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Chapter 1IntroductionIn mathematics and the sciences, terms and equations are extensively used.Computers provide tools to mechanize the handling of terms and equations.In many computer applications, including symbolic algebraic computation,automated theorem proving, program speci�cation and veri�cation, automatedreasoning about terms and equations plays an important role.Rewrite systems are sets of directed equations used to compute by replacingsubterms in a given term until a simplest form possible, called a normal form,is obtained. A rewrite system is called canonical, if normal forms are uniqueand always exist. Knuth and Bendix [KB 70] proposed a procedure, calledstandard completion procedure, to build canonical systems by systematicallygenerating and orienting valid equational consequences from a given set ofequations.An extension of the framework of rewrite systems is rewriting in equationaltheories where the replacement of subterms is generalized using equations thatexpress properties of the used operators. Extended completion leads to the1



CHAPTER 1. INTRODUCTION 2construction of canonical systems in this framework.In many applications, operators with the properties of associativity andcommutativity occur (examples are conjunction in logic and addition of inte-gers). A procedure for completion in the presence of associative commutativeoperators has been presented in [PS 81]. Here, equational consequences fromequations are computed using associative-commutative uni�cation, a processthat is in many cases particularly time-consuming.Often, associative commutative operators are associated with an identity(for example true for conjunction and 0 for addition). Unfortunately, asso-ciative commutative completion often fails in the presence of identities, sincesevere restrictions on the orientation of equations must be imposed.In [BPW 89], this problem is overcome by limiting the applicability ofdirected equations via constraints. This approach is presented in [JM 90] inthe framework of transformation rules for completion. A general approach torewriting using constraints is presented in [KKR 91].In [BPW 89] and [JM 90], only the resulting rewrite systems, but not theinitial set of equations may contain constraints, which limits the applicationof this approach in practice.We shall make use of constraints in completion in the presence of associativecommutative operations with identities for two purposes. Firstly, we shallextend the appoach of [BPW 89] and [JM 90] to undirected equations, suchthat the given sets of equations may contain constraints. Secondly, we shallprovide a framework to interleave associative commutative uni�cation with theprocess of completion in order to gain the exibility of postponing particularlyhard uni�cation problems, hoping that they can be simpli�ed by later derived



CHAPTER 1. INTRODUCTION 3directed equations.In Chapter 2, we present fundamental concepts, including our notion ofconstraints. The subject of Chapter 3 is the solving of constraints, whichcan be viewed as an extension of uni�cation in the presence of associativecommutative operators and identities. In Chapter 4, we present a transforma-tion system for completion, incorporating the constraint solving methods ofthe previous chapter. A computer implementation of various components ofcompletion procedures is described in Chapter 5.



Chapter 2Preliminaries2.1 TermsLet S be a set. When X is a sequence of elements of S of length jXj = n,we denote its components by X1;X2; . . . ;Xn. The empty sequence is denotedby �. An element s of S occurs in X, denoted s 2 X, if s = X i for somei 2 [1::n]. ([1::n] denotes the set fi 2 N j 1 � i � ng.) A sequence Yof length m is called a subsequence of a sequence X of length n, denotedY � X, if there exists a function f from [1::m] to [1::n], such that i > jimplies f(i) > f(j) for all i; j 2 [1::m] and Y i = Xf(i) for all i 2 [1::m]. Thenumber of occurrences of s in X, denoted jXjs, is the number jfi j X i = sgj.The di�erence of two sequences X and Y , denoted X � Y , is the subsequenceZ of X such that for all s 2 S the number jZjs is jXjs�jY js if jXjs�jY js � 0and 0 otherwise. A sequence Y is a permutation of a sequence X, if for alls 2 S holds jY js = jXjs.Let F be a set of function symbols with F = Ffree ] FAC ] Fzero. We4



CHAPTER 2. PRELIMINARIES 5call the elements of Ffree free function symbols, the elements of FAC asso-ciative commutative function symbols, short AC-symbols, and the elements ofFzero identities. We assume that there exists a partial function zero fromFAC to Fzero. The subset of FAC that contains all associative commutativefunction symbols f for which zero(f) is de�ned is denoted by FAC1; its ele-ments are called associative commutative function symbols with identity, shortAC1-symbols.With each function symbol f , we associate a non-empty set A(f) � N thatindicates the number of arguments f may take. If f 2 Fzero, then A(f) = f0g;if f 2 FAC , then A(f) = N� f0; 1g. We assume that A(f) contains only oneelement if f 2 Ffree.Let V be a countable set disjoint from F , whose elements we call variables.A term t is either a variable or an expression f(X), where X is a sequence ofterms and jXj 2 A(f). In the latter case, f is called the root of t, denotedroot(t), and X is called sequence of arguments of t, denoted args(t). Whenroot(t) 2 FAC , t is called AC-term; when root(t) 2 FAC1, t is called AC1-term.The set of all terms built from function symbols in F and variables in V isdenoted by T (F; V ).To enhance readability, we often use in�x notation for symbols in FAC, omitthe empty sequence � and the parentheses around sequences of arguments oflength 0 and 1.



CHAPTER 2. PRELIMINARIES 6Example 2.1 For this and all following examples, letF = Ffree ] FAC ] Fzero whereFfree = fa; b; c; d; e;�; f; gg; FAC = f#;+; �g; Fzero = f0; 1g;zero(+) = 0; zero(�) = 1 (+ and � are AC1-symbols);A(a) = A(b) = A(c) = A(d) = A(e) = 0; A(�) = 1;A(f) = 1; A(g) = 2; and v;w; x; y; z 2 V:The expressions r; s; t withr = g(1(�); (f(g(0(�); 1(�)))));s = +(x; y; �(a(�); z));t = #(1(�); f(0(�)); g(+(f(x); �(�(v); 0(�))); w))are terms in T (F; V ). The terms s; t are AC-terms. The term s is additionallyan AC1-term. In in�x notation, the terms are written:r = g(1; f(g(0; 1)));s = x+ y + (a � z);t = 1#f(0)#g(f(x) + ((�v) � 0); w):The function V ar maps each term to the set of variables that occur in it:V ar(x) = x if x is a variable and V ar(f(X)) = Si2jXj V ar(X i).A term s is said to be a subterm of a term t = f(X) if either s = f(Y ) forsome subsequence Y of X, or else s is a subterm of some term X i 2 X. Whenwe want to emphasize that a term t contains a term s as a subterm, we denotet by t[s]. A term s is a proper subterm of a term t if s is a subterm of t ands 6= t. The set of all subterms of a term t is denoted by subt(t). A subterm s



CHAPTER 2. PRELIMINARIES 7of t is called a non-variable subterm of t, if s 62 V . The set of all non-variablesubterms of a term t is denoted by Fsubt(t).We use a pair � = hp; P i, where p is a sequence of of positive numbers and Pis a set of positive numbers, called a position, to refer in a term t to a speci�csubterm in t, denoted by t�. The pair h�; ;i is a position in any term andreferring to the term itself; the pair h(i; p); ;i is a position in a term t = f(X)and referring to the subterm s of t, if hp; ;i is a position in X i referring tos; and hp; P i is a position in a term t and referring to the subterm s = g(Y )of t, if hp; ;i is a position in t referring to a term g(X), g(Y ) is a subterm ofg(X), 2 � jP j < jXj and i 2 P whenever X i 2 Y . For instance, the termx+ z is the subterm of the term a � g(x+ y+ z; 1)) at position h(2; 1); f1; 3gi.Note, that this notion of subterms and positions is an extension of the notionof \attened positions" in [Mar 91], where as second components of positionsonly sets of subsequent numbers are allowed.A position � in t is called a non-variable position in t if tj� 62 V . The set ofall positions in t is denoted by pos(t) and the set of all non-variable positionsin t by Fpos(t).The result of replacing the subterm at position hp; P i in a term t by a terms is denoted by t[s]hp;P i and de�ned to be the term s if p = � and P = ;; theterm f(X � Y; s) if t = f(X), p = �, P 6= ;, and f(Y ) is the subterm of t atposition hp; P i; and the term f(X; t0[s]hp0;P i; Y ) if t = f(X; t0; Y ), p = (i; p0),and i = jXj+1. For instance, (g(x+y+z))[f(a)+b]h(1);f1;3gi = g(y+f(a)+b).A substitution � is a mapping from variables to terms. The value of a sub-stitution � for a variable x is denoted by x�. We call the set of variables for



CHAPTER 2. PRELIMINARIES 8which x� 6= x the domain of �, denoted Dom(�), and consider only substitu-tions with �nite domain. We denote a substitution � by fx1 7! t1; . . . ; xn 7! tng,when Dom(�) = fx1; . . . ; xng and xi� = ti for i 2 [1::n]. The set Sx2Dom(�)V ar(x�) is called the range of �, denoted Ran(�). If W � V then �(W )denotes the set of all substitutions � for which Dom(�) �W . If � is a substi-tution and W � V , then �jW denotes the restriction of � on W : x�jW = x�if x 2 W and x�jW = x otherwise.A substitution � can be uniquely extended to a mapping on terms in sucha way that (f(X))� = f(X1�; . . . ;Xn�), for all terms f(X) where jXj = n.The composition of two substitutions � and � is denoted by the juxtapositon�� . That is, t�� = (t�)� for all terms t.A term s is an instance of (or matches) another term t if there exists asubstitution �, called a matching substitution, such that s = t�. Two terms sand t are said to be uni�able if there exists a substitution �, called a uni�er,such that s� = t�.Note: The notion of terms can easily be extended to many sorts (see Chap-ter 5), but considering only one sort simpli�es the notation and imposes norestrictions on the validity of our results.2.2 RelationsIf ! is a binary relation on a set S, we denote by  its inverse; by $ itssymmetric closure! [  ; by!+ its transitive closure; by!� its transitive-reexive closure; and by $� its symmetric-transitive-reexive closure. The



