
Logic Programming in Ozwith MozartPeter Van RoyUniversit�e catholique de LouvainB-1348 Louvain-la-Neuve, Belgiumpvr@info.ucl.ac.beThis short tutorial explains how to do Prolog-style logic programmingin Oz. We give programming examples that can be run interactivelyon the Mozart system, which implements Oz. The Oz language isthe result of a decade of research into programming based on logic.The Oz computation model subsumes both search-based logic program-ming and committed-choice (concurrent) logic programming with deepguards. Furthermore, Oz provides new abilities, such as �rst-class toplevels and constant-time merge, that exist in neither of its ancestors.We show two of the Oz interactive graphic tools, namely the Browserand the Explorer, which are useful for developing and running logicprograms. We conclude by explaining why logic programming is justa prelude to the real strengths of Oz, namely constraint programmingand distributed programming. In these two areas, Oz is equal to orbetter than any other system existing in the world today. For example,for compute-intensive constraint problems Oz provides parallel searchengines that can be used transparently, i.e., without changing the prob-lem speci�cation.1 IntroductionThe Oz language makes it easy to write e�cient, declarative logic pro-grams that combine the advantages of search-based logic and constraintlanguages (such as Prolog, CHIP, and cc(FD) [16, 7]) and committed-choice (concurrent) logic languages (including at languages such asParlog, FCP, and FGHC, but also deep languages such as ConcurrentProlog and GHC [14]). Furthermore, Oz provides powerful new pro-gramming techniques that are not possible in either language family.This tutorial explains the basic ideas of Oz by means of small ex-amples that run on Mozart, a recently-released system that e�cientlyimplements the latest version of Oz, also known as Oz 3 [8]. Mozarthas an easy-to-use interactive user interface based on Emacs. We sug-gest that you download the Mozart system and try the examples atthe keyboard. Only a few basic keyboard commands are needed to use



Mozart interactively; see the Oz tutorial for more information [4].The purpose of this tutorial is to be an entry point into the Ozuniverse for people with some Prolog experience. We assume that youunderstand the basic concepts of Prolog and that you have written orunderstood some small Prolog programs. We show that the step fromProlog to Oz is not hard at all, and we try to explain some of the vastlymore general and powerful operations that are possible in Oz.This tutorial focuses on logic programming for general-purpose ap-plications that require manipulating structured data according to logi-cal rules, i.e., applications such as rule-based expert systems or compil-ers. The Oz support for logic programming just scratches the surfaceof the real strengths of Oz, which are constraint programming anddistributed programming. It is not the purpose of this tutorial to in-vestigate these two areas, but we invite the interested reader to look atthem. There exist excellent tutorials on constraint programming in Oz,e.g., with �nite domains [13], with �nite sets of integers [9], and for nat-ural language processing [3]. There also exists a tutorial on distributedprogramming in Oz [18].This tutorial is structured as follows. Section 2 shows how to dodeterministic logic programming in Oz, i.e., sequential logic program-ming without search. This section also presents the Browser, a graphictool for examining data structures. Then Section 3 extends this tonondeterministic logic programming, i.e., including search. This sec-tion also explains how to use �rst-class top levels, and it presents theExplorer, a graphic tool for interactive exploration of the search tree.Section 4 shows how to do committed-choice logic programming in Oz.Then Section 5 shows how search-based and committed-choice logicprogramming are combined. Section 6 summarizes the logic program-ming support in the Oz kernel language. Section 7 gives some glimpsesinto constraints and distribution in Oz. Finally, Section 8 concludesand gives perspectives on future developments.2 Deterministic Logic ProgrammingOz supports deterministic logic programming with three statements:
if, case, and cond. The following example de�nes an Append predicatethat can be used to append two lists:

