ′ ⊢ e2 : τ ′

3. By (1), (2), assumption, and induction: τ ≡ τ ′

Lemma 6 (Equivalent Environments).

87

1. If Γ ⊢ τ : κ and Γ ≡ Γ′ where Γ′ ⊢ �, then Γ′ ⊢ τ : κ.

2. If Γ ⊢ e : τ and Γ ≡ Γ′ where Γ′ ⊢ �, then Γ′ ⊢ e : τ .

Proof. (1) by induction on the kinding derivation. (2) by induction on the typing derivation.

1. Let Γ ⊢ τ : κ and Γ ≡ Γ′ and Γ′ ⊢ �.

• Case K-Var: τ = ξ

(a) By inversion: Γ ⊢ � and Γ(ξ) = κ

(b) By (a) and assumption: κ = Γ′(ξ)

(c) By (b), assumption, and K-Var: Γ′ ⊢ ξ : κ

• Case K-Arrow: τ = τ1 → τ2 and κ = Ω

(a) By inversion: Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω

(b) By (a), assumption, and induction: Γ′ ⊢ τ1 : Ω and Γ′ ⊢ τ2 : Ω

(c) By (b) and K-Arrow: Γ′ ⊢ τ1 → τ2 : Ω

• Case K-Times: τ = τ1 × τ2 and κ = Ω

(a) By inversion: Γ ⊢ τ1 : Ω and Γ ⊢ τ2 : Ω

(b) By (a), assumption, and induction: Γ′ ⊢ τ1 : Ω and Γ′ ⊢ τ2 : Ω

(c) By (b) and K-Times: Γ′ ⊢ τ1 × τ2 : Ω

• Case K-Univ: τ = ∀α:κ′.τ ′ and κ = Ω

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : Ω

(b) By (a) and Environment Validity: Γ, α:κ′ ⊢ �

(c) By (b) and inversion of E-Type: α /∈ dom(Γ)

(d) By (c) and assumption: α /∈ dom(Γ′)

(e) By (c), (d), and assumption: Γ, α:κ′ ≡ Γ′, α:κ′

(f) By (d), assumption, and E-Type: Γ′, α:κ′ ⊢ �

(g) By (a), (e), (f), and induction: Γ′, α:κ′ ⊢ τ ′ : Ω

(h) By (g) and K-Univ: Γ′ ⊢ ∃α:κ′.τ ′ : Ω

• Case K-Exist: τ = ∃α:κ′.τ ′ and κ = Ω where α /∈ dom(Γ)

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : Ω

(b) By (a) and Environment Validity: Γ, α:κ′ ⊢ �

(c) By (b) and inversion of E-Type: α /∈ dom(Γ)

(d) By (c) and assumption: α /∈ dom(Γ′)

(e) By (c), (d), and assumption: Γ, α:κ′ ≡ Γ′, α:κ′

(f) By (d), assumption, and E-Type: Γ′, α:κ′ ⊢ �

(g) By (a), (e), (f), and induction: Γ′, α:κ′ ⊢ τ ′ : Ω

(h) By (g) and K-Exist: Γ′ ⊢ ∃α:κ′.τ ′ : Ω

• Case K-Abs: τ = λα:κ′.τ ′ and κ = κ′ → κ′′

(a) By inversion: Γ, α:κ′ ⊢ τ ′ : κ′′

(b) By (a) and Environment Validity: Γ, α:κ′ ⊢ �

(c) By (b) and inversion of E-Type: α /∈ dom(Γ)

(d) By (c) and assumption: α /∈ dom(Γ′)

(e) By (c), (d), and assumption: Γ, α:κ′ ≡ Γ′, α:κ′

(f) By (d), assumption, and E-Type: Γ′, α:κ′ ⊢ �

88

(g) By (a), (e), (f), and induction: Γ′, α:κ′ ⊢ τ ′ : κ′′

(h) By (g) and K-Abs: Γ′ ⊢ λα:κ′.τ ′ : κ′ → κ′′

• Case K-App: τ = τ1 τ2

(a) By inversion: Γ ⊢ τ1 : κ′ → κ and Γ ⊢ τ2 : κ′

(b) By (a), assumption, and induction: Γ′ ⊢ τ1 : κ′ → κ and Γ′ ⊢ τ2 : κ′

(c) By (b) and K-App: Γ′ ⊢ τ1 τ2 : κ

• Case K-Pair: τ = 〈τ1, τ2〉 and κ = κ1 × κ2

(a) By inversion: Γ ⊢ τ1 : κ1 and Γ ⊢ τ2 : κ2

(b) By (a), assumption, and induction: Γ′ ⊢ τ1 : κ1 and Γ′ ⊢ τ2 : κ2

(c) By (b) and K-Pair: Γ′ ⊢ 〈τ1, τ2〉 : κ1 × κ2

• Case K-Proj1: τ = τ ′.1

(a) By inversion: Γ ⊢ τ ′ : κ × κ2

(b) By (a), assumption, and induction: Γ′ ⊢ τ ′ : κ × κ2

(c) By (b) and K-Proj1: Γ′ ⊢ τ ′.1 : κ

• Case K-Proj2: τ = τ ′.2

(a) By inversion: Γ ⊢ τ ′ : κ1 × κ

(b) By (a), assumption, and induction: Γ′ ⊢ τ ′ : κ1 × κ

(c) By (b) and K-Proj2: Γ′ ⊢ τ ′.2 : κ

2. Let Γ ⊢ e : τ and Γ ≡ Γ′ where Γ′ ⊢ �.

• Case T-Equiv:

(a) By inversion: Γ ⊢ e : τ ′ and τ ′ ≡ τ where Γ ⊢ τ : Ω

(b) By (a), assumption, and induction: Γ′ ⊢ e : τ ′

(c) By (a), assumption, and (1): Γ′ ⊢ τ : Ω

(d) By (a), (b), (c), and T-Equiv: Γ′ ⊢ e : τ

• Case T-Var: e = x

(a) By inversion: Γ ⊢ � and τ = Γ(x)

(b) By assumption: Γ′ = Γ1, x:τ ′, Γ2 and τ ′ ≡ τ

(c) By (b) and assumption: Γ′ ⊢ x : τ ′

(d) By assumption and Validity: Γ ⊢ τ : Ω

(e) By (d), assumption, and (1): Γ′ ⊢ τ : Ω

(f) By (c), (b), (e), and T-Equiv: Γ′ ⊢ x : τ

• Case T-Abs: e = λx:τ1.e1 and τ = τ1 → τ2

(a) By inversion: Γ, x:τ1 ⊢ e1 : τ2

(b) By (a) and Environment Validity: Γ, x:τ1 ⊢ �

(c) By (b) and inversion of E-Term: Γ ⊢ τ1 : Ω and x /∈ dom(Γ)

(d) By (c) and assumption: x /∈ dom(Γ′)

(e) By (c), assumption, and (1): Γ′ ⊢ τ1 : Ω

(f) By (d), (e), and E-Term: Γ′, x:τ1 ⊢ �

(g) By (c), (d), and assumption: Γ, x:τ1 ≡ Γ′, x:τ1

(h) By (f), (a), (g), and induction: Γ′, x:τ1 ⊢ e1 : τ2

(i) By (h) and T-Abs: Γ′ ⊢ λx:τ1.e1 : τ1 → τ2

• Case T-App: e = e1 e2

89

(a) By inversion: Γ ⊢ e1 : τ ′ → τ and Γ ⊢ e2 : τ ′

(b) By (a), assumption, and induction: Γ′ ⊢ e1 : τ ′ → τ and Γ′ ⊢ e2 : τ ′

(c) By (b) and T-App: Γ′ ⊢ e1 e2 : τ

• Case T-Gen: e = λα:κ.e1 and τ = ∀α:κ.τ ′

(a) By inversion: Γ, α:κ ⊢ e1 : τ ′

(b) By (a) and Environment Validity: Γ, α:κ ⊢ �

(c) By (b) and inversion of E-Type: α /∈ dom(Γ)

(d) By (c) and assumption: α /∈ dom(Γ′)

(e) By (d) and assumption: Γ′, α:κ ⊢ �

(f) By (c), (d), and assumption: Γ, α:κ ≡ Γ′, α:κ

(g) By (e), (b), (f), and induction: Γ′, α:κ ⊢ e1 : τ ′

(h) By (g) and T-Gen: Γ′ ⊢ λα:κ.e1 : ∀α:κ.τ ′

• Case T-Inst: e = e1 τ2 and τ = τ ′[α := τ2]

(a) By inversion: Γ ⊢ e1 : ∀α:κ.τ ′ and Γ ⊢ τ2 : κ

(b) By (a), assumption, and induction: Γ′ ⊢ e1 : ∀α:κ.τ ′

(c) By (a), assumption, and (1): Γ′ ⊢ τ2 : κ

(d) By (b), (c), and T-Inst: Γ′ ⊢ e1 τ2 : τ ′[α := τ2]

• Case T-Pair: e = 〈e1, e2〉 and τ = τ1 × τ2

(a) By inversion: Γ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2

(b) By (a), assumption, and induction: Γ′ ⊢ e1 : τ1 and Γ′ ⊢ e2 : τ2

(c) By (b) and T-Pair: Γ′ ⊢ 〈e1, e2〉 : τ1 × τ2

• Case T-Proj: e = let 〈x1, x2〉 = e1 in e2

(a) By inversion: Γ ⊢ e1 : τ1 × τ2 and Γ, x1:τ1, x2:τ2 ⊢ e2 : τ

(b) By (a) and Environment Validity: Γ, x1:τ1, x2:τ2 ⊢ �

(c) By (b) and inversion of E-Term: Γ, x1:τ1 ⊢ τ2 : Ω and x2 /∈ dom(Γ, x1:τ1)

(d) By (c) and Environment Validity: Γ, x1:τ1 ⊢ �

(e) By (d) and inversion of E-Term: Γ ⊢ τ1 : Ω and x1 /∈ dom(Γ)

(f) By (e) and assumption: x1 /∈ dom(Γ′)

(g) By (e), assumption, and (1): Γ′ ⊢ τ1 : Ω

(h) By (f), (g), and E-Term: Γ′, x1:τ1 ⊢ �

(i) By (h), (c), and induction: Γ′, x1:τ1 ⊢ τ2 : Ω

(j) By (c) and assumption: x2 /∈ dom(Γ′, x1:τ1)

(k) By (i), (j), and E-Term: Γ′, x1:τ2, x2:τ2 ⊢ �

(l) By (c), (e), (f), (j), and assumption: Γ, x1:τ1, x2:τ2 ≡ Γ′, x1:τ1, x2:τ2

(m) By (k), (a), (l), and induction: Γ′, x1:τ2, x2:τ2 ⊢ e2 : τ

(n) By (a), assumption, and induction: Γ′ ⊢ e1 : τ1 × τ2

(o) By (m), (n), and T-Proj: Γ′ ⊢ let 〈x1, x2〉 = e1 in e2 : τ

• Case T-Close: e = 〈τ1, e
′〉:τ where τ = ∃α:κ.τ2

(a) By inversion: Γ ⊢ τ1 : κ and Γ ⊢ e′ : τ2[α := τ1] where Γ ⊢ ∃α:κ.τ2 : Ω

(b) By (a), assumption, and induction: Γ′ ⊢ e′ : τ2[α := τ1]

(c) By (a), assumption, and (1): Γ′ ⊢ τ1 : κ and Γ′ ⊢ ∃α:κ.τ2 : Ω

(d) By (b), (c), and T-Close: Γ′ ⊢ 〈τ1, e
′〉:∃α:κ.τ2 : ∃α:κ.τ2

• Case T-Open: e = let 〈α, x〉 = e1 in e2

90

(a) By inversion: Γ ⊢ e1 : ∃α:κ.τ ′ and Γ, α:κ, x:τ ′ ⊢ e2 : τ where α /∈ ftv(τ)

(b) By (a) and Environment Validity: Γ, α:κ, x:τ ′ ⊢ �

(c) By (b) and inversion of E-Term: Γ, α:κ ⊢ τ ′ : Ω and x /∈ dom(Γ, α:κ)

(d) By (c) and Environment Validity: Γ, α:κ ⊢ �

(e) By (d) and inversion of E-Type: α /∈ dom(Γ)

(f) By (e) and assumption: α /∈ dom(Γ′)

(g) By (f), assumption, and E-Type: Γ′, α:κ ⊢ �

(h) By (g), (c), and induction: Γ′, α:κ ⊢ τ ′ : Ω

(i) By (c) and assumption: x /∈ dom(Γ′, α:κ)

(j) By (h), (i), and E-Term: Γ′, α:κ, x:τ ′ ⊢ �

(k) By (c), (e), (f), (i), and assumption: Γ, α:κ, x:τ ′ ≡ Γ′, α:κ, x:τ ′

(l) By (j), (a), assumption, and induction: Γ′, α:κ, x:τ ′ ⊢ e2 : τ

(m) By (a), (k), and induction: Γ′ ⊢ e1 : ∃α:κ.τ ′

(n) By (l), (m), (a), and T-Proj: Γ′ ⊢ let 〈α, x〉 = e1 in e2 : τ

• Case T-Lazy: e = lazy 〈ζ, x〉 = e1 in e2

(a) By inversion: Γ ⊢ e1 : ∃α:κ.τ ′ and Γ, ζ:κ, x:τ ′[α := ζ] ⊢ e2 : τ where ζ /∈ ftv(τ)

(b) By (a) and Environment Validity: Γ, ζ:κ, x:τ ′[α := ζ] ⊢ �

(c) By (b) and inversion of E-Term: Γ, ζ:κ ⊢ τ ′[α := ζ] : Ω and x /∈ dom(Γ, ζ:κ)

(d) By (c) and Environment Validity: Γ, ζ:κ ⊢ �

(e) By (d) and inversion of E-Type: ζ /∈ dom(Γ)

(f) By (e) and assumption: ζ /∈ dom(Γ′)

(g) By (f), assumption, and E-Type: Γ′, ζ:κ ⊢ �

(h) By (g), (c), and induction: Γ′, ζ:κ ⊢ τ ′[α := ζ] : Ω

(i) By (c) and assumption: x /∈ dom(Γ′, α:κ)

(j) By (h), (i), and E-Term: Γ′, ζ:κ, x:τ ′[α := ζ] ⊢ �

(k) By (c), (e), (f), (i), and assumption: Γ, α:κ, x:τ ′ ≡ Γ′, α:κ, x:τ ′

(l) By (j), (a), assumption, and induction: Γ′, ζ:κ, x:τ ′[α := ζ] ⊢ e2 : τ

(m) By (a), (k), and induction: Γ′ ⊢ e1 : ∃α:κ.τ ′

(n) By (l), (m), (a), and T-Proj: Γ′ ⊢ lazy 〈ζ, x〉 = e1 in e2 : τ

• Case T-Case: e = tcase e0:τ0 of x:τ ′

0 then e1 else e2

(a) By inversion:

i. Γ ⊢ e0 : τ0

ii. Γ, x:τ ′

0 ⊢ e1 : τ

iii. Γ ⊢ e2 : τ

(b) By (a-ii) and Environment Validity: Γ, x:τ ′

0 ⊢ �

(c) By (b) and inversion of E-Term: Γ ⊢ τ ′

0 : Ω and x /∈ dom(Γ)

(d) By (c) and assumption: x /∈ dom(Γ′)

(e) By (c), assumption, and (1): Γ′ ⊢ τ ′

0 : Ω

(f) By (d), (e), and E-Term: Γ′, x:τ ′

0 ⊢ �

(g) By (c), (d), and assumption: Γ, x:τ ′

0 ≡ Γ′, x:τ ′

0

(h) By (f), (a-ii), (g), and induction: Γ′, x:τ ′

0 ⊢ e1 : τ

(i) By (a-i), assumption, and induction: Γ′ ⊢ e0 : τ0

(j) By (a-iii), assumption, and induction: Γ′ ⊢ e2 : τ

(k) By (h), (i), (j), and T-Case: Γ′ ⊢ tcase e0:τ0 of x:τ ′

0 then e1 else e2

91

Lemma 7 (Context Elimination).

1. If Γ ⊢ E[e] : τ , then Γ ⊢ e : τ ′.

2. If Γ ⊢ LE[e] : τ , then Γ ⊢ L[e] : τ ′.

3. If Γ ⊢ LE[e] : τ , then Γ, Γ′ ⊢ e : τ ′ with Γ ⊢ L : Γ′.

Proof. (1) by structural induction on E. (2) and (3) by structural induction on L.

1. Let Γ ⊢ E[e] : τ .

• Case E = :

(a) E[e] = [e] = e

(b) By (a) and assumption: Γ ⊢ e : τ

• Case E = E′ e′:

(a) E[e] = (E′ e′)[e] = E′[e] e′

(b) By (a) and assumption: Γ ⊢ E′[e] e′ : τ

(c) By (b) and Typing Inversion: Γ ⊢ E′[e] : τ ′ → τ

(d) By (c) and induction: Γ ⊢ e : τ ′′

• Case E = (λx:τ ′.e′) E′:

(a) E[e] = ((λx:τ ′.e′) E′)[e] = (λx:τ ′.e′) E′[e]

(b) By (a) and assumption: Γ ⊢ (λx:τ ′.e′) E′[e] : τ

(c) By (b) and Typing Inversion: Γ ⊢ E′[e] : τ ′′

(d) By (c) and induction: Γ ⊢ e : τ ′′′

• Case E = 〈E′, e′〉:

(a) E[e] = 〈E′, e′〉[e] = 〈E′[e], e′〉

(b) By (a) and assumption: Γ ⊢ 〈E′[e], e′〉 : τ

(c) By (b) and Typing Inversion: Γ ⊢ E′[e] : τ1

(d) By (c) and induction: Γ ⊢ e : τ ′

• Case E = 〈v, E′〉:

(a) E[e] = 〈v, E′〉[e] = 〈v, E′[e]〉

(b) By (a) and assumption: Γ ⊢ 〈v, E′[e]〉 : τ

(c) By (b) and Typing Inversion: Γ ⊢ E′[e] : τ2

(d) By (c) and induction: Γ ⊢ e : τ ′

• Case E = 〈τ1, E
′〉:τ ′:

(a) E[e] = (〈τ1, E
′〉:τ ′)[e] = 〈τ1, E

′[e]〉:τ ′

(b) By (a) and assumption: Γ ⊢ 〈τ1, E
′[e]〉:τ ′ : τ

(c) By (b) and Typing Inversion: Γ ⊢ E′[e] : τ2[α := τ1]

(d) By (c) and induction: Γ ⊢ e : τ ′′

• Case E = let 〈x1, x2〉 = E′ in e′ (w.l.o.g. {x1, x2} ∩ dom(Γ) = ∅):

(a) E[e] = (let 〈x1, x2〉 = E′ in e′)[e] = (let 〈x1, x2〉 = E′[e] in e′)

(b) By (a) and assumption: Γ ⊢ let 〈x1, x2〉 = E′[e] in e′ : τ

(c) By (b) and Typing Inversion: Γ ⊢ E′[e] : τ1 × τ2

(d) By (c) and induction: Γ ⊢ e : τ ′

92

• Case E = let 〈α, x〉 = E′ in e′ (w.l.o.g. {α, x} ∩ dom(Γ) = ∅):

(a) E[e] = (let 〈α, x〉 = E′ in e′)[e] = (let 〈α, x〉 = E′[e] in e′)

(b) By (a) and assumption: Γ ⊢ let 〈α, x〉 = E′[e] in e′ : τ

(c) By (b) and Typing Inversion: Γ ⊢ E′[e] : ∃α:κ.τ ′

(d) By (c) and induction: Γ ⊢ e : τ ′′

• Case E = E′ τ ′:

(a) E[e] = (E′ τ ′)[e] = E′[e] τ ′

(b) By (a) and assumption: Γ ⊢ E′[e] τ ′ : τ

(c) By (b) and Typing Inversion: Γ ⊢ E′[e] : ∀α:κ.τ1

(d) By (c) and induction: Γ ⊢ e : τ2

• Case E = tcase E′:τ0 of x:τ ′

0 then e1 else e2 (w.l.o.g. x /∈ dom(Γ)):

(a) By (a) and assumption: Γ ⊢ tcase E′[e]:τ0 of x:τ ′

0 then e1 else e2 : τ

(b) By (b) and Typing Inversion: Γ ⊢ E′[e] : τ0

(c) By (c) and induction: Γ ⊢ e : τ ′

2. Let Γ ⊢ LE[e] : τ .

• Case L = :

(a) By assumption: Γ ⊢ E[e] : τ

(b) By (a) and (1): Γ ⊢ e : τ ′

(c) By (b): Γ ⊢ L[e] : τ ′

• Case L = lazy 〈ζ, x〉 = e′ in L′:

(a) By assumption: Γ ⊢ lazy 〈ζ, x〉 = e′ in L′E[e] : τ

(b) By (a) and Typing Inversion: Γ ⊢ e′ : ∃α:κ.τ1 and Γ, ζ:κ, x:τ1[α := ζ] ⊢ L′E[e] : τ ′′

where τ ′′ ≡ τ

(c) By (b) and induction: Γ, ζ:κ, x:τ1[α := ζ] ⊢ L′[e] : τ ′

(d) By (b), (c), and T-Lazy: Γ ⊢ lazy 〈ζ, x〉 = e′ in L′[e] : τ ′

(e) By (d): Γ ⊢ L[e] : τ ′

3. Let Γ ⊢ LE[e] : τ .

• Case L = :

(a) By assumption: Γ ⊢ E[e] : τ

(b) By (a) and (1): Γ ⊢ e : τ ′

(c) By assumption and Environment Validity: Γ ⊢ �

(d) Let Γ′ = ·.

(e) By (c), (d), and L-Empty: Γ, Γ′ = Γ and Γ ⊢ L : Γ′

(f) By (b) and (e): Γ, Γ′ ⊢ e : τ ′ and Γ ⊢ L : Γ′

• Case L = lazy 〈ζ, x〉 = e1 in L′:

(a) By assumption: Γ ⊢ lazy 〈ζ, x〉 = e1 in L′E[e] : τ

(b) By (a) and Typing Inversion: Γ ⊢ e1 : ∃α:κ.τ1 and Γ, ζ:κ, x:τ1[α := ζ] ⊢ L′E[e] :
τ ′′ where τ ′′ ≡ τ

(c) By (b) and induction: Γ, ζ:κ, x:τ1[α := ζ], Γ′′ ⊢ e : τ ′ where Γ, ζ:κ, x:τ1[α := ζ] ⊢
L′ : Γ′′

(d) By (b), (c), and L-Lazy: Γ, ζ:κ, x:τ1[α := ζ], Γ′′ ⊢ e : τ ′ and Γ ⊢ L : ζ:κ, x:τ1[α :=
ζ], Γ′′

93

Lemma 8 (Exchange).

1. If Γ ⊢ E[e] : τ and Γ ⊢ e : τ ′ and Γ, Γ′ ⊢ e′ : τ ′, then Γ, Γ′ ⊢ E[e′] : τ .

2. If Γ ⊢ LE[e] : τ and Γ, Γ′ ⊢ e : τ ′ as well as Γ, Γ′ ⊢ e′ : τ ′ and Γ ⊢ L : Γ′, then
Γ ⊢ LE[e′] : τ .

Proof. (1) by structural induction on E, (2) by structural induction on L.

