
A Lightweight ReliableObject Migration ProtocolPeter Van Roy1;2, Per Brand2, Seif Haridi2, and Rapha�el Collet11 Universit�e catholique de Louvain,B-1348 Louvain-la-Neuve, Belgiumfpvr,raphg@info.ucl.ac.behttp://www.info.ucl.ac.be2 Swedish Institute of Computer Science,S-164 28 Kista, Swedenfperbrand,seifg@sics.sehttp://www.sics.seAbstract. This paper presents a lightweight reliable object migrationprotocol that preserves the centralized object semantics, allows for pre-cise prediction of network behavior, and permits construction of faulttolerance abstractions in the language. Each object has a \home site"to which all migration requests are directed. Compared to the standardtechnique of creating and collapsing forwarding chains, this gives a bet-ter worst-case network behavior and it limits dependencies on third-partysites. The protocol de�nes \freely mobile" objects that have the inter-esting property of always executing locally, i.e., each method executes inthe thread that invokes it. This makes them dual, in a precise sense, tostationary objects. The protocol is designed to be as e�cient as a nonreli-able protocol in the common case of no failure, and to provide su�cienthooks so that common fault tolerance algorithms can be programmedcompletely in the Oz language. The protocol is fully implemented in thenetwork layer of the Mozart platform for distributed application develop-ment, which implements Oz (see http://www.mozart-oz.org). This pa-per de�nes the protocol in an intuitive yet precise way using the conceptof distribution graph to model distributed execution of language entities.Formalization and proof of protocol properties are done elsewhere.1 IntroductionWhat does it mean for an object to be mobile? Di�erent systems interpret thisnotion in di�erent ways [15]:1. Only code is copied, not the state (e.g., Java applets [13]).2. The original object is \frozen" and its code and state are both copied. Theoriginal is discarded before the copy is used. This is what is typically meantby \mobile agents" in programming books.3. Concurrency control is added by freezing the original object, copying bothits code and state, making it forward all messages, and then unfreezing it.



The copy maintains lexical scoping across the network by using networkreferences for all of the original object's external references. This approachis taken by Emerald [10] and Obliq [5].If the application programmer wants to control network behavior by placingobjects on the appropriate sites and moving them as desired, then all threeapproaches have problems:Bad network behavior If an alias is created from the old object to the newwhen it moves, then a sequence of moves creates a chain of aliases. There arevarious tricks to reduce the length of this chain, e.g., Emerald short-circuitsit when a message is sent, but a basic unpredictability remains regardingthird-party dependencies and number of network hops. Furthermore, if thereis a site failure, Emerald uses a broadcast to recover the object, which isimpractical on a WAN.Weak semantics One way to get better network behavior is give up on thetransparent semantics, i.e., to use one of the two �rst approaches above.Is it possible to get both a predictable network behavior and a good semantics?A simple way to solve this problem is to make objects mobile by default, insteadof stationary. We call these \freely mobile objects". Start with lightweight ob-ject mobility, in which a method always executes in the thread that invokes it.Implement this with a reliable distributed algorithm that guarantees predictablenetwork behavior. Then control the mobility by restricting it. In this way, weachieve arbitrary mobility while keeping both predictable network behavior andgood semantics. One purpose of this paper is to present a distributed algorithmthat achieves these goals.This paper consists of four parts. Section 2 introduces the graph model ofdistributed execution and its visual notation. Section 3 de�nes a home-basedalgorithm for freely mobile objects and discusses its properties and usefulness.Section 4 de�nes the basic mobile state protocol, which is the key algorithm atthe heart of freely mobile objects [4, 19]. Section 5 extends the basic protocolto use precise failure detection, while maintaining the same performance as thebasic protocol when there is no failure. This section also gives the state diagramsof both the basic and extended protocols. The extended protocol is part of theimplementation of the Mozart programming system [11, 9], which implementsthe Oz language. Oz is a multiparadigm language with simple formal seman-tics that can be viewed as a concurrent object-oriented language with data
owsynchronization [8].The extended protocol is being used to implement nontrivial fault toleranceabstractions in Oz [18, 17]. For example, we are currently testing an open dis-tributed fault-tolerant transactional store [3, 7]. Clients to this store can comeand go, and the store remains coherent as long as at least one working clientexists at any given moment. A fuller explanation of the design of fault toleranceabstractions is beyond the scope of this paper.