CHAPTER 2. PRELIMINARIES 9composition of two relations * and + is denoted by * �+. The relation!is said to be terminating if there is no in�nite sequence t1 ! t2 ! t3 ! � � �.A binary relation! is said to be Church-Rosser if for any two elements r ands with r$� s, there exists an element v such that r!� v � s. TerminatingChurch-Rosser relations are called convergent.An equivalence relation is a reexive, symmetric, transitive binary relation.Let ! be a relation and � an equivalence. The relation ! is called Church-Rosser modulo � if for all elements r and s with r (� [ $)� s, there exist termsv and w, such that r !� v � w  � s. We say that ! is convergent modulo� if � � ! � � is terminating and Church-Rosser modulo �. The relation! is said to be locally conuent modulo �, if for all elements r; r0; s; s0 withr0  r � s! s0, there exist elements r00; s00 such that r0  � r00 � s00!� s0.An element s 2 S is said to be in normal form with respect to the rela-tion ! if there exists no element s0 2 S such that s ! s0. A function thatassigns to every element in S a normal form with respect to R is denoted by!!.An ordering is an irreexive, transitive binary relation and a quasi-orderingis a reexive, transitive binary relation.If � is a strict ordering, then its reexive closure � is a quasi-ordering. Onthe other hand, if � is a quasi-ordering, the corresponding equivalence � andordering � are de�ned as follows: s � t if s � t and t � s; and s � t if s � tand t 6� s. An ordering is called well-founded if it is terminating.De�nition 2.1 If >i are orderings on Si for all i 2 [1::n], then their lexico-graphic combination (>1; >2; . . . ; >n) on n-tuples in S1�S2�� � ��Sn is de�ned



CHAPTER 2. PRELIMINARIES 10as follows: (a1; a2; . . . ; an) (>1; >2; . . . ; >n) (b1; b2; . . . ; bn)if there exists i 2 [1::n] such that for all j 2 [1::i � 1] holds aj �j bj andai >i bi, where �j denotes the reexive closure of >j.Proposition 2.1 If the orderings >i are well-founded for all i 2 [1::n], thentheir lexicographic combination (>1; >2; . . . ; >n) is well-founded.De�nition 2.2 If � is an ordering on S, then its set extension �set is de�nedas follows: M �set N , ifM 6= N and for all s 2 N�M there exists s0 2M�Nsuch that s0 � s.Proposition 2.2 If � is well-founded, then its set extension �set is well-founded on �nite sets.A multiset over a set S is a mapping M from S to the natural numbers. Wesay that x is an element of M , denoted by x 2mul M , ifM(x) > 0. A multisetM is �nite, if fx j x 2mul Mg is �nite. We often denote a �nite multisetM byfAgmul, where A is a sequence of elements in S and jAjs =M(s) for all s 2 S.The union, intersection, and di�erence of multisets are de�ned byM1 [M2 (x) =M1(x) +M2(x);M1 \M2 (x) = min(M1(x);M2(x));M1 �M2 (x) = 8><>: M1(x)�M2(x) if M1(x)�M2(x) � 0;0 otherwise:De�nition 2.3 If� is an ordering on a multisetS, then its multiset extension�mul is de�ned as follows: M �mul N , if M 6= N and for all s 2 N �M thereexists s0 2M �N such that s0 � s.



CHAPTER 2. PRELIMINARIES 11Proposition 2.3 If � is well-founded, then its multiset extension �mul iswell-founded on �nite multisets.2.3 The Associative Commutative Theorywith IdentitiesIn order to de�ne the associative commutative theory with identities, we shallbriey present the usual framework of equational theories.An equation is a pair of terms, written s � t. If E is a set of equations,we write s !E t to indicate that there exists a term w, a position � in w,a substitution �, and an equation u � v in E, such that s = w[u�]� andt = w[v�]�. The relation !E is called the rewrite relation induced by E. Wesay that s rewrites to t by E if s!E t. A normal form with respect to !E issaid to be irreducible by E.The symmetric-transitive-reexive closure $�E of !E is called the equa-tional theory induced by E. A set E of equations will be called a rewrite sys-tem if the corresponding rewrite relation !E is the primary object of study.The equations of a rewrite system are also called rewrite rules.A rewrite systemR is called convergent if the corresponding rewrite relation!R is convergent. A convergent rewrite relation R de�nes a unique normalform for every term t, denoted by t #R.De�nition 2.4 For a given set of function symbols F = Ffree ] FAC ] Fzero,we de�ne the associative commutative theory with identities of F , denotedby =AC1, as the equational theory induced by the set AC1 of



CHAPTER 2. PRELIMINARIES 12� all equations f(X; f(Y ); Z) � f(X;Y;Z);called attening equations (, and expressing associativity), where f 2 FAC ,X;Y;Z are sequences of terms in T (F; V ), jXj+ jZj � 1, and jY j � 2,� all equations f(X) � f(�(X));called permutative equations (, and expressing commutativity), wheref 2 FAC , X is a sequence of terms in T (F; V ), jXj � 2, and �(X) is apermutation of X,� all equations f(X; 0; Y ) � f(X;Y )f(Z; 0) � Zf(0; Z) � Z;called zero-equations (, and expressing identity), where f 2 FAC1,0 = zero(f), X;Y;Z are sequences of terms in T (F; V ), jXj+ jY j � 2,and jZj = 1.Clearly, every associative commutative theory with identities, whereFAC 6= ;, is not terminating, due to the permutative equations. The rewritesystem consisting of all attening equations is denoted by Flatten, the rewritesystem consisting of all permutative equations by Perm, and the rewrite sys-tem consisting of all zero-equations by Zero.



CHAPTER 2. PRELIMINARIES 13Example 2.2x+ ((1 � (y � z)) + (0 + 1)) !F latten x+ ((1 � y � z) + (0 + 1))!F latten x+ ((1 � y � z) + 0 + 1)!F latten x+ (1 � y � z) + 0 + 11 � (x+ (0 + y + (0 + 0))) !Zero x+ (0 + y + (0 + 0))!Zero x+ (0 + y + 0)!Zero x+ (0 + y)!Zero x+ yProposition 2.4 The rewrite system Flatten is convergent.Proof. The relation !F latten is terminating, since every application of a ruleto a term decreases the number of occurrences of AC-symbols in it. Therelation !F latten is Church-Rosser, as can be proved by structural induction.2Proposition 2.5 The rewrite system Zero is convergent.Proof. The relation!Zero is terminating, since every application of a rule inZero to a term t decreases the number of occurrences of identities in t. Therelation !Zero is Church-Rosser, as can be proved by structural induction. 2Proposition 2.6 The rewrite system Flatten[ Zero is convergent.Proof. The relation !F latten[Zero is terminating, since every application ofa rule in Flatten [ Zero to a term t decreases the number of occurrences of



CHAPTER 2. PRELIMINARIES 14function symbols in t. The Church-Rosser property then follows from Propo-sitions 2.4 and 2.5. 2Additionally, we can show that !F latten[Zero is equal to !Zero � !F latten.The following technical lemma is used in Chapter 4.Lemma 2.1 If s is the subterm of t at position � and t0 =AC1 t, then thereexists a position �0 in t0 #F latten[Zero such that t0 #F latten[Zero j�0 =AC1 s.Proof. (1) If u!F latten v or u!Zero v, then for every subterm u0 in u, thereexists a subterm v0 in v such that u0 =AC1 v0. (Flatten and Zero preservesubterms up to =AC1.) (2) If r =AC1 s then r #F latten[Zero$�Perm s #F latten[Zero.(Identities are eliminated, for AC-case see Lemma 2.3 in [Mar 91].) (3) Ifr $�Perm s then for every subterm r0 in r there exists a subterm s0 in s suchthat r0 $ s0. (Every subsequence of the arguments of an AC-term forms asubterm.) From (1) follows that there exists a subterm s0 of t #F latten[Zero suchthat s =AC1 s0; from (2) that t #F latten[Zero$�Perm t0 #F latten[Zero; and from (3)that there exists a subterm s00 in t0 #F latten[Zero such that s00$Perm s0. 2In this work, we want to describe methods for constructing a rewrite systemR for a given set of equations E, such that AC1 [ E and AC1 [ R de�nethe same equational theory and the relation =AC1 � !R � =AC1 is convergentmodulo AC1. This task is called completion modulo AC1.As shown in [BPW 89], we need to limit the applicability of rewrite rules,because for many interesting rewrite systems R, the relation =AC1 � !R� =AC1 is not terminating. The following example is given in [JM 90].



CHAPTER 2. PRELIMINARIES 15Example 2.3 If R contains the rule�(x+ y) � (�x) + (�y)then R=AC1 is not terminating, as shown by the following in�nite sequenceof rewritings: �0 =AC1 �(0 + 0)!R (�0) + (�0)=AC1 �(0 + 0) + (�0)!R (�0) + (�0) + (�0)... ...The left hand side of a rule with a variable as argument of an AC1-symbol +\collapses" if instanciated with zero(+). For every equation r � s, we limitits applicability to a term t by restricting the set of substitutions � by which asubterm of t AC1-matches r. Every equation is associated with an expression,called a constraint, describing the set of allowed substitutions. In additionto the restrictions involving the identity symbols, we shall integrate uni�ca-tion problems in the constraints. In Chapter 4, we shall use this approach tointerleave the processes of completion and uni�cation.2.4 ConstraintsDe�nition 2.5 Let F = Ffree ] FAC ] Fzero and V a set of variables. A con-straint is an expression of one of the following forms:� A zero-disequation is an expression of the form t 6= 0, where t 2 T (F; V )and 0 2 Fzero.



