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Abstract. This paper presents a lightweight reliable object migration
protocol that preserves the centralized object semantics, allows for pre-
cise prediction of network behavior, and permits construction of fault
tolerance abstractions in the language. Each object has a “home site”
to which all migration requests are directed. Compared to the standard
technique of creating and collapsing forwarding chains, this gives a bet-
ter worst-case network behavior and it limits dependencies on third-party
sites. The protocol defines “freely mobile” objects that have the inter-
esting property of always executing locally, i.e., each method executes in
the thread that invokes it. This makes them dual, in a precise sense, to
stationary objects. The protocol is designed to be as efficient as a nonreli-
able protocol in the common case of no failure, and to provide sufficient
hooks so that common fault tolerance algorithms can be programmed
completely in the Oz language. The protocol is fully implemented in the
network layer of the Mozart platform for distributed application develop-
ment, which implements Oz (see http://www.mozart-oz.org). This pa-
per defines the protocol in an intuitive yet precise way using the concept
of distribution graph to model distributed execution of language entities.
Formalization and proof of protocol properties are done elsewhere.

1 Introduction

What does it mean for an object to be mobile? Different systems interpret this
notion in different ways [15]:

1. Only code is copied, not the state (e.g., Java applets [13]).

2. The original object is “frozen” and its code and state are both copied. The
original is discarded before the copy is used. This is what is typically meant
by “mobile agents” in programming books.

3. Concurrency control is added by freezing the original object, copying both
its code and state, making it forward all messages, and then unfreezing it.



The copy maintains lexical scoping across the network by using network
references for all of the original object’s external references. This approach
is taken by Emerald [10] and Obliq [5].

If the application programmer wants to control network behavior by placing
objects on the appropriate sites and moving them as desired, then all three
approaches have problems:

Bad network behavior If an alias is created from the old object to the new
when it moves, then a sequence of moves creates a chain of aliases. There are
various tricks to reduce the length of this chain, e.g., Emerald short-circuits
it when a message is sent, but a basic unpredictability remains regarding
third-party dependencies and number of network hops. Furthermore, if there
is a site failure, Emerald uses a broadcast to recover the object, which is
impractical on a WAN.

Weak semantics One way to get better network behavior is give up on the
transparent semantics, i.e., to use one of the two first approaches above.

Is it possible to get both a predictable network behavior and a good semantics?
A simple way to solve this problem is to make objects mobile by default, instead
of stationary. We call these “freely mobile objects”. Start with lightweight ob-
ject mobility, in which a method always executes in the thread that invokes it.
Implement this with a reliable distributed algorithm that guarantees predictable
network behavior. Then control the mobility by restricting it. In this way, we
achieve arbitrary mobility while keeping both predictable network behavior and
good semantics. One purpose of this paper is to present a distributed algorithm
that achieves these goals.

This paper consists of four parts. Section 2 introduces the graph model of
distributed execution and its visual notation. Section 3 defines a home-based
algorithm for freely mobile objects and discusses its properties and usefulness.
Section 4 defines the basic mobile state protocol, which is the key algorithm at
the heart of freely mobile objects [4,19]. Section 5 extends the basic protocol
to use precise failure detection, while maintaining the same performance as the
basic protocol when there is no failure. This section also gives the state diagrams
of both the basic and extended protocols. The extended protocol is part of the
implementation of the Mozart programming system [11,9], which implements
the Oz language. Oz is a multiparadigm language with simple formal seman-
tics that can be viewed as a concurrent object-oriented language with dataflow
synchronization [8].