Variable (when unbound)

State pointer

Record (with fields) Thread (with references)

Procedure (with external references)Fig. 1. Language entities as nodes in a graph
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Fig. 2. Access structure in the distribution graph2 Graph Notation for Distributed ExecutionsWe depict distributed executions in a simple but precise manner using the con-cept of distribution graph. This section gives a self-contained explanation thatsu�ces to understand the paper. We obtain the distribution graph in two stepsfrom an arbitrary execution state of the system. The �rst step is independentof distribution. We model the execution state by a graph, called language graph,in which each language entity except for an object corresponds to one node (seeFigure 1). A node can be considered as an active entity with internal state thatcan asynchronously send messages to other nodes and that can receive messagesfrom other nodes. In terms of the language graph, Oz objects are compoundentities, i.e., they consist of more than one node. Their structure is explained inSection 3.In the second step, we introduce the notion of site. Assume a �nite set ofsites and annotate each node by its site (see Figure 2). If a node, e.g., N2, isreferenced by at least one node on another site, then map it to a set of nodes,e.g., fP1,P2,P3,Mg. This set is called the access structure of the original node. Themap satis�es the following invariant. An access structure consists of at mostone proxy node Pi on each site that referenced the original node and exactlyone manager node M for the whole structure. The manager site is also called thehome site. The resulting graph, containing both local nodes and access structureswhere necessary, is called the distribution graph. All example executions in thepaper use this notation.All distributed execution is modeled as distribution graph transformations.Nodes in the distribution graph are active entities with internal state that cansend and receive messages. All graph transformations are atomic and initiatedby the nodes. The two-level addressing mechanism by which a node identi�es asend destination is beyond the scope of this paper (see [2]). We mention only



that each access structure has a globally unique name, which is used to identifyits nodes.
class Account
   attr bal:0

   meth getBal(B)
      B = @bal
   end
end

   meth trans(Amt)
      bal<- @bal+Amt
   end
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A={New Account trans(100)}
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identifierFig. 3. An object with one attribute and two methods3 Freely Mobile ObjectsIn the distribution graph, an object shows up as a compound entity consistingof an object record, a class record containing procedures (the methods), a statepointer, and a record containing the object's state. The distributed behavior ofthe object is derived from the behavior of its parts. Figure 3 shows an object Athat has one attribute, bal, and two methods, trans and getBal. The object isrepresented as an object record with three �elds. The st �eld contains a statepointer, which points to the object's state record. The state pointer de�nes thesite at which state updates can be done without network operations. The cl�eld contains the class record, which contains the procedures trans and getBalthat implement the methods. The id �eld contains the object's unique identi�ertheName. The object record and the class record cannot be changed. However,by giving a new content to the state pointer, the object's state can be updated.
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Fig. 4. A local objectFigure 4 shows an object A that is local to Site 1. There is no reference to Afrom any other site. Figure 5 shows an object A with one remote reference. The
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pointerFig. 5. A global object with one remote referenceobject is now part of an access structure whose manager is on Site 1 and that hasone proxy on Site 2. A local object A is transformed to a global (i.e., remotely-referenced) object when a message referencing A leaves Site 1. A manager nodeMa is created on Site 1 when the message leaves. When the message arrives onSite 2, then a proxy node Pa2 is created there.
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Fig. 6. The object is invoked remotely (1)Figure 6 shows what happens when thread T invokes A from Site 2. At �rst,only the proxy Pa2 is present on Site 2, not the object itself. The proxy asks itsmanager for a copy of the object record. This causes an access structure to becreated for the state pointer, with a manager Mc and one proxy Pc1. The classrecord is copied eagerly and does not have a global name. A message containingthe class record and a state pointer proxy is sent to Site 2. The object's stateremains on Site 1.Figure 7 shows what happens when the message arrives. A second proxy Pc2is created for the state pointer. The class record is copied to Site 2 and proxyPa2 becomes the object record A. The mobile state protocol (see Section 4) thenatomically transfers the state pointer to Site 2. The object record has a globalname. This implies that any further messages to Site 2 containing object refer-ences will immediately refer to the local copy of the object record. No additionalnetwork operations are needed.Figure 8 shows what happens after the state pointer is transferred to Site 2.The new state, State2, is created on Site 2 and will contain the updated object
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Site 1 Site 2Fig. 8. The object is invoked remotely (3)state after the method �nishes. The old state, State1, may continue to exist onSite 1 but the state pointer no longer points to it.
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Site 1 Site 2Fig. 9. The object moves back to Site 1Figure 9 shows what happens if Site 1 invokes the object again. The statepointer is transferred back to Site 1. The new state, State3, is created on Site1 and will contain the updated object state after the method �nishes. The oldstate, State2, may continue to exist on Site 2 but the state pointer no longerpoints to it.3.1 DiscussionThere are several interesting things going on here. First, the object is alwaysexecuted locally. The state pointer is always localized before the method starts



