TERM REWRITING IN ASSOCIATIVE
COMMUTATIVE THEORIES WITH
IDENTITIES

A THESIS PRESENTED
BY

Martin Joachim Henz

TO
THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE IN
COMPUTER SCIENCE
STATE UNIVERSITY OF NEW YORK

AT STONY BROOK

December 1991



State University of New York
at Stony Brook
The Graduate School

Martin Joachim Henz

We, the thesis committee for the above candidate for
the degree of Master of Science,

hereby recommend acceptance of this thesis.

Professor Leo Bachmair, Advisor
Computer Science

Professor Jieh Hsiang,
Computer Science

Professor I.V. Ramakrishnan,
Computer Science

This thesis is accepted by the Graduate School.

Graduate School

i



Abstract of the Thesis

Term Rewriting in Associative Commutative
Theories with Identities

by

Martin Joachim Henz

Master of Science
in
Computer Science
State University of New York
at Stony Brook
1991

Versions of constraint rewriting for completion of rewrite systems in the pres-
ence of associative commutative operators with identities have been proposed,
in which constraints are used to limit the applicability of rewrite rules. We ex-
tend these approaches such that the initially given equations can contain con-
straints, and such that a suitable version of unification modulo associativity,

commutativity and identity can be interleaved with the process of completion.

i1



To
my parents Albert and Klara Henz
and

my wife Kelly Reedy.



Contents

Abstract
Acknowledgements
1 Introduction

2 Preliminaries
2.1 Terms . . ..o
2.2 Relations. . . . .. ..
2.3  The Associative Commutative Theory
with Identities . . . . . . . . ... oo
2.4 Constraints . . . . .. .. Lo

3 Unification
3.1 Normal Forms . . . .. .. ... .. ... .
3.2 AC-Unification . . .. .. ... ...
3.3 ACI-Unification . . . . . . . .. ...
3.4 ACI1-Unification with Zero-Disequations . . . . .. .. .. ..

4 Completion

iii

ix

11
15

19
20
23
36
45

51



4.1 Constrained ACl-rewriting . . . . . . . .. ... ... .....
4.2 Some Operations on Constraints . . . . . . .. ... ... ...
4.3  Auxiliary Transformations . . . . . ... ... ... ... ...
4.4 The Transformation Rules

AC1-Complete . . . .. ... . ... ... ... ..

4.5 Application Strategies . . . .. ... oo
Implementation
AC1-matching

Examples
B.1 Rewriting . . . . . .. ...

B.2 Constraint Solving . . . . .. ... ... oL

vi



List of Tables

1 The transformation rules AC-Unify . ... ... ... .. .. 25
2 The transformation rules AC1-Unify . . . . . ... ... ... 39
3 The transformation rules Disequation-AC1-Unify . . . .. 47
4 The transformation rules Aux . . . . . . ... ... ... ... 59
5 The transformation rules AC1-Complete . . . . . . . .. .. 61
6 The transformation rule Equation Split . . . . . ... .. .. 63
7 The transformation rules AC1-Match . . . . ... ... ... T4

vii



List of Figures

1 Mlustration to Proposition 4.1 . . . . . . ... ... ... ... 54
2 Mlustration to Proposition 4.2 (Termination) . . . . . . .. .. 55
3 Mlustration to Proposition 4.2 (Church-Rosser) . . . . . .. .. 55
4 The structure of TRACONE . . . . . . .. ... ... . ... 66

viii



Acknowledgements

I take this opportunity to express my gratitude to my thesis advisor, Professor
Leo Bachmair, for his continuous support and invaluable guidance he offered
me in many fruitful discussions.

I thank the members of my thesis committee, Professor Jieh Hsiang and
Professor [.V. Ramakrishnan, for having read and discussed this thesis.

I wish to extend my thanks to Professor Jacques Loeckx and Stefan Uhrig
who supported and encouraged me thoughout my studies in Saarbriicken.

I am indebted to my friends in Stony Brook, especially my office mates,
for their hospitality and help, and for having turned my stay in Stony Brook
into the most enjoyable experience.

I thank the Fulbright Commission for providing a scholarship that made
my stay in Stony Brook possible and the Siemens AG for financial support
throughout my studies.

Finally, I wish to give my most special thanks to my wife, Kelly Reedy, for
“being with me in all my struggles”. I also thank her for proof-reading this
thesis.



Chapter 1

Introduction

In mathematics and the sciences, terms and equations are extensively used.
Computers provide tools to mechanize the handling of terms and equations.
In many computer applications, including symbolic algebraic computation,
automated theorem proving, program specification and verification, automated
reasoning about terms and equations plays an important role.

Rewrite systems are sets of directed equations used to compute by replacing
subterms in a given term until a simplest form possible, called a normal form,
is obtained. A rewrite system is called canonical, if normal forms are unique
and always exist. Knuth and Bendix [KB 70] proposed a procedure, called
standard completion procedure, to build canonical systems by systematically
generating and orienting valid equational consequences from a given set of
equations.

An extension of the framework of rewrite systems is rewriting in equational
theories where the replacement of subterms is generalized using equations that

express properties of the used operators. Extended completion leads to the



CHAPTER 1. INTRODUCTION 2

construction of canonical systems in this framework.

In many applications, operators with the properties of associativity and
commutativity occur (examples are conjunction in logic and addition of inte-
gers). A procedure for completion in the presence of associative commutative
operators has been presented in [PS 81]. Here, equational consequences from
equations are computed using associative-commutative unification, a process
that is in many cases particularly time-consuming.

Often, associative commutative operators are associated with an identity
(for example true for conjunction and 0 for addition). Unfortunately, asso-
clative commutative completion often fails in the presence of identities, since
severe restrictions on the orientation of equations must be imposed.

In [BPW 89], this problem is overcome by limiting the applicability of
directed equations via constraints. This approach is presented in [JM 90] in
the framework of transformation rules for completion. A general approach to
rewriting using constraints is presented in [KKR 91].

In [BPW 89] and [JM 90], only the resulting rewrite systems, but not the
initial set of equations may contain constraints, which limits the application
of this approach in practice.

We shall make use of constraints in completion in the presence of associative
commutative operations with identities for two purposes. Firstly, we shall
extend the appoach of [BPW 89] and [JM 90] to undirected equations, such
that the given sets of equations may contain constraints. Secondly, we shall
provide a framework to interleave associative commutative unification with the
process of completion in order to gain the flexibility of postponing particularly

hard unification problems, hoping that they can be simplified by later derived



CHAPTER 1. INTRODUCTION 3

directed equations.

In Chapter 2, we present fundamental concepts, including our notion of
constraints. The subject of Chapter 3 is the solving of constraints, which
can be viewed as an extension of unification in the presence of associative
commutative operators and identities. In Chapter 4, we present a transforma-
tion system for completion, incorporating the constraint solving methods of
the previous chapter. A computer implementation of various components of

completion procedures is described in Chapter 5.



Chapter 2

Preliminaries

2.1 Terms

Let S be a set. When X is a sequence of elements of S of length | X| = n,
we denote its components by X, X2 ..., X". The empty sequence is denoted
by A. An element s of S occurs in X, denoted s € X, if s = X' for some
i € [l.n]. ([l..n] denotes the set { € N | 1 < i < n}.) A sequence Y
of length m is called a subsequence of a sequence X of length n, denoted
Y C X, if there exists a function f from [l..m] to [1..n], such that ¢ > j
implies f(i) > f(j) for all i,5 € [L..m] and Y* = X for all 7 € [1..m]. The
number of occurrences of s in X, denoted | X|,, is the number |{z | X* = s}|.
The difference of two sequences X and Y, denoted X — Y, is the subsequence
7 of X such that for all s € S the number |7]; is | X|s — |V|s if | X|s —|Y]s >0
and 0 otherwise. A sequence Y is a permutation of a sequence X, if for all
s € S holds |Y|s = | X]s.

Let F' be a set of function symbols with F' = Fy.ee W Fuc W Foepo. We



CHAPTER 2. PRELIMINARIES 3

call the elements of FY,.. free function symbols, the elements of Fac asso-
ciative commutative function symbols, short AC-symbols, and the elements of
F.o., identities. We assume that there exists a partial function zero from
Fuic to F..... The subset of Fyc that contains all associative commutative
function symbols f for which zero(f) is defined is denoted by Facq; its ele-
ments are called associative commutative function symbols with identity, short
AC1-symbols.

With each function symbol f, we associate a non-empty set A(f) C N that
indicates the number of arguments f may take. If f € F..,,, then A(f) = {0};
if f € Fac, then A(f) =N —{0,1}. We assume that A(f) contains only one
element if f € Fy,..

Let V' be a countable set disjoint from F', whose elements we call variables.
A term t is either a variable or an expression f(X), where X is a sequence of
terms and |X| € A(f). In the latter case, f is called the root of ¢, denoted
root(t), and X is called sequence of arguments of t, denoted args(t). When
root(t) € Fac, tis called AC-term; when root(t) € Facq, t is called AC1-term.
The set of all terms built from function symbols in F' and variables in V is
denoted by T(F, V).

To enhance readability, we often use infix notation for symbols in Fs¢, omit

the empty sequence A and the parentheses around sequences of arguments of

length 0 and 1.



CHAPTER 2. PRELIMINARIES 6

Example 2.1 For this and all following examples, let

F = Fpree W Fac W Flep, where

Firee = {a,b,c.d e, —, f,g}, Fac = {3, +, %}, Flero = {0, 1},
zero(+) =0, zero(¥) =1 (4 and * are AC'1-symbols),
Ala) = A(b) = A(c) = A(d) = A(e) = 0, A(—) =

A(f) =1,A(g) =2, and v,w,z,y,z € V.

The expressions r, s,t with

ro=g(1(A), (f(g(0(A), 1(N))))),
s = —I—(l', Y, (()72))7
to= #(1A), FON), g(+(f(x), *(=(v),0(A))),w))

are terms in T'(F, V). The terms s,t are AC-terms. The term s is additionally

an AC1-term. In infix notation, the terms are written:

r = g(l,f(g(ovl)))v
C = byt

o= L0 #g(f(0) + (—0) +0),w).

The function Var maps each term to the set of variables that occur in it:
Var(x) = x if 2 is a variable and Var(f(X)) = Uigx Var(X").

A term s is said to be a subterm of a term t = f(X) if either s = f(Y) for
some subsequence Y of X, or else s is a subterm of some term X* € X. When
we want to emphasize that a term ¢ contains a term s as a subterm, we denote
t by t[s]. A term s is a proper subterm of a term ¢ if s is a subterm of ¢ and

s # t. The set of all subterms of a term ¢ is denoted by subt(?). A subterm s



CHAPTER 2. PRELIMINARIES 7

of ¢ is called a non-variable subterm of ¢, if s € V. The set of all non-variable
subterms of a term ¢ is denoted by Fsubt(t).

We use a pair 7 = (p, P), where p is a sequence of of positive numbers and P
is a set of positive numbers, called a position, to refer in a term ¢ to a specific
subterm in ¢, denoted by ¢,. The pair (A, 0) is a position in any term and
referring to the term itself; the pair ((,p), ) is a position in a term ¢ = f(X)
and referring to the subterm s of ¢, if (p,0) is a position in X' referring to
s; and (p, P) is a position in a term ¢ and referring to the subterm s = g(Y)
of t, if (p,) is a position in ¢ referring to a term ¢(X), g(Y') is a subterm of
g(X), 2 < |P| < |X| and 7 € P whenever X' € Y. For instance, the term
x + z is the subterm of the term a * g(x +y + z,1)) at position ((2,1),{1,3}).
Note, that this notion of subterms and positions is an extension of the notion
of “flattened positions” in [Mar 91], where as second components of positions
only sets of subsequent numbers are allowed.

A position 7 in ¢ is called a non-variable position in t if t|. € V. The set of
all positions in ¢ is denoted by pos(t) and the set of all non-variable positions
in ¢t by Fpos(t).

The result of replacing the subterm at position (p, P) in a term ¢ by a term
s is denoted by #[s];, py and defined to be the term s if p = A and P = {); the
term f(X —Y,s)ift = f(X), p=A, P # 0, and f(Y) is the subterm of ¢ at
position (p, P); and the term f(X,#[s]y p),Y) il t = f(X,0,Y), p = (1,p),
and 7 = | X[+ 1. For instance, (g(z+y+2))[f(a)+bl(1) 11,31 = 9(y + f(a)+b).

A substitution ¢ is a mapping from variables to terms. The value of a sub-

stitution o for a variable z is denoted by xzo. We call the set of variables for



CHAPTER 2. PRELIMINARIES 8

which zo # « the domain of o, denoted Dom(o), and consider only substitu-
tions with finite domain. We denote a substitution o by {1 — t1,...,2, — t,},
when Dom(o) = {z1,...,2,} and x;0 = t; for € [1..n]. The set U epom(o)
Var(zo) is called the range of o, denoted Ran(o). If W C V then (W)
denotes the set of all substitutions o for which Dom(o) C W. If o is a substi-
tution and W C V, then o|y denotes the restriction of o on W: zoly = zo
if © € W and zo|w = x otherwise.

A substitution o can be uniquely extended to a mapping on terms in such
a way that (f(X))o = f(X'o,..., X"0), for all terms f(X) where |X| = n.
The composition of two substitutions ¢ and 7 is denoted by the juxtapositon
or. That is, tor = (to)7 for all terms ¢.

A term s is an instance of (or matches) another term ¢ if there exists a
substitution o, called a matching substitution, such that s = to. Two terms s
and ¢ are said to be unifiable if there exists a substitution o, called a unifier,

such that so = to.

Note: The notion of terms can easily be extended to many sorts (see Chap-
ter 5), but considering only one sort simplifies the notation and imposes no

restrictions on the validity of our results.