1. Let Γ ⊢ E[e] : τ , Γ ⊢ e : τ ′, and Γ, Γ′ ⊢ e′ : τ ′.

• Case E = :

(a) By assumption: Γ ⊢ e : τ

(b) By (a), assumption and Uniqueness of Types: τ ≡ τ ′

(c) By assumption and Environment Validity: Γ, Γ′ ⊢ �

(d) By assumption and Validity: Γ ⊢ τ : Ω

(e) By (c), (d), and Weakening: Γ, Γ′ ⊢ τ : Ω

(f) By (b), (e), assumption, and T-Equiv: Γ, Γ′ ⊢ e′ : τ

(g) By (f): Γ, Γ′ ⊢ E[e′] : τ

• Case E = E′ e′′:

(a) By assumption: Γ ⊢ E′[e] e′′ : τ

(b) By (a) and Typing Inversion: Γ ⊢ E′[e] : τ ′′ → τ and Γ ⊢ e′′ : τ ′′

(c) By (b), assumption, and induction: Γ, Γ′ ⊢ E′[e′] : τ ′′ → τ

(d) By assumption and Environment Validity: Γ, Γ′ ⊢ �

(e) By (b), (d), and Weakening: Γ, Γ′ ⊢ e′′ : τ ′′

(f) By (c), (e), and T-App: Γ, Γ′ ⊢ E′[e′] e′′ : τ

(g) By (f): Γ, Γ′ ⊢ E[e′] : τ

• Case E = (λx:τ1.e1) E′:

(a) By assumption: Γ ⊢ (λx:τ1.e1) E′[e] : τ

(b) By (a) and Typing Inversion: Γ ⊢ λx:τ1.e1 : τ ′′ → τ and Γ ⊢ E′[e] : τ ′′

(c) By (b), assumption, and induction: Γ, Γ′ ⊢ E′[e′] : τ ′′

(d) By assumption and Environment Validity: Γ, Γ′ ⊢ �

(e) By (b), (d), and Weakening: Γ, Γ′ ⊢ λx:τ1.e1 : τ ′′ → τ

(f) By (c), (e), and T-App: Γ, Γ′ ⊢ (λx:τ1.e1) E′[e′] : τ

(g) By (f): Γ, Γ′ ⊢ E[e′] : τ

• Case E = 〈E′, e′′〉:

(a) By assumption: Γ ⊢ 〈E′[e], e′′〉 : τ

(b) By (a) and Typing Inversion: Γ ⊢ E′[e] : τ1 and Γ ⊢ e′′ : τ2 where τ ≡ τ1 × τ2

(c) By (b), assumption, and induction: Γ, Γ′ ⊢ E′[e′] : τ1

(d) By assumption and Environment Validity: Γ, Γ′ ⊢ �

(e) By (b), (d), and Weakening: Γ, Γ′ ⊢ e′′ : τ2

(f) By (c), (e), and T-Pair: Γ, Γ′ ⊢ 〈E′[e′], e′′〉 : τ1 × τ2

(g) By assumption and Validity: Γ ⊢ τ : Ω

(h) By (d), (g), and Weakening: Γ, Γ′ ⊢ τ : Ω

(i) By (b), (f), (h), and T-Equiv: Γ, Γ′ ⊢ 〈E′[e′], e′′〉 : τ

94

(j) By (i): Γ, Γ′ ⊢ E[e′] : τ

• Case E = 〈v, E′〉:

(a) By assumption: Γ ⊢ 〈v, E′[e]〉 : τ

(b) By (a) and Typing Inversion: Γ ⊢ v : τ1 and Γ ⊢ E′[e] : τ2 where τ ≡ τ1 × τ2

(c) By (b), assumption, and induction: Γ, Γ′ ⊢ E′[e′] : τ2

(d) By assumption and Environment Validity: Γ, Γ′ ⊢ �

(e) By (b), (d), and Weakening: Γ, Γ′ ⊢ v : τ1

(f) By (c), (e), and T-Pair: Γ, Γ′ ⊢ 〈v, E′[e′]〉 : τ1 × τ2

(g) By assumption and Validity: Γ ⊢ τ : Ω

(h) By (d), (g), and Weakening: Γ, Γ′ ⊢ τ : Ω

(i) By (b), (f), (h), and T-Equiv: Γ, Γ′ ⊢ 〈v, E′[e′]〉 : τ

(j) By (i): Γ, Γ′ ⊢ E[e′] : τ

• Case E = 〈τ1, E
′〉:τ2:

(a) By assumption: Γ ⊢ 〈τ1, E
′[e]〉:τ2 : τ

(b) By (a) and Typing Inversion: Γ ⊢ τ1 : κ and Γ ⊢ E′[e] : τ3[α := τ1] where
τ2 = ∃α:κ.τ3 and τ ≡ τ2 and Γ ⊢ τ2 : Ω

(c) By (b), assumption, and induction: Γ, Γ′ ⊢ E′[e′] : τ3[α := τ1]

(d) By assumption and Environment Validity: Γ, Γ′ ⊢ �

(e) By (b), (d), and Weakening: Γ, Γ′ ⊢ τ1 : κ and Γ, Γ′ ⊢ τ2 : Ω

(f) By (c), (e), and T-Close: Γ, Γ′ ⊢ 〈τ1, E
′[e′]〉:τ2 : τ2

(g) By assumption and Validity: Γ ⊢ τ : Ω

(h) By (d), (g), and Weakening: Γ, Γ′ ⊢ τ : Ω

(i) By (b), (f), (h), and T-Equiv: Γ, Γ′ ⊢ 〈τ1, E
′[e′]〉:τ2 : τ

(j) By (i): Γ, Γ′ ⊢ E[e′] : τ

• Case E = let 〈x1, x2〉 = E′ in e′′ (w.l.o.g. {x1, x2} ∩ dom(Γ, Γ′) = ∅):

(a) By assumption: Γ ⊢ let 〈x1, x2〉 = E′[e] in e′′ : τ

(b) By (a) and Typing Inversion: Γ ⊢ E′[e] : τ1 × τ2 and Γ, x1:τ1, x2:τ2 ⊢ e′′ : τ

(c) By (b), assumption, and induction: Γ, Γ′ ⊢ E′[e′] : τ1 × τ2

(d) By (c) and Validity: Γ, Γ′ ⊢ τ1 × τ2 : Ω

(e) By (d) and inversion of K-Times: Γ, Γ′ ⊢ τ1 : Ω and Γ, Γ′ ⊢ τ2 : Ω

(f) By (e) and E-Term: Γ, Γ′, x1:τ1 ⊢ �

(g) By (e), (f), and Weakening: Γ, Γ′, x1:τ1 ⊢ τ2 : Ω

(h) By (g) and E-Term: Γ, Γ′, x1:τ1, x2:τ2 ⊢ �

(i) By (b), (h), and Weakening: Γ, Γ′, x1:τ1, x2:τ2 ⊢ e′′ : τ

(j) By (c), (i), and T-Proj: Γ, Γ′ ⊢ let 〈x1, x2〉 = E′[e′] in e′′ : τ

(k) By (j): Γ, Γ′ ⊢ E[e′] : τ

• Case E = let 〈α, x〉 = E′ in e′′ (w.l.o.g. {α, x} ∩ dom(Γ, Γ′) = ∅):

(a) By assumption: Γ ⊢ let 〈α, x〉 = E′[e] in e′′ : τ

(b) By (a) and Typing Inversion: Γ ⊢ E′[e] : ∃α:κ.τ ′′ and Γ, α:κ, x:τ ′′ ⊢ e′′ : τ ′′′,
where α /∈ ftv(τ ′′′) and τ ′′′ ≡ τ

(c) By (b), assumption, and induction: Γ, Γ′ ⊢ E′[e′] : ∃α:κ.τ ′′

(d) By assumption and Environment Validity: Γ, Γ′ ⊢ �

(e) By (d) and E-Type: Γ, Γ′, α:κ ⊢ �

(f) By (c) and Validity: Γ, Γ′ ⊢ ∃α:κ.τ ′′ : Ω

95

(g) By (f) and inversion of K-Exist: Γ, Γ′, α:κ ⊢ τ ′′ : Ω

(h) By (e), (g), and Weakening: Γ, Γ′, α:κ ⊢ τ ′′ : Ω

(i) By (h) and E-Term: Γ, Γ′, α:κ, x:τ ′′ ⊢ �

(j) By (b), (i), and Weakening: Γ, Γ′, α:κ, x:τ ′′ ⊢ e′′ : τ ′′′

(k) By (c), (k), and T-Open: Γ, Γ′ ⊢ let 〈α, x〉 = E′[e′] in e′′ : τ ′′′

(l) By assumption and Validity: Γ ⊢ τ : Ω

(m) By (d), (m), and Weakening: Γ, Γ′ ⊢ τ : Ω

(n) By (b), (l), (n), and T-Equiv: Γ, Γ′ ⊢ let 〈α, x〉 = E′[e′] in e′′ : τ

(o) By (o): Γ, Γ′ ⊢ E[e′] : τ

• Case E = E′ τ2:

(a) By assumption: Γ ⊢ E′[e] τ2 : τ

(b) By (a) and Typing Inversion: Γ ⊢ E′[e] : ∀α:κ.τ1 and Γ ⊢ τ2 : κ where τ ≡ τ1[α :=
τ2]

(c) By (b), assumption, and induction: Γ, Γ′ ⊢ E′[e′] : ∀α:κ.τ1

(d) By assumption and Environment Validity: Γ, Γ′ ⊢ �

(e) By (b), (d), and Weakening: Γ, Γ′ ⊢ τ2 : κ

(f) By (d), (e), and T-Inst: Γ, Γ′ ⊢ E′[e′] τ2 : τ1[α := τ2]

(g) By assumption and Validity: Γ ⊢ τ : Ω

(h) By (d), (g), and Weakening: Γ, Γ′ ⊢ τ : Ω

(i) By (b), (f), (h), and T-Equiv: Γ, Γ′ ⊢ E′[e′] τ2 : τ

(j) By (i): Γ, Γ′ ⊢ E[e′] : τ

• Case E = tcase E′:τ0 of x:τ ′

0 then e1 else e2 (w.l.o.g. x /∈ dom(Γ, Γ′)):

(a) By assumption: Γ ⊢ tcase E′[e]:τ0 of x:τ ′

0 then e1 else e2 : τ

(b) By (a) and Typing Inversion:

i. Γ ⊢ E′[e] : τ0

ii. Γ, x:τ ′

0 ⊢ e1 : τ

iii. Γ ⊢ e2 : τ

(c) By (2a), assumption, and induction: Γ, Γ′ ⊢ E′[e′] : τ0

(d) By assumption and Environment Validity: Γ, Γ′ ⊢ �

(e) By (2b) and Environment Validity: Γ, x:τ ′

0 ⊢ �

(f) By (e) and inversion of E-Term: Γ ⊢ τ ′

0 : Ω

(g) By (d), (f), and Weakening: Γ, Γ′ ⊢ τ ′

0 : Ω

(h) By (g), assumption, and E-Term: Γ, Γ′, x:τ ′

0 ⊢ �

(i) By (2b), (h), and Weakening: Γ, Γ′, x:τ ′

0 ⊢ e1 : τ

(j) By (2c), (d), and Weakening: Γ, Γ′ ⊢ e2 : τ

(k) By (c), (i), (j), and T-Case: Γ, Γ′ ⊢ tcase E′[e′]:τ0 of x:τ ′

0 then e1 else e2 : τ

(l) By (k): Γ, Γ′ ⊢ E[e′] : τ

2. Let Γ ⊢ LE[e] : τ and Γ, Γ′ ⊢ e : τ ′ and Γ, Γ′ ⊢ e′ : τ ′ and Γ ⊢ L : Γ′.

• Case L = :

(a) By assumption and inversion of L-Empty: Γ ⊢ E[e] : τ and Γ′ = ·

(b) By (a) and assumption: Γ ⊢ e : τ ′ and Γ ⊢ e′ : τ ′

(c) By (b) and (1): Γ ⊢ E[e′] : τ

(d) By (c): Γ ⊢ LE[e′] : τ

96

• Case L = lazy 〈ζ, x〉 = e1 in L′:

(a) By assumption: Γ ⊢ lazy 〈ζ, x〉 = e1 in L′E[e] : τ

(b) By (a) and Typing Inversion: Γ ⊢ e1 : ∃α:κ.τ1 and Γ, ζ:κ, x:τ1[α := ζ] ⊢ L′E[e] :
τ ′′′ where ζ /∈ ftv(τ ′′′) and τ ′′′ ≡ τ

(c) We show: Γ, ζ:κ, x:τ1[α := ζ] ⊢ L′E[e′] : τ ′′′

i. By assumption and inversion of L-Lazy: Γ′ = ζ:κ′, x:τ ′

1[α := ζ], Γ′′ and
Γ ⊢ e1 : ∃α:κ′.τ ′

1 and Γ, ζ:κ′, x:τ ′

1[α := ζ] ⊢ L′ : Γ′′

ii. By (i), (b), and Uniqueness of Types: ∃α:κ.τ1 ≡ ∃α:κ′.τ ′

1

iii. By (ii) and Type Equivalence Inversion: κ = κ′ and τ1 ≡ τ ′

1

iv. By (iii): Γ, ζ:κ, x:τ1[α := ζ] ≡ Γ, ζ:κ′, x:τ ′

1[α := ζ]

v. We show: Γ, ζ:κ′, x:τ ′

1[α := ζ] ⊢ �

– Subcase L′ = :

A. By (i) and inversion of L-Empty: Γ, ζ:κ′, x:τ ′

1[α := ζ] ⊢ �

– Subcase L′ = lazy 〈ζ′, x′〉 = e′1 in L′′:

A. By (i) and inversion of L-Lazy: Γ, ζ:κ′, x:τ ′

1[α := ζ] ⊢ e′1 : ∃α′:κ′′′.τ ′′

1

B. By (A) and Environment Validity: Γ, ζ:κ′, x:τ ′

1[α := ζ] ⊢ �

vi. By (b), (iv), (v), and Equivalent Environments: Γ, ζ:κ′, x:τ ′

1[α := ζ] ⊢ L′E[e] :
τ ′′′

vii. By (vi), (i), assumption, and induction: Γ, ζ:κ′, x:τ ′

1[α := ζ] ⊢ L′E[e′] : τ ′′′

viii. By (b) and Environment Validity: Γ, ζ:κ, x:τ1[α := ζ] ⊢ �

ix. By (vii), (iv), (viii), and Equivalent Environments: Γ, ζ:κ, x:τ1[α := ζ] ⊢
L′E[e′] : τ ′′′

(d) By (b), (c), and T-Lazy: Γ ⊢ lazy 〈ζ, x〉 = e1 in L′E[e′] : τ ′′′

(e) By assumption and Validity: Γ ⊢ τ : Ω

(f) By (b), (d), (e), and T-Equiv: Γ ⊢ lazy 〈ζ, x〉 = e1 in L′E[e′] : τ

(g) By (f): Γ ⊢ LE[e′] : τ

Lemma 9 (Lazy Term Variables). If Γ ⊢ LE[x] : τ and x /∈ dom(Γ), then L = L1[lazy 〈ζ, x〉 =
e in L2] where x /∈ bv(L2).

Proof. By structural induction on L. W.l.o.g. all bound variables of LE[x] are distinct and
(btv(LE[x]) ∪ bv(LE[x])) ∩ dom(Γ) = ∅.

• Case L = :

1. By Context Elimination: Γ ⊢ L[x] : τ ′

2. By (1) and Context Elimination: Γ ⊢ x : τ ′′

3. By (2): x ∈ dom(Γ)

4. By (2) and Variable Containment: x ∈ dom(Γ)

5. (3) contradicts the assumption x /∈ dom(Γ), hence this case is not possible.

• Case L = lazy 〈ζ, x′〉 = e in L′:

– Subcase x′ = x ∧ x /∈ bv(L′): this is what we claimed

– Subcase x′ = x∧x ∈ bv(L′): not possible due to our assumption about bound variables

– Subcase x′ 6= x:

97

normal forms ν ::= p | ν1 → ν2 | ν1 × ν2 | ∀α:κ.ν | ∃α:κ.ν | λα:κ.ν | 〈ν1, ν2〉

normal paths p ::= α | p ν | p.1 | p.2

type reduction contexts T ::= | T → τ | ν → T | T × τ | ν × T | ∀α:κ.T | ∃α:κ.T | λα:κ.T |

T τ | ν T | 〈T, τ〉 | 〈ν, T 〉 | T.1 | T.2

tcase contexts C ::= tcase v: of x:τ then e1 else e2 | tcase v:ν of x: then e1 else e2

Reduction e −→ e′

R-App LE[(λx:τ.e) v] −→ LE[e[x := v]]
R-Inst LE[(λα:κ.e) τ] −→ LE[e[α := τ]]
R-Proj LE[let 〈x1, x2〉 = 〈v1, v2〉 in e] −→ LE[e[x1 := v1][x2 := v2]]
R-Open LE[let 〈α, x〉 = 〈τ, v〉:τ ′ in e] −→ LE[e[α := τ][x := v]]
R-Suspend LE[lazy 〈ζ, x〉 = e1 in e2] −→ L[lazy 〈ζ, x〉 = e1 in E[e2]]

(E 6= ∧ ζ /∈ ftv(E) ∧ x /∈ fv(E))
R-Trigger L1[lazy 〈ζ, x〉 = e in L2ES[x]] −→ L1[let 〈α, x〉 = e in (L2ES[x])[ζ := α]]

(x /∈ btv(L2))
R-Case1 LE[tcase v:ν of x:ν then e1 else e2] −→ LE[e1[x := v]]
R-Case2 LE[tcase v:ν of x:ν′ then e1 else e2] −→ LE[e2] (ν 6= ν′)
RT-App LECT [(λα:κ.ν) ν′] −→ LECT [ν[α := ν′]]
RT-Proj1 LECT [〈ν1, ν2〉.1] −→ LECT [ν1]
RT-Proj2 LECT [〈ν1, ν2〉.2] −→ LECT [ν2]
RT-Trigger L1[lazy 〈ζ, x〉 = e1 in L2ECT [ζ]] −→ L1[let 〈α, x〉 = e1 in (L2ECT [ζ])[ζ := α]]

(ζ /∈ btv(L2))

Figure A.4: The basic calculus + applicative order reduction to normal form on type-level
(operational semantics)

1. By assumption and Typing Inversion: Γ, ζ:κ, x′:τ ′′ ⊢ L′[x] : τ ′′′

2. By assumption: x /∈ dom(Γ, ζ:κ, x′:τ ′′)

3. By (1), (2), and induction: L′ = L′

1[lazy 〈ζ′, x〉 = e′ in L2] where x /∈ bv(L2)

4. Let L1 = lazy 〈ζ, x′〉 = e in L′

1.

5. By (3) and (4): L = L1[lazy 〈ζ′, x〉 = e′ in L2] where x /∈ bv(L2)

A.2 Applicative order reduction to normal form

Lemma 10 (Type Context Elimination).

1. If Γ ⊢ T [τ] : κ, then Γ, Γ′ ⊢ τ : κ′ where Γ ⊢ T : Γ′.

2. If Γ ⊢ T : Γ′, then dom(Γ′) ∩ LTVar = ∅.

3. If Γ ⊢ C[τ] : τ ′, then Γ ⊢ τ : Ω.

Proof. (1) by induction on the structure of T . (2) follows immediately from the definition of the
Γ ⊢ T : Γ′ judgement. (3) by case analysis on C.

98

1. Let Γ ⊢ T [τ] : κ

• Case T = :

(a) By assumption: Γ ⊢ τ : κ

• Case T = T ′ → τ ′:

(a) By assumption: Γ ⊢ T ′[τ] → τ ′ : κ

(b) By (a) and inversion of K-Arrow: Γ ⊢ T ′[τ] : Ω

(c) By (b) and induction: Γ, Γ′ ⊢ τ : Ω where Γ ⊢ T ′ : Γ′

(d) By (c) and TC-Arrow1: Γ ⊢ T ′ → τ ′ : Γ′

• Case T = ν → T ′:

(a) By assumption: Γ ⊢ ν → T ′[τ] : κ

(b) By (a) and inversion of K-Arrow: Γ ⊢ T ′[τ] : Ω

(c) By (b) and induction: Γ, Γ′ ⊢ τ : Ω where Γ ⊢ T ′ : Γ′

(d) By (c) and TC-Arrow2: Γ ⊢ ν → T ′ : Γ′

• Case T = T ′ × τ ′:

(a) By assumption: Γ ⊢ T ′[τ] × τ ′ : κ

(b) By (a) and inversion of K-Times: Γ ⊢ T ′[τ] : Ω

(c) By (b) and induction: Γ, Γ′ ⊢ τ : Ω where Γ ⊢ T ′ : Γ′

(d) By (c) and TC-Times1: Γ ⊢ T ′ × τ ′ : Γ′

• Case T = ν × T ′:

(a) By assumption: Γ ⊢ ν × T ′[τ] : κ

(b) By (a) and inversion of K-Times: Γ ⊢ T ′[τ] : Ω

(c) By (b) and induction: Γ, Γ′ ⊢ τ : Ω where Γ ⊢ T ′ : Γ′

(d) By (c) and TC-Times2: Γ ⊢ ν × T ′ : Γ′

• Case T = T ′ τ ′:

(a) By assumption: Γ ⊢ T ′[τ] τ ′ : κ

(b) By (a) and inversion of K-App: Γ ⊢ T ′[τ] : κ′′ → κ

(c) By (b) and induction: Γ, Γ′ ⊢ τ : κ′ where Γ ⊢ T ′ : Γ′

(d) By (c) and TC-App1: Γ ⊢ T ′ τ ′ : Γ′

• Case T = ν T ′:

(a) By assumption: Γ ⊢ ν T ′[τ] : κ

(b) By (a) and inversion of K-App: Γ ⊢ T ′[τ] : κ′′

(c) By (b) and induction: Γ, Γ′ ⊢ τ : κ′ where Γ ⊢ T ′ : Γ′

(d) By (c) and TC-App2: Γ ⊢ ν T ′ : Γ′

• Case T = ∀α:κ.T ′:

(a) By assumption: Γ ⊢ ∀α:κ.T ′[τ] : κ

(b) By (a) and inversion of K-Univ: Γ, α:κ ⊢ T ′[τ] : Ω

(c) By (b) and induction: Γ, α:κ, Γ′′ ⊢ τ : κ′ where Γ ⊢ T ′ : Γ′′

(d) Let Γ′ = α:κ, Γ′′.

(e) By (b), (c), (d), and TC-Univ: Γ, Γ′ ⊢ τ : κ′ where Γ ⊢ ∀α:κ.T ′ : Γ′

• Case T = ∃α:κ.T ′:

(a) By assumption: Γ ⊢ ∃α:κ.T ′[τ] : κ

(b) By (a) and inversion of K-Exist: Γ, α:κ ⊢ T ′[τ] : Ω

99

(c) By (b) and induction: Γ, α:κ, Γ′′ ⊢ τ : κ′ where Γ ⊢ T ′ : Γ′′

(d) Let Γ′ = α:κ, Γ′′.

(e) By (b), (c), (d), and TC-Exist: Γ, Γ′ ⊢ τ : κ′ where Γ ⊢ ∃α:κ.T ′ : Γ′

• Case T = λα:κ.T ′:

(a) By assumption: Γ ⊢ λα:κ.T ′[τ] : κ

(b) By (a) and inversion of K-Abs: Γ, α:κ ⊢ T ′[τ] : κ′′

(c) By (b) and induction: Γ, α:κ, Γ′′ ⊢ τ : κ′ where Γ ⊢ T ′ : Γ′′

(d) Let Γ′ = α:κ, Γ′′.

(e) By (b), (c), (d), and TC-Abs: Γ, Γ′ ⊢ τ : κ′ where Γ ⊢ λα:κ.T ′ : Γ′

3. Let Γ ⊢ C[τ] : τ ′.

• Case C = tcase e0: of x:τ ′

0 then e1 else e2:

(a) By assumption: Γ ⊢ tcase e0:τ of x:τ ′

0 then e1 else e2 : τ ′

(b) By (a) and Typing Inversion: Γ ⊢ e0 : τ

(c) By (b) and Validity: Γ ⊢ τ : Ω

• Case C = tcase e0:τ0 of x: then e1 else e2:

(a) By assumption: Γ ⊢ tcase e0:τ0 of x:τ then e1 else e2 : τ ′

(b) By (a) and Typing Inversion: Γ, x:τ ⊢ e1 : τ ′

(c) By (b) and Environment Validity: Γ, x:τ ⊢ �

(d) By (c) and inversion of E-Term: Γ ⊢ τ : Ω

Lemma 11 (Wrapping). If τ ≡ τ ′, then, for all T , T [τ] ≡ T [τ ′].

Proof. By structural induction on T .

• Case T = :

1. By assumption: τ ≡ τ ′

• Case T = T ′ → τ ′′:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By Q-Refl: τ ′′ ≡ τ ′′

3. By (1), (2), and Q-Arrow: T ′[τ] → τ ′′ ≡ T ′[τ ′] → τ ′′

• Case T = ν → T ′:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By Q-Refl: ν ≡ ν

3. By (1), (2), and Q-Arrow: ν → T ′[τ] ≡ ν → T ′[τ ′]

• Case T = T ′ × τ ′′:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By Q-Refl: τ ′′ ≡ τ ′′

3. By (1), (2), and Q-Times: T ′[τ] × τ ′′ ≡ T ′[τ ′] × τ ′′

• Case T = ν × T ′:

100

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By Q-Refl: ν ≡ ν

3. By (1), (2), and Q-Times: ν × T ′[τ] ≡ ν × T ′[τ ′]

• Case T = ∀α:κ.T ′:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By (1) and Q-Univ: ∀α:κ.T ′[τ] ≡ ∀α:κ.T ′[τ ′]

• Case T = ∃α:κ′′.T ′:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By (1) and Q-Exist: ∃α:κ.T ′[τ] ≡ ∃α:κ.T ′[τ ′]

• Case T = λα:κ1.T
′:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By (1) and Q-Abs: λα:κ.T ′[τ] ≡ λα:κ.T ′[τ ′]

• Case T = T ′ τ ′′:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By Q-Refl: τ ′′ ≡ τ ′′

3. By (1), (2), and Q-App: T ′[τ] τ ′′ ≡ T ′[τ ′] τ ′′

• Case T = ν T ′:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By Q-Refl: ν ≡ ν

3. By (1), (2), and Q-App: ν T ′[τ] ≡ ν T ′[τ ′]

• Case T = 〈T ′, τ ′′〉:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By Q-Refl: τ ′′ ≡ τ ′′

3. By (1), (2), and Q-Pair: 〈T ′[τ], τ ′′〉 ≡ 〈T ′[τ ′], τ ′′〉

• Case T = 〈ν, T ′〉:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By Q-Refl: ν ≡ ν

3. By (1), (2), and Q-App: 〈ν, T ′[τ]〉 ≡ 〈ν, T ′[τ ′]〉

• Case T = T ′.1:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By (1) and Q-Proj1a: T ′[τ].1 ≡ T ′[τ ′].1

• Case T = T ′.2:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By (1) and Q-Proj2a: T ′[τ].2 ≡ T ′[τ ′].2

101

Lemma 12 (Type Exchange).