CHAPTER 2. PRELIMINARIES 16� An atomic AC1-uni�cation problem is an expression of the form r ?=s,where r; s 2 T (F; V ). Zero-disequations and atomic AC1-uni�cationproblems are called atomic constraints.� A conjunctive constraint is an expression c of the form c = Vi 2 [1::n] ai,where ai are atomic constraints for i 2 [1::n].� An existential constraint is an expression e of the form e = 9~z:(c; k),where ~z is a sequence of pairwise distinct variables in V , and c; k areconjunctive constraints.(We omit the quanti�cation 9~z, if ~z is empty. Variables in ~z are calledbound, other variables occuring in c1 or c2 are called free. The conjunctiveconstraint c is called the unsolved part and k is called the solved part ofthe existential constraint.)� A disjunctive constraint is an expression d of the form d = Wi 2 [1::n] ei,where ei are existential constraints for i 2 [1::n].De�nition 2.6 For a constraint C, the set of constrained variables of C, de-noted V (C), is de�ned as follows: When a = t 6= 0 is a zero-disequation,then V (a) = V ar(t); when a = r ?=s is an atomic AC1-uni�cation problem,then V (a) = V ar(r) [ V ar(s); when c = Vi 2 [1::n] ai is a conjunctive con-straint, then V (c) = Si 2 [1::n] V ar(ai); when e = 9~z:(c; k) is an existentialconstraint, then V (e) = (V (c) [ V (k)) � ~z; and when d = Wi 2 [1::n] ei is adisjunctive constraint, then V (d) = Si 2 [1::n] V ar(ei).De�nition 2.7 For a constraint C, the set of solutions of C, denoted Sol(C),is de�ned as follows: When a = t 6= 0 is a zero-disequation, then Sol(a) =



CHAPTER 2. PRELIMINARIES 17f� 2 �(V (t)) j t� 6=AC1 0g; when a = r ?=s is an atomic AC1-uni�cation prob-lem, then Sol(a) = f� 2 �(V (t)) j r� =AC1 s�g; when c = Vi 2 [1::n] ai isa conjunctive constraint, then Sol(c) = Ti 2 [1::n] Sol(ai); when e = 9~z:(c; k)is an existential constraint, then Sol(e) = f�jV (e) j � 2 Sol(c) and � 2Sol(k)g; when d = Wi 2 [1::n] ei is a disjunctive constraint, then Sol(d) =Si 2 [1::n] Sol(ei).Remarks:� The symbol ?= is used in a commutative way: r ?=s is considered to beequal to s ?=r.� The symbols ^ and _ are used in an associative commutativeway: r ?=s^cdenotes that either r ?=s or s ?=r occurs in a conjunctive constraint andthe remainder of this constraint is denoted by c ; e _ d denotes that eoccurs in a disjunction and the remainder of this disjunction is denotedby d.� The empty conjunctive constraint is denoted by >, and the empty dis-junctive constraint is denoted by ?.� Wemay denote conjunctions a1^� � �^an by Vi 2 [1::n] ai and disjunctionse1 _ � � � _ en by Wi 2 [1::n] ei.� Let c = Vi 2 [1::n] ri ?=si be a conjunction of atomic uni�cation prob-lems. We denote the set Si 2 [1::n] ri [ Si 2 [1::n] si by S c; the setSi2[1::n] subt(ri) [ subt(si) by subt(c); and the set Si2[1::n]Fsubt(ri) [Fsubt(si) by Fsubt(c).



CHAPTER 2. PRELIMINARIES 18� We may interpret a conjunction x1 ?=t1 ^ � � � ^ xn ?=tn, where xi 6= xj ifi 6= j, as a substitution fx1 7! t1; . . . ; xn 7! tng and vice versa.� We extend the function V ar from terms to existential constraints:V ar(9~z:(Vi2[1::k] ti 6= 0i ^ Vi2[1::l] ri ?=si;Vi2[1::m] t0i ?=00i ^ Vi2[1::n] r0i ?=s0i))= ~z [ Si2[1::k] V ar(ti) [ Si2[1::l](V ar(ri) [ V ar(si))[Si2[1::m] V ar(t0i) [ Si2[1::n](V ar(r0i) [ V ar(s0i));and to disjunctive constraints:V ar( _h2[1::k] eh) = [h2[1::k]V ar(eh):For a given set of function symbols F and a set of variables V , we denote the setof all constraints by CAC1 and call its elements AC1-uni�cation problems withzero-disequations. When a constraint in CAC1 contains no zero-disequations,we call it an AC1-uni�cation problem. When F = Ffree ] FAC, i.e. Fzero = ;,we denote the set of all constraints by CAC, and call its elementsAC-uni�cationproblems. Note that the sets CAC1 and CAC are constraint languages in thesense of [Smo 89].



Chapter 3Uni�cationBefore we use constraints to de�ne constrained rewriting, we shall outline inthis chapter how to solve them. We approach the problem of �nding theset of all solutions for an AC1-uni�cation problem with zero-disequations.Prior to describing methods of solving an AC1-uni�cation problem with zero-disequations in the general case in Section 3.4, we shall present the solving ofan AC-uni�cation problem in Section 3.2 and the solving of an AC1-uni�cationproblem in Section 3.3. A computer implementation of the procedures pre-sented in this chapter is described in Chapter 5 and examples are given inAppendix B.AC- and AC1-uni�cation problems are inherently complex. Following theintial work in [LS 75] and [Sti 81] in AC-uni�cation, considerable research hasbeen done. The reader may consult [JK 91] for an extensive list of references.The approach presented herein is not intended to optimize the running timeof the solution of a given AC1-uni�cation problem but rather to modularizethe very process of solving such problems. Our goal is to have the capability of19



CHAPTER 3. UNIFICATION 20interrupting the process at as many stages as possible and \shelve" partiallysolved problems for future resolution. Meanwhile, the problem may have be-come less complex. This approach can be particularly useful in the processof completion of term rewriting systems (see Chapter 4), where uni�cationproblems are computed and continuously transformed by simpli�cation rules.The main di�culty in modularizing the solving of AC1-uni�cation problemsis to prove the termination of the resulting procedures. A considerable part ofthis chapter shall be devoted to termination proofs.In this chapter, we shall obey the following normalization convention: Allterms reduced to normal forms with respect to the rewrite system Flatten.Any operation op resulting in terms is implicitly seen as the compositionop� #F latten. This will guarantee that all occuring terms are normal formswith respect to Flatten.Example 3.1 The application of the substitution � = x 7! z + w to the termx+ y results in z + w + y, not in (z + w) + y.3.1 Normal FormsThe set of all solutions for a uni�cation problem is in�nite in most cases andwe are confronted with the problem of �nding a �nite representation for it.The following notation is taken from [JK 91] and adapted for our purpose.When a term t AC1-matches a term s, we write s � t. The relation �is a quasi-ordering on terms, called AC1-subsumption, whose equivalence ./and strict ordering < are respectively called literal AC1-similarity and strictAC1-subsumption.



CHAPTER 3. UNIFICATION 21We lift subsumption from terms to substitutions. Two substitutions �and � are AC1-equal on the set of variables W � V , denoted � =WAC1 � ,if x� =AC1 x� for all variables x in W . We write � �W � , if there existsa substitution � such that �� =WAC1 � . We call the quasi-ordering �W onsubstitutions AC1-subsumption, its equivalence ./W literal AC1-similarity andits strict ordering <W strict AC1-subsumption.De�nition 3.1 Given an AC1-uni�cation problem with zero-disequations C,every set CSU(C) that ful�lls� CSU(C) � Sol(C), (correctness)� for all substitutions � 2 Sol(C) there exists a substitution � 2 CSU(C)such that � �V ar(c) �, (completeness)� Ran(�)\Dom(�) = ; for all substitutions � 2 CSU(C), (idempotency)is called a complete set of AC1-uni�ers for C and denoted by CSU(C).A set CSU(C) is called a complete set of most general AC1-uni�ers of C,denoted CSMGU(C), if the sustitutions are pairwise incomparable in thequasi-ordering �V (C).The goal in solving an AC1-uni�cation problem with zero-disequations isthe transformation of C into a form from which a �nite CSU(C) can easily bederived.



CHAPTER 3. UNIFICATION 22De�nition 3.2 An AC1-uni�cation problem is said to be in solved form if itis of the form:9~z1: (>;Vi2[1::n1] x1;i 6= 01;i ^ Vj2[1::m1] y1;j ?=t1;j) _... ... ...9~zk: (>;Vi2[1::nk] xk;i 6= 0k;i ^ Vj2[1::mk] yk;j ?=tk;j)such that for all h 2 [1::k], for all i; i0 2 [1::nh] and j; j 0 2 [1::mh] holds:� xh;i; yh;j 2 V , (solved)� if th;j = 0, where 0 2 Fzero, then there exists no i00 2 [1::nh] such thatxh;i00 = yh;j and 0h;i00 = 0, (disequations not violated)� yh;j 6= yh;j0 if j 6= j 0, (unique)� yh;j 62 V ar(th;j0). (idempotent)Proposition 3.1 LetC = 9~z1: (>;Vi2[1::n1] x1;i 6= 01;i ^ Vj2[1::m1] y1;j ?=t1;j) _... ... ...9~zk: (>;Vi2[1::nk] xk;i 6= 0k;i ^ Vj2[1::mk] yk;j ?=tk;j)be an AC1-uni�cation problem in solved form. The set of substitutions thatare obtained for every h 2 [1::k] by limiting the substitution Vj2[1::mh] yh;j ?=th;jto the variables that do not occur in ~zh is a complete set of AC1-uni�ers for C.An atomic uni�cation problem x ?=t in the solved part of an existential con-straint is ignored when x 2 ~z, because bound variables do not contribute tosubstitutions in Sol(C).