2.2 Relations

It — is a binary relation on a set S, we denote by « its inverse; by « its
symmetric closure — U «; by —7 its transitive closure; by —* its transitive-

reflexive closure; and by < its symmetric-transitive-reflexive closure. The



CHAPTER 2. PRELIMINARIES 9

composition of two relations — and — is denoted by — o —. The relation —
is said to be terminating if there is no infinite sequence t; — t3 — t3 — - -+
A binary relation — is said to be Church-Rosser if for any two elements r and
s with r <+ s, there exists an element v such that r —* v «* s. Terminating
Church-Rosser relations are called convergent.

An equivalence relation is a reflexive, symmetric, transitive binary relation.
Let — be a relation and ¢ an equivalence. The relation — is called Church-
Rosser modulo < if for all elements r and s with r (¢ U «<)* s, there exist terms
v and w, such that r =" v ¢ w «* s. We say that — is convergent modulo
o if © o — o ¢ is terminating and Church-Rosser modulo ¢. The relation
— 1s said to be locally confluent modulo ¢, if for all elements r, 7', s, s with
r'«—1r ¢ s — s, there exist elements r”, s” such that r' «* r" o s” —* 5.

An element s € S is said to be in normal form with respect to the rela-
tion — if there exists no element s’ € S such that s — s'. A function that
assigns to every element in S a normal form with respect to R is denoted by

An orderingis an irreflexive, transitive binary relation and a quasi-ordering
is a reflexive, transitive binary relation.

If > is a strict ordering, then its reflexive closure - is a quasi-ordering. On
the other hand, if > is a quasi-ordering, the corresponding equivalence ~ and
ordering > are defined as follows: s ~tif s =t and ¢t = s; and s = ¢ if s = ¢

and t # s. An ordering is called well-founded if it is terminating.

Definition 2.1 If >; are orderings on S; for all ¢ € [1..n], then their lexico-

graphic combination (>1, >3,...,>,) on n-tuples in S7 X .Sy x- - - x 9, is defined



CHAPTER 2. PRELIMINARIES 10

as follows:
(al,ag,...,an) (>17>27---7>n) (bl,bg,...,bn)

if there exists ¢ € [1..n] such that for all j € [l... — 1] holds a; >; b; and

a; >; b;, where >; denotes the reflexive closure of >;.

Proposition 2.1 [f the orderings >; are well-founded for all i € [1..n], then

their lexicographic combination (>1,>9,...,>,) is well-founded.

Definition 2.2 If > is an ordering on S, then its set extension = is defined
as follows: M =,.; N,if M # N and for all s € N — M there exists s € M — N

such that s’ > s.

Proposition 2.2 If = is well-founded, then its sel extension =g is well-
founded on finite sets.

A multiset over a set S is a mapping M from S to the natural numbers. We
say that x is an element of M, denoted by x €,y M, if M(x) > 0. A multiset
M is finite, if {z | @ €, M} is finite. We often denote a finite multiset M by
{A} i, where A is a sequence of elements in S and |A|; = M(s) for all s € S.

The union, intersection, and difference of multisets are defined by

My U My (x) = My () + Ma(x),
My N My () = man(M;(x), May(x)),
My — M, (2) = { My(x) — My(z) if My(x) — My(x) >0,

0 otherwise.

Definition 2.3 If > is an ordering on a multiset S, then its multiset extension
= mul 18 defined as follows: M >,,,; N, if M # N and for all s € N — M there
exists s’ € M — N such that s" > s.



CHAPTER 2. PRELIMINARIES 11

Proposition 2.3 If = is well-founded, then its multiset extension =, is

well-founded on finite multisets.

2.3 The Associative Commutative Theory

with Identities

In order to define the associative commutative theory with identities, we shall
briefly present the usual framework of equational theories.

An equation is a pair of terms, written s ~ ¢. If F is a set of equations,
we write s —p t to indicate that there exists a term w, a position 7 in w,
a substitution o, and an equation v & v in K, such that s = wluc], and
t = wlvo],. The relation — is called the rewrite relation induced by F. We
say that s rewrites to t by £ if s —g t. A normal form with respect to — g is
said to be irreducible by E.

The symmetric-transitive-reflexive closure <% of —g is called the equa-
tional theory induced by E. A set E of equations will be called a rewrite sys-
tem if the corresponding rewrite relation — g is the primary object of study.
The equations of a rewrite system are also called rewrite rules.

A rewrite system R is called convergent if the corresponding rewrite relation
—p 1s convergent. A convergent rewrite relation R defines a unique normal

form for every term ¢, denoted by ¢ | g.

Definition 2.4 For a given set of function symbols F' = Fy,.. W Fyc W Fl.po,
we define the associative commutative theory with identities of F, denoted

by =4c1, as the equational theory induced by the set ACT of



CHAPTER 2. PRELIMINARIES 12

e all equations
FX 1Y), 2) = (XY, Z),
called flattening equations (, and expressing associativity), where f € Fyc,
X,Y, 7 are sequences of terms in T'(F, V), |X| 4+ |Z| > 1, and |Y| > 2,

e all equations

called permutative equations (, and expressing commutativity), where
f € Fac, X is a sequence of terms in T(F, V), | X| > 2, and II(X) is a

permutation of X,

e all equations

J(X,0.Y) ~ f(X,Y)

f(Z2,0) ~ Z

f0,72) ~ Z,
called zero-equations (, and expressing identity),  where  f € Facq,
0 = zero(f), X,Y,Z are sequences of terms in T(F, V), | X|+|Y]| > 2,

and |Z] = 1.

Clearly, every associative commutative theory with identities, where
Fac # 0, is not terminating, due to the permutative equations. The rewrite
system consisting of all flattening equations is denoted by Flatten, the rewrite
system consisting of all permutative equations by Perm, and the rewrite sys-

tem consisting of all zero-equations by Zero.



CHAPTER 2. PRELIMINARIES 13

Example 2.2

e+ ((1x(y*2)+(041) —puren v+ (Lryxz)+(041))
— Flatten 2}—|—((1*y*2)‘|‘0‘|‘1)
— Flatten J}—|—(1*y*2)‘|‘0+1

lx(x4+0+y4+(0+40) —zeo 2+ (0+y+(0+0))
—Zero SI?-I-(O—I-y—I-O)
r+(0+y)

—Zero

—Zero X+ Yy
Proposition 2.4 The rewrite system I'latten is convergent.
Proof. The relation — pjqse, 1s terminating, since every application of a rule
to a term decreases the number of occurrences of AC-symbols in it. The

relation — piapen, 18 Church-Rosser, as can be proved by structural induction.

a

Proposition 2.5 The rewrite system Zero is convergent.

Proof. The relation — ., is terminating, since every application of a rule in
Zero to a term ¢ decreases the number of occurrences of identities in t. The

relation — .., is Church-Rosser, as can be proved by structural induction. O

Proposition 2.6 The rewrite system Flatten U Zero is convergent.

Proof. The relation — pjytenuzero 1 terminating, since every application of

a rule in F'latten U Zero to a term ¢ decreases the number of occurrences of



CHAPTER 2. PRELIMINARIES 14

function symbols in ¢. The Church-Rosser property then follows from Propo-
sitions 2.4 and 2.5. O

Additionally, we can show that — pastenuzero 18 equal to — zer0 © — Flatten-

The following technical lemma is used in Chapter 4.

Lemma 2.1 If s is the sublerm of t at position © and ' =401 L, then there

. . ;o , B
exists a position ™ in t' | prattenvzero Such that t' | prattenvzero |n =ac1 S.

Proof. (1) If u = piatten v OF U — ¢ v, then for every subterm v’ in u, there
exists a subterm o’ in v such that u' =4¢1 v'. (Flatten and Zero preserve
subterms up to =4c¢1.) (2) If r =401 s then v | Flattenuzero = poym S L Flattenuzero-
(Identities are eliminated, for AC-case see Lemma 2.3 in [Mar 91].) (3) If
T e, S then for every subterm 7/ in r there exists a subterm s’ in s such
that ' < s'. (Every subsequence of the arguments of an AC-term forms a
subterm.) From (1) follows that there exists a subterm s’ of ¢ | piattenuzero such
that s =401 ¢'; from (2) that ¢ | Fiattenuzero = pepm U L Fiattenuzero; and from (3)

that there exists a subterm s” in ¢’ | pasenuzero such that s” < pg,., s O

In this work, we want to describe methods for constructing a rewrite system
R for a given set of equations F. such that AC1 U F and AC1 U R define
the same equational theory and the relation =401 0 —p 0 =4¢1 1s convergent
modulo AC1. This task is called completion modulo AC1.

As shown in [BPW 89], we need to limit the applicability of rewrite rules,
because for many interesting rewrite systems R, the relation =401 0 —p

0 =4¢1 is not terminating. The following example is given in [JM 90].



CHAPTER 2. PRELIMINARIES 15

Example 2.3 If R contains the rule

—(z+y)=(—2)+ (~y)

then R/ACT is not terminating, as shown by the following infinite sequence

of rewritings:

—0 =401 (0 +0

The left hand side of a rule with a variable as argument of an AC'1-symbol +
“collapses” if instanciated with zero(+). For every equation r ~ s, we limit
its applicability to a term ¢ by restricting the set of substitutions ¢ by which a
subterm of t AC'1-matches r. Every equation is associated with an expression,
called a constraint, describing the set of allowed substitutions. In addition
to the restrictions involving the identity symbols, we shall integrate unifica-
tion problems in the constraints. In Chapter 4, we shall use this approach to

interleave the processes of completion and unification.

2.4 Constraints

Definition 2.5 Let F' = Fy... W Fyc W Fl.p, and V a set of variables. A con-

straint 1s an expression of one of the following forms:

e A zero-disequation is an expression of the form ¢ # 0, where t € T'(F,V)
and 0 € Fleo.



CHAPTER 2. PRELIMINARIES 16

o An atomic ACT-unification problem is an expression of the form T;S,
where r;s € T(F,V). Zero-disequations and atomic ACl-unification

problems are called atomic constraints.

o A conjunctive constraint is an expression ¢ of the form ¢ = A, € [1..n] %>

where a; are atomic constraints for ¢ € [1..n].

e An existential constraint is an expression e of the form e = 3Z.(¢, k),
where 7 is a sequence of pairwise distinct variables in V', and ¢, k are
conjunctive constraints.

(We omit the quantification 37, if 2 is empty. Variables in z" are called
bound, other variables occuring in ¢; or ¢, are called free. The conjunctive
constraint ¢ is called the unsolved part and & is called the solved part of

the existential constraint.)

o A disjunctive constraint is an expression d of the form d = V; € [1..n] &>

where ¢; are existential constraints for ¢ € [1..n].

Definition 2.6 For a constraint C', the set of constrained variables of C', de-
noted V(C), is defined as follows: When a = ¢t # 0 is a zero-disequation,
then V(a) = Var(t); when a = r=s is an atomic AC1-unification problem,

then V(a) = Var(r) U Var(s); when ¢ = A

i€ [1.n]% 1s a conjunctive con-
straint, then V(c) = U; e [1.n] Var(a;); when e = 3Z.(¢, k) is an existential
constraint, then V(e) = (V(e) U V(k)) — 2; and when d = V/, e [l.n] € is a

disjunctive constraint, then V' (d) = U, e [1.n] Var(e;).

Definition 2.7 For a constraint C', the set of solutions of C', denoted Sol(C'),

is defined as follows: When a = ¢ # 0 is a zero-disequation, then Sol(a) =



CHAPTER 2. PRELIMINARIES 17

{o0 € ¥(V(t)) | to #ac1 0}; when a = r=s is an atomic ACl-unification prob-
lem, then Sol(a) = {o € XU(V(1)) | ro =4c1 so}; when ¢ = A; o [

1.n] % is
a conjunctive constraint, then Sol(c) =; e [1.n] Sol(a;); when e = 3Z.(¢c, k)
is an existential constraint, then Sol(e) = {oly() | ¢ € Sol(c) and o €
Sol(k)}; when d =V, € [1.n] & is a disjunctive constraint, then Sol(d) =

Uj e [1..n] S0l(ed)-

Remarks:

7. . . 7. .
e The symbol = is used in a commutative way: r=s is considered to be
?
equal to s=r.
. . . ?
e The symbols A and V are used in an associative commutative way: r=sAc
. ? ? . . . .
denotes that either r=s or s=r occurs in a conjunctive constraint and

the remainder of this constraint is denoted by ¢ ; e V d denotes that e

occurs in a disjunction and the remainder of this disjunction is denoted

by d.

e The empty conjunctive constraint is denoted by T, and the empty dis-

junctive constraint is denoted by —.

e We may denote conjunctions aiA- - -Aa, by A, € [1..n] % and disjunctions

erV---Ve, by \/Z- € [1..n] ;.

o Let ¢ = A € [1..n] ri=s; be a conjunction of atomic unification prob-

lems. We denote the set |J; € [1.n] i U U; € [1..n] 5 by Uec; the set

l.n
Uiet.np subt(r:) U subt(s;) by subt(c); and the set Usep. g Fsubt(r;) U

Fsubt(s;) by Fsubt(c).



CHAPTER 2. PRELIMINARIES 18

e We may interpret a conjunction :z:létl Ao A xn;tn, where x; # x; if

i # 7, as a substitution {zy — #,..., 2, — {,} and vice versa.

o We extend the function Var from terms to existential constraints:

Var(3Z.(Niep.sgti 7 0i A Neepig rissi, Nielt..m] #1207 A Niet.n] riZst))
= Z U Uiep.ig Var(t;) UlUiep.g(Var(ry) U Var(s;))U
Uiert..m] Var(t}) U Uie[l..n](var(rg) U Var(s;)),

and to disjunctive constraints:

Var( \/ en) = U Var(ep).

hell..k] hell..k]

For a given set of function symbols F' and a set of variables V', we denote the set
of all constraints by C4¢q and call its elements AC1-unification problems with
zero-disequations. When a constraint in C4¢q contains no zero-disequations,
we call it an ACT-unification problem. When F' = Fy... W Fac, ie. F.epp =0,
we denote the set of all constraints by C'4¢, and call its elements A C-unification
problems. Note that the sets (401 and Cy¢ are constraint languages in the

sense of [Smo 89].