1. If Γ ⊢ T [τ] : κ and Γ, Γ′ ⊢ τ : κ and Γ, Γ′ ⊢ τ ′ : κ where Γ ⊢ T : Γ′, then Γ ⊢ T [τ ′] : κ.

2. If Γ ⊢ CT [τ] : τ ′′ and Γ, Γ′ ⊢ τ : κ and Γ, Γ′ ⊢ τ ′ : κ and Γ ⊢ T : Γ′ and τ ≡ τ ′, then
Γ ⊢ CT [τ ′] : τ ′′.

Proof. (1) by structural induction on T . (2) by case analysis on C.

1. Let Γ ⊢ T [τ] : κ and Γ, Γ′ ⊢ τ : κ′ and Γ, Γ′ ⊢ τ ′ : κ′ where Γ ⊢ T : Γ′ and w.l.o.g.
btv(T [τ]) ∩ dom(Γ) = ∅.

• Case T = :

(a) By assumption and inversion of TC-Empty: Γ′ = ·

(b) By assumption and Uniqueness of Kinds: κ = κ′

(c) By (b) and assumption: Γ ⊢ τ ′ : κ

• Case T = T ′ → τ ′′:

(a) By assumption: Γ ⊢ T ′[τ] → τ ′′ : κ

(b) By (a) and inversion of K-Arrow: Γ ⊢ T ′[τ] : Ω and Γ ⊢ τ ′′ : Ω

(c) By (b) and induction: Γ ⊢ T ′[τ ′] : Ω

(d) By (c), (b), and K-Arrow: Γ ⊢ T ′[τ ′] → τ ′′ : Ω

• Case T = ν → T ′:

(a) By assumption: Γ ⊢ ν → T ′[τ] : κ

(b) By (a) and inversion of K-Arrow: Γ ⊢ ν : Ω and Γ ⊢ T ′[τ] : Ω

(c) By (b) and induction: Γ ⊢ T ′[τ ′] : Ω

(d) By (c), (b), and K-Arrow: Γ ⊢ ν → T ′[τ ′] : Ω

• Case T = T ′ × τ ′′:

(a) By assumption: Γ ⊢ T ′[τ] × τ ′′ : κ

(b) By (a) and inversion of K-Times: Γ ⊢ T ′[τ] : Ω and Γ ⊢ τ ′′ : Ω

(c) By (b) and induction: Γ ⊢ T ′[τ ′] : Ω

(d) By (c), (b), and K-Times: Γ ⊢ T ′[τ ′] × τ ′′ : Ω

• Case T = ν × T ′:

(a) By assumption: Γ ⊢ ν × T ′[τ] : κ

(b) By (a) and inversion of K-Times: Γ ⊢ ν : Ω and Γ ⊢ T ′[τ] : Ω

(c) By (b) and induction: Γ ⊢ T ′[τ ′] : Ω

(d) By (c), (b), and K-Times: Γ ⊢ ν × T ′[τ ′] : Ω

• Case T = ∀α:κ′′.T ′:

(a) By assumption: Γ ⊢ ∀α:κ′′.T ′[τ] : Ω

(b) By (a), assumption, and inversion of K-Univ: Γ, α:κ′′ ⊢ T ′[τ] : Ω

(c) By assumption and inversion of TC-Univ: Γ′ = α:κ′′, Γ′′ and Γ, α:κ′′ ⊢ T ′ : Γ′′

(d) By (b), (c), assumption, and induction: Γ, α:κ′′ ⊢ T ′[τ ′] : Ω

(e) By (d) and K-Univ: Γ ⊢ ∀α:κ′′.T ′[τ ′] : Ω

• Case T = ∃α:κ′′.T ′:

(a) By assumption: Γ ⊢ ∃α:κ′′.T ′[τ] : Ω

(b) By (a), assumption, and inversion of K-Exist: Γ, α:κ′′ ⊢ T ′[τ] : Ω

102

(c) By assumption and inversion of TC-Exist: Γ′ = α:κ′′, Γ′′ and Γ, α:κ′′ ⊢ T ′ : Γ′′

(d) By (b), (c), assumption, and induction: Γ, α:κ′′ ⊢ T ′[τ ′] : Ω

(e) By (d) and K-Exist: Γ ⊢ ∃α:κ′′.T ′[τ ′] : Ω

• Case T = λα:κ1.T
′:

(a) By assumption: Γ ⊢ λα:κ1.T
′[τ] : κ

(b) By (a), assumption, and inversion of K-Abs: κ = κ1 → κ2 and Γ, α:κ1 ⊢ T ′[τ] : κ2

(c) By assumption and inversion of TC-Abs: Γ′ = α:κ1, Γ
′′ and Γ, α:κ1 ⊢ T ′ : Γ′′

(d) By (b), (c), assumption, and induction: Γ, α:κ1 ⊢ T ′[τ ′] : κ2

(e) By (d) and K-Abs: Γ ⊢ λα:κ1.T
′[τ ′] : κ1 → κ2

• Case T = T ′ τ ′′:

(a) By assumption: Γ ⊢ T ′[τ] τ ′′ : κ

(b) By (a) and inversion of K-App: Γ ⊢ T ′[τ] : κ′′ → κ and Γ ⊢ τ ′′ : κ′′

(c) By (b) and induction: Γ ⊢ T ′[τ ′] : κ′′ → κ

(d) By (c), (b), and K-App: Γ ⊢ T ′[τ ′] τ ′′ : κ

• Case T = ν T ′:

(a) By assumption: Γ ⊢ ν T ′[τ] : κ

(b) By (a) and inversion of K-App: Γ ⊢ ν : κ′′ → κ and Γ ⊢ T ′[τ] : κ′′

(c) By (b) and induction: Γ ⊢ T ′[τ ′] : κ′′

(d) By (c), (b), and K-App: Γ ⊢ ν T ′[τ ′] : κ

• Case T = 〈T ′, τ ′′〉:

(a) By assumption: Γ ⊢ 〈T ′[τ], τ ′′〉 : κ

(b) By (a) and inversion of K-Pair: κ = κ1 × κ2 and Γ ⊢ T ′[τ] : κ1 and Γ ⊢ τ ′′ : κ2

(c) By (b) and induction: Γ ⊢ T ′[τ ′] : κ1

(d) By (c), (b), and K-Pair: Γ ⊢ 〈T ′[τ ′], τ ′′〉 : κ1 × κ2

• Case T = 〈ν, T ′〉:

(a) By assumption: Γ ⊢ 〈ν, T ′[τ]〉 : κ

(b) By (a) and inversion of K-Pair: κ = κ1 × κ2 and Γ ⊢ ν : κ1 and Γ ⊢ T ′[τ] : κ2

(c) By (b) and induction: Γ ⊢ T ′[τ ′] : κ2

(d) By (c), (b), and K-Pair: Γ ⊢ 〈ν, T ′[τ ′]〉 : κ1 × κ2

• Case T = T ′.1:

(a) By assumption: Γ ⊢ T ′[τ].1 : κ

(b) By (a) and inversion of K-Proj1: Γ ⊢ T ′[τ] : κ × κ2

(c) By (b) and induction: Γ ⊢ T ′[τ ′] : κ × κ2

(d) By (c), (b), and K-App: Γ ⊢ T ′[τ ′].1 : κ

• Case T = T ′.2:

(a) By assumption: Γ ⊢ T ′[τ].2 : κ

(b) By (a) and inversion of K-Proj2: Γ ⊢ T ′[τ] : κ1 × κ

(c) By (b) and induction: Γ ⊢ T ′[τ ′] : κ1 × κ

(d) By (c), (b), and K-App: Γ ⊢ T ′[τ ′].2 : κ

2. Let Γ ⊢ CT [τ] : τ ′′ and Γ, Γ′ ⊢ τ : κ and Γ, Γ′ ⊢ τ ′ : κ and Γ ⊢ T : Γ′ and τ ≡ τ ′.

• Case C = tcase e0: of x:τ ′

0 then e1 else e2:

(a) By assumption: Γ ⊢ tcase e0:T [τ] of x:τ ′

0 then e1 else e2 : τ ′′

103

(b) By (a) and Typing Inversion: Γ ⊢ e0 : T [τ] and Γ, x:τ ′

0 ⊢ e1 : τ ′′ and Γ ⊢ e2 : τ ′′

(c) By (b) and Validity: Γ ⊢ T [τ] : Ω

(d) By (c), assumption, and (1): Γ ⊢ T [τ ′] : Ω

(e) By assumption and Wrapping: T [τ] ≡ T [τ ′]

(f) By (b), (d), (e), and T-Equiv: Γ ⊢ e0 : T [τ ′]

(g) By (f), (b), and T-Case: Γ ⊢ tcase e0:T [τ ′] of x:τ ′

0 then e1 else e2 : τ ′′

• Case C = tcase e0:τ0 of x: then e1 else e2:

(a) By assumption: Γ ⊢ tcase e0:τ0 of x:T [τ] then e1 else e2 : τ ′′

(b) By (a) and Typing Inversion: Γ ⊢ e0 : τ0 and Γ, x:T [τ] ⊢ e1 : τ ′′ and Γ ⊢ e2 : τ ′′

(c) By (b) and Environment Validity: Γ, x:T [τ] ⊢ �

(d) By (c) and inversion of E-Term: Γ ⊢ T [τ] : Ω and x /∈ dom(Γ)

(e) By (d), assumption, and (1): Γ ⊢ T [τ ′] : Ω

(f) By (e), (d), and E-Term: Γ, x:T [τ ′] ⊢ �

(g) By assumption and Wrapping: T [τ] ≡ T [τ ′]

(h) By (b), (f), (g), and Equivalent Environments: Γ, x:T [τ ′] ⊢ e1 : τ ′′

(i) By (h), (b), and T-Case: Γ ⊢ tcase e0:τ0 of x:T [τ ′] then e1 else e2 : τ ′′

Theorem 1 (Preservation). If Γ ⊢ e : τ and e −→ e′, then Γ ⊢ e′ : τ .

Proof. By case analysis on the applied reduction rule.

• Case R-App: e = LE[(λx:τ1.e1) v] and e′ = LE[e1[x := v]]:

1. By Context Elimination: Γ, Γ′ ⊢ (λx:τ1.e1) v : τ ′ where Γ ⊢ L : Γ′

2. We show: Γ, Γ′ ⊢ e1[x := v] : τ ′

(a) By (1) and Typing Inversion: Γ, Γ′ ⊢ λx:τ1.e1 : τ ′

1 → τ ′ and Γ, Γ′ ⊢ v : τ ′

1

(b) By (a) and Typing Inversion: Γ, Γ′, x:τ1 ⊢ e1 : τ2 and τ ′

1 → τ ′ ≡ τ1 → τ2

(c) By (b) and Type Equivalence Inversion: τ ′

1 ≡ τ1 and τ ′ ≡ τ2

(d) By (b) and Environment Validity: Γ, Γ′, x:τ1 ⊢ �

(e) By (d) and inversion of E-Term: Γ, Γ′ ⊢ τ1 : Ω

(f) By (a), (c), (e), and T-Equiv: Γ, Γ′ ⊢ v : τ1

(g) By (b), (f), and Term Substitution: Γ, Γ′ ⊢ e1[x := v] : τ2

(h) By (1) and Validity: Γ, Γ′ ⊢ τ ′ : Ω

(i) By (h), (h), (c), and T-Equiv: Γ, Γ′ ⊢ e1[x := v] : τ ′

3. By assumption, (1), (2), and Exchange: Γ ⊢ LE[e1[x := v]] : τ

• Case R-Inst: e = LE[(λα:κ.e1) τ ′] and e′ = LE[e1[α := τ ′]]:

1. By Context Elimination: Γ, Γ′ ⊢ (λα:κ.e) τ ′ : τ ′′ where Γ ⊢ L : Γ′ and w.l.o.g.
α /∈ dom(Γ, Γ′)

2. We show: Γ, Γ′ ⊢ e[α := τ ′] : τ ′′

(a) By (1) and Typing Inversion: Γ, Γ′ ⊢ λα:κ.e1 : ∀α′:κ′.τ1 (w.l.o.g. α′ = α) and
τ ′′ ≡ τ1[α

′ := τ ′] where Γ, Γ′ ⊢ τ ′ : κ′

(b) By (a) and Typing Inversion: Γ, Γ′, α:κ ⊢ e1 : τ ′

1 and ∀α′:κ′.τ1 ≡ ∀α:κ.τ ′

1

(c) By (b) and Type Equivalence Inversion: κ′ = κ and τ1 ≡ τ ′

1

(d) By (b), (c), (a), and Type Substitution: Γ, Γ′ ⊢ e1[α := τ ′] : τ ′

1[α := τ ′]

104

(e) By (c) and Type Substitution: τ1[α := τ ′] ≡ τ ′

1[α := τ ′]

(f) By (a), (d), Q-Sym, and Q-Trans: τ ′

1[α := τ ′] ≡ τ ′′

(g) By (1) and Validity: Γ, Γ′ ⊢ τ ′′ : Ω

(h) By (d), (f), (g), and T-Equiv: Γ, Γ′ ⊢ e1[α := τ ′] : τ ′′

3. By assumption, (1), (2), and Exchange: Γ ⊢ LE[e1[α := τ ′]] : τ

• Case R-Proj: e = LE[let 〈x1, x2〉 = 〈v1, v2〉 in e1] and e′ = LE[e1[x1 := v1][x2 := v2]]:

1. By Context Elimination: Γ, Γ′ ⊢ let 〈x1, x2〉 = 〈v1, v2〉 in e1 : τ ′ where Γ ⊢ L : Γ′

2. We show: Γ, Γ′ ⊢ e1[x1 := v1][x2 := v2] : τ ′

(a) By (1) and Typing Inversion: Γ, Γ′ ⊢ 〈v1, v2〉 : τ1 × τ2 and Γ, Γ′, x1:τ1, x2:τ2 ⊢ e1 :
τ ′

(b) By (a) and Typing Inversion: Γ, Γ′ ⊢ v1 : τ ′

1 and Γ, Γ′ ⊢ v2 : τ ′

2 where τ1 × τ2 ≡
τ ′

1 × τ ′

2

(c) By (b) and Type Equivalence Inversion: τ1 ≡ τ ′

1 and τ2 ≡ τ ′

2

(d) By (a) and Validity: Γ, Γ′ ⊢ τ1 × τ2 : Ω

(e) By (d) and inversion of K-Times: Γ, Γ′ ⊢ τ1 : Ω and Γ, Γ′ ⊢ τ2 : Ω

(f) By (b), (c), (e), and T-Equiv: Γ, Γ′ ⊢ v1 : τ1 and Γ, Γ′ ⊢ v2 : τ2

(g) By (a), (f), and Term Substitution: Γ, Γ′, x2:τ2 ⊢ e1[x1 := v1] : τ ′

(h) By (g), (f), and Term Substitution: Γ, Γ′ ⊢ e1[x1 := v1][x2 := v2] : τ ′

3. By assumption, (1), (2), and Exchange: Γ ⊢ LE[e1[x1 := v1][x2 := v2]] : τ

• Case R-Open: e = LE[let 〈α, x〉 = 〈τ1, v〉:τ ′

1 in e1] and e′ = LE[e1[α := τ1][x := v]]:

1. By Context Elimination: Γ, Γ′ ⊢ let 〈α, x〉 = 〈τ1, v〉:τ ′

1 in e1 : τ ′ where Γ ⊢ L : Γ′

2. We show: Γ, Γ′ ⊢ e1[x1 := v1][x2 := v2] : τ ′

(a) By (1) and Typing Inversion: Γ, Γ′ ⊢ 〈τ1, v〉:τ ′

1 : ∃α:κ.τ2 and Γ, Γ′, α:κ, x:τ2 ⊢ e1 :
τ ′′ where α /∈ ftv(τ ′′) and τ ′′ ≡ τ ′

(b) By (a) and Typing Inversion: Γ, Γ′ ⊢ τ1 : κ′ and Γ, Γ′ ⊢ v : τ2[α := τ1] where
τ ′

1 = ∃α:κ′.τ ′

2 and ∃α:κ.τ2 ≡ ∃α:κ′.τ ′

2 and Γ ⊢ τ ′

1 : Ω

(c) By (b) and Type Equivalence Inversion: κ = κ′ and τ2 ≡ τ ′

2

(d) By (a), (b), (c), and Type Substitution: Γ, Γ′, x:τ2[α := τ1] ⊢ e1[α := τ1] : τ ′′[α :=
τ1]

(e) By (d), (b), and Term Substitution: Γ, Γ′ ⊢ e1[α := τ1][x := v] : τ ′′[α := τ1]

(f) By (a) and (e): Γ, Γ′ ⊢ e1[α := τ1][x := v] : τ ′′

(g) By (1) and Validity: Γ, Γ′ ⊢ τ ′ : Ω

(h) By (a), (f), (g), and T-Equiv: Γ, Γ′ ⊢ e1[α := τ1][x := v] : τ ′

3. By assumption, (1), (2), and Exchange: Γ ⊢ LE[e1[α := κ][x := v]] : τ

• Case R-Suspend: e = LE[lazy 〈ζ, x〉 = e1 in e2] and e′ = L[lazy 〈ζ, x〉 = e1 in E[e2]] where
E 6= :

1. By Context Elimination: Γ, Γ′ ⊢ E[lazy 〈ζ, x〉 = e1 in e2] : τ ′ where Γ ⊢ L : Γ′ (w.l.o.g.
{ζ, x} ∩ dom(Γ, Γ′) = ∅ and ζ /∈ ftv(τ ′))

2. We show: Γ, Γ′ ⊢ lazy 〈ζ, x〉 = e1 in E[e2] : τ ′

(a) By (1) and Context Elimination: Γ, Γ′ ⊢ lazy 〈ζ, x〉 = e1 in e2 : τ2

(b) By (a), (1), and Typing Inversion:

i. Γ, Γ′ ⊢ e1 : ∃α:κ.τ1

105

ii. Γ, Γ′, ζ:κ, x:τ1[α := ζ] ⊢ e2 : τ ′

2

iii. ζ /∈ ftv(τ ′

2)

iv. τ ′

2 ≡ τ2

(c) By (b-ii) and Validity: Γ, Γ′, ζ:κ, x:τ1[α := ζ] ⊢ τ ′

2 : Ω

(d) By (d) and Variable Containment: ftv(τ ′

2) ⊆ dom(Γ, Γ′, ζ:κ, x:τ1[α := ζ])

(e) By (b-iii) and (e): ftv(τ ′

2) ⊆ dom(Γ, Γ′)

(f) By (1) and Environment Validity: Γ, Γ′ ⊢ �

(g) By (d), (f), (g), and Strengthening: Γ, Γ′ ⊢ τ ′

2 : Ω

(h) By (a), (b-iv), (h), and T-Equiv: Γ, Γ′ ⊢ lazy 〈ζ, x〉 = e1 in e2 : τ ′

2

(i) By (1), (h), (b-ii), and Exchange: Γ, Γ′, ζ:κ, x:τ1[α := ζ] ⊢ E[e2] : τ ′

(j) By (b-i), (i), (1), and T-Lazy: Γ, Γ′ ⊢ lazy 〈ζ, x〉 = e1 in E[e2] : τ ′

3. By assumption, (1), (2), and Exchange: Γ ⊢ L[lazy 〈ζ, x〉 = e1 in E[e2]] : τ

• Case R-Trigger: e = L[lazy 〈ζ, x〉 = e1 in L′ES[x]] and e′ = L[let 〈ζ, x〉 = e1 in
(L′ES[x])[ζ := α]]

1. By assumption: Γ ⊢ L[lazy 〈ζ, x〉 = e1 in L′ES[x]] : τ

2. By (1) and Context Elimination: Γ, Γ′ ⊢ lazy 〈ζ, x〉 = e1 in L′ES[x] : τ ′ where
Γ ⊢ L : Γ′

3. By (2) and Typing Inversion: Γ, Γ′ ⊢ e1 : ∃α:κ.τ1 and Γ, Γ′, ζ:κ, x:τ1[α := ζ] ⊢
L′ES[x] : τ ′′ where ζ /∈ ftv(τ ′′) and τ ′′ ≡ τ ′

4. We show: Γ, Γ′, α:κ ⊢ α : κ

(a) By (3) and Validity: Γ, Γ′ ⊢ ∃α:κ.τ1 : Ω

(b) By (a) and inversion of K-Exist: Γ, Γ′, α:κ ⊢ τ1 : Ω

(c) By (b) and Environment Validity: Γ, Γ′, α:κ ⊢ �

(d) By (c): Γ, Γ′, α:κ ⊢ α : κ

5. We show: Γ, Γ′, α:κ, ζ:κ, x:τ1[α := ζ] ⊢ L′ES[x] : τ ′′

(a) By (3) and Environment Validity: Γ, Γ′, ζ:κ, x:τ1[α := ζ] ⊢ �

(b) By (a) and inversion of E-Term: Γ, Γ′, ζ:κ ⊢ τ1[α := ζ] : Ω and x /∈ dom(Γ, Γ′, ζ:κ)

(c) By (b) and Environment Validity: Γ, Γ′, ζ:κ ⊢ �

(d) By (c) and inversion of E-Type: Γ, Γ′ ⊢ � and ζ /∈ dom(Γ, Γ′)

(e) By (4c) and inversion of E-Type: α /∈ dom(Γ, Γ′)

(f) By (d), (e), and E-Type: Γ, Γ′, α:κ ⊢ �

(g) By (d): ζ /∈ dom(Γ, Γ′, α:κ)

(h) By (f), (g), and E-Type: Γ, Γ′, α:κ, ζ:κ ⊢ �

(i) By (b), (h), and Weakening: Γ, Γ′, α:κ, ζ:κ ⊢ τ1[α := ζ] : Ω

(j) By (b): x /∈ dom(Γ, Γ′, α:κ, ζ:κ)

(k) By (i), (j), and E-Term: Γ, Γ′, α:κ, ζ:κ, x:τ1[α := ζ] ⊢ �

(l) By (3), (k), and Weakening: Γ, Γ′, α:κ, ζ:κ, x:τ1[α := ζ] ⊢ L′ES[x] : τ ′′

6. By (4), (5), and Type Substitution: Γ, Γ′, α:κ, x:τ1[α := ζ][ζ := α] ⊢ (L′ES[x])[ζ :=
α] : τ ′′[ζ := α]

7. We show: ζ /∈ ftv(τ1)

(a) By (4b) and Variable Containment: ftv(τ1) ⊆ dom(Γ, Γ′, α:κ)

(b) By (5d): ζ /∈ dom(Γ, Γ′, α:κ)

(c) By (a) and (b): ζ /∈ ftv(τ1)

106

8. By (6) and (7): Γ, Γ′, α:κ, x:τ1 ⊢ (L′ES[x])[ζ := α] : τ ′′[ζ := α]

9. By (3) and (8): Γ, Γ′, α:κ, x:τ1 ⊢ (L′ES[x])[ζ := α] : τ ′′

10. We show: α /∈ ftv(τ ′′)

(a) By (3) and Variable Containment: ftv(τ ′′) ⊆ dom(Γ, Γ′, ζ:κ, x:τ1[α := ζ])

(b) By (5e): α /∈ dom(Γ, Γ′, ζ:κ, x:τ1[α := ζ])

(c) By (a) and (b): α /∈ ftv(τ ′′)

11. By (3), (9), (10), and T-Open: Γ, Γ′ ⊢ let 〈α, x〉 = e1 in (L′ES[x])[ζ := α] : τ ′′

12. By (2) and Validity: Γ, Γ′ ⊢ τ ′ : Ω

13. By (3), (11), (12), and T-Equiv: Γ, Γ′ ⊢ let 〈α, x〉 = e1 in (L′ES[x])[ζ := α] : τ ′

14. By (1), (2), (13), and Exchange: Γ ⊢ L[let 〈α, x〉 = e1 in (L′ES[x])[ζ := α]] : τ

• Case R-Case1: e = LE[tcase v:ν of x:ν then e1 else e2] and e′ = LE[e1[x := v]]