CHAPTER 3. UNIFICATION 23Note that we solve an AC1-uni�cation problem C to obtain a CSU(C),not a CSMGU(C). In cases, where a CSMGU(C) is required, we mustdetect redundant uni�ers in an additional pass over the obtained CSU(C).This operation can be very time-consuming. For this reason, we operate withCSU(C), accepting a certain overhead produced by redundant uni�ers.3.2 AC-Uni�cationIn this section, we consider sets F = Ffree ] FAC (with no identities de-clared). Our notations are compatible with AC1-uni�cation problems withzero-disequations so that we can extend the methods that we describe here toSection 3.3 and Section 3.4.In the transformation of an AC1-uni�cation problem, atomic AC1-uni�-cation problems of various forms occur. The most di�cult case consists of aproblem with the same AC-symbol on both sides. The decomposition step forthis case forms the heart of most AC-uni�cation procedures. In [Fag 84], analgorithm to decompose these atomic AC1-uni�cation problems is presented.Based on this algorithm, we de�ne a simpli�er for AC-uni�cation problems.De�nition 3.3 A simpli�er for AC-uni�cation problems is a partial functiondioAC : CAC � 2V ! 2CAC such that for all f 2 FAC and W � V ,dioAC(9~z:(f(X) ?=f(Y );>);W ) = 8>>>>>>>><>>>>>>>>: 9~z1:(Vi2[1::n1] r1;i ?=s1;i;>);9~z2:(Vi2[1::n2] r2;i ?=s2;i;>);...9~zk(Vi2[1::nk] rk;i ?=sk;i;>) 9>>>>>>>>=>>>>>>>>;



CHAPTER 3. UNIFICATION 24where Sol(9~z:(f(X) ?=f(Y );>)) = [h2[1::k]Sol(9~zh:( ^i2[1::nh] rh;i ?=sh;i;>))and for all h 2 [1::k], for all i; i0 2 [1::mh]1. ~z � ~zh,2. rh;i 2 X [ Y (see the algorithm trans in [Fag 84]),3. rh;i 6= rh;i0 (see the algorithm elimcom in [Fag 84]),4. if rh;i 2 V then sh;i 2 X [ Y or sh;i = f(Z); Z � (V �W ) [X [ Y(see the algorithm trans in [Fag 84]),5. if rh;i 62 V , then rh;i and sh;i 2 X [ Y (see Proposition 1 in [Fag 84]).Table 1 shows the set AC-Unify of transformation rules whose goal is totransform any AC-uni�cation problem C into an equivalent AC-uni�cationproblem in solved form. Each rule describes a binary relation on constraints.The union of these relations is denoted by)AC�Unify.De�nition 3.4 An AC-uni�cation procedure is a subset U of the relation)AC�Unify such that every normal form with respect to U is a normal formwith respect to )AC�Unify.An AC-uni�cation procedure applies the rules in AC-Unify to an AC-uni�-cation problem until no further rules are applicable.Lemma 3.1 (Soundness) Every AC-uni�cation procedure preserves the uni-�ers: If C1)�AC�Unify C2 then Sol(C1) = Sol(C2).



CHAPTER 3. UNIFICATION 25Delete:9~z:(r ?=s ^ c; k) _ d ) 9~z:(c; k) _ dif r =AC1 sFail:9~z:(f(X) ?=g(Y ) ^ c; k) _ d ) dif f 6= gMerge:9~z:(x ?=r ^ x ?=s ^ c; k) _ d ) 9~z:(x ?=r ^ r ?=s ^ c; k) _ dif ( x 2 Vr 62 VCheck:9~z:(x ?=f(X) ^ c; k) _ d ) dif ( x 2 Vx 2 V ar(f(X))Eliminate:9~z:(x ?=t ^ c; k) _ d ) 9~z:(c�; x ?=t ^ k�) _ dwhere � = fx 7! tgif ( x 2 Vx 62 V ar(t)Free Decompose:9~z:(f(X) ?=f(Y ) ^ c; k) _ d ) 9~z:(Vi2[1::jXj]X i ?=Y i; k) _ dif 8><>: f 2 Ffreef(X) 6=AC1 f(Y )f(X) 62 subt(c) or f(Y ) 62 subt(c)AC Decompose:9~z:(f(X) ?=f(Y ) ^ c; k) _ d )W(9~z0:(c0;>))2dioAC(9~z:(f(X) ?=f(Y );>);W ) 9~z0:(c0 ^ c; k) _ dwhere W = V ar(9~z:(f(X) ?=f(Y ) ^ c; k))if 8><>: f 2 FACf(X) 6=AC1 f(Y )f(X) 62 subt(c) or f(Y ) 62 subt(c)Table 1: The transformation rules AC-Unify



CHAPTER 3. UNIFICATION 26Proof. For every transformation rule R inAC-Unify, we prove that if C1)RC2 then Sol(C1) = Sol(C2). The lemma follows by induction.� Delete. If r =AC1 s then any substitution is in Sol(r ?=s), so that forC1 = 9~z:(r ?=s^c; k) _ d and C2 = 9~z:(c; k) _ d holds Sol(C1) = Sol(C2).� Fail. If C1 = 9~z:(f(X) ?=g(Y )^c; k) _ d and f 6= g, then Sol(f(X) ?=g(Y ))= ;, because, since Fzero = ;, AC1 does not change the root symbol ofany term. Thus, for C2 = d, we have Sol(C1) = Sol(C2).� Merge. If C1 = 9~z:(x ?=r ^ x ?=s ^ c; k) _ d and C2 = 9~z:(x ?=r ^ r ?=s ^c; k) _ d, then � 2 Sol(x ?=r ^ x ?=s) , x� =AC1 r� and x� =AC1 s� ,x� =AC1 r� and r� =AC1 s� (=AC1 is transitive), � 2 Sol(x ?=r^r ?=s)Therefore Sol(x ?=r ^ x ?=s) = Sol(x ?=r ^ r ?=s).� Check. Let C1 = 9~z:(x ?=f(X)^ c; k) _ d and x 2 V ar(f(X)). Assume� 2 Sol(x ?=f(X)). Since Fzero = ;, AC1 is non-collapsing. On the otherhand x� is a proper subterm of f(X)�, which is a contradiction. Thus,Sol(x ?=t) = ;, and for C2 = d, we obtain Sol(C1) = Sol(C2).� Eliminate. Let C1 = 9~z:(x ?=t^c; k) _ d and C2 = 9~z:(c�; x ?=t^k�) _ d,where � = fx 7! tg. Let � 2 Sol(x ?=t^ c; k). First, we state x� =AC1 t�.Let r ?=s be any atomic AC1-uni�cation problem in c or k. Then � 2Sol(r ?=s), and thus r� =AC1 s�. We have �� =AC1 �, i.e. y�� =AC1 y�for all y 2 V . (If y 6= x, then � does not change y; if y = x, then y� = tand t� =AC1 x� = y�.) r� =AC1 s� , r�� =AC1 s��, and therefore � 2Sol(r ?=s), � 2 Sol(r� ?=s�). Thus, Sol(x ?=t^ c; k) = Sol(c�; x ?=t^ k�)and Sol(C1) = Sol(C2).



CHAPTER 3. UNIFICATION 27� Free Decompose. Let C1 = 9~z:(f(X) ?=f(Y )^c; k) _ d, f 2 Ffree, andC2 = 9~z:(Vi2[1::jXj]X i ?=Y i ^c; k) _ d. The theory =AC1 does not involvethe symbol f . Thus, for a substitution � to ful�ll f(X1; . . . ;Xn)� =AC1f(Y 1; . . . ; Y n)�, we must have X i� =AC1 Y i�; for i 2 [1::n]. There-fore Sol(9~z:(f(X) ?=f(Y )^ c; k)) = Sol(9~z:(Vi2[1::jXj]X i ?=Y i ^ c; k)) andSol(C1) = Sol(C2).� AC Decompose. Let C1 = 9~z:(f(X) ?=f(Y ) ^ c; k) _ d, root(r)= root(s) 2 FAC , and C2 = W(9~z0:(c0;>))2dioAC(9~z:(f(X) ?=f(Y );>);W ) 9~z0:(c0 ^c; k) _ d, where W = V ar(9~z: (f(X) ?=f(Y ) ^ c; k)). By de�nition ofdioAC (see De�nition 3.3), we obtain that Sol(9~z:f(X) ?=f(Y );>) =Se2dioAC(9~z:(f(X) ?=f(Y );>);W ) Sol(e). By distributivity, we obtain thatSol(9~z:(f(X) ?=f(Y )^c; k)) = Sol(W(9~z0:(c0;>))2dioAC(9~z:(f(X) ?=f(Y );>);W ) 9~z0:(c0 ^ c; k)). Here, we use that the variables introduced by AC Decom-pose do not occur in C1. 2Lemma 3.2 (Completeness) Every normal form with respect to AC-Unifyis an AC-uni�cation problem in solved form.Proof. Clearly, every normal form is of the formC = _h2[1::k]9~zh:(ch; kh)where ch and kh are conjunctive constraints for all h 2 [1::k].



CHAPTER 3. UNIFICATION 28Assume ch contains an atomic AC1-uni�cation problem r ?=s. Then r ands cannot be both non-variable terms, for otherwise Delete, Fail, Free De-compose, or AC Decompose would apply. Note, that if all atomic AC1-uni�cation problems in ci are of the form f(X) ?=f(Y ) then Free Decomposeor AC Decompose applies to at least one of them. (In a set of terms, notall terms can be proper subterms of other terms in the set.)So, assume that r = x 2 V . If s = x, Delete applies. If s 6= x, thenCheck applies if x 2 V ar(s) and Eliminate applies otherwise. Since AC-uni�cation problems do not contain zero-disequations, ci = >, for all i, andC = Wh2[1::k] 9~zh:(>;Vi2[1::nh] rh;i ?=sh;i). The only rule that changes the solvedpart of an existential constraint is Eliminate. The rule Eliminate removesan atomic AC1-uni�cation problem of the form x ?=t, where x 2 V , from theunsolved part. The variable x is eliminated from the unsolved and the solvedpart, and x ?=t is added to the solved part. The variable x will not occur in theunsolved part again, becauseAC Decomposeuses only variables in the solvedpart and variables that do not occur in the existential constraint, and the otherrules use only variables that occur in the solved part. If a variable x occurs onthe left hand side of an atomic AC1-uni�cation problem in an existential con-straint e in C, then x occurs nowhere else in e (idempotency and uniqueness).We conclude that C is of the form C = Wh2[1::k] 9~z1:(>;Vi2[1::n1] x1;i ?=t1;i) suchthat for all h 2 [1::k] and i; i0 2 [1::nh], xh;i 2 V , xh;i 6= xh;i0 if i 6= i0, andxh;i 62 V ar(th;i0). 2