Chapter 3

Unification

Before we use constraints to define constrained rewriting, we shall outline in
this chapter how to solve them. We approach the problem of finding the
set of all solutions for an AC'1-unification problem with zero-disequations.
Prior to describing methods of solving an AC'1-unification problem with zero-
disequations in the general case in Section 3.4, we shall present the solving of
an AC-unification problem in Section 3.2 and the solving of an AC'T-unification
problem in Section 3.3. A computer implementation of the procedures pre-
sented in this chapter is described in Chapter 5 and examples are given in
Appendix B.

AC- and ACT1-unification problems are inherently complex. Following the
intial work in [LS 75] and [Sti 81] in AC-unification, considerable research has
been done. The reader may consult [JK 91] for an extensive list of references.

The approach presented herein is not intended to optimize the running time
of the solution of a given AC1-unification problem but rather to modularize

the very process of solving such problems. Our goal is to have the capability of

19



CHAPTER 3. UNIFICATION 20

interrupting the process at as many stages as possible and “shelve” partially
solved problems for future resolution. Meanwhile, the problem may have be-
come less complex. This approach can be particularly useful in the process
of completion of term rewriting systems (see Chapter 4), where unification
problems are computed and continuously transformed by simplification rules.
The main difficulty in modularizing the solving of AC'1-unification problems
is to prove the termination of the resulting procedures. A considerable part of
this chapter shall be devoted to termination proofs.

In this chapter, we shall obey the following normalization convention: All
terms reduced to normal forms with respect to the rewrite system Flatten.
Any operation op resulting in terms is implicitly seen as the composition
opo | Fiatten- This will guarantee that all occuring terms are normal forms

with respect to Flatten.

Example 3.1 The application of the substitution ¢ = © +— z + w to the term

x +y results in z +w + y, not in (z +w) +y.

3.1 Normal Forms

The set of all solutions for a unification problem is infinite in most cases and
we are confronted with the problem of finding a finite representation for it.
The following notation is taken from [JK 91] and adapted for our purpose.
When a term ¢ AC1-matches a term s, we write s < ¢. The relation <
is a quasi-ordering on terms, called AC1-subsumption, whose equivalence <
and strict ordering < are respectively called literal AC1-similarity and strict

AC1-subsumption.



CHAPTER 3. UNIFICATION 21

We lift subsumption from terms to substitutions. Two substitutions o
and 7 are AC1-equal on the set of variables W C V| denoted o =%, 7,
if 10 =401 a7 for all variables z in W. We write ¢ W 7, if there exists
a substitution p such that op =%, 7. We call the quasi-ordering <" on
substitutions AC1-subsumption, its equivalence <"V literal AC1-similarity and

its strict ordering <1V strict AC'1-subsumption.

Definition 3.1 Given an AC'1-unification problem with zero-disequations C,

every set C'SU(C') that fulfills

e CSU(C) C Sol(C), (correctness)

e for all substitutions 6 € Sol(C') there exists a substitution o € C'SU(C)

such that o V() ¢, (completeness)

e Ran(a)N Dom(c) = 0 for all substitutions ¢ € CSU(C'), (idempotency)
is called a complete set of ACI-unifiers for C' and denoted by C'SU(C).

A set CSU(C) is called a complete set of most general AC1-unifiers of C,
denoted CSMGU(C), if the sustitutions are pairwise incomparable in the
quasi-ordering V().

The goal in solving an AC'1-unification problem with zero-disequations is
the transformation of C' into a form from which a finite C'SU(C') can easily be

derived.



CHAPTER 3. UNIFICATION 22

Definition 3.2 An AC1-unification problem is said to be in solved form if it

is of the form:

3. (T Neptom] 1 7 01 A Njeptoma Y1=115) Y

32 (T Nietong) Thi 7 Ok A Njeptomy] Yki=tr.i)

such that for all h € [1..k], for all ¢,¢" € [1..n}] and 7, ;" € [1..my}] holds:

® T4 yn; €V, (solved)

o if t,;, =0, where 0 € Fl.,,, then there exists no ¢” € [l..np] such that

T = Yp,; and Opn =0, (disequations not violated)
® Ynj # Yny il j#J, (unique)
o ypn; & Var(l). (idempotent)

Proposition 3.1 Let

3z (T Nieton] @1 7 00 A Njettomg Y1,5=t1,5)
o - . .

2 (T Nty Thi 7 Ok A Njeqtomy) Yri=tej)

be an ACT-unification problem in solved form. The set of substitutions that
are obtained for every h € [1..k] by limiting the substitution Ajep m,] ym;th’j

to the variables that do not occur in zy, is a complete set of AC1-unifiers for C'.

An atomic unification problem 2=t in the solved part of an existential con-
straint is ignored when « € Z| because bound variables do not contribute to

substitutions in Sol(C).



CHAPTER 3. UNIFICATION 23

Note that we solve an AC'l-unification problem C' to obtain a CSU(C),
not a CSMGU(C). In cases, where a CSMGU(C) is required, we must
detect redundant unifiers in an additional pass over the obtained CSU(C').
This operation can be very time-consuming. For this reason, we operate with

CSU(C'), accepting a certain overhead produced by redundant unifiers.

3.2 AC-Unification

In this section, we consider sets F' = Fy... W Fac (with no identities de-
clared). Our notations are compatible with ACT-unification problems with
zero-disequations so that we can extend the methods that we describe here to
Section 3.3 and Section 3.4.

In the transformation of an ACT-unification problem, atomic AC1-unifi-
cation problems of various forms occur. The most difficult case consists of a
problem with the same AC-symbol on both sides. The decomposition step for
this case forms the heart of most AC-unification procedures. In [Fag 84], an
algorithm to decompose these atomic AC1-unification problems is presented.

Based on this algorithm, we define a simplifier for AC-unification problems.

Definition 3.3 A simplifier for AC-unification problems is a partial function
dioac : Cac x 2V — 2949 such that for all f € Fye and W C V,

323 (Nieftn] 7“1,2;51,2'7 T),

’ 325 (Nieftong) 72520, T ),

—

A2 (Niet g Fhim=spi, T)




CHAPTER 3. UNIFICATION 24

where

Sol(BZ(f(X)ZF(YV), T)) = |J Sol(3z.( A raizsni T))

he[lk] Ze[lnh]

and for all h € [1..k], for all ¢,¢" € [1..my]

1. 2 C 7,
2., € XUY (see the algorithm trans in [Fag 84]),
3. Thi F Th (see the algorithm elimcom in [Fag 84]),

4. if rp; € Vthen s, € XUY or s, = f(4),Z C(V-W)uXUY
(see the algorithm trans in [Fag 84]),

5. if rp; €V, then ry,; and s, € X UY  (see Proposition 1 in [Fag 84]).

Table 1 shows the set AC-Unify of transformation rules whose goal is to
transform any AC-unification problem (' into an equivalent AC-unification
problem in solved form. Each rule describes a binary relation on constraints.

The union of these relations is denoted by = Ac_unity-

Definition 3.4 An AC-unification procedure is a subset U of the relation
=> AC—Unify such that every normal form with respect to U is a normal form

with respect to = Ac_unity-

An AC-unification procedure applies the rules in AC-Unify to an AC-unifi-

cation problem until no further rules are applicable.

Lemma 3.1 (Soundness) Fvery AC-unification procedure preserves the uni-

fiers: If Cy = AC_Unify Cy then Sol(Cy) = Sol(Cy).



CHAPTER 3. UNIFICATION

Delete:
35.(7“;8 Ne,k) Vod

Fail:
AZ(f(X)Zg(Y)Aek) V d

Merge:
35.(1';7“ Az=s A e, k) vV d

Check:
Z(e=f(X)Aek) V d

Eliminate:

A7(ae=t Aek) Vo d

Free Decompose:

= 3Z(c.k) v d

ifT =AC1 S

= d

it f#g

= 35.(1’;7“/\7“;8/\0,]6) vV d

. reV
! re Vv

= 4
) reV
lf{ v € Var(f(X))

= EIZ.(CU,:L'?:t Nko) VvV d
where o = {& +— ¢}

" { reV
x & Var(t)

F(FX)ZfV)Ae k) vV d = B2 Aep g X' =Y k) V d
f € Ffree
if{ F(X) #acn [(Y)
F(X) & subt(c) or f(Y) & subt(c)
AC Decompose:
WZ(fX)EfYV) A k) V d =
. ? 3. (dNeyk) Vv d
(3=".(e, T))Edw,qc(ﬁz*(f(X):f(if?) )W)
where W = Var(3Z.(f(X)=f(Y) AN e, k))
€ Fac
lf{ FX) #Facr fIY)
F(X) & subl(c) or J(Y) & subl(c)

Table 1: The transformation rules AC-Unify

25



CHAPTER 3. UNIFICATION 26

Proof. For every transformation rule R in AC-Unify, we prove that if C; =g
C5 then Sol(Cy) = Sol(C3). The lemma follows by induction.

o Delete. If r =41 s then any substitution is in SOZ(T;S), so that for
C, = 35.(7“;8/\0, k) V dand Cy = 3Z.(¢, k) V d holds Sol(Cy) = Sol(Cy).

2

o Fail. If | = EIZ.(f(X);g(Y)/\c, k)Vdand f # g, then Sol(f(X)=¢(Y))
= (), because, since F..,, = (), AC'1 does not change the root symbol of
any term. Thus, for Cy = d, we have Sol(Cy) = Sol(Cs).

e Merge. If (| = EIZ.(:L'?:r Az=s A e, k) vV dand Cy = 35.(1';7“ Ar=s A
¢, k) V d, then o € Sol(:z;;r A :1;;3) & 20 =401 70 and xO =401 SO &

) .. ? ?
x0 =401 1o and ro =401 S0 (=41 18 transitive) < o € Sol(z=r Ar=s)

Therefore Sol(:z;;r A :1;;3) = Sol(:z;;r A T;S).

o Check. Let () = 3Z.(2=f(X) Ac, k) V d and 2 € Var(f(X)). Assume
o€ Sol(:z;;f(X)). Since F..,, = 0, AC1 is non-collapsing. On the other
hand xo is a proper subterm of f(X)o, which is a contradiction. Thus,

Sol(:z;;t) = (), and for C3 = d, we obtain Sol(Cy) = Sol(C3).

e Eliminate. Let ¢} = 3Z.(z2tAc, k) V d and Cy = 3Z.(co, a=t Nko) V d,
where o = {z +— t}. Let p € Sol(:z;;t/\c, k). First, we state xp =4¢1 tp.
Let r=s be any atomic ACT-unification problem in ¢ or k. Then p €
Sol(rés), and thus rp =4c1 sp. We have op =401 p, i.e. yop =ac1 yp
for all y € V. (If y # «, then o does not change y; if y = x, then yo =1
and tp =401 xp = yp.) rp =ac1 $p & rop =ac1 sop, and therefore p €
SOZ(T;S) S p € SOZ(TO';SO'). Thus, Sol(:z;;t/\c, k) = Sol(ca,:z;;t/\ ko)
and Sol(Cy) = Sol(Cy).



CHAPTER 3. UNIFICATION 27

2

e Free Decompose. Let Oy = 3Z.(f(X)=f(Y)Ac, k) V d, f € Ffyee, and
Oy = 3Z.(Niepyxp X'=Y" Ac, k) V d. The theory =401 does not involve
the symbol f. Thus, for a substitution 6 to fulfill f(X,..., X")0 =4
FOYY.Y™)0, we must have X'0 =40 Y0, fori € [l.n]. There-
fore Sol(3Z.(f(X)ZF(Y)Ae,k)) = Sol(3Z.(Aep.xg X'=Y" Ac,k)) and
Sol(Cy) = Sol(Cy).

2

¢ AC Decompose. Let ) = JFZ(f(X)=f(Y) A e, k) V d, root(r)

= root(s) € Fuc, and Cy =V | ? 32.(¢ A
(EIZ’.(C’,T))EdioAC(Elz".(f(X):f(Y),T),W)

e, k) Vo d, where W = Var(3Z. (f(X)=f(Y) A ¢, k)). By definition of

diosc (see Definition 3.3), we obtain that SOZ(EIZ.f(X);f(Y),T):

2 Sol(e). By distributivity, we obtain that
e€dioac(IZ.(F(X ) f(Y),T),W)

Sol(AZ.(F(X)ZF(Y)Ac, k) = Sol(V ) 3z,
(3='.(c!\T))edioac(FZ.(F(X)=F(Y),T),W)
(¢ Ne,k)). Here, we use that the variables introduced by AC Decom-

pose do not occur in Cf.

Lemma 3.2 (Completeness) FEvery normal form with respect to AC-Unify

is an AC-unification problem in solved form.

Proof. Clearly, every normal form is of the form

\/ 32‘2.(0;” kh)

hell..k]

where ¢;, and kj, are conjunctive constraints for all h € [1..k].



CHAPTER 3. UNIFICATION 28

Assume ¢p, contains an atomic AC1-unification problem r=s. Then r and
s cannot be both non-variable terms, for otherwise Delete, Fail, Free De-
compose, or AC Decompose would apply. Note, that if all atomic AC'1-
unification problems in ¢; are of the form f(X)=f(Y) then Free Decompose
or AC Decompose applies to at least one of them. (In a set of terms, not
all terms can be proper subterms of other terms in the set.)