The extended protocol is being used to implement nontrivial fault tolerance
abstractions in Oz [18,17]. For example, we are currently testing an open dis-
tributed fault-tolerant transactional store [3,7]. Clients to this store can come
and go, and the store remains coherent as long as at least one working client
exists at any given moment. A fuller explanation of the design of fault tolerance
abstractions is beyond the scope of this paper.
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Fig. 2. Access structure in the distribution graph

2 Graph Notation for Distributed Executions

We depict distributed executions in a simple but precise manner using the con-
cept of distribution graph. This section gives a self-contained explanation that
suffices to understand the paper. We obtain the distribution graph in two steps
from an arbitrary execution state of the system. The first step is independent
of distribution. We model the execution state by a graph, called language graph,
in which each language entity except for an object corresponds to one node (see
Figure 1). A node can be considered as an active entity with internal state that
can asynchronously send messages to other nodes and that can receive messages
from other nodes. In terms of the language graph, Oz objects are compound
entities, i.e., they consist of more than one node. Their structure is explained in
Section 3.

In the second step, we introduce the notion of site. Assume a finite set of
sites and annotate each node by its site (see Figure 2). If a node, e.g., N2, is
referenced by at least one node on another site, then map it to a set of nodes,
e.g., {P1,P2,P3,M}. This set is called the access structure of the original node. The
map satisfies the following invariant. An access structure consists of at most
one prozy node Pi on each site that referenced the original node and exactly
one manager node M for the whole structure. The manager site is also called the
home site. The resulting graph, containing both local nodes and access structures
where necessary, is called the distribution graph. All example executions in the
paper use this notation.

All distributed execution is modeled as distribution graph transformations.
Nodes in the distribution graph are active entities with internal state that can
send and receive messages. All graph transformations are atomic and initiated
by the nodes. The two-level addressing mechanism by which a node identifies a
send destination is beyond the scope of this paper (see [2]). We mention only



that each access structure has a globally unique name, which is used to identify
its nodes.
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Fig. 3. An object with one attribute and two methods

3 Freely Mobile Objects

In the distribution graph, an object shows up as a compound entity consisting
of an object record, a class record containing procedures (the methods), a state
pointer, and a record containing the object’s state. The distributed behavior of
the object is derived from the behavior of its parts. Figure 3 shows an object A
that has one attribute, bal, and two methods, trans and getBal. The object is
represented as an object record with three fields. The st field contains a state
pointer, which points to the object’s state record. The state pointer defines the
site at which state updates can be done without network operations. The cl
field contains the class record, which contains the procedures trans and getBal
that implement the methods. The id field contains the object’s unique identifier
theName. The object record and the class record cannot be changed. However,
by giving a new content to the state pointer, the object’s state can be updated.

Class

Fig. 4. A local object

Figure 4 shows an object A that is local to Site 1. There is no reference to A
from any other site. Figure 5 shows an object A with one remote reference. The
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Fig. 5. A global object with one remote reference

object is now part of an access structure whose manager is on Site 1 and that has
one proxy on Site 2. A local object A is transformed to a global (i.e., remotely-
referenced) object when a message referencing A leaves Site 1. A manager node
Ma is created on Site 1 when the message leaves. When the message arrives on
Site 2, then a proxy node Pa2 is created there.
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Fig. 6. The object is invoked remotely (1)

Figure 6 shows what happens when thread T invokes A from Site 2. At first,
only the proxy Pa2 is present on Site 2, not the object itself. The proxy asks its
manager for a copy of the object record. This causes an access structure to be
created for the state pointer, with a manager Mc and one proxy Pcl. The class
record is copied eagerly and does not have a global name. A message containing
the class record and a state pointer proxy is sent to Site 2. The object’s state
remains on Site 1.

Figure 7 shows what happens when the message arrives. A second proxy Pc2
is created for the state pointer. The class record is copied to Site 2 and proxy
Pa2 becomes the object record A. The mobile state protocol (see Section 4) then
atomically transfers the state pointer to Site 2. The object record has a global
name. This implies that any further messages to Site 2 containing object refer-
ences will immediately refer to the local copy of the object record. No additional
network operations are needed.

Figure 8 shows what happens after the state pointer is transferred to Site 2.
The new state, State?2, is created on Site 2 and will contain the updated object
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Fig. 8. The object is invoked remotely (3)

state after the method finishes. The old state, Statel, may continue to exist on
Site 1 but the state pointer no longer points to it.