declare
proc {Append L1 L2 L3}

case L1
of nil then L2=L3
[] X|M1 then L3=X|{Append M1 L2}
end

end



This example introduces two important syntactic short-cuts of Oz. In a
case statement, variables in the branches of the case (like X and M1) aredeclared implicitly and their scope covers one branch of the case. Anyprocedure, e.g., Append, can be syntactically used as a function. Theprocedure's last argument is the function's output and is syntacticallyhidden.This de�nition looks very much like a standard functional de�nitionof append, but it is in fact much more general. The de�nition has aprecise logical semantics in addition to its operational semantics. Thelogical semantics are:8l1; l2; l3 : append(l1; l2; l3) $l1 = nil ^ l2 = l3 _9x;m1; m3 : l1 = xjm1 ^ l3 = xjm3 ^ append(m1; l2; m3)The operational semantics of the case statement are as follows. The
case statement waits until its input is su�ciently instantiated to decidethat one branch succeeds and all previous branches fail. If all branchesfail then it takes the else branch or raises an exception if there is none.For Append this means that L1 must be bound to a list. If L1 has anunbound tail, then execution blocks until the tail is bound.Variable declaration and variable scope are de�ned quite di�erentlyin Oz and Prolog. In Prolog, both declaration and scope are de�nedimplicitly through the clausal syntax. Namely, variables in the headare universal over the whole clause and new variables in the body areexistential over the whole clause body. In Oz, declaration and scope arede�ned explicitly. The scope is restricted to the statement in which thedeclaration occurs. This is important because Oz is fully compositional(all statements can be nested). Oz has syntactic support to make theexplicit declarations less verbose.2.1 The BrowserHere's one way to execute Append and display the result:

declare A in
{Append [1 2 3] [4 5 6] A}
{Browse A}which can also be written as follows:
{Browse {Append [1 2 3] [4 5 6]}}This uses the same syntactic short-cut as the de�nition of Append. Notethat elements of Oz lists are not separated by commas as in Prolog.This code displays the output of Append in the Browser, a graphictool for examining data structures and observing their evolution [10].The Browser is fully concurrent and it can display any number of data



Figure 1: Screen shot of the Oz Browser.structures simultaneously (see Figure 1). The display of a data struc-ture containing unbound variables is updated when one of the variablesis bound. The Browser has options to let it either ignore sharing or dis-play sharing. In the second case, shared subterms (including cycles) aredisplayed only once.Figure 1 gives a screen shot of a Browser window that shows the�ve solutions of a nondeterministic append (see next section) as well astwo displays of:
declare X in {Browse X=f(X)}The �rst displays X as a tree, stopping at the default depth limit of 15.The second displays X as a minimal graph, which makes all cycles andsharing explicit. You can set up the Browser to display the minimalgraph by selecting Display Parameters in the Options menu.3 Nondeterministic Logic ProgrammingOz supports nondeterministic logic programming through two concepts:disjunctions (dis and choice) and �rst-class top levels. The dis and

choice disjunctions do a don't-know choice, i.e., they can be used forsearch.Let's write a nondeterministic version of append, i.e., one that canbe used with many call patterns, similar to Prolog's:
declare
proc {FullAppend L1 L2 L3}

dis L1=nil L2=L3
[] X M1 M3 in

L1=X|M1 L3=X|M3 {FullAppend M1 L2 M3}



end
endThe \X M1 M3 in" declares new variables X, M1, and M3 for the secondbranch of the disjunction.The dis statement is a determinacy-directed disjunction. If allclauses fail except for one, then execution continues with that clause. Inthis case execution is deterministic. If more than one clause is left, thena choice point is created and a top level is needed to continue execution.In this case execution is nondeterministic. This style of constraint prop-agation is also known as the Andorra principle. The choice statementis more primitive than dis; it generates a choice point immediately forall its clauses without checking if any clauses fail.Both Append and FullAppend have exactly the same logical seman-tics. They di�er only in their operational semantics. If used inside atop level, FullAppend gives results in cases where Append blocks.3.1 First-Class Top LevelsThe de�nition of FullAppend can be executed immediately, if used ina purely deterministic way:
{Browse {FullAppend [1 2] [3 4]}} % Shows [1 2 3 4]But the de�nition blocks if used nondeterministically:
{Browse {FullAppend X Y [1 2 3 4]}} % BlocksTo get an answer, you need to execute the nondeterministic call in atop level. Here's how to create a top level with a given query:
declare
proc {Q A}