So, assume that r = € V. If s = z, Delete applies. If s # z, then
Check applies if ©+ € Var(s) and Eliminate applies otherwise. Since AC-
unification problems do not contain zero-disequations, ¢; = T, for all 7, and
C' = Vaep.s) 3205 Nietnn] T}m';Sh,i). The only rule that changes the solved
part of an existential constraint is Eliminate. The rule Eliminate removes
an atomic AC'l-unification problem of the form l’;t, where x € V| from the
unsolved part. The variable x is eliminated from the unsolved and the solved
part, and v=t is added to the solved part. The variable x will not occur in the
unsolved part again, because AC Decompose uses only variables in the solved
part and variables that do not occur in the existential constraint, and the other
rules use only variables that occur in the solved part. If a variable & occurs on
the left hand side of an atomic AC'T-unification problem in an existential con-
straint e in C', then x occurs nowhere else in e (idempotency and uniqueness).
We conclude that C'is of the form €' = Vpep g I2-(T, At :1;172';15172') such
that for all o € [1..k] and ¢,¢" € [L.np], x4 € V, @py # apy if ¢ # ¢, and
Thi & Var(ty ). O



CHAPTER 3. UNIFICATION 29

Not all AC-unification procedures are terminating (for an example see [Fag 84]).
One way to guarantee termination is to apply the decomposition step recur-
sively in a sense that once an atomic ACl-unification problem f(X)=f(Y)
is simplified, all emerging subproblems are completely solved before another
atomic problem is examined ([Sti 81],[Fag 84]). This method is not satisfac-
tory for our approach to completion modulo AC'1, where we want to be able
to interrupt the solving of a constraint when a particularly hard atomic AC1-
unification problem arises. Other approaches to AC-unification are described
in [Kir 89] and [Bou 90].

We shall present a class of terminating AC-unification procedures that
are based on [Fag 84] but can be interrupted between every application of AC
Decompose. We require that, after the application of Free Decompose and
AC Decompose, some rules are “eagerly” applied. To prove the termination
of these AC-unification procedures, we develop an extension of the complexity
used in the termination proof of [Fag 84].

In the following, let @ be a new symbol. The set of immediate operators

of a variable x in a term ¢ is the set

{root(t|g)) | (p,0) € pos(t) and Fi € N. t](p0 = }
{@} if o =t
(We include the occurrence of a variable in the topmost position: If & = t, we

say @ occurs in ¢ under @.)

The set of immediate operators of a variable x in an existential constraint

e=37( /\ z; £ 0; A /\ rj;Sjvk)

1€[1..n] J€[1..m]



CHAPTER 3. UNIFICATION 30

is the set
OP(z,e) = |J OP(a,r;)UOP(a,s)).

J€[1..m]

Definition 3.5 The complexity p. of an existential AC'1 constraint e = 3. (¢A
g, k), where g = Niepy @i # 0; and ¢ = Ajep rjésj, is defined as

where

e ale) = |{¢ | r € Vand s; € V}|, a(e) is the number of atomic AC1-
unification problems between variables in the unsolved part;

o fle) = {z € V | |OP(z,e)] > 2}|, B(e) is the number of distinct
variables that occur in r; and s; immediately under at least two different
function symbols;

o v(e) = |Fsubt(e)—{0(X) € T(F,V) |0 € F.o |, v(€) is the number of
distinct non-variable subterms of r; and s;;

e S(e) = |{¢ | ri € Vors, € V}|, é(e) is the number of atomic AC1-
unification problems in the unsolved part of which at least one side con-

sists of a variable;

o c(e) =i | ri & Viri & subt(c) —Ue,ri & Foero| + i | si € V.5 &
subt(c) —Ue,si € Faero}|, €(e) is the number of occurrences of non-
variable terms on one side of an atomic problem in ¢ that are not iden-
tities and not proper subterms of terms in ¢;

o ((e) = X e (1) ({7 € pos(ri) [ rily & Facro}| + {7 € pos(si) | sil, &
F.ero}l), C(€) is the number of all positions in e at which no identities

occur; and



CHAPTER 3. UNIFICATION 31

e 1(e) = n, n(e) is the number of atomic AC-unification problems in c.

The complexity g4 of a disjunctive AC-unification problem d = Vgpy € is
defined as the multiset pq(d) = {pe(e;) | ¢ € [1..n] -

Example 3.2 The constraint
e = Elv,w.(:z;—l—v—l—w;f(a)—l—g(f(a),x) A v=z A x*f(v);l A Zéf(a%yéb)

has the complexity p.(e) = (1,2,6,3,3,20,4). As a disjunctive constraint,
e has the complexity uq(e) = {(1,2,6,3,3,20,4) }nu-

We use the seven-fold lexicographic combination of the “greater-than”-ordering
> on natural numbers, denoted >., to compare complexities of existential con-
straints, and the multiset extension of >., denoted >, to compare complexities

of disjunctive constraints. Propositions 2.1 and 2.3 imply that >. and >, are

well-founded.

Lemma 3.3 (Termination) FEvery AC-unification procedure in which, after
every application of Free Decompose and AC Decompose, all newly in-
troduced atomic problems with variables on at least one side are eliminated via

Delete, Check and Eliminate terminates on every AC-unification problem.

Proof. We prove that if 7 = C; for a rule R = Delete, Fail, Merge,
Check, or Eliminate then 14(C1) >4 pa(C2); and if Oy =p C} for a rule
R = Free Decompose, AC Decompose, and (', = :>!Q (C4), where Q =
DeleteUCheckUEliminate, then pq(C1) >4 p1q(C2). The termination follows
by induction on the number of applications of rules in AC-Unify to the given

AC-unification problem.



CHAPTER 3. UNIFICATION 32

e Delete. Ife; = 35.(7“;8/\07 k), es =3Z.(c, k), C1 = e1Vd, and Cy = €3V
d7 then F(el) Z F(62)7 where T € {a7ﬂ7775757C}7 while 77(61) > 77(62)7
and therefore py(Cy) >4 pa(Ca).

o Fail. If C; = 3Z.(f(X)Zg(Y) Ac,k) V d, and Cy = d, then py(Cy) =
1a(C2) U{pcGZ(F(X)Zg(Y) A e k) bt >a 1a(C).

e Merge. Let ¢; = 35.(1';7“ A 25 A ¢, k), where r € V, ey = 35.(1';7“ A
r=s A e, k), Ci=e1V d,and Cy = €3V d. We have (ey) > [(ez) and

v(e2) > 7(ez). If s € V then a(er) > a(e;), and otherwise 6(ey) > 6(es).
Thus we obtain pq(C1) >4 pa(C2).

e Check. Similar to Fail.

o Eliminate. Let e; = 37.(z=tAc, k), e = 37.(co, k), where o = {x — 1},
Cy=eVd, and Cy = eV d. If £ € V then a(e;) > aley). Otherwise
aler) > aley), Bler) = Blez) (Since t ¢ V., no variable is placed under a
new symbol.), y(e1) > y(e2), and 8(eq) > 8(ey), thus p1a(Ch) >4 p1a(Ca).

o Free Decompose. We prove that the application of Free Decompose,
followed by the exhaustive application of Delete, Check and Eliminate
on the newly introduced atomic problems, decreases the complexity of

an AC-unification problem.

2

Let e; = FZ(f(X)=f(Y) A ¢, k), where f € Ffee and | X| = |V, €}, =
32 (Niepix)) X2Y' A, k), and ey = 3Z.(doc A co, 0 A ko), where ¢ and
o are defined as follows:

Let (xlétl A A xn;tn A 7“1;31 A A rmésm) = Nepx|] XZ;Yi,

where ; € V for all ¢ € [1..n], and r; or s; ¢ V for all ¢ € [1..m].



CHAPTER 3. UNIFICATION 33

(In the decomposition, we separate the atomic problems of which at least

one side consists of a variable from the rest.)

Let R be the relation Delete U Check U Eliminate. Then o = =1,
(xlétl A A xn;tn) and ¢ = (7“1;51 A A rmésm).

Let ¢, =1 Vdand Cy = ¢e3 V d.

We show: fic(e1) >¢ pe(ez).

We obtain a(e;) > alez), since o eliminates the atomic problems with

variables on both sides that are introduced by the decomposition.
We show: 3(e1) > [(ez).

Because o may substitute a variable by another variable, there may exist
variables @ with |OP(x,ez)| > 2 and |OP(x,e1)| Z 2. In this case, there
exists g € F with g # f such that ¢ € OP(x,e3) and ¢ € OP(x,eq), and
there exists y € V such that (y — ) € o and g € OP(y,e1). Further-
more, f € OP(y,e1) (because y € X UY') and therefore |OP(y,e1)| > 2.

The variable y does not occur in ey, therefore |OP(y, e2)| 2 2.

In other words, whenever there is a variable « such that |OP(x, e3)| > 2
and |OP(x,e1)] 2 2, there is a corresponding variable y such that
|OP(y,ez)| 2 2 and |OP(y,e1) > 2. Thus S(e1) > f(ez).

If at most one of the terms f(X)o and f(Y)o occurs in ez, then v(eq) >
Y(ez), and pc(er) > pe(ez).

Now, assume that both f(X)o and f(Y)o occur in e;. None of the

occurrences of terms in ¢ o count for £(ez), since they are proper sub-

terms of f(X)o or f(Y)o. At least one of the occurrences of f(X)



CHAPTER 3. UNIFICATION 34

and f(Y) counts for e(eq) (see condition to apply Free Eliminate).
Clearly, this occurrence has no corresponding occurrence in e;. There-
fore e(eq) > e(ea), and pe(e1) >e pe(ea).

We conclude that pg(Cy) >4 pa(Ca).

o AC Decompose. We prove that the application of AC Decompose,
followed by the exhaustive application of Delete, Check, and Elimi-
nate on the newly introduced atomic problems, decreases the complex-
ity of an AC-unification problem. To describe the eager application of
Delete, Check, and Eliminate more precisely, we define the function

elim:
Let e = EIZ.(f(X);f(Y), T), f € Fac and R be the relation Delete U
Check U Eliminate. Let

dz1.(e1,00) V

= :>!R ( \/ dioc(e€)).
t€[1..|dioac(e)]]
z5.(¢n, 04) e

Then elim(e) = {(z:,ci,0) | i € [1..n]}.

Now, let 4 = IZ.(f(X)=f(Y) A e, k) V d, where [ € Fue, and

Cy = V(2 00,00 eclim(e) 37 (ci0i N cag o0 AN koy) V d.

Let e; = 3Z.(f(X)ZF(Y) A ¢, k), and e; = 3Z.(cjoj A coj,0; A kaj),
where (z;,¢;,0;) € elim(e).

The conjunctive constraint ¢; consists of proper non-variable subterms
of f(X) and f(Y) (see Property 5 in Definition 3.3). The substitution

o; represents the accumulated substitutions resulting from exhaustive



CHAPTER 3. UNIFICATION 35

elimination using the atomic problems introduced by diosc. If (z —

t) € o, then € X UY (see Property 4 in Definition 3.3).

We obtain a(er) > a(ez), since o; eliminates the atomic problems with
variables on both sides that are introduced by the decomposition, and

B(e1) > B(es) (argument similar to Free Decompose).

If there exists (@ +— t) € o; with t € V, such that |OP(x,e;)| > 2 then
Ble1) > Bez), and pe(er) >e pre(er).

Now, we assume that OP(x,e;) = {f} for all (x — t) € o; where t € V.
Let €, = HZ_}.(f(X)O'J‘;f(Y)O'J‘ Ncjoj Neoj,o; N koj).

We can show by induction on the number of applications of Eliminate
in the construction of o; that y(e1) > v(€}). (Here, we use that Flatten
applies, when we substitute a variable argument in a term with root f by

another term with root f. Because OP(x,e1) = {f} for all (x — t) € 0

where ¢ & V, every newly built term is flattened into another term.)

If at most one of the terms f(X)o; and f(Y)o; occurs in ey, then
Y(er) > 7(e2); and pe(er) >e pre(ez).

Now, assume that both f(X)o; and f(Y)o; occur in e;. We obtain
6(e1) > 6(eq), since all newly introduced atomic AC1-unification prob-
lems are eliminated. None of the occurrences of terms in ¢;o; count for
(ey), since they are proper subterms of f(X)o; or f(Y)o;. The con-
straint co has at most as many occurrences of terms that count for e(ez)
than has ¢ that count for £(e1). (Here, we use that @ € OP(x, ¢), for all
x with (x —t) €o;and t g V)

Furthermore, at least one of the occurrences of f(X) and f(Y) in the



CHAPTER 3. UNIFICATION 36

atomic problem f(X)=f(Y") counts for ¢(e1) (see condition for applica-
tion of AC Decompose). Clearly, this occurrence has no corresponding

occurrence in ey. Therefore e(eq) > e(ez), and pe(er) >, pe(ez).

We have shown that for any existential constraint

€2 € Uz, cs.00)ectim(ey 37i-(cioi A coyy 00 A ko) holds pic(er) >¢ pic(ez).

To obtain (5, the existential constraint e; is replaced in C; by a fi-
nite number of existential constraints such that e; is bigger than all

of them under >.. By definition of the multiset extension, we obtain

1a(Ch) >a pa(Cs).

3.3 AC1-Unification

The equations f(Z,0) ~ Z and f(0,7) =~ Z are collapsing, in the sense
that one side consists of a term that occurs in the other side as a proper
subterm. This makes solving of AC'1-unification problems more complicated
than solving AC-unification problems.

Similar to the previous section, we define a simplifier for ACI-unification

problems to describe the decomposition of atomic AC'1-unification problems

with AC1-terms on both sides.

Definition 3.6 A simplifier for AC'1-unification problemsis a partial function



CHAPTER 3. UNIFICATION 37

dioact : Cacr x 2V — 294¢1 such that for all f € Fyuor and W C V,

dz1. (/\ie[l..nl] 7“1,2';51,2'7 T),
dz. (/\ie[1..n2] 7“2,2';52,2'7 T),

2

3z} (/\ie[l..nk] Tki=Sks T)v

where
Sol(BZ(f(X)ZF(YV), T)) = |J Sol(3z.( A raizsni T))

he[lk] Ze[lnh]

and for all h € [1..k], for all ¢,¢" € [1..my]
1. 7C 2z,
2. Thi € XU Y,

3. Thﬂ' 7£ T}M’/,

4. if rp; € Voor root(ry;) € Facq then s, € X UY, or s, = f(Z), where
ZC(V-W)yuXuy,

5. if rp; €V and root(ry;) € Facy then rp,; and s5,, € X UY.