executing, and it is guaranteed to stay local during the method execution whilethe object is locked. Second, the class code is only transferred once to any site.Only the state pointer is moved around after the �rst transfer. This makesobject mobility very lightweight. Third, all requests for the object are serializedby the state pointer's manager node. This simpli�es the protocol but introducesa dependency on the manager site (i.e., the protocol is \home-based" [12]). Thisdependency can be removed at higher levels of abstraction (e.g., see [3], whichis also a migration protocol) or by extending the present protocol (see [16] for asimple solution).A stationary object can be de�ned in a system in which the only mobileentities are freely mobile objects. This requires remote thread creation, synchro-nization between di�erent sites, and passing of exceptions between sites. An Ozprocedure that takes any freely mobile object and returns a reference to a sta-tionary object with the same language semantics is given in [19]. The procedure'sde�nition makes it clear that a stationary object is not a simple concept. Freelymobile objects are simpler since they always execute in the thread that invokesthem.There is a precise sense in which stationary and freely mobile objects areduals of each other. With a stationary object, the object state remains on onesite, and the thread conceptually moves to that site, to execute there. With afreely mobile object, it is the reverse: the thread remains on one site, and theobject state moves to that site. Since moving object state is simpler than movinga thread (see, e.g., [10, 14]), this con�rms that freely mobile objects are simplerthan stationary objects.4 The Basic Mobile State ProtocolThe mobile objects of Section 3 are compound entities that use several dis-tributed algorithms. The object record is copied once lazily (when the objectis �rst invoked), the methods are copied along with it, and the object's statepointer is moved between sites that request it. The protocol that moves thestate pointer, the mobile state protocol, is particularly interesting because of theway it is integrated into the object system. In this section we give the basicprotocol that assumes there is no failure. Section 5 explains how the protocol isextended with failure detection.The protocol must guarantee consistency between consecutive states. If theconsecutive states are on di�erent sites, then this requires an atomic transfer ofthe state pointer between the sites. A site that wants the state pointer requestsit from the state pointer's manager, and the latter sends a forwarding commandto the site that has (or will eventually have1) the state pointer. Therefore, in thebasic protocol, the manager only needs to store one piece of information, namelythe site that will eventually contain the state pointer [19].We show how the protocol works by means of an example. Figure 10 showsa state pointer C referenced from two sites. The state pointer is initially on Site1 In the temporal logic sense [1].