Fig. 9. The object moves back to Site 1

Figure 9 shows what happens if Site 1 invokes the object again. The state
pointer is transferred back to Site 1. The new state, State3, is created on Site
1 and will contain the updated object state after the method finishes. The old
state, State2, may continue to exist on Site 2 but the state pointer no longer
points to it.

3.1 Discussion

There are several interesting things going on here. First, the object is always
executed locally. The state pointer is always localized before the method starts



executing, and it is guaranteed to stay local during the method execution while
the object is locked. Second, the class code is only transferred once to any site.
Only the state pointer is moved around after the first transfer. This makes
object mobility very lightweight. Third, all requests for the object are serialized
by the state pointer’s manager node. This simplifies the protocol but introduces
a dependency on the manager site (i.e., the protocol is “home-based” [12]). This
dependency can be removed at higher levels of abstraction (e.g., see [3], which
is also a migration protocol) or by extending the present protocol (see [16] for a
simple solution).

A stationary object can be defined in a system in which the only mobile
entities are freely mobile objects. This requires remote thread creation, synchro-
nization between different sites, and passing of exceptions between sites. An Oz
procedure that takes any freely mobile object and returns a reference to a sta-
tionary object with the same language semantics is given in [19]. The procedure’s
definition makes it clear that a stationary object is not a simple concept. Freely
mobile objects are simpler since they always execute in the thread that invokes
them.

There is a precise sense in which stationary and freely mobile objects are
duals of each other. With a stationary object, the object state remains on one
site, and the thread conceptually moves to that site, to execute there. With a
freely mobile object, it is the reverse: the thread remains on one site, and the
object state moves to that site. Since moving object state is simpler than moving
a thread (see, e.g., [10,14]), this confirms that freely mobile objects are simpler
than stationary objects.

4 The Basic Mobile State Protocol

The mobile objects of Section 3 are compound entities that use several dis-
tributed algorithms. The object record is copied once lazily (when the object
is first invoked), the methods are copied along with it, and the object’s state
pointer is moved between sites that request it. The protocol that moves the
state pointer, the mobile state protocol, is particularly interesting because of the
way it is integrated into the object system. In this section we give the basic
protocol that assumes there is no failure. Section 5 explains how the protocol is
extended with failure detection.

The protocol must guarantee consistency between consecutive states. If the
consecutive states are on different sites, then this requires an atomic transfer of
the state pointer between the sites. A site that wants the state pointer requests
it from the state pointer’s manager, and the latter sends a forwarding command
to the site that has (or will eventually have!) the state pointer. Therefore, in the
basic protocol, the manager only needs to store one piece of information, namely
the site that will eventually contain the state pointer [19].

We show how the protocol works by means of an example. Figure 10 shows
a state pointer C referenced from two sites. The state pointer is initially on Site

! In the temporal logic sense [1].



Fig. 11. (a) Pc2 requests the state pointer; (b) Pcl is asked to forward it

1; proxy Pc1 has the state pointer and proxy Pc2 does not. Thread T executes
on Site 2 an object method that will update the object state. At some point,
T requests a state update by sending a Request message to Pc2. The thread
references the new state through variable Y. When the update completes then
the thread will also reference the old state through variable X.

Since proxy Pc2 does not have the state pointer, it must ask its manager.
Figure 11 shows (a) Pc2 requesting the state pointer by sending a Get message
to manager Mc, and (b) the manager sending a Forward message to the proxy
that will eventually have the state pointer, namely Pc1. Therefore the manager
can accept another request immediately; it does not need to wait until the state
pointer’s transfer is complete.




Fig. 13. Pc2 has the state pointer; T references the old and new states

Figure 12 shows (a) Pcl sending to Pc2 a Put message containing the old
state, Statel, and (b) Pc2 sending to T a Proceed message informing it that the
transfer is complete. The old state may still exist on Site 1 but Pc1 no longer
has a pointer to it. Figure 13 shows the final situation. Pc2 has the state pointer,
which points to State2, and X is bound to Statel. Therefore T references both
Statel and State2.