The simplification is often much easier with than without identities (for many
examples see [BHK 88]).

Note that AC'1-terms in X and Y must be handled like variables, because
they may collapse and unify with any other term. Therefore, we cannot main-

tain the properties 4 and 5 in Definition 3.3. However, if Fl4¢ contains only



CHAPTER 3. UNIFICATION 38

one element, then no AC1-term can occur in X and Y, since we consider flat-
tened terms. In this case, the properties 4 and 5 in Definition 3.3 are valid
(see Lemma 3.6).

The set AC1-Unify of transformation rules consists of the rules Delete,
Merge, Eliminate, Free Decompose, and AC Decompose in Table 1
and the rules in Table 2. The union of the relations described by the rules in
AC1-Unify is denoted by = Ac1-Unity-

Definition 3.7 An AC!I-unification procedure is a subset U of the relation
=> AC1-Unify such that every normal form with respect to U is a normal form

with respect to = Ac1_Unify-

Similar to the previous section, we state the soundness, completeness, and
termination of AC'l-unification procedures. We give only the parts of the

proofs that differ from the corresponding proof in the previous section.

Lemma 3.4 (Soundness) Fvery AC1-unification procedure preserves the uni-

fiers: If C1 =401 _prnigy Co, then Sol(Cy) = Sol(Cy).
Proof.

o Fail. If f,g & Fac1 and f # ¢ then Sol(f(X);g(Y)) = (), since AC'1

can only change the root symbols of terms ¢ with root(t) € Facq. Thus,
7

for Cp = FZ(f(X)=¢g(Y) A ¢, k) V dand Cy = d, we obtain Sol(Cy) =
SOZ(CQ)

o Check. Let Oy = FZ.(a=f(X)Ac k) V d, f & Facr, and @ €
Var(f(X)). Assume o € Sol(:z;;f(X

)). Since x occurs in f(X), ev-
ery subterm of o must occur in f(X)o. Since f € Facq, root(zo) =



CHAPTER 3. UNIFICATION

39

Fail:
Z(f(X)Zg(Y)Ae k) vV d = d
if{ f:9 & Facn

I#g
Check:

Z(e=f(X)Aek) vV d = d
reV
if f & Facn
x € Var(f(X))

Collapse 1:

BZ(f(X)Zt A k) V d =

Vien. x| 35-(/\je[1..|X|];j¢iX];Z@m(f) N XIEL A c, k) Vvd
either t € V and t € Var(f(X))
or root(t) & Facq

i f € Faca
F(X) & subt(c)
Collapse 2:
Z(f(X)Zg(Y) AN e k) V d =
View.ix) - Ajeqrixpiw X =zero(f) A X'= 9(Y) noe, k)
V' Vietv) 32 (Aseppygw zerol H)=Y7 A F(X)=YT A ¢, kc)z
vV

if { fv.g € FACI
f#g

AC1 Decompose:
BZ(f(X)Zf(YV)Aek) V d =
. . 3 Neyk) vV d
(3¢, T))edioac1 (FZ(F(X)=F(Y),T), W) )

where W = Var(3Z.(f(X)=f(Y) AN e, k))

I e FAOl
if{ F(X) Faor (V)
J(X) & subt(c) or ( ) & subl(c)

Table 2: The transformation rules AC1-Unify




CHAPTER 3. UNIFICATION 40

root(f(X)o). Either a proper subterm of f(X)o contains zo or Flatten
has applied and |args(zo)| < |args(f(X)o)|. Both lead to a contradic-
tion. (If f(Y) =4c1 f(Z), then |Y| = |Z| and there exists a permutation
7, such that Y =40y 270 for all i € [1..[Y]].) Thus Sol(z=f(X)) =0
and for Cy = d, we obtain Sol(Cy) = Sol(C}).

e Collapse 1. Let (] = EIZ.(f(X);t/\c, k), where f € Facq,and t € V or
TOOt(t) € FACh Cl == C{ \/d7 Cé == v2€[1|X|] Elg‘(/\jE[l..LXH;j;ﬁi Xj;ZGTO(f)
AXEt A e, k), and Cy = CLV d.

We show that Sol(C{) = Sol(CY}).

“C" If o o€ Sol(f(X);t) then f(X)o =ac1 to. Either tis in V or
root(t) & Faci. Zero must apply to f(X)o |X]| — 1 times at top-level,
leaving an instance of a term X° for some ¢ € [1..|X]|]: X'oc =4c1 t.
In this case, X/0 =4c1 zero(f) for all j € [1..]X]],j # ¢ and thus
o € Sol(/\je[ln|X|]7#iXjézero(f) A Xi;t). Since all ¢ € [1..]X]] are
covered in C, we conclude Sol(C7) C Sol(C}).

“27: I o € Sol(Ajep. xp, i Xfézero(f) A Xi;t), for some ¢ € [1..| X]],
then Zero applies to f(X)o |X|— 1 times at top-level since 0 X7 =401
zero(f), for all j € [1..|X]],j # ¢, leaving an instance of X°.

e Collapse 2. similar to Collapse 1, but both the left and the right hand

side can collapse.

e AC1 Decompose. similar to AC Decompose.



CHAPTER 3. UNIFICATION 41

Lemma 3.5 (Completeness) Fvery normal form with respect to AC1-Uni-
fy is an AC1-unification problem in solved form.

Proof. Let C' = Vep 4 340-(cn, kn) be a normal form with respect to AC1-
Unify. Assume that for some h € [1..k] ¢, = r=s A ¢}, where r = F(X)
and s = ¢(Y) are non-variable terms. If both f € Fuc1 and ¢ € Facq,
then Collapse 2 applies if f # ¢ and AC1 Decompose or Delete applies
otherwise. If only one of the symbols f and ¢ are in Fy¢1, then Collapse
1 applies. If f = g € Fac1 then AC Decompose, Free Decompse or
Delete applies, and if f,g & Faci and f # g, then Fail applies. Note that
the restrictions in Collapse 1, Free Decompose, AC Decompose, and
AC1 Decompose cause no deadlock. (In a set of terms, not all terms can be
strictly contained in other terms.)

So, assume that r = € V. If s = 2, Delete applies. If s # x, then Check
applies if € Var(s) and root(s) ¢ Fac1, Collapse 1 applies if ¢ € Var(s)
and root(s) € Fac1, and Eliminate applies otherwise.

The validation of the solved form properties is similar to the proof of

Lemma 3.2. O

Lemma 3.6 (Termination) FEvery AC1-unification procedure in which, af-
ter every application of Collapse 1, Collapse 2, Free Decompose, AC
Decompose and AC1 Decompose all newly introduced atomic problems
with variables on at least one side are eliminated using Delete, Check and
Eliminate terminates on every AC1-unification problem that contains only

one AC -symbol.



CHAPTER 3. UNIFICATION 42

Proof. The limitation on the presence of only one AC-symbol enables us to
use the same ordering as in the proof of Lemma 3.3 (see Definition 3.6). The
proof for the rules that occur already in AC-Unify is similar to the proof of
Lemma 3.3. The proof for the rule AC1 Decompose is similar to the proof

for the rule AC Decompose. We discuss the remaining rules:

o Collapse 1. We prove that the application of Collapse 1, followed
by the application of Delete, Check, and Eliminate on the newly
introduced atomic problems with variables on at least one side, decreases

the complexity of an AC1-unification problem.

Let e, = 3Z.(f(X)=t A ¢, k), where either t € V and t € Var(f(X)) or
root(t) & Fact, [ € Fact, and f(X) & subt(c), and let C; = ¢; V d. Let
Ch = Viepx ) 32 (Ajepix e X =zero(f) A X'=t A e, k) V d, and
¢y = IZ.(Njepxaen X =zero(f) A X"Et A e, k),

for some h € [1..|X]].

1. If X"t € V and X" = t then Delete applies to X't ey =
FZ(Njep X[ jghxigv Xjaézero(f) A co, ko), where 0 = { X7
zero(f) | X7 € V.j # h}. We obtain a(e;) > aley) and B(ey) >
B(ez). If f(X) does not occur in ¢, then vy(e1) > v(ez), and therefore
pre(€1) >e pe(e2).

Now, we assume that f(X) occurs in ¢. We obtain v(ey) > ~(ez)
and 6(e;) > é(ez). Since f(X)o occurs in co, the terms X?o do
not count for e(ez). Furthermore, f(X) counts for e(ep), since
F(X) & subt(c) (see condition to apply Collapse 1). Clearly, this

occurrence of f(X) has no corresponding occurrence in ey. Thus,



CHAPTER 3. UNIFICATION 43

e(e1) > e(eq), and therefore p.(e1) >, pe(eq).

2. If X"t € V and X" # ¢ then Eliminate applies to Xh;t, result-
ing in ey = 3Z.(N\jep.|xjjzhxigv Xjaézero(f) N co, ko), where
o = {X' — zero(f) | X! € V,j # htU{t — X"}, We
obtain a(e1) > afez). The term ¢ occurs under @ and, since
t € Var(f(X)), under at least one other symbol. Therefore, we
obtain B(e1) > f(ez). Clearly, y(e1) > v(ez). The atomic AC1-
unification problem f(X);t has no corresponding occurrence in ey,

thus é6(eq) > é(ez2), and therefore p.(e1) >. pe(ea).

3. If X* ¢ V and t € V then Eliminate applies to X"t and ey as

in 2. Proof as in 1.

4. If X* € V and t € V then Eliminate applies to X't ey =
AZ(Njep . x [jzhxigv Xjaézero(f) A co, ko), where 0 = { X7
zero(f) | X7 € V,j # h} U{X" — t}. Proof as in 1.

5 IF X" and t € V then ey = 32 (Ajepr. x[sjnhixigv Xjaézero(f) A
XhoZte A co, ko), where o = { X7 + zero(f) | XV € V,j # h}.

Proof as in 1.

We proved that, after the exhaustive application of Delete, Fail, and
Eliminate, every newly constructed existential constraint e, fulfills
p(e1) >c eg; thus the complexity of the ACT-unification problem de-

creases.

o Collapse 2. We prove that the application of Collapse 2, followed
by the application of Delete, Check, and Eliminate on the newly



CHAPTER 3. UNIFICATION 44

introduced atomic problems with variables on at least one side, decreases

the complexity of an AC1-unification problem.

2

Let e = 3Z2.(f(X)=g(Y) A ¢, k), where f,g € Fac1, and C7 = e1 V d.

Let C) =
Vien..|x EIE'(/\je[l..|X|];j;£iXj;'zero(f) AN X'Zg(Y) A e, k)V
\/ie[l..|Y|] 35-(/\]‘6[1..|Y|];j¢iZem(f);yj A f(X);Yi N, k) vV d, and

ey = EIZ.(/\je[l..|X|];#hXjézero(f) A Xh;g(Y) A ¢, k), for some

h € [1..|X]] (proof for €} in second disjunction similar).

1. If X* € V then Eliminate applies to Xh;g(Y), and ey = 7.
(/\je[ln|X|];#h;X]€VXjaézero(f) A co, ko), where 0 = {X/
zero(f) | XV € V,j # h} U{X" — ¢(Y)}. We obtain a(e;) >
aley). Tf JOP(X" e)] > 2, then B(e1) > B(ez). Otherwise, we
obtain B(e;) > B(ez), and since X" occurs only under the AC-
symbol f, Flatten applies at every application of {X" — ¢(Y)},

such that v(e1) > v(ez).

2. If X" ¢ V then ey = A2 Njep . x [jthxigv Xjaézero(f) AXoZ
g(Y)o A co ko), where 0 = { X’ s zero(f) | X7 € V,5 # h}.
For I € {a, 3,v,6,c}, we obtain I'(e;) > I'(es), and additionally
((e1) > ((ez), since all positions in e; have a corresponding position
in ¢; (the terms X"o have their corresponding position in f(X)),

and the position (A, 0) in f(X) has no corresponding position in es.

We proved that, after the exhaustive application of Delete, Fail, and

Eliminate, every newly constructed existential constraint e, fulfills



CHAPTER 3. UNIFICATION 45

p(e1) >c eg; thus the complexity of the ACT-unification problem de-

creases.

3.4 AC1-Unification with Zero-Disequations

During the solving AC1-unification problems with zero-disequations, we trans-
fer zero-disequations of the form ¢ = 0 in the unsolved part to the solved part,
in which only zero-disequations of the form = # 0, where @ € V, are allowed.
We shall resolve zero-disequations similarly to atomic AC'1-unification prob-
lems. In addition any substitution resulting from a solution of a unification
problem must fulfill all zero-disequations.

All terms in the solved part are kept in normal form with respect to the
rewrite system Zero. This ensures, together with the normal form computa-
tion with respect to Flatten, that if a term ¢ =401 0 for some 0 € F..,, then

t = 0, so that violations of zero-disequations can easily be detected.

Notation: We extend the function |z, from terms to conjunctive con-

straints. Let
Cc = /\ Ti;SZ’ A /\ Z; 7£ fz
1€[1..n] 1€[1..n]

be a conjunctive constraint. Then

& lZeTo: /\ r; lZeTo ;Si lZeTo A /\ €y 7£ fz

1€[1..n] 1€[1..n]



CHAPTER 3. UNIFICATION 46

The set Disequation-AC1-Unify of transformation rules consists of the
rules in AC1-Unify, where the rule Eliminate is replaced by the rules Elim-
inate Pass and Eliminate Clash, and the new rules Disequation Delete,
Disequation Eliminate Pass, Disequation Eliminate Clash, and Dise-
quation Decompose in Table 3. The union of the relations described by the

rules in Disequation-AC1-Unify is denoted by = pisequation—AC1-Unify-

Definition 3.8 A disequation-AC1-unification procedure is a subset U of the
relation = pisequation—AC1-Unify such that every normal form with respect to

U is a normal form with respect to = pisequation— AC1-Unify-

Similar to the previous sections, we state the soundness, completeness, and
termination of disequation- AC'1-unification procedures. We give only the parts

of the proofs that differ from the corresponding proof in the previous section.