1. By Context Elimination: Γ, Γ′ ⊢ tcase v:ν of x:ν then e1 else e2 : τ ′ where Γ ⊢ L : Γ′

and w.l.o.g. x /∈ dom(Γ, Γ′)

2. By (1) and Typing Inversion: Γ, Γ′ ⊢ v : ν and Γ, Γ′, x:ν ⊢ e1 : τ ′

3. By (2) and Term Substitution: Γ, Γ′ ⊢ e1[x := v] : τ ′

4. By assumption, (1), (2), and Exchange: Γ ⊢ LE[e1[x := v]] : τ

• Case R-Case2: e = LE[tcase v:τ1 of x:τ2 then e1 else e2] and e′ = LE[e2]

1. By Context Elimination: Γ, Γ′ ⊢ tcase v:τ1 of x:τ2 then e1 else e2 : τ ′ where Γ ⊢ L : Γ′

and w.l.o.g. x /∈ dom(Γ, Γ′)

2. By (1) and Typing Inversion: Γ, Γ′ ⊢ e2 : τ ′

3. By assumption, (1), (2), and Exchange: Γ ⊢ LE[e2] : τ

• Case RT-App: e = LECT [(λα:κ.ν) ν′] and e′ = LECT [ν[α := ν′]]:

1. By Context Elimination: Γ, Γ′ ⊢ CT [(λα:κ.ν) ν′] : τ ′ where Γ ⊢ L : Γ′ and w.l.o.g.
α /∈ dom(Γ, Γ′)

2. We show: Γ, Γ′ ⊢ CT [ν[α := ν′]] : τ ′

(a) By (1) and Type Context Elimination: Γ, Γ′ ⊢ T [(λα:κ.ν) ν′] : Ω

(b) By (a) and Type Context Elimination: Γ, Γ′, Γ′′ ⊢ (λα:κ.ν) ν′ : κ′ where Γ, Γ′ ⊢
T : Γ′′

(c) By (b) and inversion of K-App: Γ, Γ′, Γ′′ ⊢ λα:κ.ν : κ′′ → κ′ and Γ, Γ′, Γ′′ ⊢ ν′ :
κ′′

(d) By (c), (1), and inversion of K-Abs: Γ, Γ′, Γ′′, α:κ ⊢ ν : κ′ and κ′′ = κ

(e) By (d), (c), and Type Substitution: Γ, Γ′, Γ′′ ⊢ ν[α := ν′] : κ′

(f) By Q-Beta: (λα:κ.ν) ν′ ≡ ν[α := ν′]

(g) By (1), (b), (d), (e), and Type Exchange: Γ, Γ′ ⊢ CT [ν[α := ν′]] : τ ′

3. By assumption, (1), (2), and Exchange: Γ, Γ′ ⊢ LECT [ν[α := ν′]] : τ

• Case RT-Proj1: e = LECT [〈ν1, ν2〉.1] and e′ = LECT [ν1]:

1. By Context Elimination: Γ, Γ′ ⊢ CT [〈ν1, ν2〉.1] : τ ′ where Γ ⊢ L : Γ′

2. We show: Γ, Γ′ ⊢ CT [ν1] : τ ′

(a) By (1) and Type Context Elimination: Γ, Γ′ ⊢ T [〈ν1, ν2〉.1] : Ω

107

(b) By (a) and Type Context Elimination: Γ, Γ′, Γ′′ ⊢ 〈ν1, ν2〉.1 : κ where Γ, Γ′ ⊢ T :
Γ′′

(c) By (b) and inversion of K-Proj1: Γ, Γ′, Γ′′ ⊢ 〈ν1, ν2〉 : κ × κ2

(d) By (c) and inversion of K-Pair: Γ, Γ′, Γ′′ ⊢ ν1 : κ

(e) By Q-Proj1b: 〈ν1, ν2〉.1 ≡ ν1

(f) By (1), (b), (d), (e), and Type Exchange: Γ, Γ′ ⊢ CT [ν1] : τ ′

3. By assumption, (1), (2), and Exchange: Γ ⊢ LECT [ν1] : τ

• Case RT-Proj2: e = LECT [〈ν1, ν2〉.2] and e′ = LECT [ν2]:

1. By Context Elimination: Γ, Γ′ ⊢ CT [〈ν1, ν2〉.2] : τ ′ where Γ ⊢ L : Γ′

2. We show: Γ, Γ′ ⊢ CT [ν2] : τ ′

(a) By (1) and Type Context Elimination: Γ, Γ′ ⊢ T [〈ν1, ν2〉.2] : Ω

(b) By (a) and Type Context Elimination: Γ, Γ′, Γ′′ ⊢ 〈ν1, ν2〉.2 : κ where Γ, Γ′ ⊢ T :
Γ′′

(c) By (b) and inversion of K-Proj2: Γ, Γ′, Γ′′ ⊢ 〈ν1, ν2〉 : κ1 × κ

(d) By (c) and inversion of K-Pair: Γ, Γ′, Γ′′ ⊢ ν2 : κ

(e) By Q-Proj2b: 〈ν1, ν2〉.2 ≡ ν2

(f) By (1), (b), (d), (e), and Type Exchange: Γ, Γ′ ⊢ CT [ν2] : τ ′

3. By assumption, (1), (2), and Exchange: Γ ⊢ LECT [ν2] : τ

• Case RT-Trigger: e = L[lazy 〈ζ, x〉 = e1 in L′ECT [ζ]] and e′ = L[let 〈ζ, x〉 = e1 in
(L′ECT [ζ])[ζ := α]]

1. By assumption: Γ ⊢ L[lazy 〈ζ, x〉 = e1 in L′ECT [ζ]] : τ

2. By (1) and Context Elimination: Γ, Γ′ ⊢ lazy 〈ζ, x〉 = e1 in L′ECT [ζ] : τ ′ where
Γ ⊢ L : Γ′

3. By (2) and Typing Inversion: Γ, Γ′ ⊢ e1 : ∃α:κ.τ1 and Γ, Γ′, ζ:κ, x:τ1[α := ζ] ⊢
L′ECT [ζ] : τ ′′ where ζ /∈ ftv(τ ′′) and τ ′′ ≡ τ ′

4. We show: Γ, Γ′, α:κ ⊢ α : κ

(a) By (3) and Validity: Γ, Γ′ ⊢ ∃α:κ.τ1 : Ω

(b) By (a) and inversion of K-Exist: Γ, Γ′, α:κ ⊢ τ1 : Ω

(c) By (b) and Environment Validity: Γ, Γ′, α:κ ⊢ �

(d) By (c): Γ, Γ′, α:κ ⊢ α : κ

5. We show: Γ, Γ′, α:κ, ζ:κ, x:τ1[α := ζ] ⊢ L′ECT [ζ] : τ ′′

(a) By (3) and Environment Validity: Γ, Γ′, ζ:κ, x:τ1[α := ζ] ⊢ �

(b) By (a) and inversion of E-Term: Γ, Γ′, ζ:κ ⊢ τ1[α := ζ] : Ω and x /∈ dom(Γ, Γ′, ζ:κ)

(c) By (b) and Environment Validity: Γ, Γ′, ζ:κ ⊢ �

(d) By (c) and inversion of E-Type: Γ, Γ′ ⊢ � and ζ /∈ dom(Γ, Γ′)

(e) By (4c) and inversion of E-Type: α /∈ dom(Γ, Γ′)

(f) By (d), (e), and E-Type: Γ, Γ′, α:κ ⊢ �

(g) By (d): ζ /∈ dom(Γ, Γ′, α:κ)

(h) By (f), (g), and E-Type: Γ, Γ′, α:κ, ζ:κ ⊢ �

(i) By (b), (h), and Weakening: Γ, Γ′, α:κ, ζ:κ ⊢ τ1[α := ζ] : Ω

(j) By (b): x /∈ dom(Γ, Γ′, α:κ, ζ:κ)

(k) By (i), (j), and E-Term: Γ, Γ′, α:κ, ζ:κ, x:τ1[α := ζ] ⊢ �

108

(l) By (3), (k), and Weakening: Γ, Γ′, α:κ, ζ:κ, x:τ1[α := ζ] ⊢ L′ECT [ζ] : τ ′′

6. By (4), (5), and Type Substitution:
Γ, Γ′, α:κ, x:τ1[α := ζ][ζ := α] ⊢ (L′ECT [ζ])[ζ := α] : τ ′′[ζ := α]

7. We show: ζ /∈ ftv(τ1)

(a) By (4b) and Variable Containment: ftv(τ1) ⊆ dom(Γ, Γ′, α:κ)

(b) By (5d): ζ /∈ dom(Γ, Γ′, α:κ)

(c) By (a) and (b): ζ /∈ ftv(τ1)

8. By (6) and (7): Γ, Γ′, α:κ, x:τ1 ⊢ (L′ECT [ζ])[ζ := α] : τ ′′[ζ := α]

9. By (3) and (8): Γ, Γ′, α:κ, x:τ1 ⊢ (L′ECT [ζ])[ζ := α] : τ ′′

10. We show: α /∈ ftv(τ ′′)

(a) By (3) and Variable Containment: ftv(τ ′′) ⊆ dom(Γ, Γ′, ζ:κ, x:τ1[α := ζ])

(b) By (5e): α /∈ dom(Γ, Γ′, ζ:κ, x:τ1[α := ζ])

(c) By (a) and (b): α /∈ ftv(τ ′′)

11. By (3), (9), (10), and T-Open: Γ, Γ′ ⊢ let 〈α, x〉 = e1 in (L′ECT [ζ])[ζ := α] : τ ′′

12. By (2) and Validity: Γ, Γ′ ⊢ τ ′ : Ω

13. By (3), (11), (12), and T-Equiv: Γ, Γ′ ⊢ let 〈α, x〉 = e1 in (L′ECT [ζ])[ζ := α] : τ ′

14. By (1), (2), (13), and Exchange: Γ ⊢ L[let 〈α, x〉 = e1 in (L′ECT [ζ])[ζ := α]] : τ

Lemma 13 (Lazy Type Variables). If Γ ⊢ LCT [ζ] : τ and ζ /∈ dom(Γ), then L = L1[lazy 〈ζ, x〉 =
e in L2] where ζ /∈ btv(L2).

Proof. By structural induction on L. W.l.o.g. all bound type variables of LCT [ζ] are distinct
and (btv(LCT [ζ]) ∪ bv(LCT [ζ])) ∩ dom(Γ) = ∅.

• Case L = :

1. By assumption: Γ ⊢ CT [ζ] : τ ′

2. By (1) and Type Context Elimination : Γ ⊢ T [ζ] : Ω

3. By (2) and Type Context Elimination: Γ, Γ′ ⊢ ζ : Ω where Γ ⊢ T : Γ′

4. By (3) and Variable Containment: ζ ∈ dom(Γ, Γ′)

5. By (3) and Type Context Elimination: ζ /∈ dom(Γ′)

6. By (4) and (5): ζ ∈ dom(Γ)

7. (6) contradicts the assumption ζ /∈ dom(Γ), hence this case is not possible.

• Case L = lazy 〈ζ′, x〉 = e in L′:

– Subcase ζ′ = ζ ∧ ζ /∈ btv(L′): this is what we claimed

– Subcase ζ′ = ζ ∧ ζ ∈ btv(L′): not possible due to our assumption about bound type
variables

– Subcase ζ′ 6= ζ:

1. By assumption and Typing Inversion: Γ, ζ′:κ, x:τ ′ ⊢ L′CT [ζ] : τ ′′

2. By assumption: ζ /∈ dom(Γ, ζ′:κ, x:τ ′′)

3. By (1), (2), and induction: L′ = L′

1[lazy 〈ζ, x′〉 = e′ in L2] where ζ /∈ btv(L2)

4. Let L1 = lazy 〈ζ′, x〉 = e in L′

1.

109

5. By (3) and (4): L = L1[lazy 〈ζ, x′〉 = e′ in L2] where ζ /∈ btv(L2)

Proposition 13 (Canonical Normal Forms). Let Γ ⊢ ν : κ where ν is not a path.

• If κ = κ1 → κ2, then ν = λα:κ.ν′.

• If κ = κ1 × κ2, then ν = 〈ν1, ν2〉.

Proof. Follows from the definition of the kinding relation.

• If κ = κ1 → κ2, then the last rule of the derivation must be K-Abs. Hence: ν = λα:κ1.ν
′

• If κ = κ1 → κ2, then the last rule of the derivation must be K-Pair. Hence: ν = 〈ν1, ν2〉

Proposition 14 (Type Progress). If · ⊢ LCT [τ] : τ ′ and τ is not a normal form, then
LCT [τ] −→ e.

Proof. By structural induction on τ .

• Case τ = α: not possible because α is a normal form

• Case τ = ζ:

1. By Lazy Type Variables: L = L1[lazy 〈ζ, x〉 = e in L2] where ζ /∈ btv(L2)

2. By (1) and RT-Trigger: LCT [ζ] −→ L1[let 〈α, x〉 = e in (L2CT [ζ])[ζ := α]]

• Case τ = τ1 → τ2:

– Subcase τ1 is not a normal form:

1. Let T ′ = T [→ τ2]. Then: LCT [τ] = LCT ′[τ1]

2. By (1) and induction: LCT [τ] −→ e

– Subcase τ1 = ν1:

∗ Subcase τ2 is not a normal form:

1. Let T ′ = T [ν1 →]. Then: LCT [τ] = LCT ′[τ2]

2. By (1) and induction: LCT [τ] −→ e

∗ Subcase τ2 = ν2: not possible since ν1 → ν2 is a normal form

• Case τ = τ1 × τ2:

– Subcase τ1 is not a normal form:

1. Let T ′ = T [× τ2]. Then: LCT [τ] = LCT ′[τ1]

2. By (1) and induction: LCT [τ] −→ e

– Subcase τ1 = ν1:

∗ Subcase τ2 is not a normal form:

1. Let T ′ = T [ν1 ×]. Then: LCT [τ] = LCT ′[τ2]

2. By (1) and induction: LCT [τ] −→ e

∗ Subcase τ2 = ν2: not possible since ν1 × ν2 is a normal form

• Case τ = ∃α:κ.τ1:

– Subcase τ1 is not a normal form:

110

1. Let T ′ = T [∃α:κ.]. Then: LCT [τ] = LCT ′[τ1]

2. By (1) and induction: LCT [τ] −→ e

– Subcase τ1 = ν1: not possible since ∃α:κ.ν1 is a normal form

• Case τ = ∀α:κ.τ1:

– Subcase τ1 is not a normal form:

1. Let T ′ = T [∀α:κ.]. Then: LCT [τ] = LCT ′[τ1]

2. By (1) and induction: LCT [τ] −→ e

– Subcase τ1 = ν1: not possible since ∀α:κ.ν1 is a normal form

• Case τ = λα:κ.τ1:

– Subcase τ1 is not a normal form:

1. Let T ′ = T [λα:κ.]. Then: LCT [τ] = LCT ′[τ1]

2. By (1) and induction: LCT [τ] −→ e

– Subcase τ1 = ν1: not possible since λα:κ.ν1 is a normal form

• Case τ = τ1 τ2:

– Subcase τ1 is not a normal form:

1. Let T ′ = T [τ2]. Then: LCT [τ] = LCT ′[τ1]

2. By (1) and induction: LCT [τ] −→ e

– Subcase τ1 = ν1:

∗ Subsubcase τ2 is not a normal form:

1. Let T ′ = T [ν1]. Then: LCT [τ] = LCT ′[τ2]

2. By (1) and induction: LCT [τ] −→ e

∗ Subsubcase τ2 = ν2:

· Subsubsubcase ν1 is not a path:

1. By assumption and Context Elimination: Γ ⊢ CT [ν1 ν2] : τ ′′

2. By (1) and Type Context Elimination: Γ′ ⊢ T [ν1 ν2] : Ω

3. By (2) and Type Context Elimination: Γ, Γ′ ⊢ ν1 ν2 : κ

4. By (3) and inversion of K-App: Γ, Γ′ ⊢ ν1 : κ′ → κ

5. By (4) and Canonical Normal Forms: ν1 = λα:κ′.ν

6. By (5) and RT-App: LCT [τ] = LCT [(λα:κ′.ν) ν2] −→ LCT [ν[α := ν2]]

· Subsubsubcase ν1 = p: not possible since p ν2 is a normal form

• Case τ = 〈τ1, τ2〉:

– Subcase τ1 is not a normal form:

1. Let T ′ = T [〈 , τ2〉]. Then: LCT [τ] = LCT ′[τ1]

2. By (1) and induction: LCT [τ] −→ e

– Subcase τ1 = ν1:

∗ Subcase τ2 is not a normal form:

1. Let T ′ = T [〈ν1, 〉]. Then: LCT [τ] = LCT ′[τ2]

2. By (1) and induction: LCT [τ] −→ e

∗ Subcase τ2 = ν2: not possible since 〈ν1, ν2〉 is a normal form

111

• Case τ = τ1.1:

– Subcase τ1 is not a normal form:

1. Let T ′ = T [.1]. Then: LCT [τ] = LCT ′[τ1]

2. By (1) and induction: LCT [τ] −→ e

– Subcase τ1 = ν1:

∗ Subsubcase ν1 is not a path:

1. By assumption and Context Elimination: Γ ⊢ CT [ν1.1] : τ ′′

2. By (1) and Type Context Elimination: Γ′ ⊢ T [ν1.1] : Ω

3. By (2) and Type Context Elimination: Γ, Γ′ ⊢ ν1.1 : κ

4. By (3) and inversion of K-Proj1: Γ, Γ′ ⊢ ν1 : κ × κ2

5. By (4) and Canonical Normal Forms: ν1 = 〈ν11, ν12〉

6. By (5) and RT-Proj1: LCT [τ] = LCT [〈ν11, ν12〉.1] −→ LCT [ν11]

∗ Subsubcase ν1 = p: not possible since p.1 is a normal form

• Case τ = τ1.2:

– Subcase τ1 is not a normal form:

1. Let T ′ = T [.2]. Then: LCT [τ] = LCT ′[τ1]

2. By (1) and induction: LCT [τ] −→ e

– Subcase τ1 = ν1:

∗ Subsubcase ν1 is not a path:

1. By assumption and Context Elimination: Γ ⊢ CT [ν1.2] : τ ′′

2. By (1) and Type Context Elimination: Γ′ ⊢ T [ν1.2] : Ω

3. By (2) and Type Context Elimination: Γ, Γ′ ⊢ ν1.2 : κ

4. By (3) and inversion of K-Proj2: Γ, Γ′ ⊢ ν1 : κ1 × κ

5. By (4) and Canonical Normal Forms: ν1 = 〈ν11, ν12〉

6. By (5) and RT-Proj2: LCT [τ] = LCT [〈ν11, ν12〉.2] −→ LCT [ν12]

∗ Subsubcase ν1 = p: not possible since p.2 is a normal form

Lemma 14 (Context Extension). If L[e] −→ e′ and e is not a lazy expression, then for all E
exists an e′′ such that LE[e] −→ e′′.

Proof. By case analysis on the applied reduction rule.

• Case R-App: e = E′[(λx:τ.e1)v] and e′ = LE′[e1[x := v]]

1. Let E′′ = E[E′]. Then: LE[e] = LE′′[(λx:τ.e1)v]

2. By (1) and R-App: LE[e] −→ LE′′[e1[x := v]]

• Case R-Inst: e = E′[(λα:κ.e1)τ] and e′ = LE′[e1[α := τ]]

1. Let E′′ = E[E′]. Then: LE[e] = LE′′[(λα:κ.e1)v]

2. By (1) and R-Inst: LE[e] −→ LE′′[e1[α := τ]]

• Case R-Proj: e = E′[let 〈x1, x2〉 = 〈v1, v2〉 in e1] and e′ = LE′[e1[x1 := v1][x2 := v2]]

1. Let E′′ = E[E′]. Then: LE[e] = LE′′[let 〈x1, x2〉 = 〈v1, v2〉 in e1]

112

2. By (1) and R-Proj: LE[e] −→ LE′′[e1[x1 := v1][x2 := v2]]

• Case R-Open: e = E′[let 〈α, x〉 = 〈τ, v〉:τ ′ in e1] and e′ = LE′[e1[α := τ][x := v]]

1. Let E′′ = E[E′]. Then: LE[e] = LE′′[let 〈α, x〉 = 〈τ, v〉 in e1]

2. By (1) and R-Open: LE[e] −→ LE′′[e1[α := τ][x := v]]

• Case R-Suspend: e = E′[lazy 〈ζ, x〉 = e1 in e2] and e′ = L[lazy 〈ζ, x〉 = e1 in E′[e2]] where
E′ 6= and ζ /∈ ftv(E′) and x /∈ fv(E′) and w.l.o.g. ζ /∈ ftv(E) and x /∈ fv(E)

1. Let E′′ = E[E′]. Then: LE[e] = LE′′[lazy 〈ζ, x〉 = e1 in e2] and E′′ 6=

2. By assumption: E′′ 6= and ζ /∈ ftv(E′′) and x /∈ fv(E′′)

3. By (1), (2), and R-Suspend: LE[e] −→ L[lazy 〈ζ, x〉 = e1 in E′′[e2]]

• Case R-Trigger: L = L1[lazy 〈ζ, x〉 = e1 in L2] and e = E′S[x] and e′ = L1[let 〈α, x〉 = e in
(L2E

′S[x])[ζ := α]] where x /∈ bv(L2)

1. Let E′′ = E[E′]. Then: LE[e] = LE′′S[x]

2. By (1), (2), and R-Trigger: LE[e] −→ L1[let 〈β, x〉 = e in (L2E
′′S[x])[ζ := β]]

• Case R-Case1: e = E′[tcase v:ν of x:ν then e1 else e2] and e′ = LE′[e1[x := v]]

1. Let E′′ = E[E′]. Then: LE[e] = LE′′[tcase v:ν of x:ν then e1 else e2]

2. By (1) and R-Case1: LE[e] −→ LE′′[e1[x := v]]

• Case R-Case2: e = E′[tcase v:ν of x:ν′ then e1 else e2] and e′ = LE′[e2] where ν 6= ν′

1. Let E′′ = E[E′]. Then: LE[e] = LE′′[tcase v:ν of x:ν then e1 else e2]

2. By (1) and R-Case2: LE[e] −→ LE′′[e1[x := v]]

• Case RT-App: e = E′CT [(λα:κ.ν) ν′] and e′ = E′CT [ν[α := ν′]]

1. Let E′′ = E[E′]. Then: LE[e] = LE′′CT [(λα:κ.ν) ν′]

2. By (1) and RT-App: LE[e] −→ LE′′CT [ν[α := ν′]]

• Case RT-Proj1: e = E′CT [〈ν1, ν2〉.1] and e′ = E′CT [ν1]

1. Let E′′ = E[E′]. Then: LE[e] = LE′′CT [〈ν1, ν2〉.1]

2. By (1) and RT-Proj1: LE[e] −→ LE′′CT [ν1]

• Case RT-Proj2: e = E′CT [〈ν1, ν2〉.2] and e′ = E′CT [ν2]

1. Let E′′ = E[E′]. Then: LE[e] = LE′′CT [〈ν1, ν2〉.2]

2. By (1) and RT-Proj2: LE[e] −→ LE′′CT [ν2]

• Case RT-Trigger: L = L1[lazy 〈ζ, x〉 = e1 in L2] and e = E′CT [ζ], e′ = L1[let 〈ζ, x〉 = e1 in
(L2E

′CT [ζ])[ζ := α]] where ζ /∈ btv(L2)

1. Let E′′ = E[E′]. Then: LE[e] = LE′′CT [ζ]

2. By (1) and RT-Trigger: LE[e] −→ L1[let 〈ζ, x〉 = e1 in (L2E
′′CT [ζ])[ζ := α]]

Theorem 2 (Progress). If · ⊢ L[e] : τ where e is neither a value nor a lazy expression, then
L[e] −→ e′.

113

Proof. By structural induction on e.