State1

Mc
Request

TPc2Pc1

State2 XY
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Site 1 Site 2Fig. 11. (a) Pc2 requests the state pointer; (b) Pc1 is asked to forward it1; proxy Pc1 has the state pointer and proxy Pc2 does not. Thread T executeson Site 2 an object method that will update the object state. At some point,T requests a state update by sending a Request message to Pc2. The threadreferences the new state through variable Y. When the update completes thenthe thread will also reference the old state through variable X.Since proxy Pc2 does not have the state pointer, it must ask its manager.Figure 11 shows (a) Pc2 requesting the state pointer by sending a Get messageto manager Mc, and (b) the manager sending a Forward message to the proxythat will eventually have the state pointer, namely Pc1. Therefore the managercan accept another request immediately; it does not need to wait until the statepointer's transfer is complete.
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Site 1 Site 2Fig. 13. Pc2 has the state pointer; T references the old and new statesFigure 12 shows (a) Pc1 sending to Pc2 a Put message containing the oldstate, State1, and (b) Pc2 sending to T a Proceed message informing it that thetransfer is complete. The old state may still exist on Site 1 but Pc1 no longerhas a pointer to it. Figure 13 shows the �nal situation. Pc2 has the state pointer,which points to State2, and X is bound to State1. Therefore T references bothState1 and State2.This protocol provides a predictable network behavior. There are a maximumof three network hops for the state pointer to change sites; only two if themanager is on the source or destination site; zero if the state pointer is on therequesting site. The protocol maintains sequential consistency, that is, updatesto the state pointer are done in a globally consistent order.5 The Reliable Mobile State ProtocolWe extend the basic protocol to obtain a new protocol that provides reliablefailure detection and that is a su�cient foundation for building fault toleranceabstractions. The resulting protocol satis�es the following theorem:Theorem 1 (Failure detection theorem). If the state pointer is requestedat proxy P, then exactly one of the following three statements is eventually true:1. The manager site does not fail and the state pointer is never lost. Then Pwill eventually receive the state pointer exactly once.2. The manager site does not fail and the state pointer is lost before the statepointer reaches P. Then P will never receive the state pointer, but it willeventually receive noti�cation from the manager that the state pointer islost.3. The manager site fails. Then P is noti�ed of this. If it does not have thestate pointer, then it infers that it will never receive it.The proof of this theorem is given elsewhere [4]. An important corollary of thistheorem is that the protocol has no time outs. Deciding whether or not to timeout is left to the application.Figure 14 gives the essential parts of the thread, proxy, and manager statediagrams for the basic protocol and its reliable extension. Each circle represents
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a proxy state or manager state. A transition arrow represents an atomic statechange; each arrow is optionally labeled Condition / Action. Here Condition isthe �ring condition (often a received message, but possibly a network condition),and Action is an action to be performed on �ring (often a sent message). MFmeans \manager failure," SL means \state lost," and \-" means no action. Toavoid overloading the �gure, message arguments are left out and some conditionsare given as \...". In addition, the transitions for network inactivity are notshown. They can be added by assuming that each state has a second \mirror"state. The system transfers to a mirror state if network inactivity is detected.The system transfers back to the original state when the network becomes activeagain.In Figure 14, the basic protocol is de�ned by the thick black lines. The exten-sions are given in three further steps: bypass failed proxy, state loss detection,and manager failure detection. The rest of this section justi�es the extendedprotocol. First, Section 5.1 de�nes the failure models of the network and ofthe state pointer. Then, Section 5.2 constructs the reliable protocol by addingfunctionality in three steps, as shown in the �gure.5.1 The failure modelsThe reliable protocol assumes the network failure model and implements thestate pointer failure model. The network is assumed to send messages in asyn-chronous and unordered (i.e., non-FIFO) fashion. Messages that arrive are notcorrupted.The network failure model The network has two failure modes: networkinactivity and permanent site failure. In our experience, these two modes coverthe vast majority of failures in an application environment using the TCP/IPprotocol family on the Internet [6]. We assume site failures are instantaneousand permanent. Messages in transit from a failed site may be lost. Messages to afailed site are always lost. Network inactivity is detected as a sudden decrease incommunication bandwidth between a pair of sites. We assume network inactivityis detected quickly, e.g., in much less time than a TCP time out. We also assumethe network will eventually become active again. This might or might not happenwhile the application is executing. If the network becomes active again, then nomessages are lost.The state pointer failure model Given the network failure model, the reliableprotocol is designed so that a proxy can inform a calling thread of the followingproblems:{ Permanent inability to perform a state update (state lost).{ Permanent inability to move the state pointer (manager failure); the statepointer may or may not be local.{ Current inability to perform a state update (network inactivity). This maygo away, if the network inactivity goes away.