Lemma 3.7 (Soundness) Fvery disequation-AC1-unification procedure pre-

serves the unifiers: If Cy = Disequation_ AC1_ Unify Csy, then Sol(Cy) = Sol(Cy).
Proof.

e Eliminate Pass. similar to Eliminate in the previous section. (Clearly,
the application of |z.,, has no impact on the set of solutions of a con-

straint.)

e Eliminate Clash. Let () = 3Z.(x=t A ¢, k) V d. Clearly, Sol(z=f A
v # f) = 0. Thus if for some atomic AC1-unification problem z=f in
(2=t A ko) | gero the zero-disequation z # f occurs in k, then Sol(Cy) =
Sol(d).



CHAPTER 3. UNIFICATION

Eliminate Pass:

EIZ.(:L';t/\c,k) vVd = AZ.( co A go, (z= t/\ka) L Zero) V d

o={x—t}
where { k=gNkK
s;ﬁOEk zeVar(s) S 7£ 0
reV
) x & Var(t)
if

for no x;f in (x;t N ko) | zero
x # f occurs in k
Eliminate Clash:
Az (z=tAek) v d =d
reV

x & Var(t)
for some l’;f in (l’;t NEko) | Zero

x # f occurs in k

if

where o = {& — t}
Disequation Delete:
Z(f(X)£0Ac, k) Vd = dZ.(c, k) vV d
if f & Fac
Disequation Eliminate Pass:
Z(x#0Nec, k) Vd = Az (c,x A#O0Nk) V d
) { reV
if ?
r=0¢ k
Disequation Eliminate Clash:
Z(x#0Nc, k) vVd = d
¢ reV
' { x=0 € k
Disequation Decompose:

where DN F' is the set of conjunctions in the disjunctive normal form of

(XY L0V X2 zero(f)V X2 # zero(f) V-V XE L zero(f)) A

(X £ zero(f) VX240V X? % zero(f) V-V XE L zero(f)) A

‘(Xl + zero(f)V X2 # zero(f)V X3 # zero(f) v --- v XX £ 0)

Table 3: The transformation rules Disequation-AC1-Unify




CHAPTER 3. UNIFICATION 48

o Disequation Delete. Let ¢, = 37.(f(X) # 0 A c,k) V d, where
f & Faci. AC1 can only change the root symbols of terms with root(t) €
Faci. Thus any substitution is in Sol( f(X) # 0) and Sol(Cy) = Sol(3Z.
(c,k) Vv d).

e Disequation Eliminate Pass. trivial.
e Disequation Eliminate Clash. similar to Eliminate Clash.

e Disequation Decompose. Let C; = 3Z.(f(X) #0A ¢, k) V d, where
f € Faci1. The zero-disequation f(X) # 0 is violated, if and only if for
one term X' in X holds X* =41 0 and for all other terms X7 in X holds
X7 =401 zero(f). The negation of this fact is expressed by the formula

in Disequation Decompose, of which DNF' is a disjunctive normal

form. Distributivity yields that Sol(Cy) = Sol(V,epnp3Z.(gAc, k) V d).

a

Lemma 3.8 (Completeness) FEvery normal form with respect to Disequa-
tion-AC1-Unify is an AC1-unification problem with zero-disequations in

solved form.

Proof. Let (' = Vcpy g 37.(ch, ki) be a normal form with respect to Dis-
equation-AC1-Unify. From the argumentation in the proof of Lemma 3.5
follows that ¢, is a conjunction of zero-disequations for all & € [1..k]. Assume
t#0 € ¢, Ift eV then Disequation Eliminate Pass or Disequation
Eliminate Clash applies. If t = f(X) then Disequation Decompose or
Disequation Delete applies. Therefore, ¢, must be T for all & € [1..k].



CHAPTER 3. UNIFICATION 49

The proof of uniqueness and idempotency follows from the argumentation
in the proof of Lemma 3.2.

We show that in every existential constraint in (', every replacement in the
solved part fulfills all zero-disequations in the solved part.

Assume that the atomic ACT-unification problem 2=0 in kj, violates the
zero-disequation & # 0 in k. The atomic AC'1-unification problem 220 cannot
have been added to k; after the zero-disequation = # 0, since the conditions
to apply Eliminate Pass would not have been fulfilled. On the other hand,
the zero-disequation x # 0 cannot have been added to kj after the atomic
AC1-unification problem :1;;0, since the conditions to apply Disequation

Eliminate Pass would not have been fulfilled, which is a contradiction. O

The simplest way to ensure the termination of disequation-ACl-unification
procedures is to solve first the atomic unification problems and then the zero-

disequations.

Lemma 3.9 (Termination) Fvery disequation-AC1-unification procedure
that first applies the rules in AC1-Unify (including Eliminate Pass and
Eliminate Clash) as described in Lemma 3.6 and then the rules Disequa-
tion Delete, Disequation Eliminate Pass, Disequation Eliminate
Clash, and Disequation Decompose in any order, lerminates on every
ACT1-unification problem with zero-disequations that contains only one AC-

symbol.

Proof. The former process terminates due to Lemma 3.6. The termination of
the latter process can be shown using an ordering based on the size of the terms

in the zero-disequations of the unsolved parts of the existential constraints. O



CHAPTER 3. UNIFICATION 30

Note that violations of zero-disequations can be detected earlier, when the solv-
ing of atomic AC1-unification problems and the solving of zero-disequations
are interleaved. However, in this case the termination proof is harder because
in Eliminate Pass zero-disequations in the solved part are moved back to

the unsolved part.



Chapter 4

Completion

In this chapter, we shall approach the task of completion of equation sets
in the presence of associative commutative function symbols and identities.
Prior to describing procedures for completion in Section 4.4, we shall present
a notion of rewriting in AC'1-theories in Section 4.1 that is reasonably efficient
and—for our purpose—equivalent to the concept of rewriting modulo AC'1.
In Section 4.2, we introduce some operations on constraints that we shall use
in Section 4.3 to interleave constraint solving with the process of completion.
In Section 4.4, a variety of completion procedures is described using a set
of transformation rules. Suitable application strategies for these rules are

discussed in Section 4.5.

4.1 Constrained AC1l-rewriting

Definition 4.1 A constrained equation is a triple C' | [ &~ r, where C is a

constraint, and [ and r are terms.

51



CHAPTER 4. COMPLETION 52

If F is a set of constrained equations, we write s — g t to indicate that there
exist terms w and [', a position 7 in w, a substitution o, and a constrained
equation C' | [ = r in F, such that o € Sol(C), s = w[l'|;, I' =4¢1 lo, and
t = w[ro],. The relation —p is called the rewrite relation induced by E. We
say that s rewrites to t by £ if s —g t. A normal form with respect to — g is
said to be irreducible by E.

A set E of equations will be called a constrained rewrite system if the
rewrite relation — g is the primary object of study. The constrained equations
of a constrained rewrite system are also called constrained rewrite rules.

Several different ways have been devised to integrate equational theories
into the rewriting process. The most general approach, applied to the AC1-

case, 1s rewriting modulo ACT.

Definition 4.2 We say that the constrained rewrite system R rewrites the
term v to the term w modulo ACI, denoted v ﬁ» w, if there exist

terms v’, w’ such that v =401 v/ =g W' =401 w.

We write v ﬁ» w to specify the constrained rewrite rule and the sub-

stitution by which v’ is rewritten to w’.

Definition 4.3 The constrained rewrite system R is called convergent modulo

ACT if

is terminating and Church-Rosser modulo AC'1.
R/AC1

The task of completion modulo AC1 of a given set E of constrained equations
is to construct a constrained rewrite system R such that AC1UFE and AC1UR
define the same equational theory and R is convergent modulo AC'1.

Several weaker notions of rewriting in an equational theory are in use (for

the general case, see [Bac 91]; for the AC'1-case, see [JM 90]). We shall employ



CHAPTER 4. COMPLETION 33

our extended concept of subterms and positions to define yet another version

of rewriting in the theory ACT.

Definition 4.4 We say that the constrained rewrite system R AC1-rewrites

the term v to the term w, denoted v Tm» w, if v | Flattenuzero— R W.
We write v #1\5» w to specify the constrained rewrite rule and the sub-

stitution by which v | prasenuzero 18 rewritten to w.

Proposition 4.1 If r =401 s W t then there exists a lerm u such

that r

U = t.
OT\R AC1

Proof. Let r =401 s ——— . The definition of —— implies
R/AC1 R/AC1
that there exist terms s’ and ¢’ such that s =401 8 —r t' =4c1 t. Let v’ be
the normal form of r with respect to Flatten U Zero. Let = be the position
at which — g applies to s’. There exists a term w, a substitution o, and a
constrained rewrite rule £ = C' | [ & r in R, such that o € Sol(C), s’ = w[lo],
and ' = w[ro],. From Lemma 2.1 follows that there exists a position 7’ in 7’
such that |, =4¢c1 §'|». Therefore, the constrained rewrite rule £ applies to

r’ at position 7’ resulting in a term u. Since r’ =401 $" and | =401 8|5, we

get u =401 t' and thus u =41 £. Figure 1 depicts the situation. O

We can say that AC'1-rewriting rewrites equivalence classes with respect to
AC'1 and is equivalent to rewriting modulo AC'1, when we are only interested
in one representantive of the equivalence class of terms to which a term is

rewritten. In particular, we obtain the following results.

Proposition 4.2 (1) The relation TN terminates if and only if

terminates; (2) the relation is Church-Rosser modulo

ts Church-Rosser modulo AC1.

R/AC1
ACT if and only if

R/AC1



CHAPTER 4. COMPLETION 54

r —— r S S
Flatten U Zero AC1 AC1
ACI\R R/ACT R
R
t t
AC1 AC1

Figure 1: Illustration to Proposition 4.1

Proof. (sketch) Using Proposition 4.1, we can show that if “hac does not

terminate then neither does —orn (see Figure 2). The reverse direction is

C1\R

trivial.

We can show by induction using Proposition 4.1 that if is

R/AC1

Church-Rosser modulo AC1 then so is “aonn (see Figure 3). The re-

verse direction is trivial. O

Now, we can rephrase a well-known fact (see [Huet 80]) using AC'1-rewriting
instead of rewriting modulo AC'1 in a lemma that shall be the foundation of

our completion procedures.

Lemma 4.1 Let R be constrained rewrite system such that termi-

is Church-Rosser modulo AC'1 if and only if
is locally confluent modulo AC1.

nates. The relation

AC1\R

Remark: AC1-rewriting will be reasonably efficient, when all terms, including

the left and right hand side of constrained rewrite rules are kept in normal



CHAPTER 4. COMPLETION

O
ACT\R AC1/R

O’/ o©

AC1
\AOl\R \AOl/R
O/ o©

AC1
\AOl\R \AOl/R
O’/ O°

(o] (o]
\j
AOl\Rl \]i/AOl R/ACY lAOl\R
v
(o] (o] (o] (o]
T TAC . ACT .
(o] (o] (o] (o]
ACT ACT
\j
AOl\Rl \]i/AOl y R/AC1 l AC1\R
v
(o] (o] (o] (o]
ACT ACT ACT

Figure 3: llustration to Proposition 4.2 (Church-Rosser)

)



CHAPTER 4. COMPLETION 56

form with respect to Flatten U Zero. In this case, AC1-matching procedures
as described in Appendix A can be applied.

During the process of completion, local confluence modulo AC'1 is tested when-
ever a new constrained rewrite rule is found. On failure of this test, “critical
pairs” are added. In rewriting modulo an equational theory, “extensions” of
rewrite rules are often used to test for local confluence. The concepts of crit-
ical pairs and extensions are captured by the following lemma that implies a

criterion for local confluence modulo AC1.

Lemma 4.2 (Critical Pair Lemma) Let & =C) |~ r and & =C5 | g &~

d be constrained rewrite rules that have no variables in common. There exist

terms t, v and w such that v t w if and only if
ACINE ACTI\E;

o lhere exist terms v’ and w' such thal v —— v =401 W +~——m
C1\&; ACTI\E

w, or

Y

o there exists a subterm I' in | and a substitution o € Sol(C1) N Sol(Cy)

such that l'oc =4c1 go, or

o there exists a subterm ¢’ in g and a substitution o € Sol(Cy) N Sol(Cy)

such that ¢'c =401 lo, or

o there exists a subterm I" in [+ and a substitution o € Sol(C1)NSol(Cy)
such that "o =4c1 go, where root(l) = + € Fac and x is a new variable,

or

e there exists a subterm g" in g+ and a substitution o € Sol(C1)NSol(Cy)

such that "o =ac1 lo, where root(g) = + € Fac and x is a new variable.



CHAPTER 4. COMPLETION 57

4.2 Some Operations on Constraints

Let C1 = Vigp .oy 37i-(cis ki) and Cy = Ve HZ_}/.(C;, k%) be disjunctive con-
straints and let DNF = Vg 37/ .g; be a disjunctive normal form of the
formula Viep. . 3%ici A ki A Viepm EIZ_}/.C; A k. Then Cy A Cy denotes the

disjunctive constraint Ve g 32 (gi, T)-

Proposition 4.3 For any two constraints Cy and Cy holds Sol(Cy N Cy) =
Sol(Cy) N Sol(Cy).

The application of a substitution o to a constraint C' = Ve, 3% (i, ki) is

defined to be the constraint \/;epy nj(cio A ko, T).

Proposition 4.4 If Ran(o) N Var(C) =0, Dom(s) N, e [1..1] Zi =10 and
o € Sol(C), then Sol(Co) = {ro | 7 € Sol(C)}.