• Case e = E[lazy 〈ζ, x〉 = e1 in e2] (w.l.o.g. ζ /∈ ftv(E) and x /∈ fv(E)):

1. By assumption: E 6=

2. By (1) and R-Suspend: L[e] −→ L[lazy 〈ζ, x〉 = e1 in E[e2]]

• Case e 6= E[lazy . . .] ∧ e = x: not possible (variables are values)

• Case e 6= E[lazy . . .] ∧ e = λx:τ ′.e′: not possible (abstractions are values)

• Case e 6= E[lazy . . .] ∧ e = e1 e2:

– Subcase e1 is not a value:

1. Let E1 = e2.

2. By (1) and assumption: · ⊢ LE1[e1] : τ

3. By (2) and Context Elimination: · ⊢ L[e1] : τ ′

1

4. By assumption: e1 is not a lazy expression

5. By (3), (4), and induction: L[e1] −→ e′1
6. By (4), (5), and Context Extension: L[e] = LE1[e1] −→ e′

– Subcase e1 = v1:

∗ Subsubcase v1 is not a variable:

1. By assumption and Context Elimination: Γ ⊢ v1 e2 : τ ′ where · ⊢ L : Γ

2. By (1) and Typing Inversion: Γ ⊢ v1 : τ2 → τ ′

3. By (2) and Canonical Values: v1 = λx:τ ′

2.e
′

4. By (3) and R-App: L[e] = L[(λx:τ2.e
′) v2] −→ L[e′[x := v2]]

∗ Subsubcase v1 = x:

1. Let S = e2 and C = S. Then: e = S[x] = C[x]

2. By (1) and assumption: · ⊢ LC[x] : τ

3. By (2) and Lazy Term Variables: L = L1[lazy 〈ζ, x〉 = e′ in L2] where x /∈
bv(L2)

4. By (1), (3), and R-Trigger: L[e] = L1[lazy 〈ζ, x〉 = e′ in L2S[x]] −→
L1[let 〈α, x〉 = e′ in (L2S[x])[ζ := α]]

• Case e 6= E[lazy . . .] ∧ e = 〈e1, e2〉:

– Subcase e1 is not a value:

1. Let E1 = 〈 , e2〉.

2. By (1) and assumption: · ⊢ LE1[e1] : τ

3. By (2) and Context Elimination: · ⊢ L[e1] : τ ′

1

4. By assumption: e1 is not a lazy expression

5. By (3), (4), and induction: L[e1] −→ e′1
6. By (4), (5), and Context Extension: L[e] = LE1[e1] −→ e′

– Subcase e1 = v1:

∗ Subsubcase e2 is not a value:

1. Let E2 = 〈v1, 〉.

2. By (1) and assumption: · ⊢ LE2[e2] : τ

3. By (2) and Context Elimination: · ⊢ L[e2] : τ ′

2

114

4. By assumption: e2 is not a lazy expression

5. By (3), (4), and induction: L[e2] −→ e′2
6. By (4), (5), and Context Extension: L[e] = LE2[e2] −→ e′

∗ Subsubcase e2 = v2: not possible (〈v1, v2〉 is a value)

• Case e 6= E[lazy . . .] ∧ e = λα:κ.e′: Type abstractions are values.

• Case e 6= E[lazy . . .] ∧ e = e1 τ ′:

– Subcase e1 is not a value:

1. Let E1 = τ ′.

2. By (1) and assumption: · ⊢ LE1[e1] : τ

3. By (2) and Context Elimination: · ⊢ L[e1] : τ ′

1

4. By assumption: e′ is not a lazy expression

5. By (3), (4), and induction: L[e1] −→ e′1
6. By (4), (5), and Context Extension: L[e] = LE1[e1] −→ e′

– Subcase e1 = v1:

∗ Subsubcase e1 is not a variable:

1. By assumption and Context Elimination: Γ ⊢ e1 τ ′ : τ ′′

2. By (1) and Typing Inversion: Γ ⊢ e1 : ∀α:κ.τ1

3. By (2) and Canonical Values: e1 = λα:κ.e2

4. By (3) and R-Inst: L[e] = L[(λα:κ.e2) τ ′)] −→ L[e2[α := τ ′]]

∗ Subsubcase e1 = x:

1. Let S = τ ′ and C = S. Then: e = S[x] = C[x]

2. By (1) and assumption: · ⊢ LC[x] : τ

3. By (2) and Lazy Term Variables: L = L1[lazy 〈ζ, x〉 = e′ in L2] where x /∈
bv(L2)

4. By (1), (3), and R-Trigger: L[e] = L1[lazy 〈ζ, x〉 = e′ in L2S[x]] −→
L1[let 〈α, x〉 = e′ in (L2S[x])[ζ := α]]

• Case e 6= E[lazy . . .] ∧ e = 〈τ1, e1〉:τ2

– Subcase e1 is not a value:

1. Let E1 = 〈τ1, 〉:τ2.

2. By (1) and assumption: · ⊢ LE1[e1] : τ

3. By (2) and Context Elimination: · ⊢ L[e1] : τ ′

1

4. By assumption: e1 is not a lazy expression

5. By (3), (4), and induction: L[e1] −→ e′1
6. By (4), (5), and Context Extension: L[e] = LE1[e1] −→ e′

– Subcase e1 = v1: not possible (〈τ1, v1〉:τ2 is a value)

– e = 〈τ1, e1〉:τ2

• Case e 6= E[lazy . . .] ∧ e = let 〈x1, x2〉 = e1 in e2

– Subcase e1 is not a value:

1. Let E1 = let 〈x1, x2〉 = in e2.

2. By (1) and assumption: · ⊢ LE1[e1] : τ

3. By (2) and Context Elimination: · ⊢ L[e1] : τ ′

1

115

4. By assumption: e1 is not a lazy expression

5. By (3), (4), and induction: L[e1] −→ e′1
6. By (4), (5), and Context Extension: L[e] = LE1[e1] −→ e′

– Subcase e1 = v:

∗ Subsubcase v is not a variable:

1. By assumption and Context Elimination: Γ ⊢ let 〈x1, x2〉 = v in e2 : τ ′

2. By (1) and Typing Inversion: Γ ⊢ v : τ1 × τ2

3. By (2) and Canonical Values: v = 〈v1, v2〉

4. By (3) and R-Proj: L[e] = L[let 〈x1, x2〉 = 〈v1, v2〉 in e2] −→ L[e2[x1 :=
v1][x2 := v2]]

∗ Subsubcase v = x:

1. Let S = let 〈x1, x2〉 = in e2 and C = S. Then: e = S[x] = C[x]

2. By (1) and assumption: · ⊢ LC[x] : τ

3. By (2) and Lazy Term Variables: L = L1[lazy 〈ζ, x〉 = e′ in L2] where x /∈
bv(L2)

4. By (1), (3), and R-Trigger: L[e] = L1[lazy 〈ζ, x〉 = e′ in L2S[x]] −→
L1[let 〈α, x〉 = e′ in (L2S[x])[ζ := α]]

• Case e 6= E[lazy . . .] ∧ e = let 〈α, x〉 = e1 in e2

– Subcase e1 is not a value:

1. Let E1 = let 〈α, x〉 = in e2.

2. By (1) and assumption: · ⊢ LE1[e1] : τ

3. By (2) and Context Elimination: · ⊢ L[e1] : τ ′

1

4. By assumption: e1 is not a lazy expression

5. By (3), (4), and induction: L[e1] −→ e′1
6. By (4), (5), and Context Extension: L[e] = LE1[e1] −→ e′

– Subcase e1 = v:

∗ Subsubcase v is not a variable:

1. By assumption and Context Elimination: Γ ⊢ let 〈α, x〉 = v in e2 : τ ′

2. By (1) and Typing Inversion: Γ ⊢ v : ∃α:κ.τ1

3. By (2) and Canonical Values: v = 〈τ2, v
′〉:τ ′

2

4. By (3) and R-Open: L[e] = L[let 〈α, x〉 = 〈τ2, v
′〉:τ ′

2 in e2] −→ L[e2[α :=
τ2][x := v′]]

∗ Subsubcase v = x′:

1. Let S = let 〈α, x〉 = in e2 and C = S. Then: e = S[x′] = C[x′]

2. By (1) and assumption: · ⊢ LC[x′] : τ

3. By (2) and Lazy Term Variables: L = L1[lazy 〈ζ, x′〉 = e′ in L2] where
x′ /∈ bv(L2)

4. By (1), (3), and R-Trigger: L[e] = L1[lazy 〈ζ, x′〉 = e′ in L2S[x′]] −→
L1[let 〈α, x〉 = e′ in (L2S[x′])[ζ := α]]

• Case e 6= E[lazy . . .] ∧ e = tcase e0:τ0 of x:τ ′

0 then e1 else e2:

– Subcase e0 is not a value:

1. Let E0 = tcase :τ0 of x:τ ′

0 then e1 else e2.

2. By (1) and assumption: · ⊢ LE0[e0] : τ

116

3. By (2) and Context Elimination: · ⊢ L[e0] : τ ′′

0

4. By assumption: e0 is not a lazy expression

5. By (3), (4), and induction: L[e0] −→ e′0
6. By (4), (5), and Context Extension: L[e] = LE0[e0] −→ e′

– Subcase e0 = v and τ0 is not a normal form:

1. Let C = tcase v: of x:τ ′

0 then e1 else e2. Then: L[e] = LC[τ0]

2. By (1) and Type Progress: L[e] −→ e′

– Subcase e0 = v and τ0 = ν:

∗ Subsubcase τ ′

0 is not a normal form:

1. Let C = tcase v:τ0 of x: then e1 else e2. Then: L[e] = LC[τ ′

0]

2. By (1) and Type Progress: L[e] −→ e′

∗ Subsubcase τ ′

0 = ν:

1. By R-Case1: L[e] = L[tcase v:ν of x:ν then e1 else e2] −→ L[e1[x := v]]

∗ Subsubcase τ ′

0 = ν′ 6= ν:

1. By R-Case2: L[e] = L[tcase v:ν of x:ν′ then e1 else e2] −→ L[e2]

A.3 Interleaved call-by-name reduction to weak head nor-

mal form

Proposition 15 (Uniqueness of Environments).

1. If Γ ⊢ B : Γ1 and Γ ⊢ B : Γ2, then Γ1 = Γ2.

2. If Γ ⊢ P : Γ1 and Γ ⊢ P : Γ2, then Γ1 = Γ2.

Proof. Simultaneous, by induction on the generation of B and P .

1. Let Γ ⊢ B : Γ1 and Γ ⊢ B : Γ2.

• Case B = tcase v: of x: then e1 else e2:

(a) By inversion of B-Case (1st derivation): Γ1 = ·

(b) By inversion of B-Case (2nd derivation): Γ2 = ·

• Case B = B′[→ τ1][→ τ2]:

(a) By inversion of B-Arrow1 (1st derivation): Γ ⊢ B′ : Γ1

(b) By inversion of B-Arrow1 (2nd derivation): Γ ⊢ B′ : Γ2

(c) By (a), (b), and induction: Γ1 = Γ2

• Case B = B′[ν →][ν →]:

(a) By inversion of B-Arrow2 (1st derivation): Γ ⊢ B′ : Γ1

(b) By inversion of B-Arrow2 (2nd derivation): Γ ⊢ B′ : Γ2

(c) By (a), (b), and induction: Γ1 = Γ2

• Case B = B′[× τ1][× τ2]:

(a) By inversion of B-Times1 (1st derivation): Γ ⊢ B′ : Γ1

(b) By inversion of B-Times1 (2nd derivation): Γ ⊢ B′ : Γ2

(c) By (a), (b), and induction: Γ1 = Γ2

117

weak head normal forms ω ::= q | τ1 → τ2 | τ1 × τ2 | ∀α:κ.τ | ∃α:κ.τ | λα:κ.τ | 〈τ1, τ2〉

weak head normal paths q ::= α | q τ | q.1 | q.2

regular comparison contexts B ::= tcase v: of x: then e1 else e2 |

B[→ τ1][→ τ2] | B[ν →][ν →] |

B[× τ1][× τ2] | B[ν ×][ν ×] |

B[∀α:κ.][∀α:κ.] | B[∃α:κ.][∃α:κ.] |

B[λα:κ.][λα:κ.] | P [p][p] |

B[〈 , τ1〉][〈 , τ2〉] | B[〈ν, 〉][〈ν, 〉]

path comparison contexts P ::= B | P [τ1][τ2] | P [.1][.1] | P [.2][.2]

tcase contexts C ::= B[][τ] | B[ω][]

type reduction contexts T ::= | T τ | T.1 | T.2

Reduction e −→ e′

R-App LE[(λx:τ.e) v] −→ LE[e[x := v]]
R-Inst LE[(λα:κ.e) τ] −→ LE[e[α := τ]]
R-Proj LE[let 〈x1, x2〉 = 〈v1, v2〉 in e] −→ LE[e[x1 := v1][x2 := v2]]
R-Open LE[let 〈α, x〉 = 〈τ, v〉:τ ′ in e] −→ LE[e[α := τ][x := v]]
R-Suspend LE[lazy 〈ζ, x〉 = e1 in e2] −→ L[lazy 〈ζ, x〉 = e1 in E[e2]]

(E 6= ∧ ζ /∈ ftv(E) ∧ x /∈ fv(E))
R-Trigger L1[lazy 〈ζ, x〉 = e in L2ES[x]] −→ L1[let 〈α, x〉 = e in (L2ES[x])[ζ := α]]

(x /∈ btv(L2))
R-Case1 LE[tcase v:ν of x:ν then e1 else e2] −→ LE[e1[x := v]]
R-Case2 LE[tcase v:τ0 of x:τ ′

0 then e1 else e2] −→ LE[e2]
((tcase v:τ0 of x:τ ′

0 then e1 else e2) = B[ω][ω′] and ω 6∼ ω′

or (tcase v:τ0 of x:τ ′

0 then e1 else e2) = P [q][q′] and q 6∼ q′)
RT-App LECT [(λα:κ.τ1) τ2] −→ LECT [τ1[α := τ2]]
RT-Proj1 LECT [〈τ1, τ2〉.1] −→ LECT [τ1]
RT-Proj2 LECT [〈τ1, τ2〉.2] −→ LECT [τ2]
RT-Trigger L1[lazy 〈ζ, x〉 = e1 in L2ECT [ζ]] −→ L1[let 〈α, x〉 = e1 in (L2ECT [ζ])[ζ := α]]

(ζ /∈ btv(L2))

Figure A.5: The basic calculus + interleaved call-by-name reduction to weak head normal form
on type-level (operational semantics)

118

• Case B = B′[ν ×][ν ×]:

(a) By inversion of B-Times2 (1st derivation): Γ ⊢ B′ : Γ1

(b) By inversion of B-Times2 (2nd derivation): Γ ⊢ B′ : Γ2

(c) By (a), (b), and induction: Γ1 = Γ2

• Case B = B′[∀α:κ.][∀α:κ.]:

(a) By inversion of B-Univ (1st derivation): Γ ⊢ B′ : Γ′

1 with Γ1 = Γ′

1, α:κ

(b) By inversion of B-Univ (2nd derivation): Γ ⊢ B′ : Γ′

2 with Γ2 = Γ′

2, α:κ

(c) By (a), (b), and induction: Γ′

1 = Γ′

2

(d) By (a), (b), and (c): Γ1 = Γ2

• Case B = B′[∃α:κ.][∃α:κ.]:

(a) By inversion of B-Exist (1st derivation): Γ ⊢ B′ : Γ′

1 with Γ1 = Γ′

1, α:κ

(b) By inversion of B-Exist (2nd derivation): Γ ⊢ B′ : Γ′

2 with Γ2 = Γ′

2, α:κ

(c) By (a), (b), and induction: Γ′

1 = Γ′

2

(d) By (a), (b), and (c): Γ1 = Γ2

• Case B = B′[λα:κ.][λα:κ.]:

(a) By inversion of B-Abs (1st derivation): Γ ⊢ B′ : Γ′

1 with Γ1 = Γ′

1, α:κ

(b) By inversion of B-Abs (2nd derivation): Γ ⊢ B′ : Γ′

2 with Γ2 = Γ′

2, α:κ

(c) By (a), (b), and induction: Γ′

1 = Γ′

2

(d) By (a), (b), and (c): Γ1 = Γ2

• Case B = P ′[p][p]:

(a) By inversion of B-Path (1st derivation): Γ ⊢ P ′ : Γ1

(b) By inversion of B-Path (2nd derivation): Γ ⊢ P ′ : Γ2

(c) By (a), (b), and induction: Γ1 = Γ2

• Case B = B′[〈 , τ1〉][〈 , τ2〉]:

(a) By inversion of B-Pair1 (1st derivation): Γ ⊢ B′ : Γ1

(b) By inversion of B-Pair1 (2nd derivation): Γ ⊢ B′ : Γ2

(c) By (a), (b), and induction: Γ1 = Γ2

• Case B = B′[〈ν, 〉][〈ν, 〉]:

(a) By inversion of B-Pair2 (1st derivation): Γ ⊢ B′ : Γ1

(b) By inversion of B-Pair2 (2nd derivation): Γ ⊢ B′ : Γ2

(c) By (a), (b), and induction: Γ1 = Γ2

2. Let Γ ⊢ P : Γ1 and Γ ⊢ P : Γ2.

• Case P = B:

(a) By inversion of P-B (1st derivation): Γ ⊢ B : Γ1

(b) By inversion of P-B (2nd derivation): Γ ⊢ B : Γ2

(c) By (a), (b), and induction: Γ1 = Γ2

• Case P = P ′[τ1][τ2]:

(a) By inversion of P-App (1st derivation): Γ ⊢ P ′ : Γ1

(b) By inversion of P-App (2nd derivation): Γ ⊢ P ′ : Γ2

(c) By (a), (b), and induction: Γ1 = Γ2

• Case P = P ′[.1][.1]:

119

(a) By inversion of P-Proj1 (1st derivation): Γ ⊢ P ′ : Γ1

(b) By inversion of P-Proj1 (2nd derivation): Γ ⊢ P ′ : Γ2

(c) By (a), (b), and induction: Γ1 = Γ2

• Case P = P ′[.2][.2]:

(a) By inversion of P-Proj2 (1st derivation): Γ ⊢ P ′ : Γ1

(b) By inversion of P-Proj2 (2nd derivation): Γ ⊢ P ′ : Γ2

(c) By (a), (b), and induction: Γ1 = Γ2

Lemma 15 (Type Context Elimination).

1. If Γ ⊢ B[τ1][τ2] : τ , then Γ, Γ′ ⊢ τ1 : κ and Γ, Γ′ ⊢ τ2 : κ where Γ ⊢ B : Γ′.

2. If Γ ⊢ P [τ1][τ2] : τ , then Γ, Γ′ ⊢ τ1 : κ1 and Γ, Γ′ ⊢ τ2 : κ2 where Γ ⊢ P : Γ′.

3. If Γ ⊢ B : Γ′, then dom(Γ′) ∩ LTVar = ∅.

4. If Γ ⊢ C[τ] : τ ′, then Γ, Γ′ ⊢ τ : κ and dom(Γ′) ∩ LTVar = ∅.

5. If Γ ⊢ T [τ] : κ, then Γ ⊢ τ : κ′.

Proof. (1) and (2) simultaneous, by induction on the generation of B and P . (3) follows imme-
diately from the definition of the Γ ⊢ B : Γ′ judgement. (4) by case analysis on C, using (1). (5)
by structural induction on T .

1. Let Γ ⊢ B[τ1][τ2] : τ .

• Case B = tcase v: of x: then e1 else e2:

(a) By Typing Inversion: Γ ⊢ v : τ1 and Γ, x:τ2 ⊢ e1 : τ

(b) By (a) and Validity: Γ ⊢ τ1 : Ω

(c) By (a) and Environment Validity: Γ, x:τ2 ⊢ �

(d) By (c) and inversion of E-Term: Γ ⊢ τ2 : Ω

(e) By B-Case: Γ ⊢ tcase v: of x: then e1 else e2 : ·

• Case B = B′[→ τ ′

1][→ τ ′

2]:

(a) By induction: Γ, Γ′ ⊢ τ1 → τ ′

1 : κ and Γ, Γ′ ⊢ τ2 → τ ′

2 : κ where Γ ⊢ B′ : Γ′

(b) By (a) and inversion of K-Arrow: Γ, Γ′ ⊢ τ1 : Ω and Γ, Γ′ ⊢ τ2 : Ω

(c) By (a) and B-Arrow1: Γ ⊢ B′[→ τ ′

1][→ τ ′

2] : Γ′

• Case B = B′[ν →][ν →]:

(a) By induction: Γ, Γ′ ⊢ ν → τ1 : κ and Γ, Γ′ ⊢ ν → τ2 : κ where Γ ⊢ B′ : Γ′

(b) By (a) and inversion of K-Arrow: Γ, Γ′ ⊢ τ1 : Ω and Γ, Γ′ ⊢ τ2 : Ω

(c) By (a) and B-Arrow2: Γ ⊢ B′[ν →][ν →] : Γ′

• Case B = B′[× τ ′

1][× τ ′

2]:

(a) By induction: Γ, Γ′ ⊢ τ1 × τ ′

1 : κ and Γ, Γ′ ⊢ τ2 × τ ′

2 : κ where Γ ⊢ B′ : Γ′

(b) By (a) and inversion of K-Times: Γ, Γ′ ⊢ τ1 : Ω and Γ, Γ′ ⊢ τ2 : Ω

(c) By (a) and B-Times1: Γ ⊢ B′[× τ ′

1][× τ ′

2] : Γ′

• Case B = B′[ν ×][ν ×]:

(a) By induction: Γ, Γ′ ⊢ ν × τ1 : κ and Γ, Γ′ ⊢ ν × τ2 : κ where Γ ⊢ B′ : Γ′

(b) By (a) and inversion of K-Times: Γ, Γ′ ⊢ τ1 : Ω and Γ, Γ′ ⊢ τ2 : Ω

120

(c) By (a) and B-Times2: Γ ⊢ B′[ν ×][ν ×] : Γ′

• Case B = B′[∀α:κ.][∀α:κ.]:

(a) By induction: Γ, Γ′ ⊢ ∀α:κ.τ1 : κ′ and Γ, Γ′ ⊢ ∀α:κ.τ2 : κ′ where Γ ⊢ B′ : Γ′

(b) By (a) and inversion of K-Univ: Γ, Γ′, α:κ ⊢ τ1 : Ω and Γ, Γ′, α:κ ⊢ τ2 : Ω

(c) By (a) and B-Univ: Γ ⊢ B′[∀α:κ.][∀α:κ.] : Γ′, α:κ

• Case B = B′[∃α:κ.][∃α:κ.]:

(a) By induction: Γ, Γ′ ⊢ ∃α:κ.τ1 : κ′ and Γ, Γ′ ⊢ ∃α:κ.τ2 : κ′ where Γ ⊢ B′ : Γ′

(b) By (a) and inversion of K-Exist: Γ, Γ′, α:κ ⊢ τ1 : Ω and Γ, Γ′, α:κ ⊢ τ2 : Ω

(c) By (a) and B-Exist: Γ ⊢ B′[∃α:κ.][∃α:κ.] : Γ′, α:κ

• Case B = B′[λα:κ.][λα:κ.]:

(a) By induction: Γ, Γ′ ⊢ λα:κ.τ1 : κ′ and Γ, Γ′ ⊢ λα:κ.τ2 : κ′ where Γ ⊢ B′ : Γ′

(b) By (a) and inversion of K-Abs: κ′ = κ → κ′′ and Γ, Γ′, α:κ ⊢ τ1 : κ′′ and
Γ, Γ′, α:κ ⊢ τ2 : κ′′

(c) By (a) and B-Abs: Γ ⊢ B′[λα:κ.][λα:κ.] : Γ′, α:κ

• Case B = P [p][p]:

(a) By induction: Γ, Γ′ ⊢ p τ1 : κ1 and Γ, Γ′ ⊢ p τ2 : κ2 where Γ ⊢ P : Γ′

(b) By (a) and inversion of K-App: Γ, Γ′ ⊢ p : κ′

1 → κ1 and Γ, Γ′ ⊢ τ1 : κ′

1 and
Γ, Γ′ ⊢ p : κ′

2 → κ2 and Γ, Γ′ ⊢ τ2 : κ′

2

(c) By (b) and Uniqueness of Kinds: κ′

1 → κ1 = κ′

2 → κ2 and hence κ′

1 = κ′

2

(d) By (a) and B-Path: Γ ⊢ P [p][p] : Γ′

• Case B = B′[〈 , τ ′

1〉][〈 , τ ′

2〉]:

(a) By induction: Γ, Γ′ ⊢ 〈τ1, τ
′

1〉 : κ and Γ, Γ′ ⊢ 〈τ2, τ
′

2〉 : κ where Γ ⊢ B′ : Γ′

(b) By (a) and inversion of K-Pair: κ = κ′×κ′′ and Γ, Γ′ ⊢ τ1 : κ′ and Γ, Γ′ ⊢ τ2 : κ′

(c) By (a) and B-Pair1: Γ ⊢ B′[〈 , τ ′

1〉][〈 , τ ′

2〉] : Γ′

• Case B = B′[〈ν, 〉][〈ν, 〉]:

(a) By induction: Γ, Γ′ ⊢ 〈ν, τ1〉 : κ and Γ, Γ′ ⊢ 〈ν, τ2〉 : κ where Γ ⊢ B′ : Γ′

(b) By (a) and inversion of K-Pair: κ = κ′′×κ′ and Γ, Γ′ ⊢ τ1 : κ′ and Γ, Γ′ ⊢ τ2 : κ′

(c) By (a) and B-Pair2: Γ ⊢ B′[〈ν, 〉][〈ν, 〉] : Γ′

2. Let Γ ⊢ P [τ1][τ2] : τ .

• Case P = B:

(a) By induction: Γ, Γ′ ⊢ τ1 : κ and Γ, Γ′ ⊢ τ2 : κ where Γ ⊢ B : Γ′

• Case P = P ′[τ ′

1][τ ′

2]:

(a) By induction: Γ, Γ′ ⊢ τ1 τ ′

1 : κ1 and Γ, Γ′ ⊢ τ2 τ ′

2 : κ2 where Γ ⊢ P ′ : Γ′

(b) By (a) and inversion of K-App: Γ, Γ′ ⊢ τ ′

1 : κ′

1 and Γ, Γ′ ⊢ τ ′

2 : κ′

2

(c) By (a) and P-App: Γ ⊢ P ′[τ ′

1][τ ′

2] : Γ′

• Case P = P ′[.1][.1]:

(a) By induction: Γ, Γ′ ⊢ τ1.1 : κ1 and Γ, Γ′ ⊢ τ2.1 : κ2 where Γ ⊢ P ′ : Γ′

(b) By (a) and inversion of K-Pair1: Γ, Γ′ ⊢ τ1 : κ1 × κ′

1 and Γ, Γ′ ⊢ τ2 : κ2 × κ′

2

(c) By (a) and P-Proj1: Γ ⊢ P ′[.1][.1] : Γ′

• Case P = P ′[.2][.2]:

(a) By induction: Γ, Γ′ ⊢ τ1.2 : κ1 and Γ, Γ′ ⊢ τ2.2 : κ2 where Γ ⊢ P ′ : Γ′

121

(b) By (a) and inversion of K-Pair2: Γ, Γ′ ⊢ τ1 : κ′

1 × κ1 and Γ, Γ′ ⊢ τ2 : κ′

2 × κ2

(c) By (a) and P-Proj2: Γ ⊢ P ′[.2][.2] : Γ′

4. Let Γ ⊢ C[τ] : τ ′.

• Case C = B[][τ ′′]:

(a) By assumption: Γ ⊢ B[τ][τ ′′] : τ ′

(b) By (a): Γ, Γ′ ⊢ τ : κ where Γ ⊢ B : Γ′.