{ Current inability to move the state pointer (network inactivity); the statepointer may or may not be local. This may go away, if the network inactivitygoes away.The Mozart system can be con�gured at run-time to detect these failures syn-chronously or asynchronously, and to raise an exception or call a user-de�nedprocedure when a particular failure is encountered on a given state pointer [18].5.2 Stepwise construction of the reliable protocolWe construct the reliable protocol in stepwise fashion from its nonreliable an-cestor, following the steps of Figure 14. We �rst introduce the concept of proxychain, which at any instant is the sequence of proxy nodes that the state pointerwill eventually traverse. If several proxies send Get messages in quick succession,then it may take some time before the state pointer has visited them all. Theproxy chain represents at any instant the sequence of proxies that are still wait-ing for the state pointer [19]. In the basic protocol, the proxy chain is stored asa distributed data structure.Basic protocol with chain The �rst improvement is to let the manager main-tain a conservative approximation to the proxy chain (see Figure 15). This isvery simple: when the manager receives a Get message, it appends the request-ing proxy to the proxy chain. It then sends a Forward message to the precedingproxy, so that the latter forwards the state pointer to the requesting proxy. Whena proxy receives a Put message containing the state pointer, it sends a new mes-sage, Gotit, to the manager. The Gotit message does not exist in the basicprotocol. When the manager receives the Gotit, then it removes from the proxychain all proxies before the one that sent the Gotit. Moving the state pointercosts four messages instead of three for the basic protocol, but the messagelatency does not change, i.e., it is still three messages.
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Bypass failed proxy The second improvement consists in checking whethera proxy is working before forwarding the state pointer to that proxy (see Fig-ure 16). Suppose proxy P1 has to forward the content to proxy P2. If P1 detectsthat P2 has failed, then it sends a new message, Cantput, to the manager. Themanager then sends another Forward message to P1 to bypass the failed proxy.Therefore the state pointer can survive crashes of sites that do not possess it.
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4. putFig. 16. Bypass failed proxyState loss detection The third improvement is to add an inquiry protocolthat determines when the state pointer is de�nitely lost. This loss can happenin two ways:{ The state pointer is at proxy P and P's site crashes.{ The state pointer has been sent over the network in a Put message and themessage is lost because of a site failure (of the sender or the receiver).The inquiry protocol is implemented at the manager node. The inquiry protocoltraverses the chain and asks each proxy where the state pointer is. The proxyanswers with beforeMe, atMe, or afterMe. The basic idea is to bracket the statepointer's location. If the protocol �nds two proxies that answer afterMe andbeforeMe, and all proxies between them have crashed, and there is nothing inthe network, then the state pointer is lost.Manager failure detection The fourth and last improvement is to allow prox-ies to detect a manager failure. This is useful in the following situations:{ Proxy P does not have the state pointer and wishes to obtain it. The proxyinfers that it will never receive the state pointer and it can directly signalthat fact to the thread.{ Proxy P has the state pointer and cannot forward it. The proxy infers thatit will keep the state pointer forever.



6 Conclusions and re
ectionsThis paper presents the main ideas of an e�cient, reliable object migration pro-tocol that preserves centralized object semantics and allows for precise predictionof network behavior. The main limitation of the protocol is its dependency on themanager site. This limitation will be removed in the future [16]. The migrationprotocol is completely implemented as part of Mozart, a platform for distributedapplication development based on the Oz language [11]. We are using Mozart towrite e�cient and robust distributed applications (e.g., [7]).We introduce the concept of \freely mobile object," whose distributed se-mantics are implemented by the migration protocol. Freely mobile objects areinteresting because they are always executed locally, i.e., each method is ex-ecuted in the thread that invokes it. The same property holds for centralizedobjects. Stationary objects, which are always executed on the same site, aremore complex beasts on any system. For example, Java RMI semantics mustde�ne which threads are used for remote calls and when new threads are cre-ated [14]. In Oz, one can de�ne stationary objects in the language. They requireremote thread creation, synchronization between threads on di�erent sites, andpassing exceptions between threads on di�erent sites.We provide evidence that a freely mobile object is a useful basis for a systemwith migratory objects. Freely mobile objects behave as state caches, and assuch provide a mechanism for latency tolerance. Furthermore, arbitrary mobilitybehavior can be programmed at the language level by restricting the mobilityof freely mobile objects. At all times, the language semantics of objects arerespected.AcknowledgementsThis research is partially �nanced by the Walloon Region of Belgium. The reli-able migration protocol was designed by Per Brand and the �rst version of theMozart network layer was implemented by him. We thank Erik Klintskog for hisimplementation of fault-tolerant objects in Oz using the protocol presented here.We thank Ili�es Alouini for his implementation of a fault-tolerant transactionalstore in Oz. Finally, we thank all the other contributors and developers of theMozart Programming System.References1. Mack W. Alford, Leslie Lamport, and Geo� P. Mullery. chapter 2. Lecture Notes inComputer Science, vol. 190. Springer Verlag, 1985. Basic Concepts, in DistributedSystems{Methods and Tools for Speci�cation, An Advanced Course.2. Ili�es Alouini and Peter Van Roy. Le protocole r�eparti de Distributed Oz (Thedistributed protocol of Distributed Oz) (in French). In Colloque Francophone surl'Ing�enierie des Protocoles (CFIP 99), pages 283{298. Herm�es Science Publications,April 1999.
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