Let €' = Ve )(Ajeptomg tig 7 0ijs Nirettmn B 0 7 0 ;) be a disjunctive con-
straint that contains no atomic unification problem and let DNF = Vg 4
Njen. 32'7];12'7]' A Nirepa 3§7j,;127j, be a disjunctive normal form of the

/

formula Aicpng Vien.ma tii=0i; V' Vjen.my ti s=07 .. Then the negation
of C, denoted C is defined to be the constraint Viep.x(Ajen.a 32'7];12'7]' A
/\j'e[l..lg] Sg,j’ilg,jlv T).

Proposition 4.5 If C is a disjunctive constraint that contains no atomic uni-

fication problem, then L(V(C)) = Sol(C) W Sol(C).

4.3 Auxiliary Transformations

AC1-completion can be viewed as a transformation process on pairs consisting

of a set of unoriented constrained equations on the left hand side and an



CHAPTER 4. COMPLETION 38

constrained rewrite system on the right hand side.

In order to interleave constraint solving with completion, we introduce the
set Aux of transformation rules in Table 4. Each transformation rule in Aux
represents a binary relation on pairs of sets of constrained equations. We

denote the union of these relations by = Aux-

Proposition 4.6 (Soundness) If FE; N =aux E'; N’ then the relations

and are equal.
ACI\EUN ACI\E' U N’

Note that in Equation Distribute and Rule Distribute the constraint C'

may be —. In this case, the rule or equation is discarded.

4.4 The Transformation Rules
AC1-Complete

Table 5 shows the set AC1 — Complete of transformation rules, whose goal
is to generate from a given set of constrained equations a constrained rewrite
system that is convergent modulo AC'1. Each transformation rule describes a
relation on pairs of sets of constrained equations. The union of these relations

is denoted by = Ac1-Complete-



CHAPTER 4. COMPLETION

39

Equation Unify:
Fu{C|l=r}; N = EU{C'|l=r}; N
it ¢ = Disequation—AC1-Unify C’

Rule Unify:
E; NUu{C|l~r} = E; NU{C'|l~r}
it ¢ = Disequation- AC1-Unify C’

Equation Distribute:
EU{Vicpyen|lmr}; N = EUUppylen|lrry; N

Rule Distribute:
E ;s NU{Viep.ger [ l=r} = E;5 NUUpepplen | =7}

Equation Apply:
EU{32(T, Nep.m i # 0 A Njepm¥5=t5) | L=} s N
= EU{Nepmzi #0i|lox=ro}; N
where o = Ajep.m ¥=t;
if 32T, Niepony T 7 00 A Njeptm] y];tj) in solved form

Rule Apply:
E 5 NU{FZ(T, Niepomy @ 7 00 A Njepmy vi=t5) [ L= 7}
= F; NU {?/\z’e[l..n] r; #0; | lo~ro}
where 0 = Ajepm ¥ =1;
if 32T, Nepony T 7 00 A Njeptm] y];tj) in solved form

Table 4: The transformation rules Aux



CHAPTER 4. COMPLETION 60

Remarks:

o We assume given a predicate 7 such that if 7& for all rules £ in R

then Tm» terminates (see Section 4.5 for further discussion of
termination).

e The symbol ~ is used to denote unoriented equations in a commutative
way: FU{C |l ~r} denotes that either C | [~ r or C | r = [ occurs in

a set of constrained equations and the remainder of this set is denoted

by E.

e The symbol > in Collapse denotes the strict part of the encompassment
ordering, which is defined as follows: s = ¢ if some subterm of s is an

instance of £, but not vice versa.

Definition 4.5 An AC'l-completion procedure is a subset of the relation
Aux U AC1 — Complete.

Lemma 4.3 (Soundness) If ;N = Ac1-Complete £2'; N’ then the relations

*and +~———  * are equal.

ACI\EUN ACI\E' U N’

We describe the fairness of a derivation in Aux U AC1 — Complete. Let
(CP(N);N) = =heduce (0; N) be the pair of sets of constrained equations
resulting from exhaustively applying the rule Deduce to the constrained
rewrite system N. CP(N) is called the set of critical equations of N. Let
(EXT(N); N) = =DeduceExtended (9; V) be the pair of sets of constrained

equations resulting from exhaustively applying the rule Deduce Extend to



CHAPTER 4. COMPLETION

Deduce:
Ei; N = EU{C1/\02/\Z|7T;g|l[d]7T%r};N
,f{Cl|l%randCQ|g%d€N
7 € Fpos(l)
Deduce Extended:
EF; N =
EU{CyANCo AN (T4 2)o=g | (L4 2)[d], =7} ; N
if{Cl|l%randCQ|g%d€N
7 € Fpos(l + x)
Orient:
Eu{C|l~r}; N = FE; NU{C|l~r}
it 7T(C|l~r)
Simplify:
EUu{Cy|l~r}; N =
EU{CiANCH | =ryU{CiNC [ I=r); N
{CﬂgdeN
if
4 !
ACI\C, | g~ d

Delete:

EFEu{C|l=r}; N = FE; N
if ! =Ac1 T

Compose:

Cylg=d € N
if ,
r
ACI\C: | g~ d

Collapse:
EU{CiANCO | U =r}; NU{CIANCO |1 ~7)}
Cylg~d € N
if ! 4 U
ACI\Cs | g~ d

=g

Table 5: The transformation rules AC1-Complete

61



CHAPTER 4. COMPLETION 62

the constrained rewrite system N. CP(N) is called the set of extensions

of N. Let FEo; No = AuxuAC1-Complete £1; N1 = AuxUAC1-Complete --- be
a derivation in Aux U AC1 — Complete. The set of constrained equations
U o(N52,, N;) is denoted by N...

A derivation Eo; No = AuxuAC1-Complete £1; N1 = AuxUAC1-Complete - - -

is said to be fair, if

(G

U (———) <

ACI\E
EECP(Nuo)UEXT(Noo) \

(—)
= ACI\E;

In a fair derivation Ey; Ny = AuxUAC1-Complete Ev; Ny = AuxUAC1-Complete

... all critical equations and critical extensions of V., are instances of equations

s for two terms

in the union of all F; in the sense that whenever r
ACIN\E

r and s and a constrained equation € € CP(N4)U EXT(N.) there exists
s. An

an ¢ € N and a constrained equation & € I; such that r e

AC1-completion procedure is fair, it all derivations it produces are fair.

Lemma 4.4 (Completeness) Let the derivation Ey; No = AuxuAC1-Complete

Ev; Ny =~ AuxUAC1-Complete --: = AuxUAC1-Complete Q);Nk be fair. For all
terms v and w holds: If v w then there exist terms u and u'
ACI\EO U Ny
such that v *u = U e—Fw
CI\N,, 401 ACT\N),

Proof. (sketch) As in [JM 90], the completeness can be shown using proof
orderings, a technique developed in [BD 89]. A rewrite system on proofs,
based on the transformation rules in AC1-Complete, must be defined and

the correctness and termination of this rewrite system must be established. O



CHAPTER 4. COMPLETION 63

Equation Split:
Eu{Cll~r}; N = FU{CAC|l=r}U{CAC"|l~r}; N

Table 6: The transformation rule Equation Split

4.5 Application Strategies

The transformation rules AC1-Complete describe a large class of procedures,
not all of which are suitable for completion. An obvious limitation is imposed
by the negation of constraints in the rules Simplify, Compose and Collapse.
Since negation of constraints is only defined on constraints that contain no
atomic unification problems, we require that the rules in N are always in
normal form with respect to Aux.

The difficulties in applying the rule Orient are to find an appropriate
predicate 7 and to transform a given constrained equation C' | [ & r such
that 7 is fulfilled. Both problems are solved in [JM 90], where a criterion
for termination of constrained rewrite systems is developed and an algorithm
to generate a constraint for a constrained equation such that the criterion is
fulfilled is presented.

Let £ = C |~ r bean ACl-equation in F and C’ a constraint such
that 7(C A C' | Il &~ r). We can split € into two parts: & = CAC' |l ~r
and & = C AC' |1~ r. Now, we can apply Orient to &. &£" remains in
E. We can schematize this operation by the transformation rule Equation
Split shown in Table 6, whose soundness follows from Propositions 4.3 and 4.5.
Regarding the application of the transformation rules in Aux to the unoriented

equations, we shall discuss two strategies.



CHAPTER 4. COMPLETION 64

The first strategy is to apply Aux eagerly, transforming all occurring con-
straints into solved constraints consisting of conjunctions of zero-disequations.
This leads to a total separation of completion and unification as in [JM 90],
but maintaining the possibility of constraining unoriented equations.

The second strategy consists in postponing the solving of particularly hard
unification problems and “shelving” the unoriented equations in which they
occur. Proceeding with the completion process, the rule Simplify may apply
to the postponed unification problem and make it easier to solve. In applying
the rule Orient, we may solve unification problems in unoriented equations

(lazily) only when no other equation can be oriented.

Example 4.1 For the unification problem
(:1;—|—1)>|<(y—|—1)>|<(z—|—1);u>|<v>|<w,

216 solutions are computed. In the presence of the rewrite rule + + 1 & f(x),

we can simplify the problem to

flz)* f(y) = f(z);u * Uk W,
for which only 27 solutions are computed.

We can show the termination of lazy unification under certain conditions,
imposed by the complexity measure in Definition 3.5, on the form of the rules

with which the unification problems are simplified.



Chapter 5

Implementation

In this chapter, we present an overview of the experimental environment for
Term Rewriting in Associative Commutative theories with Identities, TRA-
CONE, which is currently being implemented in the programming language
Standard ML (see [HMM 86]) in Version 75 of New Jersey.

The overall structure of TRACONE is outlined in Figure 4. Fach module
represents an SML-functor that can be separately compiled, allowing for an
easy testing and recombination of the modules and a fast loading of the system.

We shall briefly discuss the main features of the modules.

o A variety of modules is designed to provide basic abstract data types and
functions. The module parser offers the facility to read data from a file
and lexically analyze it. The abstract data structure of a finite binary
relation and specializations of it are provided by the modules relation,
function, and ordering. Various versions of the abstract data types of
sets and multisets are provided, allowing the user to specify the equality

of elements and the ordering in which the elements are stored.

65



CHAPTER 5. IMPLEMENTATION

completion

Y

=7

equationset trs

A A

equation rule

~ 1

constraint

matching

~_ I

\

termorderings substitution

simplifier

— ¥

A

term

diophant

variable

signature

A

A

66

set multiset relation function ordering parser

Figure 4: The structure of TRACONE




CHAPTER 5. IMPLEMENTATION 67

e The module signature is designed to interpret a user given signature,
providing for multiple types, declaration of infix notation, associativity

and commutativity of function symbols, and identity symbols.

o In variable, multi-typed variables are specified, including a mechanism
to make data structures variable distinct, and a utility to generate new

variables.

e The module term provides various functions operating on terms. The
implementation of subterms and positions of terms is consistent with
Section 2.1. Equality on terms is implemented as equality modulo AC'1
and after every operation on terms the result is normalized with respect

to Flatten U Zero.

e The module substitution provides the application of substitutions to vari-

ables, terms and substitutions.

e The notion of constraints in constraint is consistent with Section 2.4.
Full and partial solving of constraints is supported, implementing the

transformation rules in Section 3.4. For the basic simplification steps in

the AC- and AC'1-case,

e the module simplifier is used. It represents an implementation of the

function dio in [Fag 84], using

o the solving of linear diophantine equations, implemented in diophant and

based on [Huet 78].



CHAPTER 5. IMPLEMENTATION 63

e The module matching provides constrained AC1-matching and repre-

sents an optimized implementation of the transformation rules given in

Appendix A.

e The modules rules and trs offer mechanisms to build AC'1-rewrite sys-

tems and compute normal forms, whereas

e the modules equation and equationset provide methodes to build sets of

unoriented equations.

o In the module termorderings, various versions of recursive path order-
ings ([Der 82]) are integrated into the framework of AC-path orderings
(see [BP 85]). The user can specify a precedence ordering and the sta-
tus of free function symbols (lexicographic left, lexicographic right, and

multiset). AC-symbols have the status multiset.

In Appendix B, the use of TRACONE is demonstrated on a variety of exam-

ples.



Bibliography

[Bac 91]

[BD 89]

[BP 85]

[BHK 88]

[BPW 89]

L. Bachmair. Canonical Fquational Proofs. Birkhauser Boston In-

corporation, 1991.

L. Bachmair, N. Dershowitz. Completion for rewriting modulo a

congruence. Theoretical Computer Science 1989 67, pp. 173-201.

L. Bachmair, D. Plaisted. Termination orderings for associative-
commutative rewriting systems. Journal of Symbolic Computation

1985 1, pp. 329-349.

H.-J. Biirckert, A. Herold, D. Kapur, J. Siekmann, M. Stickel,
M. Tepp, H. Zhang. Opening the AC-unification race. Journal of
Automated Reasoning 1988 4,1, pp. 465-474.

T.B. Baird, G.E. Peterson, R.W. Wilkerson. Complete Sets of Re-
ductions Modulo Associativity, Commutativity and Identity. In:
Proc. Rewriting Techniques and Applications 1989, Chapel Hill,

Lecture Notes in Computer Science 355, pp. 29-44, Springer-
Verlag, 1989.

69



BIBLIOGRAPHY 70

[Bou 90]

[Der 82]

[Fag 84]

[HMM 86]

[Huet 78]

[Huet 80]

[JK 91]

A. Boudet. Unification dans les mélanges de théories equation-
nelles. PhD thesis, Université de Paris-Sud, Centre d’Orsay,
France, 1990.

N. Dershowitz. Orderings for term-rewriting systems. Theoretical

Computer Science 1982 17,3, pp. 279-301.