(c) By (b) and (3): dom(Γ′) ∩ LTVar = ∅

• Case C = B[ω][]: analogous

5. Let Γ ⊢ T [τ] : κ.

• Case T = :

(a) By assumption: Γ ⊢ τ : κ

• Case T = T ′ τ ′:

(a) By inversion of K-App: Γ ⊢ T ′[τ] : κ′ → κ

(b) By (a) and induction: Γ ⊢ τ : κ′′

• Case T = T ′.1:

(a) By inversion of K-Proj1: Γ ⊢ T ′[τ] : κ × κ2

(b) By (a) and induction: Γ ⊢ τ : κ′

• Case T = T ′.2:

(a) By inversion of K-Proj2: Γ ⊢ T ′[τ] : κ1 × κ

(b) By (a) and induction: Γ ⊢ τ : κ′

Lemma 16 (Type Exchange).

1. If Γ ⊢ T [τ] : κ and Γ ⊢ τ : κ′ as well as Γ ⊢ τ ′ : κ′, then Γ ⊢ T [τ ′] : κ.

2. If Γ ⊢ B[τ1][τ2] : τ and Γ, Γ′ ⊢ τ1 : κ and Γ, Γ′ ⊢ τ ′

1 : κ and τ1 ≡ τ ′

1 and Γ, Γ′ ⊢ τ2 : κ and
Γ, Γ′ ⊢ τ ′

2 : κ and τ2 ≡ τ ′

2 and Γ ⊢ B : Γ′, then Γ ⊢ B[τ ′

1][τ
′

2].

3. If Γ ⊢ P [τ1][τ2] : τ and Γ, Γ′ ⊢ τ1 : κ and Γ, Γ′ ⊢ τ ′

1 : κ and τ1 ≡ τ ′

1 and Γ, Γ′ ⊢ τ2 : κ and
Γ, Γ′ ⊢ τ ′

2 : κ and τ2 ≡ τ ′

2 and Γ ⊢ P : Γ′, then Γ ⊢ P [τ ′

1][τ
′

2].

Proof. (1) by structural induction on T . (2) and (3) simultaneous by induction on the generation
of B and P .

1. Let Γ ⊢ T [τ] : κ and Γ ⊢ τ : κ′ as well as Γ ⊢ τ ′ : κ′.

• Case T = :

(a) By assumption and Uniqueness of Kinds: κ = κ′

(b) By (a) and assumption: Γ ⊢ τ ′ : κ

• Case T = T ′ τ ′′:

(a) By inversion of K-App: Γ ⊢ T ′[τ] : κ′′ → κ and Γ ⊢ τ ′′ : κ′′

(b) By (a), assumption, and induction: Γ ⊢ T ′[τ ′] : κ′′ → κ

(c) By (b), (a), and K-App: Γ ⊢ T ′[τ ′] τ ′′ : κ

(d) By (c): Γ ⊢ (T ′ τ ′′)[τ ′] : κ

122

• Case T = T ′.1:

(a) By inversion of K-Proj1: Γ ⊢ T ′[τ] : κ × κ2

(b) By (a), assumption, and induction: Γ ⊢ T ′[τ ′] : κ × κ2

(c) By (b) and KProj1: Γ ⊢ T ′[τ ′].1 : κ

(d) By (c): Γ ⊢ T ′.1[τ ′] : κ

• Case T = T ′.2:

(a) By inversion of K-Proj2: Γ ⊢ T ′[τ] : κ1 × κ

(b) By (a), assumption, and induction: Γ ⊢ T ′[τ ′] : κ1 × κ

(c) By (b) and KProj2: Γ ⊢ T ′[τ ′].2 : κ

(d) By (c): Γ ⊢ T ′.2[τ ′] : κ

2. Let Γ ⊢ B[τ1][τ2] : τ and Γ, Γ′ ⊢ τ1 : κ and Γ, Γ′ ⊢ τ ′

1 : κ and τ1 ≡ τ ′

1 and Γ, Γ′ ⊢ τ2 : κ and
Γ, Γ′ ⊢ τ ′

2 : κ and τ2 ≡ τ ′

2 and Γ ⊢ B : Γ′.

• Case B = tcase v : of x : then e1 else e2 (w.l.o.g. x /∈ dom(Γ)):

(a) By Typing Inversion:

i. Γ ⊢ v : τ1

ii. Γ, x:τ2 ⊢ e1 : τ

iii. Γ ⊢ e2 : τ

(b) By inversion of B-Case: Γ′ = ·

(c) We show: Γ ⊢ v : τ ′

1

i. By (a-i) and Validity: Γ ⊢ τ1 : Ω

ii. By (i), (b), assumption, and Uniqueness of Kinds: κ = Ω

iii. By (ii), (b), and assumption: Γ ⊢ τ ′

1 : Ω

iv. By (a-i), (iii), assumption, and TEquiv: Γ ⊢ v : τ ′

1

(d) We show: Γ, x:τ ′

2 ⊢ e1 : τ

i. By (c-ii), (b), and assumption: Γ ⊢ τ ′

2 : Ω

ii. By (i) and ETerm: Γ, x:τ ′

2 ⊢ �

iii. By assumption: Γ, x:τ2 ≡ Γ, x:τ ′

2

iv. By (a-ii), (ii), (iv), and Equivalent Environments: Γ, x:τ ′

2 ⊢ e1 : τ

(e) By (c), (d), (a-iii), and TCase: Γ ⊢ tcase v : τ ′

1 of x : τ ′

2 then e1 else e2 : τ

• Case B = B′[→ τ ′′

1][→ τ ′′

2]:

(a) By inversion of B-Arrow1: Γ ⊢ B′ : Γ′

(b) By Type Context Elimination: Γ, Γ′′ ⊢ τ1 → τ ′′

1 : κ′ and Γ, Γ′′ ⊢ τ2 → τ ′′

2 : κ′

where Γ ⊢ B′ : Γ′′

(c) By (a), (b), and Uniqueness of Environments: Γ′ = Γ′′

(d) By (b), (c), and inversion of K-Arrow: κ′ = Ω and Γ, Γ′ ⊢ τ1 : Ω and Γ, Γ′ ⊢
τ ′′

1 : Ω and Γ, Γ′ ⊢ τ2 : Ω and Γ, Γ′ ⊢ τ ′′

2 : Ω

(e) By (d), assumption, and Uniqueness of Kinds: κ = Ω

(f) By (d), (e), assumption, and K-Arrow: Γ, Γ′ ⊢ τ ′

1 → τ ′′

1 : Ω and Γ, Γ′ ⊢ τ ′

2 →
τ ′′

2 : Ω

(g) By assumption, Q-Refl, and Q-Arrow: τ1 → τ ′′

1 ≡ τ ′

1 → τ ′′

1 and τ2 → τ ′′

2 ≡
τ ′

2 → τ ′′

2

(h) By assumption, (a), (d), (f), (g), and induction: Γ ⊢ B′[τ ′

1 → τ ′′

1][τ ′

2 → τ ′′

2] : τ

(i) By (h): Γ ⊢ B[τ ′

1][τ
′

2] : τ

123

• Case B = B′[ν →][ν →]:

(a) By inversion of B-Arrow2: Γ ⊢ B′ : Γ′

(b) By Type Context Elimination: Γ, Γ′′ ⊢ ν → τ1 : κ′ and Γ, Γ′′ ⊢ ν → τ2 : κ′ where
Γ ⊢ B′ : Γ′′

(c) By (a), (b), and Uniqueness of Environments: Γ′ = Γ′′

(d) By (b), (c), and inversion of K-Arrow: κ′ = Ω and Γ, Γ′ ⊢ ν : Ω and Γ, Γ′ ⊢ τ1 :
Ω and Γ, Γ′ ⊢ τ2 : Ω

(e) By (d), assumption, and Uniqueness of Kinds: κ = Ω

(f) By (d), (e), assumption, and K-Arrow: Γ, Γ′ ⊢ ν → τ ′

1 : Ω and Γ, Γ′ ⊢ ν → τ ′

2 : Ω

(g) By assumption, Q-Refl, and Q-Arrow: ν → τ ′

1 ≡ ν → τ ′

1 and ν → τ2 ≡ ν → τ ′

2

(h) By assumption, (a), (d), (f), (g), and induction: Γ ⊢ B′[τ ′

1 → τ ′′

1][τ ′

2 → τ ′′

2] : τ

(i) By (h): Γ ⊢ B[τ ′

1][τ
′

2] : τ

• Case B = B′[× τ ′′

1][× τ ′′

2]:

(a) By inversion of B-Times1: Γ ⊢ B′ : Γ′

(b) By Type Context Elimination: Γ, Γ′′ ⊢ τ1 × τ ′′

1 : κ′ and Γ, Γ′′ ⊢ τ2 × τ ′′

2 : κ′ where
Γ ⊢ B′ : Γ′′

(c) By (a), (b), and Uniqueness of Environments: Γ′ = Γ′′

(d) By (b), (c), and inversion of K-Times: κ′ = Ω and Γ, Γ′ ⊢ τ1 : Ω and Γ, Γ′ ⊢ τ ′′

1 : Ω
and Γ, Γ′ ⊢ τ2 : Ω and Γ, Γ′ ⊢ τ ′′

2 : Ω

(e) By (d), assumption, and Uniqueness of Kinds: κ = Ω

(f) By (d), (e), assumption, and K-Times: Γ, Γ′ ⊢ τ ′

1 × τ ′′

1 : Ω and Γ, Γ′ ⊢ τ ′

2 × τ ′′

2 : Ω

(g) By assumption, Q-Refl, and Q-Times: τ1 × τ ′′

1 ≡ τ ′

1 × τ ′′

1 and τ2 × τ ′′

2 ≡ τ ′

2 × τ ′′

2

(h) By assumption, (a), (d), (f), (g), and induction: Γ ⊢ B′[τ ′

1 × τ ′′

1][τ ′

2 × τ ′′

2] : τ

(i) By (h): Γ ⊢ B[τ ′

1][τ
′

2] : τ

• Case B = B′[ν ×][ν ×]:

(a) By inversion of B-Times2: Γ ⊢ B′ : Γ′

(b) By Type Context Elimination: Γ, Γ′′ ⊢ ν × τ1 : κ′ and Γ, Γ′′ ⊢ ν × τ2 : κ′ where
Γ ⊢ B′ : Γ′′

(c) By (a), (b), and Uniqueness of Environments: Γ′ = Γ′′

(d) By (b), (c), and inversion of K-Times: κ′ = Ω and Γ, Γ′ ⊢ ν : Ω and Γ, Γ′ ⊢ τ1 : Ω
and Γ, Γ′ ⊢ τ2 : Ω

(e) By (d), assumption, and Uniqueness of Kinds: κ = Ω

(f) By (d), (e), assumption, and K-Times: Γ, Γ′ ⊢ ν × τ ′

1 : Ω and Γ, Γ′ ⊢ ν × τ ′

2 : Ω

(g) By assumption, Q-Refl, and Q-Times: ν × τ1 ≡ ν × τ ′

1 and ν × τ2 ≡ ν × τ ′

2

(h) By assumption, (a), (b), (d), (f), (g), and induction: Γ ⊢ B′[ν × τ ′

1][ν × τ ′

2] : τ

(i) By (h): Γ ⊢ B[τ ′

1][τ
′

2] : τ

• Case B = B′[∀α:κ′.][∀α:κ′.]:

(a) By inversion of B-Univ: Γ ⊢ B′ : Γ′′ and Γ′ = Γ′′, α:κ′

(b) By Type Context Elimination: Γ, Γ′′′ ⊢ ∀α′:κ′.τ1 : κ′′ and Γ, Γ′′′ ⊢ ∀α:κ′.τ2 : κ′′

where Γ ⊢ B′ : Γ′′′

(c) By (a), (b), and Uniqueness of Environments: Γ′′ = Γ′′′

(d) By (c), (b), and inversion of K-Univ: κ′′ = Ω and Γ, Γ′′, α′:κ′ ⊢ τ1 : Ω and
Γ, Γ′′, α′:κ′ ⊢ τ2 : Ω

(e) By (d), (a), assumption, and Uniqeness of Kinds: κ = Ω

124

(f) By (a), (e), assumption, and K-Univ: Γ, Γ′′ ⊢ ∀α:κ′.τ ′

1 : Ω and Γ, Γ′′ ⊢ ∀α:κ′.τ ′

2 :
Ω

(g) By assumption and Q-Univ: ∀α:κ′.τ1 ≡ ∀α:κ′.τ ′

1 and ∀α:κ′.τ2 ≡ ∀α:κ′.τ ′

2

(h) By assumption, (a), (b), (c), (d), (f), (g), and induction: Γ ⊢ B′[∀α:κ′.τ ′

1][∀α:κ′.τ ′

2] :
τ

(i) By (h): Γ ⊢ B[τ ′

1][τ
′

2] : τ

• Case B = B′[∃α:κ′.][∃α:κ′.]:

(a) By inversion of B-Exist: Γ ⊢ B′ : Γ′′ and Γ′ = Γ′′, α:κ′

(b) By Type Context Elimination: Γ, Γ′′′ ⊢ ∃α′:κ.τ1 : κ′ and Γ, Γ′′′ ⊢ ∃α:α′.τ2 : κ′

where Γ ⊢ B′ : Γ′′′

(c) By (a), (b), and Uniqueness of Environments: Γ′′ = Γ′′′

(d) By (c), (b), and inversion of K-Exist: κ′′ = Ω and Γ, Γ′′, α′:κ′ ⊢ τ1 : Ω and
Γ, Γ′′, α′:κ′ ⊢ τ2 : Ω

(e) By (d), (a), assumption, and Uniqeness of Kinds: κ = Ω

(f) By (a), (e), assumption, and K-Exist: Γ, Γ′′ ⊢ ∃α:κ′.τ ′

1 : Ω and Γ, Γ′′ ⊢ ∃α:κ′.τ ′

2 :
Ω

(g) By assumption and Q-Exist: ∃α:κ′.τ1 ≡ ∃α:κ′.τ ′

1 and ∃α:κ′.τ2 ≡ ∃α:κ′.τ ′

2

(h) By assumption, (a), (b), (c), (d), (f), (g), and induction: Γ ⊢ B′[∃α:κ′.τ ′

1][∃α:κ′.τ ′

2] :
τ

(i) By (h): Γ ⊢ B[τ ′

1][τ
′

2] : τ

• Case B = B′[λα:κ′.][λα:κ′.]:

(a) By inversion of B-Abs: Γ ⊢ B′ : Γ′′ and Γ′ = Γ′′, α:κ′

(b) By Type Context Elimination: Γ, Γ′′′ ⊢ λα′:κ.τ1 : κ′ and Γ, Γ′′′ ⊢ λα:α′.τ2 : κ′

where Γ ⊢ B′ : Γ′′′

(c) By (a), (b), and Uniqueness of Environments: Γ′′ = Γ′′′

(d) By (c), (b), and inversion of K-Univ: κ′′ = κ′ → κ′′′ and Γ, Γ′′, α′:κ′ ⊢ τ1 : κ′′′

and Γ, Γ′′, α′:κ′ ⊢ τ2 : κ′′′

(e) By (d), (a), assumption, and Uniqeness of Kinds: κ = κ′′′

(f) By (a), (e), assumption, and K-Abs: Γ, Γ′′ ⊢ λα:κ′.τ ′

1 : κ′ → κ′′′ and Γ, Γ′′ ⊢
λα:κ′.τ ′

2 : κ′ → κ′′′

(g) By assumption and Q-Abs: λα:κ′.τ1 ≡ λα:κ′.τ ′

1 and λα:κ′.τ2 ≡ λα:κ′.τ ′

2

(h) By assumption, (a), (b), (c), (d), (f), (g), and induction: Γ ⊢ B′[λα:κ′.τ ′

1][λα:κ′.τ ′

2] :
τ

(i) By (h): Γ ⊢ B[τ ′

1][τ
′

2] : τ

• Case B = P [p][p]:

(a) By inversion of B-Path: Γ ⊢ P : Γ′

(b) By Type Context Elimination: Γ, Γ′′ ⊢ p τ1 : κ1 and Γ, Γ′′ ⊢ p τ2 : κ2 where
Γ ⊢ B′ : Γ′′

(c) By (a), (b), and Uniqueness of Environments: Γ′ = Γ′′

(d) By (b), (c), and inversion of K-App: Γ, Γ′ ⊢ p : κ′

1 → κ1 and Γ, Γ′ ⊢ τ1 : κ′

1 and
Γ, Γ′ ⊢ p : κ′

2 → κ2 and Γ, Γ′ ⊢ τ2 : κ′

2

(e) By (d), assumption, and Uniqueness of Kinds: κ′

1 = κ′

2 = κ and κ1 = κ2

(f) By (d), (e), assumption, and K-App: Γ, Γ′ ⊢ p τ ′

1 : κ1 and Γ, Γ′ ⊢ p τ ′

2 : κ1

(g) By assumption, Q-Refl, and Q-App: p τ1 ≡ p τ ′

1 and p τ2 ≡ p τ ′

2

(h) By assumption, (a), (b), (e), (f), (g), and induction: Γ ⊢ P [p τ ′

1][p τ ′

2] : τ

125

(i) By (h): Γ ⊢ B[τ ′

1][τ
′

2] : τ

• Case B = B′[〈 , τ ′′

1 〉][〈 , τ ′′

2 〉]:

(a) By inversion of B-Pair1: Γ ⊢ B′ : Γ′

(b) By Type Context Elimination: Γ, Γ′′ ⊢ 〈τ1, τ
′′

1 〉 : κ′ and Γ, Γ′′ ⊢ 〈τ2, τ
′′

2 〉 : κ′ where
Γ ⊢ B′ : Γ′′

(c) By (a), (b), and Uniqueness of Environments: Γ′ = Γ′′

(d) By (b), (c), inversion of K-Pair, and Uniqueness of Kinds: κ′ = κ1 × κ′

1 and
Γ, Γ′ ⊢ τ1 : κ1 and Γ, Γ′ ⊢ τ ′′

1 : κ′

1 and κ′ = κ2 × κ′

2 and Γ, Γ′ ⊢ τ2 : κ2 and
Γ, Γ′ ⊢ τ ′′

2 : κ′

2

(e) By (d), assumption, and Uniqueness of Kinds: κ1 = κ2 = κ and κ′

1 = κ′

2

(f) By (d), (e), assumption, and K-Pair: Γ, Γ′ ⊢ 〈τ ′

1, τ
′′

1 〉 : κ×κ′

1 and Γ, Γ′ ⊢ 〈τ ′

2, τ
′′

2 〉 :
κ × κ′

1

(g) By assumption, Q-Refl, and Q-Pair: 〈τ1, τ
′′

1 〉 ≡ 〈τ ′

1, τ
′′

1 〉 and 〈τ2, τ
′′

2 〉 ≡ 〈τ ′

2, τ
′′

2 〉

(h) By assumption, (a), (b), (d), (f), (g), and induction: Γ ⊢ B′[〈τ ′

1, τ
′′

1 〉][〈τ
′

2, τ
′′

2 〉] : τ

(i) By (h): Γ ⊢ B[τ ′

1][τ
′

2] : τ

• Case B = B′[〈ν, 〉][〈ν, 〉]:

(a) By inversion of B-Pair2: Γ ⊢ B′ : Γ′

(b) By Type Context Elimination: Γ, Γ′′ ⊢ 〈ν, τ1〉 : κ′ and Γ, Γ′′ ⊢ 〈ν, τ2〉 : κ′ where
Γ ⊢ B′ : Γ′′

(c) By (a), (b), and Uniqueness of Environments: Γ′ = Γ′′

(d) By (b), (c), inversion of K-Pair, and Uniqueness of Kinds: κ′ = κ1 × κ′

1 and
Γ, Γ′ ⊢ ν : κ1 and Γ, Γ′ ⊢ τ1 : κ′

1 and κ′ = κ2 × κ′

2 and Γ, Γ′ ⊢ ν : κ2 and
Γ, Γ′ ⊢ τ2 : κ′

2

(e) By (d), assumption, and Uniqueness of Kinds: κ1 = κ2 and κ′

1 = κ′

2 = κ

(f) By (d), (e), assumption, and K-Pair: Γ, Γ′ ⊢ 〈ν, τ ′

1〉 : κ1 × κ and Γ, Γ′ ⊢ 〈ν, τ ′

2〉 :
κ1 × κ

(g) By assumption, Q-Refl, and Q-Pair: 〈ν, τ1〉 ≡ 〈ν, τ ′

1〉 and 〈ν, τ2〉 ≡ 〈ν, τ ′

2〉

(h) By assumption, (a), (b), (d), (f), (g), and induction: Γ ⊢ B′[〈ν, τ ′

1〉][〈ν, τ ′

2〉] : τ

(i) By (h): Γ ⊢ B[τ ′

1][τ
′

2] : τ

3. Let Γ ⊢ P [τ1][τ2] : τ and Γ, Γ′ ⊢ τ1 : κ and Γ, Γ′ ⊢ τ ′

1 : κ and τ1 ≡ τ ′

1 and Γ, Γ′ ⊢ τ2 : κ and
Γ, Γ′ ⊢ τ ′

2 : κ and τ2 ≡ τ ′

2 and Γ ⊢ P : Γ′.