X Y
in

{FullAppend X Y [1 2 3 4]} A=X#Y
end
S={New Search.object script(Q)}This de�nes a new procedure Q (the query) and a new object S (the toplevel) of class Search.object. The Search.object class is part of the

Search module [2]. The class makes it possible to create any number oftop levels. The top levels are accessed like objects, can run concurrently,and can be passed as arguments and stored in data structures. We saythe top levels are �rst class. Each top level is initialized with a query.The query is entered as a one-argument procedure called a script. Inthis example, procedure Q contains the query. The procedure's outputis A, i.e., the pair X#Y.Creating a top level can be written more concisely as:



declare
S={New Search.object script(

proc {$ A} X#Y=A in {FullAppend X Y [1 2 3 4]} end)}This exploits two syntactic short-cuts. First, the \$" is a nesting markerthat implicitly declares the variable Q. Second, putting an equation leftof in implicitly declares all variables of the equation's left-hand side.That is, \X#Y=A in" declares X and Y, creates the pair X#Y, and uni�esthe pair with A.You can get answers one by one by calling S as follows:
{Browse {S next($)}}Each call {S next($)} gives a new answer. As before, the \$" is anesting marker that implicitly declares a variable. The next method ofobject S is used to get the next answer. This is similar to the semicolon\;" in an interactive Prolog session. It is not identical, since the nextmust be called to get the �rst answer.How do we know when there are no more answers? In a very simpleway: each answer A is returned as a one-element list [A]. When thereare no more answers, then nil is returned. So repeatedly asking foranswers displays:
[nil#[1 2 3 4]]
[[1]#[2 3 4]]
[[1 2]#[3 4]]
[[1 2 3]#[4]]
[[1 2 3 4]#nil]
nilThere are �ve answers, from nil#[1 2 3 4] to [1 2 3 4]#nil. Allfurther requests for answers give nil.We conclude the discussion of top levels with a few random remarks:� Creating a new top level is very cheap; you should not hesitate todo so for each query.� A program can consist of deterministic and nondeterministic pred-icates used together in any way. A top level script can call such aprogram; this is possible because both deterministic and nonde-terministic predicates have logical semantics. Of course, only thenondeterministic predicates can create choice points.� It is easy to add information to an existing top level while it isactive. It su�ces for the script to have an external reference, i.e.,to have a reference to something outside of the top level.



Figure 2: Screen shot of the Oz Explorer.3.2 The ExplorerIn addition to �rst-class top levels, another way to execute a logicprogram is by means of the Explorer, a graphic tool for interactiveexploration of the search tree [12]. The Explorer was designed forconstraint programming applications, but it is also very useful for logicprogramming. Here we show only a very small part of what the Explorercan do. To go further, we suggest that you try out the Mozart constraintdemos with the Explorer.The Explorer is an object that is given a script. Let's do this withthe same FullAppend query as in the previous section:
{Explorer.object script(
proc {$ A} X#Y=A in {FullAppend X Y [1 2 3 4]} end)}This opens a window that displays the search tree. Initially, just theroot is displayed, as a gray circle. The circle means that the root hasa choice point. The gray color means that the choice point is not fullyexplored. It is in fact completely unexplored.Select the root by clicking on it, and press \n" (Next Solution, in theSearch menu). This adds a green diamond1, which corresponds to onesolution. Double-clicking on the green diamond numbers the diamond(here it is 1) and displays the number and the solution in the Browser,1The exact color depends on your screen; sometimes it is blue-green.