This protocol provides a predictable network behavior. There are a maximum
of three network hops for the state pointer to change sites; only two if the
manager is on the source or destination site; zero if the state pointer is on the
requesting site. The protocol maintains sequential consistency, that is, updates
to the state pointer are done in a globally consistent order.

5 The Reliable Mobile State Protocol

We extend the basic protocol to obtain a new protocol that provides reliable
failure detection and that is a sufficient foundation for building fault tolerance
abstractions. The resulting protocol satisfies the following theorem:

Theorem 1 (Failure detection theorem). If the state pointer is requested
at proxy P, then exactly one of the following three statements is eventually true:

1. The manager site does not fail and the state pointer is never lost. Then P
will eventually receive the state pointer exactly once.

2. The manager site does not fail and the state pointer is lost before the state
pointer reaches P. Then P will never receive the state pointer, but it will
eventually receive notification from the manager that the state pointer is
lost.

3. The manager site fails. Then P is notified of this. If it does not have the
state pointer, then it infers that it will never receive it.

The proof of this theorem is given elsewhere [4]. An important corollary of this
theorem is that the protocol has no time outs. Deciding whether or not to time
out is left to the application.

Figure 14 gives the essential parts of the thread, proxy, and manager state
diagrams for the basic protocol and its reliable extension. Each circle represents
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a proxy state or manager state. A transition arrow represents an atomic state
change; each arrow is optionally labeled Condition | Action. Here Condition is
the firing condition (often a received message, but possibly a network condition),
and Action is an action to be performed on firing (often a sent message). MF
means “manager failure,” SL means “state lost,” and “-” means no action. To
avoid overloading the figure, message arguments are left out and some conditions
are given as “...”. In addition, the transitions for network inactivity are not
shown. They can be added by assuming that each state has a second “mirror”
state. The system transfers to a mirror state if network inactivity is detected.
The system transfers back to the original state when the network becomes active
again.

In Figure 14, the basic protocol is defined by the thick black lines. The exten-
sions are given in three further steps: bypass failed proxy, state loss detection,
and manager failure detection. The rest of this section justifies the extended
protocol. First, Section 5.1 defines the failure models of the network and of
the state pointer. Then, Section 5.2 constructs the reliable protocol by adding
functionality in three steps, as shown in the figure.

5.1 The failure models

The reliable protocol assumes the network failure model and implements the
state pointer failure model. The network is assumed to send messages in asyn-
chronous and unordered (i.e., non-FIFO) fashion. Messages that arrive are not
corrupted.

The network failure model The network has two failure modes: network
inactivity and permanent site failure. In our experience, these two modes cover
the vast majority of failures in an application environment using the TCP /TP
protocol family on the Internet [6]. We assume site failures are instantaneous
and permanent. Messages in transit from a failed site may be lost. Messages to a
failed site are always lost. Network inactivity is detected as a sudden decrease in
communication bandwidth between a pair of sites. We assume network inactivity
is detected quickly, e.g., in much less time than a TCP time out. We also assume
the network will eventually become active again. This might or might not happen
while the application is executing. If the network becomes active again, then no
messages are lost.

The state pointer failure model Given the network failure model, the reliable
protocol is designed so that a proxy can inform a calling thread of the following
problems:

— Permanent inability to perform a state update (state lost).

— Permanent inability to move the state pointer (manager failure); the state
pointer may or may not be local.

— Current inability to perform a state update (network inactivity). This may
go away, if the network inactivity goes away.



— Current inability to move the state pointer (network inactivity); the state
pointer may or may not be local. This may go away, if the network inactivity
goes away.

The Mozart system can be configured at run-time to detect these failures syn-
chronously or asynchronously, and to raise an exception or call a user-defined
procedure when a particular failure is encountered on a given state pointer [18].

5.2 Stepwise construction of the reliable protocol

We construct the reliable protocol in stepwise fashion from its nonreliable an-
cestor, following the steps of Figure 14. We first introduce the concept of prozy
chain, which at any instant is the sequence of proxy nodes that the state pointer
will eventually traverse. If several proxies send Get messages in quick succession,
then it may take some time before the state pointer has visited them all. The
proxy chain represents at any instant the sequence of proxies that are still wait-
ing for the state pointer [19]. In the basic protocol, the proxy chain is stored as
a distributed data structure.