F. Fages. Associative-Commutative Unification. In: Proceedings
7" International Conference on Automated Deduction, Napa Val-
ley (California, USA), R. Shostak, editor, Lecture Notes in Com-
puter Science 170, pp. 194-208, Springer-Verlag, 1984.

R. Harper, D. MacQueen, R. Milner. Standard ML. Edinburgh
University Internal Report ECS-LFCS-86-2, 1986.

G. Huet. An algorithm to generate the basis of sulutions to homoge-

neous linear diophantine equations. Information Processing Letters

1978 7,3, pp. 144-147.

G. Huet. Confluent reductions: Abstract properties and applica-
tions to term rewriting systems. Journal of the Association for

Computing Machinery 1980 27, pp. 797-821.

J.-P. Jouannaud, C. Kirchner. Solving Fquations in Abstract Alge-
bras: A Rule-Based Survey of Unification. Research Report CRIN
1991, to appear in: Festschrift for Robinson. J. L. Lassez, G.
Plotkin, editors. MIT Press.



BIBLIOGRAPHY 71

[IM 90]

[Kir 89]

[KB 70]

[KKR 91]

[LB 77]

[LS 75]

J.-P. Jouannaud, C. Marché. Completion modulo associativity,
commutativity and identity (ACI). In: Proc. Int. Symp. DISCO
1990, Lecture Notes in Computer Science 429, pp. 111-120,

Springer-Verlag, 1990.

C. Kirchner. From unification in combination of equational theories
to a new AC-unification algorithm. In: Resolution of Equations in
Algebraic Structures, H. Ait-Kaci, M. Nivat, editors, Volume 2:
Rewriting Techniques, pp. 171-210, Academic Press, 1989.

D. E. Knuth, P. B. Bendix. Simple word problems in universal alge-
bras. In: Computational Problems in Abstract Algebra, J. Leech,
editor, pp. 263-297, Oxford, Pergamon Press.

C. Kirchner, H. Kirchner, M. Rusinowitch. Deduction with Sym-
bolic Constraints. Revenue Francaise d’ Intelligence Artificielle

1990 4,3, special issue on automated deduction, pp. 9-52.

D. S. Lankford, A. M. Ballantyne. Decision procedures for sim-
ple equational theories with associative-commutative axioms: Com-
plete sets of associative-commutative reductions. Technical report
ATP-39, Department of Mathematics and Computer Science, Uni-
versity of Texas, Austin, 1977.

M. Livesey, J. Siekmann. Temination and decidability results for
string unification. Technical report CSM-12, University of Essex,
1975.



BIBLIOGRAPHY 72

[Mar 91]

[PS 81]

[Smo 89]

[Sti 81]

C. Marché. On ground AC-completion. In: Proceedings 4" Inter-
national Conference on Rewriting Techniques and Applications,
Como (Italy), R. Book, editor, Lecture Notes in Computer Science
488, pp. 411-422, Springer-Verlag, 1991.

G. E. Peterson, M. E. Stickel. Complete sets of reductions for some
equational theories. Journal of the Association for Computing Ma-

chinery 1981 28, pp. 233-264.

G. Smolka. Logic Programming over Polymorphically Order Sorted
Types. PhD thesis, Universitat Kaiserslautern, FB Informatik,
West-Germany, 1989.

M. E. Stickel. A Unification Algorithm for Associative-Commuta-
tive Functions. Journal of the Association for Computing Machin-

ery 1981 28, pp. 423-434.



Appendix A

ACl1-matching

A term s AC'1-matches a term ¢ via the substitution o, if s =401 to. Just like
ACT-unification, AC'1-matching can be described with transformation rules.
In Table 7, we give the set AC1-Match of transformation rules. Note that we
require both terms to be in normal form with respect to FlattenU Zero. AC1-
matching procedures can be defined similar to AC1-unification procedures
(see Definition 3.7) and can be proved to be sound and complete similar to
Lemmas 3.4 and 3.5. All AC1-matching procedures terminate as can be shown
using an ordering based on (the multiset extension of the set extension of) a

simple ordering on terms.

Remarks:

o We employ the notation from section 3.2 but can do without existential

quantification. The symbol Z is not commutative.

o In the rules AC Decompose and AC1 Decompose, the following
notations are used: f(X) denotes zero(f) if | X| = 0, X' if |[X| = 1,

73



APPENDIX A. ACI-MATCHING

Delete:
(rEms A k) vV d = (ek) v d
if r =401 s and r ground
Fail:

(f(X);Mg(Y)/\C,k) vd = d
if f& Faciand [ #g

Eliminate:
(l’;Mt/\C,k) Vd = (c,:z;;Mt/\ k) v d
. reV
it { no J};Mt/ with ¢/ #401 t in k
Clash:

(l’;Mt/\C,k) Vd = d
gl eV
' { some J};Mt/ with ¢/ #40q tin k
Free Decompose:

(F(X)Zaf(Y) A, k)

<
QL

= (Neepxp X'=mY" k) Vv d
if f € Ffree
AC Decompose:

(f(X):?Mf(Y)/\C,k) Vd = A
VPEACPartit(f,X,Y)(/\ie[l..|X|]XiiMf(p(@')) A e, k) vV d

if f € Fac and f & Fac:
AC1 Decompose:

(f(X):?Mf(Y)/\C,k) Vd = A
Vpeact Partic(s,x.v) (Nepxn X =m f(p(i)) Aek) vV d

it f € Facn
AC1 Collapse:

(f(X):?Mt/\C,k) vV d =

\/ie[l..|X|](/\je[1..|X|],j;ﬁiXj;Mzero(f) ANX'=ptAe k) Vod
if f € Facr andt €V orroot(t) # f

Table 7: The transformation rules AC1-Match



APPENDIX A. ACI-MATCHING 75

and f(X) if |[X] > 1. When f € Fac and X and Y are sequences of
terms, then AC Partit(f, X,Y) is the set of all mappings p from [1..| X]|]
to the set of all subsequences of Y such that for all j € [1..]Y]] holds
Y]y = Yicp.x [P()lys, and such that for all 7 € [1..|X|] holds [p(7)] >
1. When [ € Fy4cq then AC1Partit is the set of all mappings p from
[1..|X]|] to the set of all subsequences of Y such that for all j € [1..]Y]]

holds |Y|y; = 2oiell|X]] p(2)]ys

e When we want to find the substitutions with which a term s matches a
term ¢, we apply the rules in AC1-Match exhaustively to the matching

N
pfOblem (t \LFlattenUZeTo iMS \LFlattenUZeTo /\T) vV —.

e We obtain the matching substitutions from a solved form V;c(y (T, &:)
by removing redundant atomic problems from k; for each ¢ € [1..n]. Re-
dundant are problems of the form :L';My, where * = y, and problems
J};Mt, for which J};Mt/ occurs in the rest of &;. Note that in the latter

case, t =401 t' (see condition for Eliminate).

o A complete set of matching substitutions is computed. If a most general
complete set of matching substitutions is wanted, redundant substitu-
tions must be eliminated in an additional pass over the resulting set of

substitutions.



Appendix B

Examples

We demonstrate the use of TRACONE by giving an example session. The

result of an evaluation of an SML-statement is indicated by “>>".

B.1 Rewriting

The file sign contains the signature from Example 2.1 in the syntax of TRA-
CONE.

(* sign *)

a -> X
b -> x
C -> X
d -> x
e -> X
- X -> X
f X -> x

76



APPENDIX B. EXAMPLES 77

g XX -> X
ac infix # : xx -> X
ac infix + : xx -> X
Zero 0 to +
ac infix * : x x -> X
Zero 1 to *

The file sign is interpreted as a signature and a string as a term on this

signature.

val sign = read_signature '"sign";
val t1 = Term.parse "1 + (0 + (f(x_1) + £(x_2)))" sign;
Term.print t1;

>> f(x_1) + £(x_2)

Note that terms are reduced to normal form with respect to Flatten U Zero
after every operation on terms such as parsing. TRACONE uses the extended

notion of subterms and positions as described in Section 2.1.

val t2 = Term.parse "g(0,x_1) * (x_1 + x_2) * 0" sign;

Term.print t2;

>> (x_1 + x_2) * g(0,x_1) * 0

positions t2;

>> [position ([]1,[2,3]1),position ([1,[1,3]),position ([1,[1,2]),
position ([1,[]), position ([3],[]), position ([2],[]),
position ([2,2],[1),position ([2,1],[]),position ([1]1,[]),
position ([1,2],[]),position ([1,1],[])]

Term.list_print (subterms t2);



APPENDIX B. EXAMPLES 78

*
(@]

> g (0, x_1)

(x_1+ x_2)

*
(@]

(x_1+x2)*xg (0, x_1)
(x1+x2)*xg (0, x_1) *0
0

g (0, x_1)

Note that the order of the subterms in an AC-term may change. The file ring
contains a convergent AC'1-rewrite system for the algebra commutative ring

with unit (see [BPW 89]).

(* ring *)
| uw+ (-v) +v = u

| - (1) = u

w/=0 v /=0 I -+ v) = Cw+(-wv)
w/=1 u/=0 v /=0 | wok (u+v) = (w*xu + (w*v).
u /=1 | u*x 0 => 0

u /=1 | (-v) *u => - (v *u)

The file ring is interpreted as a rewrite system and the terms t3 and t4
are reduced to normal form with respect to this rewrite system using AC'1-

matching.



APPENDIX B. EXAMPLES 79

val ring = Trs.read "ring" sign;

val t3 = Term.parse "f(x_1) + f(x_2) + (-(£(x_1)))" sign;
Term.print t3;

> (-(£(x_1))) + £(x_2) + £(x_1)

val normal = Trs.normal_form ring t3;

Term.print normal;

> f£(x_2)

val t4 = Term.parse "f((x_1 + x_2) * g(x_3,x_1))" sign;
Term.print t4;

>> f((x_1 + x_2) * g(x_3,x_1))

val normal = Trs.normal_form ring t4;

Term.print normal;

>> f((x_1 * g(x_3,x_1)) + (x_2 * g(x_3)))

Note that the rewriting facilities of TRACONE represent the implementation
of a programming language based on term rewriting, in which functions can
be declared as being associative commutative and as identities to associative

commutative functions.

B.2 Constraint Solving

The solving of the constraint C; = :1;1#:1;2;:1;3#:1;4 demonstrates the solving

of linear diophantine equations and the introduction of new variables.

val solutions_1 = Constraint.solve C_1;

Constraint.list_print solutions_1;



APPENDIX B. EXAMPLES

>> (* Constraint: *)
(* Substitution *)
x_1 <- x_6 # x_56
x_2 <- x_ 8 # x_7
x_3 <- x_8 # x_6
x_4 <- x_7 # x_5
(* Constraint: *)
(* Substitution *)
x_1 <- Xx_3 # x_5b

x_4 <- x_2 # x_5
(* Constraint: *)
(* Substitution *)
x_1 <- x_b # x_4

x_3 <- x_2 # x_5

(* Constraint: *)
(* Substitution *)
X_2 <- Xx_3 # x_5b

x_4 <- x_b # x_1
(* Constraint: *)
(* Substitution *)

X_3 <- X_2

80



APPENDIX B. EXAMPLES

(* Constraint: *)

(* Substitution *)

X_2 <- x_b # x_4

x_3 <- x_b # x_1

(* Constraint: *)
(* Substitution *)
X_3 <- x_1

x_4 <- X_2

val number_of_solutions

>> val number_of_solutions

length solutions_1;

=7 : int

81

The presence of the indentity 0 for the function symbol + makes all but one

solution of Cy = z1 + :1;2;:1;3 + 24 redundant.

val solutions_2 = Constraint.solve C_2;

Constraint.list_print solutions_2;

>> (* Constraint *)
(* Substitution *)
x_1 <- X_6 + x_5b
X_2 <- x_ 8 + x_7

X_3 <- Xx_8 + x_6



APPENDIX B. EXAMPLES 82

x_4 <- x_7 + x_5

val number_of_solutions = length solutions_2;

>> val number_of_solutions = 1 : int

The following examples are taken from the benchmark acuni in [BHK 88|

(acuni—OOl, acuni-036, acuni-064, acuni-079, acuni—O96) and were run
on a SUN-4 (Sparc).
For C3 = x#a#b?:u#c#d#e, we obtain:

>> Computing time for constraint solving in seconds: 0.450000

val number_of_solutions = 2 : int
For Cy = x#y#a?:u#v#w#c, we obtain:

>> Computing time for constraint solving in seconds: 3.200000

val number_of_solutions = 204 : int
For C5 = x#x#a?:u#v#c#d, we obtain:

>> Computing time for constraint solving in seconds: 1.190000

val number_of_solutions = 60 : int
? .
For Cs = z#Ha#y=u#v#c#d, we obtain:

>> Computing time for constraint solving in seconds: 3.580000

val number_of_solutions = 228 : int

For C7 = x#x#x?:u#v#w#c, we obtain:



APPENDIX B. EXAMPLES 83

>> Computing time for constraint solving in seconds: 172.070000

val number_of_solutions = 6006 : int

The solving of the constraint Cs = 1 # 1Ax1;x2+43(kﬂnonmmauﬁtheapph—
cation of the transformation rule Disequation Decompose in Disequation-

AC1-Unify.

val solutions_8 = Constraint.solve C_8;

Constraint.list_print solutions_8;

>> (% Constraint: *)
(* Substitution *)
x_1 <- X_2 + x_3

(* Disequations *)

(* Constraint: *)
(* Substitution *)
x_1 <- X_2 + x_3
(* Disequations *)

x.3 /= 0 x 2 /= 0

(* Constraint: *)
(* Substitution *)
x_1 <- X_2 + x_3

(* Disequations *)

x 2 /= 1 x.3 /= 1



APPENDIX B. EXAMPLES

(* Constraint: *)

(* Substitution *)
x_1 <- X_2 + x_3
(* Disequations *)

x.3 /= 0 x.3 /= 1

val number_of_solutions = length solutions_8;

>> val number_of_solutions = 4 : int

84