• Case P = B:

(a) By assumption and P-B: Γ ⊢ B : Γ′

(b) By assumption, (a), and induction: Γ, Γ′ ⊢ B[τ ′

1][τ
′

2] : τ

• Case P = P ′[τ ′′

1][τ ′′

2]:

(a) By inversion of P-App: Γ ⊢ P ′ : Γ′

(b) By Type Context Elimination: Γ, Γ′′ ⊢ τ1 τ ′′

1 : κ1 and Γ, Γ′′ ⊢ τ2 τ ′′

2 : κ2 where
Γ ⊢ P ′ : Γ′′

(c) By (a), (b), and Uniqueness of Environments: Γ′ = Γ′′

(d) By (b), (c), and inversion of K-App: Γ, Γ′ ⊢ τ1 : κ′

1 → κ1 and Γ, Γ′ ⊢ τ ′′

1 : κ′

1 and
Γ, Γ′ ⊢ τ2 : κ′

2 → κ2 and Γ, Γ′ ⊢ τ ′′

2 : κ′

2

(e) By (d), assumption, and Uniqueness of Kinds: κ1 = κ2 and κ′

1 = κ′

2 and κ =
κ′

1 → κ1

(f) By (d), (e), assumption, and K-App: Γ, Γ′ ⊢ τ ′

1 τ ′′

1 : κ′ and Γ, Γ′ ⊢ τ ′

2 τ ′′

2 : κ′

126

(g) By assumption, Q-Refl, and Q-App: τ1 τ ′′

1 ≡ τ ′

1 τ ′′

1 and τ2 τ ′′

2 ≡ τ ′

2 τ ′′

2

(h) By assumption, (a), (b), (e), (f), (g), and induction: Γ, Γ′ ⊢ P ′[τ ′

1 τ ′′

1][τ ′

2 τ ′′

2] : τ

(i) By (h): Γ, Γ′ ⊢ P [τ ′

1][τ
′

2] : τ

• Case P = P ′[.1][.1]:

(a) By inversion of P-Proj1: Γ ⊢ P ′ : Γ′

(b) By Type Context Elimination: Γ, Γ′′ ⊢ τ1.1 : κ1 and Γ, Γ′′ ⊢ τ2.1 : κ2 where
Γ ⊢ P ′ : Γ′′

(c) By (a), (b), and Uniqueness of Environments: Γ′ = Γ′′

(d) By (b), (c), and inversion of K-Proj1: Γ, Γ′ ⊢ τ1 : κ1×κ′

1 and Γ, Γ′ ⊢ τ2 : κ2×κ′

2

(e) By (d), assumption, and Uniqueness of Kinds: κ′

1 = κ′

2 and κ1 = κ2 and κ =
κ1 × κ′

1

(f) By (d), (e), assumption, and KProj1: Γ, Γ′ ⊢ τ ′

1.1 : κ1 and Γ, Γ′ ⊢ τ ′

2.1 : κ2

(g) By assumption and Q-Proj1a: τ1.1 ≡ τ ′

1.1 and τ2.1 ≡ τ ′

2.1

(h) By assumption, (a), (b), (e), (f), (g), and induction: Γ, Γ′ ⊢ P ′[τ ′

1.1][τ ′

2.1] : τ

(i) By (h): Γ, Γ′ ⊢ P [τ ′

1][τ
′

2] : τ

• Case P = P ′[.2][.2]:

(a) By inversion of P-Proj2: Γ ⊢ P ′ : Γ′

(b) By Type Context Elimination: Γ, Γ′′ ⊢ τ1.2 : κ1 and Γ, Γ′′ ⊢ τ2.2 : κ2 where
Γ ⊢ P ′ : Γ′′

(c) By (a), (b), and Uniqueness of Environments: Γ′ = Γ′′

(d) By (b), (c), and inversion of K-Proj2: Γ, Γ′ ⊢ τ1 : κ1×κ′

1 and Γ, Γ′ ⊢ τ2 : κ2×κ′

2

(e) By (d), assumption, and Uniqueness of Kinds: κ1 = κ2 and κ′

1 = κ′

2 and κ =
κ1 × κ′

1

(f) By (d), (e), assumption, and KProj2: Γ, Γ′ ⊢ τ ′

1.2 : κ1 and Γ, Γ′ ⊢ τ ′

2.2 : κ2

(g) By assumption and Q-Proj2a: τ1.2 ≡ τ ′

1.2 and τ2.2 ≡ τ ′

2.2

(h) By assumption, (a), (b), (e), (f), (g), and induction: Γ, Γ′ ⊢ P ′[τ ′

1.2][τ ′

2.2] : τ

(i) By (h): Γ, Γ′ ⊢ P [τ ′

1][τ
′

2] : τ

Lemma 17 (Wrapping). If τ ≡ τ ′, then, for all T , T [τ] ≡ T [τ ′].

Proof. By structural induction on T .

• Case T = :

1. By assumption: τ ≡ τ ′

• Case T = T ′ τ ′′:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By (1), Q-Refl, and Q-App: T ′[τ] τ ′′ ≡ T ′[τ ′] τ ′′

3. By (2): (T ′ τ ′′)[τ] ≡ (T ′ τ ′′)[τ ′]

• Case T = T ′.1:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By (1) and Q-Proj1a: T ′[τ].1 ≡ T ′[τ ′].1

3. By (2): (T ′.1)[τ] ≡ (T ′.1)[τ ′]

127

• Case T = T ′.2:

1. By induction: T ′[τ] ≡ T ′[τ ′]

2. By (1) and Q-Proj2a: T ′[τ].2 ≡ T ′[τ ′].2

3. By (2): (T ′.2)[τ] ≡ (T ′.2)[τ ′]

Theorem 3 (Preservation). If Γ ⊢ e : τ and e −→ e′, then Γ ⊢ e′ : τ .

Proof. By case analysis on the applied reduction rule. We show only the cases that differ from
the proof for the applicative order strategy.

• Case RT-App: e = LECT [(λα:κ.τ1) τ2)] and e′ = LECT [τ1[α := τ2]]

1. By Context Elimination: Γ, Γ′ ⊢ CT [(λα:κ.τ1) τ2)] : τ ′ where Γ ⊢ L : Γ′

2. We show: Γ, Γ′ ⊢ CT [τ1[α := τ2]] : τ ′

– Subcase C = B[][τ3]:

(a) By (1): Γ, Γ′ ⊢ B[T [(λα:κ.τ1) τ2)]][τ3] : τ ′

(b) By (a) and Type Context Elimination: Γ, Γ′, Γ′′ ⊢ T [(λα:κ.τ1) τ2] : κ′ and
Γ, Γ′, Γ′′ ⊢ τ3 : κ′ where Γ, Γ′ ⊢ B : Γ′′ (w.l.o.g. α /∈ dom(Γ, Γ′, Γ′′))

(c) By (b) and Type Context Elimination: Γ, Γ′, Γ′′ ⊢ (λα:κ.τ1) τ2 : κ′′

(d) By (c) and inversion of K-App: Γ, Γ′, Γ′′ ⊢ λα:κ.τ1 : κ2 → κ′′ and Γ, Γ′, Γ′′ ⊢
τ2 : κ2

(e) By (d), (b), and inversion of K-Abs: Γ, Γ′, Γ′′, α:κ ⊢ τ1 : κ′′ and κ = κ2

(f) By (d), (e), and Type Substitution: Γ, Γ′, Γ′′ ⊢ τ1[α := τ2] : κ′′

(g) By (b), (c), (f), and Type Exchange: Γ, Γ′, Γ′′ ⊢ T [τ1[α := τ2]] : κ′

(h) By Q-Beta: (λα:κ.τ1) τ2 ≡ τ1[α := τ2]

(i) By (h) and Wrapping: T [(λα:κ.τ1) τ2)] ≡ T [τ1[α := τ2]]

(j) By (a), (b), (g), (i), and Type Exchange: Γ, Γ′ ⊢ B[T [τ1[α := τ2]]][τ3] : τ ′

(k) By (j): Γ, Γ′ ⊢ CT [τ1[α := τ2]] : τ ′

– Subcase C = B[ω][]: analogous

3. By assumption, (1), (2), and Exchange: Γ ⊢ LECT [τ1[α := τ2]] : τ

• Case RT-Proj1: e = LECT [〈τ1, τ2〉.1] and e′ = LECT [τ1]

1. By Context Elimination: Γ, Γ′ ⊢ CT [〈τ1, τ2〉.1] : τ ′ where Γ ⊢ L : Γ′

2. We show: Γ, Γ′ ⊢ CT [τ1] : τ ′

– Subcase C = B[][τ3]:

(a) By (1): Γ, Γ′ ⊢ B[T [〈τ1, τ2〉.1][τ3] : τ ′

(b) By (a) and Type Context Elimination: Γ, Γ′, Γ′′ ⊢ T [〈τ1, τ2〉.1] : κ′ and
Γ, Γ′, Γ′′ ⊢ τ3 : κ′ where Γ, Γ′ ⊢ B : Γ′′

(c) By (b) and Type Context Elimination: Γ, Γ′, Γ′′ ⊢ 〈τ1, τ2〉.1 : κ′′

(d) By (c) and inversion of K-Proj1: Γ, Γ′, Γ′′ ⊢ 〈τ1, τ2〉 : κ′′ × κ′′′

(e) By (d) and inversion of K-Pair: Γ, Γ′, Γ′′ ⊢ τ1 : κ′′

(f) By (b), (c), (e), and Type Exchange: Γ, Γ′, Γ′′ ⊢ T [τ1] : κ′

(g) By Q-Proj1b: 〈τ1, τ2〉.1 ≡ τ1

(h) By (g) and Wrapping: T [〈τ1, τ2〉.1] ≡ T [τ1]

(i) By (a), (b), (f), (h), and Type Exchange: Γ, Γ′ ⊢ B[T [τ1]][τ3] : τ ′

128

(j) By (i): Γ, Γ′ ⊢ CT [τ1] : τ ′

– Subcase C = B[ω][]: analogous

3. By assumption, (1), (2), and Exchange: Γ ⊢ LECT [τ1] : τ

• Case RT-Proj2: e = LECT [〈τ1, τ2〉.2] and e′ = LECT [τ2]

1. By Context Elimination: Γ, Γ′ ⊢ CT [〈τ1, τ2〉.2] : τ ′ where Γ ⊢ L : Γ′

2. We show: Γ, Γ′ ⊢ CT [τ2] : τ ′

– Subcase C = B[][τ3]:

(a) By (1): Γ, Γ′ ⊢ B[T [〈τ1, τ2〉.2][τ3] : τ ′

(b) By (a) and Type Context Elimination: Γ, Γ′, Γ′′ ⊢ T [〈τ1, τ2〉.2] : κ′ and
Γ, Γ′, Γ′′ ⊢ τ3 : κ′ where Γ, Γ′ ⊢ B : Γ′′

(c) By (b) and Type Context Elimination: Γ, Γ′, Γ′′ ⊢ 〈τ1, τ2〉.2 : κ′′

(d) By (c) and inversion of K-Proj2: Γ, Γ′, Γ′′ ⊢ 〈τ1, τ2〉 : κ′′′ × κ′′

(e) By (d) and inversion of K-Pair: Γ, Γ′, Γ′′ ⊢ τ2 : κ′′

(f) By (b), (c), (e), and Type Exchange: Γ, Γ′, Γ′′ ⊢ T [τ2] : κ′

(g) By Q-Proj1b: 〈τ1, τ2〉.2 ≡ τ2

(h) By (g) and Wrapping: T [〈τ1, τ2〉.2] ≡ T [τ2]

(i) By (a), (b), (f), (h), and Type Exchange: Γ, Γ′ ⊢ B[T [τ2]][τ3] : τ ′

(j) By (i): Γ, Γ′ ⊢ CT [τ2] : τ ′

– Subcase C = B[ω][]: analogous

3. By assumption, (1), (2), and Exchange: Γ ⊢ LECT [τ2] : τ

Lemma 18 (Lazy Type Variables). If Γ ⊢ LCT [ζ] : τ and ζ /∈ dom(Γ), then L = L1[lazy 〈ζ, x〉 =
e in L2] where ζ /∈ btv(L2).

Proof. By structural induction on L. W.l.o.g. all bound type variables of LCT [ζ] are distinct
and (btv(LCT [ζ]) ∪ bv(LCT [ζ])) ∩ dom(Γ) = ∅.

• Case L = :

1. By assumption and Type Context Elimination: Γ, Γ′ ⊢ T [ζ] : κ and ζ /∈ dom(Γ′)

2. By (1) and Type Context Elimination: Γ, Γ′ ⊢ ζ : κ′

3. By (2) and Variable Containment: ζ ∈ dom(Γ, Γ′)

4. By (1) and (3): ζ ∈ dom(Γ)

5. (4) contradicts the assumption ζ /∈ dom(Γ), hence this case is not possible.

• Case L = lazy 〈ζ′, x〉 = e in L′:

– Subcase ζ′ = ζ ∧ ζ /∈ btv(L′): this is what we claimed

– Subcase ζ′ = ζ ∧ ζ ∈ btv(L′): not possible due to our assumption about bound type
variables

– Subcase ζ′ 6= ζ:

1. By assumption and Typing Inversion: Γ, ζ′:κ, x:τ ′ ⊢ L′CT [ζ] : τ ′′

2. By assumption: ζ /∈ dom(Γ, ζ′:κ, x:τ ′)

3. By (1), (2), and induction: L′ = L′

1[lazy 〈ζ, x′〉 = e′ in L2] where ζ /∈ btv(L2)

4. Let L1 = lazy 〈ζ′, x〉 = e in L′

1.

129

5. By (3) and (4): L = L1[lazy 〈ζ, x′〉 = e′ in L2] where ζ /∈ btv(L2)

Proposition 16 (Weight property). Let X range over B and P .

1. If (X ′, τ ′

1, τ
′

2) is equal to or a deeper decomposition than (X, τ1, τ2), then weight(X, τ1, τ2)−
weight(X ′, τ ′

1, τ
′

2) ≤ size(τ1) − size(τ ′

1).

2. If (X, τ ′

1, τ
′

2) is a decomposition of some term, then weight(X, τ ′

1, τ
′

2) > 0.

3. Let (X1, ν1, ν1) be equal to or a deeper decomposition than (B′, ν, ν) and similar (X2, ν2, ν2)
equal to or a deeper decomposition than (P ′, p, p).

• If B′ = B[→ τ1][→ τ2], then weight(B[ν →][ν →], τ1, τ2) < weight(X1, ν1, ν1).

• If B′ = B[× τ1][× τ2], then weight(B[ν ×][ν ×], τ1, τ2) < weight(X1, ν1, ν1).

• If B′ = B[〈 , τ1〉][〈 , τ2〉], then weight(B[〈ν, 〉][〈ν, 〉], τ1, τ2) < weight(X1, ν1, ν1).

• If B′ = B[〈 , τ1〉][〈 , τ2〉], then weight(B[〈ν, 〉][〈ν, 〉], τ1, τ2) < weight(X1, ν1, ν1).

• If P ′ = P [τ1][τ2], then weight(P [p][p], τ1, τ2) < weight(X2, ν2, ν2).

Proof. (1) by induction on the generation of X . (2) follows from (1). (3) follows from (1) and
the definition of the size function.

1. Let (X ′, τ ′

1, τ
′

2) be equal to or a deeper decomposition than (X, τ1, τ2).

• Case X ′ = X :

(a) Hence: τ1 = τ ′

1 and τ2 = τ ′

2

(b) By (a): weight(X, τ1, τ2) − weight(X ′, τ ′

1, τ
′

2) = 0 = size(τ1) − size(τ ′

1)

• Case X ′ = X ′′[→ τ ′′

1][→ τ ′′

2] and X ′ 6= X :

(a) By assumption: (X ′′, τ ′

1 → τ ′′

1 , τ ′

2 → τ ′′

2) is equal to or a deeper decomposition
than (X, τ1, τ2)

(b) By (a) and induction: weight(X, τ1, τ2)−weight(X ′′, τ ′

1 → τ ′′

1 , τ ′

2 → τ ′′

2) ≤ size(τ1)−
size(τ ′

1 → τ ′′

1)

(c) By definition of weight and size: weight(X ′′, τ ′

1 → τ ′′

1 , τ ′

2 → τ ′′

2) − weight(X ′′[→
τ ′′

1][→ τ ′′

2], τ ′

1, τ
′

2) = size(τ ′′

1) < size(τ ′

1) + 2 · size(τ ′′

1) = size(τ ′

1 → τ ′′

1) − size(τ ′

1)

(d) By (b) and (c): weight(X, τ1, τ2)−weight(X ′′[→ τ ′′

1][→ τ ′′

2], τ ′

1, τ
′

2) < size(τ1)−
size(τ ′

1)

• Case X ′ = X ′′[ν →][ν →] and X ′ 6= X :

(a) By assumption: (X ′′, ν → τ ′

1, ν → τ ′

2) is equal to or a deeper decomposition than
(X, τ1, τ2):

(b) By (a) and induction: weight(X, τ1, τ2)−weight(X ′′, ν → τ ′

1, ν → τ ′

2) ≤ size(τ1)−
size(ν → τ ′

1)

(c) By definition of weight and size: weight(X ′′, ν → τ ′

1, ν → τ ′

2) − weight(X ′′[ν →
][ν →], τ ′

1, τ
′

2) = size(ν)+size(τ ′

1) < 2·size(ν)+size(τ ′

1) = size(ν → τ ′

1)−size(τ ′

1)

(d) By (b) and (c): weight(X, τ1, τ2) − weight(X ′′[ν →][ν →], τ ′

1, τ
′

2) ≤ size(τ1) −
size(τ ′

1)

• Case X ′ = X ′′[× τ ′′

1][× τ ′′

2] and X ′ 6= X :

(a) By assumption: (X ′′, τ ′

1 × τ ′′

1 , τ ′

2 × τ ′′

2) is equal to or a deeper decomposition than
(X, τ1, τ2):

130

(b) By (a) and induction: weight(X, τ1, τ2)−weight(X ′′, τ ′

1 × τ ′′

1 , τ ′

2 × τ ′′

2) ≤ size(τ1)−
size(τ ′

1 × τ ′′

1)

(c) By definition of weight and size: weight(X ′′, τ ′

1 × τ ′′

1 , τ ′

2 × τ ′′

2) − weight(X ′′[×
τ ′′

1][× τ ′′

2], τ ′

1, τ
′

2) = size(τ ′′

1) < size(τ ′

1) + 2 · size(τ ′′

1) = size(τ ′

1 × τ ′′

1) − size(τ ′

1)

(d) By (b) and (c): weight(X, τ1, τ2) − weight(X ′′[× τ ′′

1][× τ ′′

2], τ ′

1, τ
′

2) < size(τ1) −
size(τ ′

1)

• Case X ′ = X ′′[ν×][ν×] and (X ′′, ν×τ ′

1, ν×τ ′

2) is equal to or a deeper decomposition
than (X, τ1, τ2):

(a) By induction: weight(X, τ1, τ2)−weight(X ′′, ν×τ ′

1, ν×τ ′

2) ≤ size(τ1)−size(ν×τ ′

1)

(b) By definition of weight and size: weight(X ′′, ν × τ ′

1, ν × τ ′

2)−weight(X ′′[ν ×][ν ×
], τ ′

1, τ
′

2) = size(ν) + size(τ ′

1) < 2 · size(ν) + size(τ ′

1) = size(ν × τ ′

1) − size(τ ′

1)

(c) By (a) and (b): weight(X, τ1, τ2) − weight(X ′′[ν ×][ν ×], τ ′

1, τ
′

2) ≤ size(τ1) −
size(τ ′

1)

• Case X ′ = X ′′[∀α:κ.][∀α:κ.] and (X ′′, ∀α:κ.τ ′

1, ∀α:κ.τ ′

2) is equal to or a deeper de-
composition than (X, τ, τ2):

(a) By induction: weight(X, τ1, τ2) − weight(X ′′, ∀α:κ.τ ′

1, ∀α:κ.τ ′

2) ≤
size(τ1) − size(∀α:κ.τ ′

1)

(b) By definition of weight and size: weight(X ′′, ∀α:κ.τ ′

1, ∀α:κ.τ ′

2) −
weight(X ′′[∀α:κ.][∀α:κ.], τ ′

1, τ
′

2) = 1 < 2 = size(∀α:κ.τ ′

1) − size(τ ′

1)

(c) By (a) and (b): weight(X, τ1, τ2) − weight(X ′′[∀α:κ.][∀α:κ.], τ ′

1, τ
′

2) < size(τ1) −
size(τ ′

1)

• Case X ′ = X ′′[∃α:κ.][∃α:κ.] and (X ′′, ∃α:κ.τ ′

1, ∃α:κ.τ ′

2) is equal to or a deeper de-
composition than (X, τ, τ2):

(a) By induction: weight(X, τ1, τ2) − weight(X ′′, ∃α:κ.τ ′

1, ∃α:κ.τ ′

2) ≤
size(τ1) − size(∃α:κ.τ ′

1)

(b) By definition of weight and size: weight(X ′′, ∃α:κ.τ ′

1, ∃α:κ.τ ′

2) −
weight(X ′′[∃α:κ.][∃α:κ.], τ ′

1, τ
′

2) = 1 < 2 = size(∃α:κ.τ ′

1) − size(τ ′

1)

(c) By (a) and (b): weight(X, τ1, τ2) − weight(X ′′[∃α:κ.][∃α:κ.], τ ′

1, τ
′

2) < size(τ1) −
size(τ ′

1)

• Case X ′ = X ′′[λα:κ.][λα:κ.] and (X ′′, λα:κ.τ ′

1, λα:κ.τ ′

2) is equal to or a deeper de-
composition than (X, τ, τ2):

(a) By induction: weight(X, τ1, τ2) − weight(X ′′, λα:κ.τ ′

1, λα:κ.τ ′

2) ≤
size(τ1) − size(λα:κ.τ ′

1)

(b) By definition of weight and size: weight(X ′′, λα:κ.τ ′

1, λα:κ.τ ′

2) −
weight(X ′′[λα:κ.][λα:κ.], τ ′

1, τ
′

2) = 1 < 2 = size(λα:κ.τ ′

1) − size(τ ′

1)

(c) By (a) and (b): weight(X, τ1, τ2) − weight(X ′′[λα:κ.][λα:κ.], τ ′

1, τ
′

2) < size(τ1) −
size(τ ′

1)

• Case X ′ = X ′′[p][p]:

(a) By induction: weight(X, τ1, τ2) − weight(X ′′, p τ ′

1, p τ ′

2) ≤ size(τ1) − size(p τ ′

1)

(b) By definition of weight and size: weight(X ′′, p τ ′

1, p τ ′

2)
−weight(X ′′[p][p], τ ′

1, τ
′

2) = size(p)+size(τ ′

1) < 2·size(p)+size(τ ′

1) = size(p τ ′

1)−
size(τ ′

1)

(c) By (a) and (b): weight(X, τ1, τ2)−weight(X ′′[p][p], τ ′

1, τ
′

2) ≤ size(τ1)− size(τ ′

1)

• Case X ′ = X ′′[〈 , τ ′′

1 〉][〈 , τ ′′

2 〉]:

(a) By induction: weight(X, τ1, τ2) − weight(X ′′, 〈τ ′

1, τ
′′

1 〉, 〈τ
′

2, τ
′′

2 〉) ≤
size(τ1) − size(〈τ ′

1, τ
′′

1 〉)

131

(b) By definition of weight and size: weight(X ′′, 〈τ ′

1, τ
′′

1 〉, 〈τ
′

2, τ
′′

2 〉) −
weight(X ′′[〈 , τ ′′

1 〉][〈 , τ ′′

2 〉], τ
′

1, τ
′

2) = size(τ ′′

1) < size(τ ′

1) + 2 · size(τ ′′

1) =
size(〈τ ′

1, τ
′′

1 〉) − size(τ ′

1)

(c) By (a) and (b): weight(X, τ1, τ2) − weight(X ′′[〈 , τ ′′

1 〉][〈 , τ ′′

2 〉], τ
′

1, τ
′

2) < size(τ1) −
size(τ ′

1)

• Case X ′ = X ′′[〈ν, 〉][〈ν, 〉]:

(a) By induction: weight(X, τ1, τ2)−weight(X ′′, 〈ν, τ ′

1〉, 〈ν, τ ′

2〉) ≤ size(τ1)−size(〈ν, τ ′

1〉)

(b) By definition of weight and size: weight(X ′′, 〈ν, τ ′

1〉, 〈ν, τ ′

2〉) −
weight(X ′′[〈ν, 〉][〈ν, 〉], τ ′

1, τ
′

2) = size(ν) + size(τ ′

1) < 2 · size(ν) + size(τ ′

1) =
size(〈ν, τ ′

1〉) − size(τ ′

1)

(c) By (a) and (b): weight(X, τ1, τ2) − weight(X ′′[〈ν, 〉][〈ν, 〉], τ ′

1, τ
′

2) ≤ size(τ1) −
size(τ ′

1)

• Case X ′ = X ′′[.1][.1]:

(a) By induction: weight(X, τ1, τ2) − weight(X ′′, τ ′

1.1, τ ′

2.1) ≤ size(τ1) − size(τ ′

1.1)

(b) By definition of weight and size: weight(X ′′, τ ′

1.1, τ ′

2.1)−weight(X ′′[.1][.1], τ ′

1, τ
′

2) =
1 < 2 = size(τ ′

1.1) − size(τ ′

1)

(c) By (a) and (b): weight(X, τ1, τ2)−weight(X ′′[.1][.1], τ ′

1, τ
′

2) < size(τ1)− size(τ ′

1)

• Case X ′ = X ′′[.2][.2]:

(a) By induction: weight(X, τ1, τ2) − weight(X ′′, τ ′

1.1, τ ′

2.1) ≤ size(τ1) − size(τ ′

1.1)

(b) By definition of weight and size: weight(X ′′, τ ′

1.1, τ ′

2.1)−weight(X ′′[.1][.1], τ ′

1, τ
′

2) =
1 < 2 = size(τ ′

1.1) − size(τ ′

1)

(c) By (a) and (b): weight(X, τ1, τ2)−weight(X ′′[.1][.1], τ ′

1, τ
′

2) < size(τ1)− size(τ ′

1)

• Case X ′ = X ′′[τ ′′

1][τ ′′

2]:

(a) By induction: weight(X, τ1, τ2) − weight(X ′′, τ ′

1 τ ′′

1 , τ ′

2 τ ′′

2) ≤ size(τ1) − size(τ ′

1 τ ′′

1)

(b) By definition of weight and size: weight(X ′′, τ ′

1 τ ′′

1 , τ ′

2 τ ′′

2)−weight(X ′′[→ τ ′′

1][→
τ ′′

2], τ ′

1, τ
′

2) = size(τ ′′

1) < size(τ ′

1) + 2 · size(τ ′′

1) = size(τ ′

1 τ ′′

1) − size(τ ′

1)

(c) By (a) and (b): weight(X, τ1, τ2) − weight(X ′′[τ ′′

1][τ ′′

2], τ ′

1, τ
′

2) < size(τ1) −
size(τ ′

1)

2. Let (X, τ ′

1, τ
′

2) be a decomposition of e.