Basic protocol with chain The first improvement is to let the manager main-
tain a conservative approximation to the proxy chain (see Figure 15). This is
very simple: when the manager receives a Get message, it appends the request-
ing proxy to the proxy chain. It then sends a Forward message to the preceding
proxy, so that the latter forwards the state pointer to the requesting proxy. When
a proxy receives a Put message containing the state pointer, it sends a new mes-
sage, Gotit, to the manager. The Gotit message does not exist in the basic
protocol. When the manager receives the Gotit, then it removes from the proxy
chain all proxies before the one that sent the Gotit. Moving the state pointer
costs four messages instead of three for the basic protocol, but the message
latency does not change, i.e., it is still three messages.

(w) (w)

3. forward / \2. get \5. gotit
10 @@=

1. request 5. proceed

Fig. 15. Basic protocol with chain



Bypass failed proxy The second improvement consists in checking whether
a proxy is working before forwarding the state pointer to that proxy (see Fig-
ure 16). Suppose proxy Pj has to forward the content to proxy Po. If P{ detects
that P9 has failed, then it sends a new message, Cantput, to the manager. The
manager then sends another Forward message to P to bypass the failed proxy.
Therefore the state pointer can survive crashes of sites that do not possess it.

. (w
2 c%%ard @ @ @
\/

1. Sitedown(P2)
4. put

Fig. 16. Bypass failed proxy

State loss detection The third improvement is to add an inquiry protocol
that determines when the state pointer is definitely lost. This loss can happen
in two ways:

— The state pointer is at proxy P and P’s site crashes.
— The state pointer has been sent over the network in a Put message and the
message is lost because of a site failure (of the sender or the receiver).

The inquiry protocol is implemented at the manager node. The inquiry protocol
traverses the chain and asks each proxy where the state pointer is. The proxy
answers with beforeMe, atMe, or afterMe. The basic idea is to bracket the state
pointer’s location. If the protocol finds two proxies that answer afterMe and
beforeMe, and all proxies between them have crashed, and there is nothing in
the network, then the state pointer is lost.

Manager failure detection The fourth and last improvement is to allow prox-
ies to detect a manager failure. This is useful in the following situations:

— Proxy P does not have the state pointer and wishes to obtain it. The proxy
infers that it will never receive the state pointer and it can directly signal
that fact to the thread.

— Proxy P has the state pointer and cannot forward it. The proxy infers that
it will keep the state pointer forever.



6 Conclusions and reflections

This paper presents the main ideas of an efficient, reliable object migration pro-
tocol that preserves centralized object semantics and allows for precise prediction
of network behavior. The main limitation of the protocol is its dependency on the
manager site. This limitation will be removed in the future [16]. The migration
protocol is completely implemented as part of Mozart, a platform for distributed
application development based on the Oz language [11]. We are using Mozart to
write efficient and robust distributed applications (e.g., [7]).

We introduce the concept of “freely mobile object,” whose distributed se-
mantics are implemented by the migration protocol. Freely mobile objects are
interesting because they are always executed locally, i.e., each method is ex-
ecuted in the thread that invokes it. The same property holds for centralized
objects. Stationary objects, which are always executed on the same site, are
more complex beasts on any system. For example, Java RMI semantics must
define which threads are used for remote calls and when new threads are cre-
ated [14]. In Oz, one can define stationary objects in the language. They require
remote thread creation, synchronization between threads on different sites, and
passing exceptions between threads on different sites.

We provide evidence that a freely mobile object is a useful basis for a system
with migratory objects. Freely mobile objects behave as state caches, and as
such provide a mechanism for latency tolerance. Furthermore, arbitrary mobility
behavior can be programmed at the language level by restricting the mobility
of freely mobile objects. At all times, the language semantics of objects are
respected.
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