CHAPTER 3. UNIFICATION 29Not allAC-uni�cation procedures are terminating (for an example see [Fag 84]).One way to guarantee termination is to apply the decomposition step recur-sively in a sense that once an atomic AC1-uni�cation problem f(X) ?=f(Y )is simpli�ed, all emerging subproblems are completely solved before anotheratomic problem is examined ([Sti 81],[Fag 84]). This method is not satisfac-tory for our approach to completion modulo AC1, where we want to be ableto interrupt the solving of a constraint when a particularly hard atomic AC1-uni�cation problem arises. Other approaches to AC-uni�cation are describedin [Kir 89] and [Bou 90].We shall present a class of terminating AC-uni�cation procedures thatare based on [Fag 84] but can be interrupted between every application of ACDecompose. We require that, after the application of Free Decompose andAC Decompose, some rules are \eagerly" applied. To prove the terminationof these AC-uni�cation procedures, we develop an extension of the complexityused in the termination proof of [Fag 84].In the following, let @ be a new symbol. The set of immediate operatorsof a variable x in a term t is the setOP (x; t) = 8>>>>><>>>>>: froot(tjhp;;i) j hp; ;i 2 pos(t) and 9i 2 N: tjh(p;i);;i = xgif x 6= t,f@g if x = t.(We include the occurrence of a variable in the topmost position: If x = t, wesay x occurs in t under @.)The set of immediate operators of a variable x in an existential constrainte = 9~z:( ^i2[1::n]xi 6= 0i ^ ^j2[1::m] rj ?=sj ; k)



CHAPTER 3. UNIFICATION 30is the set OP (x; e) = [j2[1::m]OP (x; rj) [OP (x; sj):De�nition 3.5 The complexity�e of an existentialAC1 constraint e = 9~z: (c^g; k), where g = Vi2[1::n] xi 6= 0i and c = Vj2[1::n] rj ?=sj, is de�ned as�e(e) = (�(e); �(e); (e); �(e); "(e); �(e); �(e));where� �(e) = jfi j ri 2 V and si 2 V gj, �(e) is the number of atomic AC1-uni�cation problems between variables in the unsolved part;� �(e) = jfx 2 V j jOP (x; e)j � 2gj, �(e) is the number of distinctvariables that occur in ri and si immediately under at least two di�erentfunction symbols;� (e) = jFsubt(e)� f0(�) 2 T (F; V ) j 0 2 Fzerogj, (e) is the number ofdistinct non-variable subterms of ri and si;� �(e) = jfi j ri 2 V or si 2 V gj, �(e) is the number of atomic AC1-uni�cation problems in the unsolved part of which at least one side con-sists of a variable;� "(e) = jfi j ri 62 V; ri 62 subt(c) � S c; ri 62 Fzerogj + jfi j si 62 V; si 62subt(c) � S c; si 62 Fzerogj, "(e) is the number of occurrences of non-variable terms on one side of an atomic problem in c that are not iden-tities and not proper subterms of terms in c;� �(e) = Pi 2 [1::n](jf� 2 pos(ri) j rijp 62 Fzerogj + jf� 2 pos(si) j sijp 62Fzerogj), �(e) is the number of all positions in e at which no identitiesoccur; and



CHAPTER 3. UNIFICATION 31� �(e) = n, �(e) is the number of atomic AC-uni�cation problems in c.The complexity �d of a disjunctive AC-uni�cation problem d = Wi2[1::n] ei isde�ned as the multiset �d(d) = f�e(ei) j i 2 [1::n]gmul.Example 3.2 The constrainte = 9v;w:(x+v+w ?=f(a)+g(f(a); x) ^ v ?=x ^ x�f(v) ?=1 ^ z ?=f(a); y ?=b)has the complexity �e(e) = (1; 2; 6; 3; 3; 20; 4). As a disjunctive constraint,e has the complexity �d(e) = f(1; 2; 6; 3; 3; 20; 4)gmul.We use the seven-fold lexicographic combination of the \greater-than"-ordering> on natural numbers, denoted >e, to compare complexities of existential con-straints, and the multiset extension of>e, denoted >d, to compare complexitiesof disjunctive constraints. Propositions 2.1 and 2.3 imply that >e and >d arewell-founded.Lemma 3.3 (Termination) Every AC-uni�cation procedure in which, afterevery application of Free Decompose and AC Decompose, all newly in-troduced atomic problems with variables on at least one side are eliminated viaDelete, Check and Eliminate terminates on every AC-uni�cation problem.Proof. We prove that if C1 )R C2 for a rule R = Delete, Fail, Merge,Check, or Eliminate then �d(C1) >d �d(C2); and if C1 )R C 02 for a ruleR = Free Decompose, AC Decompose, and C2 = )!Q (C 02), where Q =Delete[Check[Eliminate, then �d(C1) >d �d(C2). The termination followsby induction on the number of applications of rules in AC-Unify to the givenAC-uni�cation problem.



CHAPTER 3. UNIFICATION 32� Delete. If e1 = 9~z:(r ?=s^c; k), e2 = 9~z:(c; k), C1 = e1_d, and C2 = e2_d, then �(e1) � �(e2), where � 2 f�; �; ; �; "; �g, while �(e1) > �(e2),and therefore �d(C1) >d �d(C2).� Fail. If C1 = 9~z:(f(X) ?=g(Y ) ^ c; k) _ d, and C2 = d, then �d(C1) =�d(C2) [ f�e(9~z:(f(X) ?=g(Y ) ^ c; k))gmul >d �d(C2).� Merge. Let e1 = 9~z:(x ?=r ^ x ?=s ^ c; k), where r 62 V , e2 = 9~z:(x ?=r ^r ?=s ^ c; k), C1 = e1 _ d, and C2 = e2 _ d. We have �(e1) � �(e2) and(e2) � (e2). If s 2 V then �(e1) > �(e2), and otherwise �(e1) > �(e2).Thus we obtain �d(C1) >d �d(C2).� Check. Similar to Fail.� Eliminate. Let e1 = 9~z:(x ?=t^c; k), e2 = 9~z:(c�; k), where � = fx 7! tg,C1 = e1 _ d, and C2 = e2 _ d. If t 2 V then �(e1) > �(e2). Otherwise�(e1) � �(e2), �(e1) � �(e2) (Since t 62 V , no variable is placed under anew symbol.), (e1) � (e2), and �(e1) > �(e2), thus �d(C1) >d �d(C2).� Free Decompose. We prove that the application of Free Decompose,followed by the exhaustive application ofDelete,Check and Eliminateon the newly introduced atomic problems, decreases the complexity ofan AC-uni�cation problem.Let e1 = 9~z:(f(X) ?=f(Y ) ^ c; k), where f 2 Ffree and jXj = jY j, e02 =9~z:(Vi2[1::jXj]X i ?=Y i ^ c; k), and e2 = 9~z:(c0� ^ c�; � ^ k�), where c0 and� are de�ned as follows:Let (x1 ?=t1 ^ � � � ^ xn ?=tn ^ r1 ?=s1 ^ � � � ^ rm ?=sm) = Vi2[1::jXj]X i ?=Y i,where xi 2 V for all i 2 [1::n], and ri or si 62 V for all i 2 [1::m].



CHAPTER 3. UNIFICATION 33(In the decomposition, we separate the atomic problems of which at leastone side consists of a variable from the rest.)Let R be the relation Delete [ Check [ Eliminate. Then � = )!R(x1 ?=t1 ^ � � � ^ xn ?=tn) and c0 = (r1 ?=s1 ^ � � � ^ rm ?=sm).Let C1 = e1 _ d and C2 = e2 _ d.We show: �e(e1) >e �e(e2).We obtain �(e1) � �(e2), since � eliminates the atomic problems withvariables on both sides that are introduced by the decomposition.We show: �(e1) � �(e2).Because � may substitute a variable by another variable, there may existvariables x with jOP (x; e2)j � 2 and jOP (x; e1)j 6� 2. In this case, thereexists g 2 F with g 6= f such that g 2 OP (x; e2) and g 62 OP (x; e1), andthere exists y 2 V such that (y 7! x) 2 � and g 2 OP (y; e1). Further-more, f 2 OP (y; e1) (because y 2 X [Y ) and therefore jOP (y; e1)j � 2.The variable y does not occur in e2, therefore jOP (y; e2)j 6� 2.In other words, whenever there is a variable x such that jOP (x; e2)j � 2and jOP (x; e1)j 6� 2, there is a corresponding variable y such thatjOP (y; e2)j 6� 2 and jOP (y; e1) � 2. Thus �(e1) � �(e2).If at most one of the terms f(X)� and f(Y )� occurs in e2, then (e1) >(e2), and �e(e1) >e �e(e2).Now, assume that both f(X)� and f(Y )� occur in e2. None of theoccurrences of terms in c0 � count for "(e2), since they are proper sub-terms of f(X)� or f(Y )�. At least one of the occurrences of f(X)



CHAPTER 3. UNIFICATION 34and f(Y ) counts for "(e1) (see condition to apply Free Eliminate).Clearly, this occurrence has no corresponding occurrence in e2. There-fore "(e1) > "(e2), and �e(e1) >e �e(e2).We conclude that �d(C1) >d �d(C2).� AC Decompose. We prove that the application of AC Decompose,followed by the exhaustive application of Delete, Check, and Elimi-nate on the newly introduced atomic problems, decreases the complex-ity of an AC-uni�cation problem. To describe the eager application ofDelete, Check, and Eliminate more precisely, we de�ne the functionelim:Let e = 9~z:(f(X) ?=f(Y );>), f 2 FAC and R be the relation Delete [Check [Eliminate. Let9~z1:(c1; �1) _... ...9~zn:(cn; �n) = )!R ( _i2[1::jdioAC(e)j] dioAC (e)):Then elim(e) = f(zi; ci; �i) j i 2 [1::n]g.Now, let C1 = 9~z:(f(X) ?=f(Y ) ^ c; k) _ d, where f 2 FAC, andC2 = W(zi;ci;�i)2elim(e) 9~zi:(ci�i ^ c�i; �i ^ k�i) _ d.Let e1 = 9~z:(f(X) ?=f(Y ) ^ c; k), and e2 = 9~zj:(cj�j ^ c�j; �j ^ k�j),where (zj; cj; �j) 2 elim(e).The conjunctive constraint cj consists of proper non-variable subtermsof f(X) and f(Y ) (see Property 5 in De�nition 3.3). The substitution�j represents the accumulated substitutions resulting from exhaustive