(a) By definition of binary contexts: e = tcase v:τ1 of x:τ2 then e1 else e2

(b) By (a) and (1): weight(tcase v: of x: then e1 else e2, τ1, τ2) − weight(X, τ ′

1, τ
′

2) ≤
size(τ1) − size(τ ′

1)

(c) By (b): weight(X, τ ′

1, τ
′

2) ≥ weight(tcase v: of x: then e1 else e2, τ1, τ2) − size(τ1) +
size(τ ′

1)

(d) By (c) and definition: weight(X, τ ′

1, τ
′

2) ≥ size(τ ′

1)

(e) By (d) and definition: weight(X, τ ′

1, τ
′

2) > 0

3. Let (X1, ν1, ν1) be equal to or a deeper decomposition than (B′, ν, ν) and similar (X2, p
′, p′)

equal to or a deeper decomposition than (P ′, p, p).

• Assume B′ = B[→ τ1][→ τ2].

(a) By (1): weight(B[→ τ1][→ τ2], ν, ν) − weight(X1, ν1, ν1) ≤ size(ν) − size(ν1) <
size(ν)

(b) By definition: weight(B[→ τ1][→ τ2], ν, ν) − weight(B[ν →][ν →], τ1, τ2) =
size(ν)

132

(c) By (a) and (b): weight(B[ν →][ν →], τ1, τ2) < weight(X1, ν1, ν1).

• Assume B′ = B[× τ1][× τ2].

(a) By (1): weight(B[× τ1][× τ2], ν, ν) − weight(X1, ν1, ν1) ≤ size(ν) − size(ν1) <
size(ν)

(b) By definition: weight(B[×τ1][×τ2], ν, ν)−weight(B[ν×][ν×], τ1, τ2) = size(ν)

(c) By (a) and (b): weight(B[ν ×][ν ×], τ1, τ2) < weight(X1, ν1, ν1).

• Assume B′ = B[〈 , τ1〉][〈 , τ2〉].

(a) By (1): weight(B[〈 , τ1〉][〈 , τ2〉], ν, ν) − weight(X1, ν1, ν1) ≤ size(ν) − size(ν1) <
size(ν)

(b) By definition: weight(B[〈 , τ1〉][〈 , τ2〉], ν, ν)−weight(B[〈ν, 〉][〈ν, 〉], τ1, τ2) = size(ν)

(c) By (a) and (b): weight(B[〈ν, 〉][〈ν, 〉], τ1, τ2) < weight(X1, ν1, ν1).

• Assume P ′ = P [τ1][τ2].

(a) By (1): weight(P [τ1][τ2], p, p) − weight(X2, ν2, ν2) ≤ size(p) − size(ν) < size(p)

(b) By definition: weight(P [τ1][τ2], p, p) − weight(P [p][p], τ1, τ2) = size(p)

(c) By (a) and (b): weight(P [p][p], τ1, τ2) < weight(X2, ν2, ν2).

Proposition 17 (Type Progress).

1. If · ⊢ LCT [τ0] : τ and τ0 is not in weak head normal form, then LCT [τ0] −→ e.

2. If e = LP [p][p], then there exists a decomposition (B, τ1, τ2) ≪ (P, p, p) or (P, p, p) is equal
to or deeper than some decomposition (B, p′, p′).

3. If e = LB[ν][ν], then e −→ e′ or there exists a decomposition (B′, τ1, τ2) ≪ (B, ν, ν).

4. If e = LP [q1][q2], then e −→ e′ or there exists a decomposition (B, τ1, τ2) of P [q1][q2] with
weight(B, τ1, τ2) < weight(P, q1, q2).

5. If · ⊢ LB[τ1][τ2] : τ , then LB[τ1][τ2] −→ e.

Proof. (1) by structural induction on τ0. (2) by induction on the generation of P . (3) by induction
on the generation of B. (4) by structural induction on q1. (5) by induction on weight(B, τ1, τ2).

1. Let · ⊢ LCT [τ0] : τ where τ0 is not in weak head normal form.

• Case τ0 = α: not possible

• Case τ0 = ζ:

(a) By Lazy Type Variables: L = L1[lazy 〈ζ, x〉 = e in L2] where ζ /∈ btv(L2)

(b) By (a) and RT-Trigger: LCT [τ0] = L1[lazy 〈ζ, x〉 = e in L2CT [ζ]] −→
L1[let 〈α, x〉 = e in (L2CT [τ0])[ζ := α]]

• Case τ0 = τ1 → τ2: not possible

• Case τ0 = τ1 × τ2: not possible

• Case τ0 = ∀α:κ.τ ′

0: not possible

• Case τ0 = ∃α:κ.τ ′

0: not possible

• Case τ0 = λα:κ.τ ′

0: not possible

• Case τ0 = τ1 τ2:

– Subcase τ1 = λα:κ.τ ′

1:

133

(a) By RT-App: LCT [τ0] = LCT [(λα:κ.τ ′

1) τ2] −→ LCT [τ ′

1[α := τ2]]

– Subcase τ1 is not an abstraction:

(a) By assumption and Context Elimination: Γ ⊢ CT [τ1 τ2] : τ ′

(b) By (a) and Type Context Elimination: Γ, Γ′ ⊢ T [τ1 τ2] : κ

(c) By (b) and Type Context Elimination: Γ, Γ′ ⊢ τ1 τ2 : κ′′

(d) By (c) and inversion of K-App: Γ, Γ′ ⊢ τ1 : κ′ → κ′′

(e) By (d) and definition of the kinding relation: τ1 = α or τ1 = λα:κ′.τ ′

1 or
τ1 = τ ′

1 τ ′

2 or τ1 = τ ′

1.1 or τ1 = τ ′

1.2

(f) τ1 = α is not possible since α τ2 is in weak head normal form

(g) By (e), (f), and subcase assumption: τ1 is not in weak head normal form

(h) Let T ′ = T [τ2]. Then: LCT [τ0] = LCT ′[τ1]

(i) By (g), (h), assumption, and induction: LCT [τ0] = LCT ′[τ1] −→ e

• Case τ0 = 〈τ1, τ2〉: not possible

• Case τ0 = τ ′

0.1:

– Subcase τ ′

0 = 〈τ1, τ2〉:

(a) By RT-Proj1: LCT [τ0] = LCT [〈τ1, τ2〉.1] −→ LCT [τ1]

– Subcase τ ′

0 is not a type pair:

(a) By assumption and Context Elimination: Γ ⊢ CT [τ ′

0.1] : τ ′

(b) By (a) and Type Context Elimination: Γ, Γ′ ⊢ T [τ ′

0.1] : κ

(c) By (b) and Type Context Elimination: Γ, Γ′ ⊢ τ ′

0.1 : κ′

(d) By (c) and inversion of K-Proj1: Γ ⊢ τ ′

0 : κ′ × κ2

(e) By (d) and definition of the kinding relation: τ ′

0 = α or τ ′

0 = 〈τ1, τ2〉 or
τ ′

0 = τ ′

1 τ ′

2 or τ ′

0 = τ ′

1.1 or τ ′

0 = τ ′

1.2

(f) τ ′

0 = α is not possible since α.1 is in weak head normal form

(g) By (e), (f), and subcase assumption: τ ′

0 is not in weak head normal form

(h) Let T ′ = T [.1]. Then: LCT [τ0] = LCT ′[τ ′

0]

(i) By (g), (h), assumption, and induction: LCT [τ0] = LCT ′[τ ′

0] −→ e

• Case τ0 = τ ′

0.2:

– Subcase τ ′

0 = 〈τ1, τ2〉:

(a) By RT-Proj1: LCT [τ0] = LCT [〈τ1, τ2〉.2] −→ LCT [τ2]

– Subcase τ ′

0 is not a type pair:

(a) By assumption and Context Elimination: Γ ⊢ CT [τ ′

0.2] : τ ′

(b) By (a) and Type Context Elimination: Γ, Γ′ ⊢ T [τ ′

0.2] : κ

(c) By (b) and Type Context Elimination: Γ, Γ′ ⊢ τ ′

0.2 : κ′

(d) By (c) and inversion of K-Proj2: Γ ⊢ τ ′

0 : κ1 × κ′

(e) By (d) and definition of the kinding relation: τ ′

0 = α or τ ′

0 = 〈τ1, τ2〉 or
τ ′

0 = τ ′

1 τ ′

2 or τ ′

0 = τ ′

1.1 or τ ′

0 = τ ′

1.2

(f) τ ′

0 = α is not possible since α.2 is in weak head normal form

(g) By (e), (f), and subcase assumption: τ ′

0 is not in weak head normal form

(h) Let T ′ = T [.2]. Then: LCT [τ0] = LCT ′[τ ′

0]

(i) By (g), (h), assumption, and induction: LCT [τ0] = LCT ′[τ ′

0] −→ e

2. Let e = LP [p][p].

• Case P = B:

134

(a) Then: (P, p, p) = (B, p, p)

• Case P = P ′[.1][.1]:

(a) By induction: there exists a decomposition (B, τ1, τ2) ≪ (P ′, p.1, p.1) or
(P ′, p.1, p.1) is equal to or deeper than some decomposition (B, p′, p′)

– If (B, τ1, τ2) ≪ (P ′, p.1, p.1), then also (B, τ1, τ2) ≪ (P, p, p), since (P, p, p) is
deeper than (P ′, p.1, p.1)

– If (P ′, p.1, p.1) is equal to or deeper than some decomposition (B, p′, p′), then
(P, p, p) is deeper than (B, p′, p′), since (P, p, p) is deeper than (P ′, p.1, p.1)

• Case P = P ′[.2][.2]: analogous

• Case P = P ′[τ1][τ2]:

(a) Let B = P ′[p][p]. Then: B[τ1][τ2] = P [p][p]

(b) By (a) and Weight Property: (B, τ1, τ2) ≪ (P, p, p)

3. Let e = LB[ν][ν].

• Case B = tcase v: of x: then e1 else e2:

(a) By R-Case1: e −→ L[e1[x := v]]

• Case B = B′[→ τ1][→ τ2]:

(a) Let B′′ = B′[ν →][ν →]. Then: LB[ν][ν] = LB′′[τ1][τ2]

(b) By (a) and Weight Property: (B′′, τ1, τ2) ≪ (B, ν, ν)

• Case B = B′[ν′ →][ν′ →]:

(a) By induction: LB′[ν′ → ν][ν′ → ν] −→ e′ or there exists a decomposition
(B′′, τ1, τ2) ≪ (B′, ν′ → ν, ν′ → ν)

– If LB′[ν′ → ν][ν′ → ν] −→ e′, then: LB[ν][ν] −→ e′

– If (B′′, τ1, τ2) ≪ (B′, ν′ → ν, ν′ → ν), then also (B′′, τ1, τ2) ≪ (B, ν, ν), since
(B, ν, ν) is deeper than (B′, ν′ → ν, ν′ → ν)

• Case B = B′[× τ1][× τ2]:

(a) Let B′′ = B′[ν ×][ν ×]. Then: LB[ν][ν] = LB′′[τ1][τ2]

(b) By (a) and Weight Property: (B′′, τ1, τ2) ≪ (B, ν, ν)

• Case B = B′[ν′ ×][ν′ ×]:

(a) By induction: LB′[ν′ × ν][ν′ × ν] −→ e′ or there exists a decomposition
(B′′, τ1, τ2) ≪ (B′, ν′ × ν, ν′ × ν)

– If LB′[ν′ × ν][ν′ × ν] −→ e′, then: LB[ν][ν] −→ e′

– If (B′′, τ1, τ2) ≪ (B′, ν′ × ν, ν′ × ν), then also (B′′, τ1, τ2) ≪ (B, ν, ν), since
(B, ν, ν) is deeper than (B′, ν′ × ν, ν′ × ν)

• Case B = B′[∀α:κ.][∀α:κ.]:

(a) By induction: LB′[∀α:κ.ν][∀α:κ.ν] −→ e′ or there exists a decomposition
(B′′, τ1, τ2) ≪ (B′, ∀α:κ.ν, ∀α:κ.ν)

– If LB′[∀α:κ.ν][∀α:κ.ν] −→ e′, then: LB[ν][ν] −→ e′

– If (B′′, τ1, τ2) ≪ (B′, ∀α:κ.ν, ∀α:κ.ν), then also (B′′, τ1, τ2) ≪ (B, ν, ν), since
(B, ν, ν) is deeper than (B′, ∀α:κ.ν, ∀α:κ.ν)

• Case B = B′[∃α:κ.][∃α:κ.]:

(a) By induction: LB′[∃α:κ.ν][∃α:κ.ν] −→ e′ or there exists a decomposition
(B′′, τ1, τ2) ≪ (B′, ∃α:κ.ν, ∃α:κ.ν)

– If LB′[∃α:κ.ν][∃α:κ.ν] −→ e′, then: LB[ν][ν] −→ e′

135

– If (B′′, τ1, τ2) ≪ (B′, ∃α:κ.ν, ∃α:κ.ν), then also (B′′, τ1, τ2) ≪ (B, ν, ν), since
(B, ν, ν) is deeper than (B′, ∃α:κ.ν, ∃α:κ.ν)

• Case B = B′[λα:κ.][λα:κ.]:

(a) By induction: LB′[λα:κ.ν][λα:κ.ν] −→ e′ or there exists a decomposition
(B′′, τ1, τ2) ≪ (B′, λα:κ.ν, λα:κ.ν)

– If LB′[λα:κ.ν][λα:κ.ν] −→ e′, then: LB[ν][ν] −→ e′

– If (B′′, τ1, τ2) ≪ (B′, λα:κ.ν, λα:κ.ν), then also (B′′, τ1, τ2) ≪ (B, ν, ν), since
(B, ν, ν) is deeper than (B′, λα:κ.ν, λα:κ.ν)

• Case B = P [p][p]:

(a) By (2): there exists a decomposition (B′, τ1, τ2) ≪ (P, p ν, p ν) or (P, p ν, p ν) is
equal to or deeper than some decomposition (B′, p′, p′)

– If there exists a decomposition (B′, τ1, τ2) ≪ (P, p ν, p ν), then (B′, τ1, τ2) ≪
(B, ν, ν), since (B, ν, ν) is a deeper decomposition than (P, p ν, p ν)

– If (P, p ν, p ν) is equal to or deeper than some decomposition (B′, p′, p′), then
by induction: LB′[p′][p′] −→ e′ or there exists a decomposition (B′′, τ ′

1, τ
′

2) ≪
(B′, p′, p′)

∗ If LB′[p′][p′] −→ e′, then: LB[ν][ν] −→ e′

∗ If there exists a decomposition (B′′, τ ′

1, τ
′

2) ≪ (B′, p′, p′), then also
(B′′, τ ′

1, τ
′

2) ≪ (B, ν, ν), since (B, ν, ν) is deeper than (B′, p′, p′)

• Case B = B′[〈 , τ1〉][〈 , τ2〉]:

(a) Let B′′ = B′[〈ν, 〉][〈ν, 〉]. Then: LB[ν][ν] = LB′′[τ1][τ2]

(b) By (a) and Weight Property: (B′′, τ1, τ2) ≪ (B, ν, ν)

• Case B = B′[〈ν′, 〉][〈ν′, 〉]:

(a) By induction: LB′[〈ν′, ν〉][〈ν′, ν〉] −→ e′ or there exists a decomposition
(B′′, τ1, τ2) ≪ (B′, 〈ν′, ν〉, 〈ν′, ν〉)

– If LB′[〈ν′, ν〉][〈ν′, ν〉] −→ e′, then: LB[ν][ν] −→ e′

– If (B′′, τ1, τ2) ≪ (B′, 〈ν′, ν〉, 〈ν′, ν〉), then also (B′′, τ1, τ2) ≪ (B, ν, ν), since
(B, ν, ν) is deeper than (B′, 〈ν′, ν〉, 〈ν′, ν〉)

4. Let e = LP [q1][q2].

• Case q1 6∼ q2:

(a) By R-Case2: e −→ e′

• Case q1 ∼ q2:

– Subcase q1 = α = q2:

(a) By (2): there exists a decomposition (B, τ1, τ2) ≪ (P, α, α) or (P, α, α) is
equal to or deeper than some decomposition (B′, p′, p′)

∗ If (B, τ1, τ2) ≪ (P, α, α), then weight(B, τ1, τ2) < weight(P, α, α)

∗ If (P, α, α) is equal to or deeper than some decomposition (B′, p′, p′), then
by (3): e −→ e′ or there exists a decomposition (B′′, τ ′

1, τ
′

2) ≪ (B′, p′, p′)

· If (B′′, τ ′

1, τ
′

2) ≪ (B′, p′, p′), then weight(B′, τ ′

1, τ
′

2) < weight(P, α, α),
since (P, α, α) is deeper than (B′, p′, p′).

– Subcase q1 = q′1.1 and q2 = q′2.1:

(a) Let P ′ = P [.1][.1].

(b) By (a) and induction: e −→ e′ or there exists a decomposition (B, τ1, τ2) of
P ′[q′1][q

′

2] with weight(B, τ1, τ2) < weight(P ′, q′1, q
′

2).

136

∗ If there exists a decomposition (B, τ1, τ2) of P ′[q′1][q
′

2] with weight(B, τ1, τ2) <
weight(P ′, q′1, q

′

2), then weight(B, τ1, τ2) < weight(P, q1, q2), since
weight(P ′, q′1, q

′

2) < weight(P, q1, q2).

5. Let · ⊢ LB[τ1][τ2] : τ .

• Case τ1 not WHN:

(a) Let C = B[][τ2] and T = . Then: LB[τ1][τ2] = LCT [τ1]

(b) By (a) and (1): LB[τ1][τ2] −→ e

• Case τ1 = ω1 and τ2 not WHN:

(a) Let C = B[ω1][] and T = . Then: LB[τ1][τ2] = LCT [τ2]

(b) By (a) and (1): LB[τ1][τ2] −→ e

• Case τ1 = ω1 and τ2 = ω2 where ω1 6∼ ω2:

(a) By R-Case2: LB[τ1][τ2] −→ e

• Case τ1 = ω1 and τ2 = ω2 where ω1 ∼ ω2:

– Subcase ω1 = q1 and ω2 = q2:

(a) Let P = B. By (4): LB[τ1][τ2] = LP [q1][q2] −→ e or weight(B′, τ ′

1, τ
′

2) <
weight(P, q1, q2) = weight(B, q1, q2)

∗ If weight(B′, τ ′

1, τ
′

2) < weight(B, q1, q2), then by induction: LB[τ1][τ2] =
LB′[τ ′

1][τ
′

2] −→ e

– Subcase ω1 = τ11 → τ12 and ω2 = τ21 → τ22:

(a) Let B′ = B[→ τ12][→ τ22]. Then: weight(B′, τ11, τ21) < weight(B, τ1, τ2)

(b) By (a) and induction: LB[τ1][τ2] = LB′[τ11][τ21] −→ e

– Subcase ω1 = τ11 × τ12 and ω2 = τ21 × τ22:

(a) Let B′ = B[× τ12][× τ22]. Then: weight(B′, τ11, τ21) < weight(B, τ1, τ2)

(b) By (a) and induction: LB[τ1][τ2] = LB′[τ11][τ21] −→ e

– Subcase ω1 = ∀α:κ.τ ′

1 and ω2 = ∀α:κ.τ ′

2:

(a) Let B′ = B[∀α:κ.][∀α:κ.]. Then: weight(B′, τ ′

1, τ
′

2) < weight(B, τ1, τ2)

(b) By (a) and induction: LB[τ1][τ2] = LB′[τ ′

1][τ
′

2] −→ e

– Subcase ω1 = ∃α:κ.τ ′

1 and ω2 = ∃α:κ.τ ′

2:

(a) Let B′ = B[∃α:κ.][∃α:κ.]. Then: weight(B′, τ ′

1, τ
′

2) < weight(B, τ1, τ2)

(b) By (a) and induction: LB[τ1][τ2] = LB′[τ ′

1][τ
′

2] −→ e

– Subcase ω1 = λα:κ.τ ′

1 and ω2 = λα:κ.τ ′

2:

(a) Let B′ = B[λα:κ.][λα:κ.]. Then: weight(B′, τ ′

1, τ
′

2) < weight(B, τ1, τ2)

(b) By (a) and induction: LB[τ1][τ2] = LB′[τ ′

1][τ
′

2] −→ e

– Subcase ω1 = 〈τ11, τ12〉 and ω2 = 〈τ21, τ22〉:

(a) Let B′ = B[〈 , τ12〉][〈 , τ22〉]. Then: weight(B′, τ11, τ21) < weight(B, τ1, τ2)

(b) By (a) and induction: LB[τ1][τ2] = LB′[τ11][τ21] −→ e

Lemma 19 (Context Extension). If L[e] −→ e′ and e is not a lazy expression, then for all E
exists an e′′ such that LE[e] −→ e′′.

Proof. By case analysis on the applied reduction rule. Whe show only the cases that differ from
the proof for the applicative order reduction strategy.

137

• Case R-Case2: e = E′[tcase v:τ1 of x:τ2 then e1 else e2] and e′ = LE′[e2] where
tcase v:τ1 of x:τ2 then e1 else e2 = B[ω][ω′] with ω 6∼ ω′ or tcase v:τ1 of x:τ2 then e1 else e2 =
P [q][q′] with q 6∼ q′

1. Let E′′ = E[E′]. Then: LE[e] = LE′′[tcase v:τ1 of x:τ2 then e1 else e2]

2. By (1) and R-Case2: LE[e] −→ LE′′[e1[x := v]]

• Case RT-App: e = E′CT [(λα:κ.τ1) τ2] and e′ = E′CT [τ1[α := τ2]]

1. Let E′′ = E[E′]. Then: LE[e] = LE′′CT [(λα:κ.τ1) τ2]

2. By (1) and RT-App: LE[e] −→ LE′′CT [τ1[α := τ2]]

• Case RT-Proj1: e = E′CT [〈τ1, τ2〉.1] and e′ = E′CT [τ1]

1. Let E′′ = E[E′]. Then: LE[e] = LE′′CT [〈τ1, τ2〉.1]

2. By (1) and RT-Proj1: LE[e] −→ LE′′CT [τ1]

• Case RT-Proj2: e = E′CT [〈τ1, τ2〉.2] and e′ = E′CT [τ2]

1. Let E′′ = E[E′]. Then: LE[e] = LE′′CT [〈τ1, τ2〉.2]

2. By (1) and RT-Proj2: LE[e] −→ LE′′CT [τ2]

Theorem 4 (Progress). If · ⊢ L[e] : τ where e is neither a value nor a lazy expression, then
L[e] −→ e′.

Proof. By structural induction on e. We show only the cases that differ from the proof for the
applicative order reduction strategy.

• Case e 6= E[lazy . . .] ∧ e = tcase e0:τ0 of x:τ ′

0 then e1 else e2:

– Subcase e0 is not a value:

1. Let E0 = tcase :τ0 of x:τ ′

0 then e1 else e2.

2. By (1) and assumption: · ⊢ LE0[e0] : τ

3. By (2) and Context Elimination: · ⊢ L[e0] : τ ′′

0

4. By assumption: e0 is not a lazy expression

5. By (3), (4), and induction: L[e0] −→ e′0
6. By (4), (5), and Context Extension: L[e] = LE0[e0] −→ e′

– Subcase e0 = v:

1. Let B = tcase v: of x: then e1 else e2.

2. By (1) and assumption: · ⊢ LB[τ0][τ
′

0] : τ

3. By (2) and Type Progress: L[e] = LB[τ0][τ
′

0] −→ e′

138

	Introduction
	Motivation
	Alice ML
	Outline

	The basic calculus
	System F
	Pairs
	Existential types
	Typecase
	Lazy evaluation
	Properties

	Reduction strategies for the type level
	Applicative order reduction to normal form
	Properties

	Interleaved call-by-name reduction to weak head normal form
	Properties

	Related work
	Conclusion and future work
	Proofs
	The basic calculus
	Applicative order reduction to normal form
	Interleaved call-by-name reduction to weak head normal form