that is, 1#(nil#[1 2 3 4]).Now select the root again and press \a" (All Solutions, in the Searchmenu). This displays the tree in Figure 2. Each subtree's root nodeis a purple circle, which means that it is a fully explored choice point.Double-clicking on any node numbers the node and also displays what'sknown about the solution at that node. For example, double-clicking onnode 2 displays 2#((1|2|_)#_) and double-clicking on node 3 displays
3#([1]#[2 3 4]).4 Committed-Choice Logic ProgrammingA logic program in Oz can have multiple threads that bind sharedvariables. If predicates are de�ned only with case, if, and cond, thenthis is exactly committed-choice logic programming. The case and ifstatements are special cases of cond, which does a general don't-carechoice, i.e., if the guard of any branch succeeds then execution cancommit to that branch and discard all the others.Here is a simple example of a producer-consumer program with owcontrol:

declare
proc {Producer N L}

case L of X|Ls then X=N {Producer N+1 Ls}
else skip end

end

fun {Consumer N L A}
if N>0 then X L1 in L=X|L1 {Consumer N-1 L1 A+X}
else A end

endThe producer generates a list L of consecutive increasing integers. Theconsumer sums the N �rst elements of L. The consumer asks for the nextelement by binding the list tail to a new list pair. The producer waitsuntil the list is bound before generating the next element. Producerand consumer therefore run in lock step. A possible call is:
local L S in % Variable declaration

thread {Producer 0 L} end
thread S={Consumer 100000 L 0} end
{Browse S}

endThe producer and consumer each runs in its own thread. The producergenerates the list [0 1 2 3 ... and the consumer sums the list's �rst100000 elements. The main thread immediately displays an unboundvariable and later updates the display to 4999950000 when the con-sumer terminates.



Because only case and if are used, both the producer and theconsumer have a precise logical semantics as well as an operational se-mantics. (This is not true for cond unless its conditions are mutuallyexclusive.) The if statement has the logical semantics (c^ t)_ (:c^ e)where c is the boolean condition, t is derived from the then part, ande is derived from the else part. The if statement has the following op-erational semantics. It waits until enough information exists to decidethe truth or falsity of its boolean condition. At that point, it executesits then or else part.5 Nondeterministic Concurrent Logic ProgrammingIf a logic program has only a single thread and uses the dis statement toexpress nondeterminism, then its behavior is exactly like that of a Pro-log program where the Prolog system is modi�ed to do clause selectionaccording to the Andorra principle. However, because of concurrencyand �rst-class top levels, Oz lets you do much more. For example, let'ssay you have two sequential logic programs. There is a design choicewhen running them, i.e., whether to put them in the same top level orin di�erent top levels:� If the programs are independent, e.g., two independent queriesto a database, then they should be run in di�erent top levels.This ensures that each program gets a fair share of the processingpower and that no wasted work is done.� If the programs are dependent, i.e., they are cooperating to solveone problem, then it is often best to run them in the same toplevel. This ensures that they can share information. Fairnessof each program is not important in this case. Rather, it is theprogress made by both programs considered together that is impor-tant.The second technique, dependent programs that cooperate, is not of-ten used in logic programming, but it is very important for constraintprogramming. In Oz, a typical real-life constraint problem has hun-dreds, thousands, or even more active threads. Each thread observesthe store and attempts to add information concurrently with the otherthreads. We call such a thread a propagator if it only adds correctinformation, i.e., it never creates a choice point [13, 15]. Propagatorsare implemented very e�ciently in Oz and together with spaces theyare the foundation of the Oz constraint programming model. Oz pro-vides propagators for many complex constraints on the three constraintdomains of �nite domains, �nite sets, and rational trees.



hSi ::= hCij if hCi then hS1i else hS2i endj case Xof f1(l11:Y11 ... l1m:Y1m) then hB1i...[] fn(ln1:Yn1 ... lnm:Ynm) then hBnielse hSi endj condhG1i then hB1i [] ... [] hGni then hBnielse hSi endj dishG1i then hB1i [] ... [] hGni then hBniendj choice hS1i [] ... [] hSni endj hSpacesiFigure 3: Oz kernel support for logic programming.