CHAPTER 3. UNIFICATION 35elimination using the atomic problems introduced by dioAC . If (x 7!t) 2 �j, then x 2 X [ Y (see Property 4 in De�nition 3.3).We obtain �(e1) � �(e2), since �j eliminates the atomic problems withvariables on both sides that are introduced by the decomposition, and�(e1) � �(e2) (argument similar to Free Decompose).If there exists (x 7! t) 2 �j with t 62 V , such that jOP (x; e1)j � 2 then�(e1) > �(e2), and �e(e1) >e �e(e2).Now, we assume that OP (x; e1) = ffg for all (x 7! t) 2 �j where t 62 V .Let e02 = 9~zj:(f(X)�j ?=f(Y )�j ^ cj�j ^ c�j; �j ^ k�j):We can show by induction on the number of applications of Eliminatein the construction of �j that (e1) � (e02). (Here, we use that Flattenapplies, when we substitute a variable argument in a term with root f byanother term with root f . Because OP (x; e1) = ffg for all (x 7! t) 2 �jwhere t 62 V , every newly built term is attened into another term.)If at most one of the terms f(X)�j and f(Y )�j occurs in e2, then(e1) > (e2), and �e(e1) >e �e(e2).Now, assume that both f(X)�j and f(Y )�j occur in e2. We obtain�(e1) � �(e2), since all newly introduced atomic AC1-uni�cation prob-lems are eliminated. None of the occurrences of terms in cj�j count for"(e2), since they are proper subterms of f(X)�j or f(Y )�j. The con-straint c� has at most as many occurrences of terms that count for "(e2)than has c that count for "(e1). (Here, we use that @ 62 OP (x; c), for allx with (x 7! t) 2 �j and t 62 V .)Furthermore, at least one of the occurrences of f(X) and f(Y ) in the



CHAPTER 3. UNIFICATION 36atomic problem f(X) ?=f(Y ) counts for "(e1) (see condition for applica-tion of AC Decompose). Clearly, this occurrence has no correspondingoccurrence in e2. Therefore "(e1) > "(e2), and �e(e1) >e �e(e2).We have shown that for any existential constrainte2 2 S(zi;ci;�i)2elim(e) 9~zi:(ci�i ^ c�i; �i ^ k�i) holds �e(e1) >e �e(e2).To obtain C2, the existential constraint e1 is replaced in C1 by a �-nite number of existential constraints such that e1 is bigger than allof them under >e. By de�nition of the multiset extension, we obtain�d(C1) >d �d(C2). 23.3 AC1-Uni�cationThe equations f(Z; 0) � Z and f(0; Z) � Z are collapsing, in the sensethat one side consists of a term that occurs in the other side as a propersubterm. This makes solving of AC1-uni�cation problems more complicatedthan solving AC-uni�cation problems.Similar to the previous section, we de�ne a simpli�er for AC1-uni�cationproblems to describe the decomposition of atomic AC1-uni�cation problemswith AC1-terms on both sides.De�nition 3.6 A simpli�er for AC1-uni�cation problems is a partial function



CHAPTER 3. UNIFICATION 37dioAC1 : CAC1 � 2V ! 2CAC1 such that for all f 2 FAC1 and W � V ,dioAC(9~z:(f(X) ?=f(Y );>);W ) = 8>>>>>>>>>>>><>>>>>>>>>>>>: 9~z1: (Vi2[1::n1] r1;i ?=s1;i;>);9~z2: (Vi2[1::n2] r2;i ?=s2;i;>);... ...9~zk: (Vi2[1::nk] rk;i ?=sk;i;>);... ... 9>>>>>>>>>>>>=>>>>>>>>>>>>;where Sol(9~z:(f(X) ?=f(Y );>)) = [h2[1::k]Sol(9~zh:( ^i2[1::nh] rh;i ?=sh;i;>))and for all h 2 [1::k], for all i; i0 2 [1::mh]1. ~z � ~zh,2. rh;i 2 X [ Y ,3. rh;i 6= rh;i0,4. if rh;i 2 V or root(rh;i) 2 FAC1 then sh;i 2 X [ Y , or sh;i = f(Z), whereZ � (V �W ) [X [ Y ,5. if rh;i 62 V and root(rh;i) 62 FAC1 then rh;i and sh;i 2 X [ Y .The simpli�cation is often much easier with than without identities (for manyexamples see [BHK 88]).Note that AC1-terms in X and Y must be handled like variables, becausethey may collapse and unify with any other term. Therefore, we cannot main-tain the properties 4 and 5 in De�nition 3.3. However, if FAC contains only



CHAPTER 3. UNIFICATION 38one element, then no AC1-term can occur in X and Y , since we consider at-tened terms. In this case, the properties 4 and 5 in De�nition 3.3 are valid(see Lemma 3.6).The set AC1-Unify of transformation rules consists of the rules Delete,Merge, Eliminate, Free Decompose, and AC Decompose in Table 1and the rules in Table 2. The union of the relations described by the rules inAC1-Unify is denoted by )AC1�Unify.De�nition 3.7 An AC1-uni�cation procedure is a subset U of the relation)AC1�Unify such that every normal form with respect to U is a normal formwith respect to )AC1�Unify.Similar to the previous section, we state the soundness, completeness, andtermination of AC1-uni�cation procedures. We give only the parts of theproofs that di�er from the corresponding proof in the previous section.Lemma 3.4 (Soundness) Every AC1-uni�cation procedure preserves the uni-�ers: If C1)�AC1�Unify C2, then Sol(C1) = Sol(C2).Proof.� Fail. If f; g 62 FAC1 and f 6= g then Sol(f(X) ?=g(Y )) = ;, since AC1can only change the root symbols of terms t with root(t) 2 FAC1. Thus,for C1 = 9~z:(f(X) ?=g(Y ) ^ c; k) _ d and C2 = d, we obtain Sol(C1) =Sol(C2).� Check. Let C1 = 9~z:(x ?=f(X) ^ c; k) _ d, f 62 FAC1, and x 2V ar(f(X)). Assume � 2 Sol(x ?=f(X)). Since x occurs in f(X), ev-ery subterm of x� must occur in f(X)�. Since f 62 FAC1, root(x�) =



CHAPTER 3. UNIFICATION 39Fail:9~z:(f(X) ?=g(Y ) ^ c; k) _ d ) dif ( f; g 62 FAC1f 6= gCheck:9~z:(x ?=f(X) ^ c; k) _ d ) dif 8><>: x 2 Vf 62 FAC1x 2 V ar(f(X))Collapse 1:9~z:(f(X) ?=t ^ c; k) _ d )Wi2[1::jXj]9~z:(Vj2[1::jXj];j 6=iXj ?=zero(f) ^ X i ?=t ^ c ; k) _ dif 8>>><>>>: either t 2 V and t 2 V ar(f(X))or root(t) 62 FAC1f 2 FAC1f(X) 62 subt(c)Collapse 2:9~z:(f(X) ?=g(Y ) ^ c; k) _ d )Wi2[1::jXj]9~z:(Vj2[1::jXj];j 6=iXj ?=zero(f) ^ X i ?=g(Y ) ^ c ; k)_ Wi2[1::jY j] 9~z:(Vj2[1::jY j];j 6=i zero(f) ?=Y j ^ f(X) ?=Y i ^ c ; k)_ dif ( f; g 2 FAC1f 6= gAC1 Decompose:9~z:(f(X) ?=f(Y ) ^ c; k) _ d )W(9~z0 :(c0;>))2dioAC1(9~z:(f(X) ?=f(Y );>);W ) 9~z0:(c0 ^ c; k) _ dwhere W = V ar(9~z:(f(X) ?=f(Y ) ^ c; k))if 8><>: f 2 FAC1f(X) 6=AC1 f(Y )f(X) 62 subt(c) or f(Y ) 62 subt(c)Table 2: The transformation rules AC1-Unify



CHAPTER 3. UNIFICATION 40root(f(X)�). Either a proper subterm of f(X)� contains x� or Flattenhas applied and jargs(x�)j < jargs(f(X)�)j. Both lead to a contradic-tion. (If f(Y ) =AC1 f(Z), then jY j = jZj and there exists a permutation�, such that Y i =AC1 Z�(i), for all i 2 [1::jY j].) Thus Sol(x ?=f(X)) = ;;and for C2 = d, we obtain Sol(C1) = Sol(C2).� Collapse 1. Let C 01 = 9~z:(f(X) ?=t^c; k), where f 2 FAC1, and t 2 V orroot(t) 62 FAC1, C1 = C 01_d, C 02 = Wi2[1::jXj]9~z:(Vj2[1::jXj];j 6=iXj ?=zero(f)^ X i ?=t ^ c ; k), and C2 = C 02 _ d.We show that Sol(C 01) = Sol(C 02).\�": If � 2 Sol(f(X) ?=t) then f(X)� =AC1 t�. Either t is in V orroot(t) 62 FAC1. Zero must apply to f(X)� jXj � 1 times at top-level,leaving an instance of a term X i for some i 2 [1::jXj]: X i� =AC1 t.In this case, Xj� =AC1 zero(f) for all j 2 [1::jXj]; j 6= i and thus� 2 Sol(Vj2[1::jXj];j 6=iXj ?=zero(f) ^ X i ?=t). Since all i 2 [1::jXj] arecovered in C 02, we conclude Sol(C 01) � Sol(C 02).\�": If � 2 Sol(Vj2[1::jXj];j 6=iXj ?=zero(f) ^X i ?=t), for some i 2 [1::jXj],then Zero applies to f(X)� jXj � 1 times at top-level since �Xj =AC1zero(f), for all j 2 [1::jXj]; j 6= i, leaving an instance of X i.� Collapse 2. similar to Collapse 1, but both the left and the right handside can collapse.� AC1 Decompose. similar to AC Decompose. 2



CHAPTER 3. UNIFICATION 41Lemma 3.5 (Completeness) Every normal form with respect to AC1-Uni-fy is an AC1-uni�cation problem in solved form.Proof. Let C = Wh2[1::k] 9~zh:(ch; kh) be a normal form with respect to AC1-Unify. Assume that for some h 2 [1::k] ch = r ?=s ^ c0h, where r = f(X)and s = g(Y ) are non-variable terms. If both f 2 FAC1 and g 2 FAC1,then Collapse 2 applies if f 6= g and AC1 Decompose or Delete appliesotherwise. If only one of the symbols f and g are in FAC1, then Collapse1 applies. If f = g 62 FAC1 then AC Decompose, Free Decompse orDelete applies, and if f; g 62 FAC1 and f 6= g, then Fail applies. Note thatthe restrictions in Collapse 1, Free Decompose, AC Decompose, andAC1 Decompose cause no deadlock. (In a set of terms, not all terms can bestrictly contained in other terms.)So, assume that r = x 2 V . If s = x, Delete applies. If s 6= x, thenCheckapplies if x 2 V ar(s) and root(s) 62 FAC1, Collapse 1 applies if x 2 V ar(s)and root(s) 2 FAC1, and Eliminate applies otherwise.The validation of the solved form properties is similar to the proof ofLemma 3.2. 2Lemma 3.6 (Termination) Every AC1-uni�cation procedure in which, af-ter every application of Collapse 1, Collapse 2, Free Decompose, ACDecompose and AC1 Decompose all newly introduced atomic problemswith variables on at least one side are eliminated using Delete, Check andEliminate terminates on every AC1-uni�cation problem that contains onlyone AC-symbol.



CHAPTER 3. UNIFICATION 42Proof. The limitation on the presence of only one AC-symbol enables us touse the same ordering as in the proof of Lemma 3.3 (see De�nition 3.6). Theproof for the rules that occur already in AC-Unify is similar to the proof ofLemma 3.3. The proof for the rule AC1 Decompose is similar to the prooffor the rule AC Decompose. We discuss the remaining rules:� Collapse 1. We prove that the application of Collapse 1, followedby the application of Delete, Check, and Eliminate on the newlyintroduced atomic problems with variables on at least one side, decreasesthe complexity of an AC1-uni�cation problem.Let e1 = 9~z:(f(X) ?=t ^ c; k), where either t 2 V and t 2 V ar(f(X)) orroot(t) 62 FAC1, f 2 FAC1, and f(X) 62 subt(c), and let C1 = e1 _ d. LetC 02 = Wi2[1::jXj]9~z:(Vj2[1::jXj];j 6=iXj ?=zero(f) ^ X i ?=t ^ c ; k) _ d, ande02 = 9~z:(Vj2[1::jXj];j 6=hXj ?=zero(f) ^ Xh ?=t ^ c ; k),for some h 2 [1::jXj].1. If Xh; t 2 V and Xh = t then Delete applies to Xh ?=t. e2 =9~z:(Vj2[1::jXj];j 6=h;Xj 62V Xj� ?=zero(f) ^ c�; k�), where � = fXj 7!zero(f) j Xj 2 V; j 6= hg. We obtain �(e1) � �(e2) and �(e1) ��(e2). If f(X) does not occur in c, then (e1) > (e2), and therefore�e(e1) >e �e(e2).Now, we assume that f(X) occurs in c. We obtain (e1) � (e2)and �(e1) � �(e2). Since f(X)� occurs in c�, the terms Xj� donot count for "(e2). Furthermore, f(X) counts for "(e1), sincef(X) 62 subt(c) (see condition to apply Collapse 1). Clearly, thisoccurrence of f(X) has no corresponding occurrence in e2. Thus,



CHAPTER 3. UNIFICATION 43"(e1) > "(e2), and therefore �e(e1) >e �e(e2).2. If Xh; t 2 V and Xh 6= t then Eliminate applies to Xh ?=t, result-ing in e2 = 9~z:(Vj2[1::jXj];j 6=h;Xj 62V Xj� ?=zero(f) ^ c�; k�), where� = fXj 7! zero(f) j Xj 2 V; j 6= hg [ ft 7! Xhg. Weobtain �(e1) � �(e2). The term t occurs under @ and, sincet 2 V ar(f(X)), under at least one other symbol. Therefore, weobtain �(e1) � �(e2). Clearly, (e1) � (e2). The atomic AC1-uni�cation problem f(X) ?=t has no corresponding occurrence in e2,thus �(e1) > �(e2), and therefore �e(e1) >e �e(e2).3. If Xh 62 V and t 2 V then Eliminate applies to Xh ?=t and e2 asin 2. Proof as in 1.4. If Xh 2 V and t 62 V then Eliminate applies to Xh ?=t. e2 =9~z:(Vj2[1::jXj];j 6=h;Xj 62V Xj� ?=zero(f) ^ c�; k�), where � = fXj 7!zero(f) j Xj 2 V; j 6= hg [ fXh 7! tg. Proof as in 1.5. If Xh and t 62 V then e2 = 9~z:(Vj2[1::jXj];j 6=h;Xj 62V Xj� ?=zero(f) ^Xh� ?=t� ^ c�; k�), where � = fXj 7! zero(f) j Xj 2 V; j 6= hg.Proof as in 1.We proved that, after the exhaustive application of Delete, Fail, andEliminate, every newly constructed existential constraint e2 ful�lls�(e1) >e e2; thus the complexity of the AC1-uni�cation problem de-creases.� Collapse 2. We prove that the application of Collapse 2, followedby the application of Delete, Check, and Eliminate on the newly



CHAPTER 3. UNIFICATION 44introduced atomic problems with variables on at least one side, decreasesthe complexity of an AC1-uni�cation problem.Let e1 = 9~z:(f(X) ?=g(Y ) ^ c; k), where f; g 2 FAC1, and C1 = e1 _ d.Let C 02 =Wi2[1::jXj]9~z:(Vj2[1::jXj];j 6=iXj ?=zero(f) ^ X i ?=g(Y ) ^ c ; k) _Wi2[1::jY j] 9~z:(Vj2[1::jY j];j 6=i zero(f) ?=Y j ^ f(X) ?=Y i ^ c ; k) _ d, ande02 = 9~z:(Vj2[1::jXj];j 6=hXj ?=zero(f) ^ Xh ?=g(Y ) ^ c ; k), for someh 2 [1::jXj] (proof for e02 in second disjunction similar).1. If Xh 2 V then Eliminate applies to Xh ?=g(Y ), and e2 = 9~z:(Vj2[1::jXj];j 6=h;Xj 62V Xj� ?=zero(f) ^ c�; k�), where � = fXj 7!zero(f) j Xj 2 V; j 6= hg [ fXh 7! g(Y )g. We obtain �(e1) ��(e2). If jOP (Xh; e)j � 2, then �(e1) > �(e2). Otherwise, weobtain �(e1) � �(e2), and since Xh occurs only under the AC-symbol f , Flatten applies at every application of fXh 7! g(Y )g,such that (e1) > (e2).2. If Xh 62 V then e2 = 9~z:(Vj2[1::jXj];j 6=h;Xj 62V Xj� ?=zero(f) ^Xh� ?=g(Y )� ^ c�; k�), where � = fXj 7! zero(f) j Xj 2 V; j 6= hg.For � 2 f�; �; ; �; "g, we obtain �(e1) � �(e2), and additionally�(e1) > �(e2), since all positions in e2 have a corresponding positionin e1 (the terms Xh� have their corresponding position in f(X)),and the position h�; ;i in f(X) has no corresponding position in e2.We proved that, after the exhaustive application of Delete, Fail, andEliminate, every newly constructed existential constraint e2 ful�lls



CHAPTER 3. UNIFICATION 45�(e1) >e e2; thus the complexity of the AC1-uni�cation problem de-creases. 23.4 AC1-Uni�cation with Zero-DisequationsDuring the solving AC1-uni�cation problems with zero-disequations, we trans-fer zero-disequations of the form t 6= 0 in the unsolved part to the solved part,in which only zero-disequations of the form x 6= 0, where x 2 V , are allowed.We shall resolve zero-disequations similarly to atomic AC1-uni�cation prob-lems. In addition any substitution resulting from a solution of a uni�cationproblem must ful�ll all zero-disequations.All terms in the solved part are kept in normal form with respect to therewrite system Zero. This ensures, together with the normal form computa-tion with respect to Flatten, that if a term t =AC1 0 for some 0 2 Fzero thent = 0, so that violations of zero-disequations can easily be detected.Notation: We extend the function #Zero from terms to conjunctive con-straints. Let c = ^i2[1::n] ri ?=si ^ ^i2[1::n]xi 6= fibe a conjunctive constraint. Thenc #Zero= ^i2[1::n] ri #Zero ?=si #Zero ^ ^i2[1::n]xi 6= fi:



CHAPTER 3. UNIFICATION 46The set Disequation-AC1-Unify of transformation rules consists of therules in AC1-Unify, where the rule Eliminate is replaced by the rules Elim-inate Pass and Eliminate Clash, and the new rules Disequation Delete,Disequation Eliminate Pass, Disequation Eliminate Clash, and Dise-quation Decompose in Table 3. The union of the relations described by therules in Disequation-AC1-Unify is denoted by )Disequation�AC1�Unify.De�nition 3.8 A disequation-AC1-uni�cation procedure is a subset U of therelation)Disequation�AC1�Unify such that every normal form with respect toU is a normal form with respect to )Disequation�AC1�Unify.Similar to the previous sections, we state the soundness, completeness, andtermination of disequation-AC1-uni�cation procedures. We give only the partsof the proofs that di�er from the corresponding proof in the previous section.Lemma 3.7 (Soundness) Every disequation-AC1-uni�cation procedure pre-serves the uni�ers: If C1)�Disequation�AC1�Unify C2, then Sol(C1) = Sol(C2).Proof.� EliminatePass. similar toEliminate in the previous section. (Clearly,the application of #Zero has no impact on the set of solutions of a con-straint.)� Eliminate Clash. Let C1 = 9~z:(x ?=t ^ c; k) _ d. Clearly, Sol(x ?=f ^x 6= f) = ;. Thus if for some atomic AC1-uni�cation problem x ?=f in(x ?=t^ k�) #Zero the zero-disequation x 6= f occurs in k, then Sol(C1) =Sol(d).