6 Oz Kernel Support for Logic ProgrammingThe full Oz language is de�ned in terms of a kernel language. Thecomplete kernel language includes cells (explicit state), procedures, andthreads in addition to logic programming support (see [19]). Figure 3shows just the logic programming support. In this �gure, hCi denotesa basic constraint, i.e., a constraint that is completely expressed inthe store, hGi, hBi, and hSi denote statements (the �rst two are calledguard and body), and hSpacesi denotes the support for computationspaces. Previous sections have explained part of the Oz support forlogic programming, namely: (1) the don't-care disjunctive statements
if, case, and cond (see Sections 2 and 4) and (2) the don't-knowdisjunctive statements dis and choice (see Section 3). The guards inthe cond and dis statements can be arbitrary computations. If a guardis more than just a basic constraint, then we say that it is a deep guard.The then parts of a dis statement are optional. An omitted then partbehaves as if it were \then skip", where skip is a statement that doesnothing.First-class top levels are not primitive. They are implemented inOz through the computation space abstraction, which is outside thescope of this tutorial (see [11]). Computation spaces fully support deepguard execution, i.e., they can be nested to any level. Computationspaces interact with don't-know disjunctions to allow easy and e�cientprogramming within Oz of arbitrary search strategies that work for ar-bitrary constraint domains. Most of the commonly-used search strate-gies are provided as library modules (see the Searchmodule [2]). Thesemodules include also some more unusual strategies, such as limited dis-crepancy search and saturation search, that are sometimes useful.7 Constraints and DistributionUp to now, we have explained how to write Prolog-style logic programsin Oz and how Oz extends what you can do in Prolog. But all this isjust a warm-up exercise. Oz was never intended to be just a Prologsubstitute. The main power of Oz is in constraint programming anddistributed programming.We summarize what the current Mozart release implements for dis-tributed programming [6, 18]. Mozart completely separates the aspectsof language semantics and distribution structure. The Oz semanticsof all language entities are independent of their distribution structure.Furthermore, the network operations of the language entities are pre-dictable, allowing e�cient distributed applications to be written. Thesecapabilities are implemented by means of a network layer that contains



a distributed algorithm for each type of language entity, as well as dis-tributed garbage collection [19, 5, 1]. Mozart has primitives for fullyopen computing, i.e., it is possible for independently-written applica-tions that share no common ancestral information (such as an IDLde�nition) to connect and fruitfully interact. Finally, Mozart providesfailure-detection primitives that allow building non-trivial fault toler-ance abstractions within the language [17].The constraint and distribution abilities of Oz can be combined.For example, the Search module implements a parallel search enginethat is very useful for compute-intensive constraint problems [2]. Thesearch engine is initialized by giving it a list of machine names and ascript. The parallelism is completely transparent, i.e., the problem isspeci�ed without any knowledge of whether it is executed in parallel ornot. The same script can be used with a top level, with the Explorer,and with a parallel search engine.8 Conclusions and PerspectivesThis tutorial gives an elementary introduction to doing logic program-ming in Oz. Along the way, we introduce �rst-class top levels, concur-rency, and the Browser and Explorer tools. We explain how search-based and committed-choice logic programming with deep guards areintegrated, and we outline how the logic programming support smoothlyties in to constraint programming.Current active research topics in Oz include constraint programmingfor natural language processing, constraint debugging, fault tolerantand secure distributed execution, open computing architectures, andsupport for environments with limited computational resources.AcknowledgementsThe author thanks Denys Duchier, Seif Haridi, and Christian Schultefor their helpful comments on drafts of this paper. The author alsothanks all the other contributors and developers of the Mozart system,of whose abilities this tutorial only gives the faintest echo. This researchis partly �nanced by the Walloon Region of Belgium.References[1] Ili�es Alouini and Peter Van Roy. Le protocole r�eparti de Dis-tributed Oz (in French). In Colloque Francophone sur l'Ing�enieriedes Protocoles (CFIP 99), pages 283{298, April 1999.
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