CHAPTER 3. UNIFICATION 47Eliminate Pass:9~z:(x ?=t ^ c; k) _ d ) 9~z:( c� ^ g�; (x ?=t ^ k�) #Zero) _ dwhere 8><>: � = fx 7! tgk = g ^ k0g = Vs6=02k;x2V ar(s) s 6= 0if 8>>>><>>>>: x 2 Vx 62 V ar(t)for no x ?=f in (x ?=t ^ k�) #Zerox 6= f occurs in kEliminate Clash:9~z:(x ?=t ^ c; k) _ d ) dif 8>>>><>>>>: x 2 Vx 62 V ar(t)for some x ?=f in (x ?=t ^ k�) #Zerox 6= f occurs in kwhere � = fx 7! tgDisequation Delete:9~z:(f(X) 6= 0 ^ c; k) _ d ) 9~z:(c; k) _ dif f 62 FAC1Disequation Eliminate Pass:9~z:(x 6= 0 ^ c; k) _ d ) 9~z:(c; x 6= 0 ^ k) _ dif ( x 2 Vx ?=0 62 kDisequation Eliminate Clash:9~z:(x 6= 0 ^ c; k) _ d ) dif ( x 2 Vx ?=0 2 kDisequation Decompose:9~z:(f(X) 6= 0 ^ c; k) _ d ) Wg2DNF 9~z:(g ^ c; k) _ dwhere DNF is the set of conjunctions in the disjunctive normal form of(X1 6= 0 _X2 6= zero(f) _X3 6= zero(f) _ � � � _X jXj 6= zero(f)) ^(X1 6= zero(f) _X2 6= 0 _X3 6= zero(f) _ � � � _X jXj 6= zero(f)) ^... ...(X1 6= zero(f) _X2 6= zero(f) _X3 6= zero(f) _ � � � _X jXj 6= 0)Table 3: The transformation rules Disequation-AC1-Unify



CHAPTER 3. UNIFICATION 48� Disequation Delete. Let C1 = 9~z:(f(X) 6= 0 ^ c; k) _ d, wheref 62 FAC1. AC1 can only change the root symbols of terms with root(t) 2FAC1. Thus any substitution is in Sol(f(X) 6= 0) and Sol(C1) = Sol(9~z:(c; k) _ d).� Disequation Eliminate Pass. trivial.� Disequation Eliminate Clash. similar to Eliminate Clash.� Disequation Decompose. Let C1 = 9~z:(f(X) 6= 0 ^ c; k) _ d, wheref 2 FAC1. The zero-disequation f(X) 6= 0 is violated, if and only if forone termX i in X holds X i =AC1 0 and for all other termsXj in X holdsXj =AC1 zero(f). The negation of this fact is expressed by the formulain Disequation Decompose, of which DNF is a disjunctive normalform. Distributivity yields that Sol(C1) = Sol(Wg2DNF 9~z:(g^c; k) _ d).2Lemma 3.8 (Completeness) Every normal form with respect to Disequa-tion-AC1-Unify is an AC1-uni�cation problem with zero-disequations insolved form.Proof. Let C = Wh2[1::k] 9~z:(ch; kh) be a normal form with respect to Dis-equation-AC1-Unify. From the argumentation in the proof of Lemma 3.5follows that ch is a conjunction of zero-disequations for all h 2 [1::k]. Assumet 6= 0 2 ch. If t 2 V then Disequation Eliminate Pass or DisequationEliminate Clash applies. If t = f(X) then Disequation Decompose orDisequation Delete applies. Therefore, ch must be > for all h 2 [1::k].



CHAPTER 3. UNIFICATION 49The proof of uniqueness and idempotency follows from the argumentationin the proof of Lemma 3.2.We show that in every existential constraint in C, every replacement in thesolved part ful�lls all zero-disequations in the solved part.Assume that the atomic AC1-uni�cation problem x ?=0 in kh violates thezero-disequation x 6= 0 in kh. The atomicAC1-uni�cation problem x ?=0 cannothave been added to kh after the zero-disequation x 6= 0, since the conditionsto apply Eliminate Pass would not have been ful�lled. On the other hand,the zero-disequation x 6= 0 cannot have been added to kh after the atomicAC1-uni�cation problem x ?=0, since the conditions to apply DisequationEliminate Pass would not have been ful�lled, which is a contradiction. 2The simplest way to ensure the termination of disequation-AC1-uni�cationprocedures is to solve �rst the atomic uni�cation problems and then the zero-disequations.Lemma 3.9 (Termination) Every disequation-AC1-uni�cation procedurethat �rst applies the rules in AC1-Unify (including Eliminate Pass andEliminate Clash) as described in Lemma 3.6 and then the rules Disequa-tion Delete, Disequation Eliminate Pass, Disequation EliminateClash, and Disequation Decompose in any order, terminates on everyAC1-uni�cation problem with zero-disequations that contains only one AC-symbol.Proof. The former process terminates due to Lemma 3.6. The termination ofthe latter process can be shown using an ordering based on the size of the termsin the zero-disequations of the unsolved parts of the existential constraints. 2



CHAPTER 3. UNIFICATION 50Note that violations of zero-disequations can be detected earlier, when the solv-ing of atomic AC1-uni�cation problems and the solving of zero-disequationsare interleaved. However, in this case the termination proof is harder becausein Eliminate Pass zero-disequations in the solved part are moved back tothe unsolved part.



Chapter 4CompletionIn this chapter, we shall approach the task of completion of equation setsin the presence of associative commutative function symbols and identities.Prior to describing procedures for completion in Section 4.4, we shall presenta notion of rewriting in AC1-theories in Section 4.1 that is reasonably e�cientand|for our purpose|equivalent to the concept of rewriting modulo AC1.In Section 4.2, we introduce some operations on constraints that we shall usein Section 4.3 to interleave constraint solving with the process of completion.In Section 4.4, a variety of completion procedures is described using a setof transformation rules. Suitable application strategies for these rules arediscussed in Section 4.5.4.1 Constrained AC1-rewritingDe�nition 4.1 A constrained equation is a triple C j l � r, where C is aconstraint, and l and r are terms. 51



CHAPTER 4. COMPLETION 52If E is a set of constrained equations, we write s!E t to indicate that thereexist terms w and l0, a position � in w, a substitution �, and a constrainedequation C j l � r in E, such that � 2 Sol(C), s = w[l0]�, l0 =AC1 l�, andt = w[r�]�. The relation !E is called the rewrite relation induced by E. Wesay that s rewrites to t by E if s!E t. A normal form with respect to !E issaid to be irreducible by E.A set E of equations will be called a constrained rewrite system if therewrite relation!E is the primary object of study. The constrained equationsof a constrained rewrite system are also called constrained rewrite rules.Several di�erent ways have been devised to integrate equational theoriesinto the rewriting process. The most general approach, applied to the AC1-case, is rewriting modulo AC1.De�nition 4.2 We say that the constrained rewrite system R rewrites theterm v to the term w modulo AC1, denoted v � -R=AC1 w, if there existterms v0; w0 such that v =AC1 v0!R w0 =AC1 w.We write v � -E=AC1 w to specify the constrained rewrite rule and the sub-stitution by which v0 is rewritten to w0.De�nition 4.3 The constrained rewrite systemR is called convergent moduloAC1 if -R=AC1 is terminating and Church-Rosser modulo AC1.The task of completion modulo AC1 of a given set E of constrained equationsis to construct a constrained rewrite system R such that AC1[E and AC1[Rde�ne the same equational theory and R is convergent modulo AC1.Several weaker notions of rewriting in an equational theory are in use (forthe general case, see [Bac 91]; for the AC1-case, see [JM 90]). We shall employ



CHAPTER 4. COMPLETION 53our extended concept of subterms and positions to de�ne yet another versionof rewriting in the theory AC1.De�nition 4.4 We say that the constrained rewrite system R AC1-rewritesthe term v to the term w, denoted v -AC1nR w, if v #F latten[Zero!R w.We write v � -AC1nE w to specify the constrained rewrite rule and the sub-stitution by which v #F latten[Zero is rewritten to w.Proposition 4.1 If r =AC1 s -R=AC1 t then there exists a term u suchthat r -AC1nR u =AC1 t.Proof. Let r =AC1 s -R=AC1 t. The de�nition of -R=AC1 impliesthat there exist terms s0 and t0 such that s =AC1 s0 !R t0 =AC1 t. Let r0 bethe normal form of r with respect to Flatten [ Zero. Let � be the positionat which !R applies to s0. There exists a term w, a substitution �, and aconstrained rewrite rule E = C j l � r in R, such that � 2 Sol(C), s0 = w[l�]�and t0 = w[r�]�. From Lemma 2.1 follows that there exists a position �0 in r0such that r0j�0 =AC1 s0j�. Therefore, the constrained rewrite rule E applies tor0 at position �0 resulting in a term u. Since r0 =AC1 s0 and r0j�0 =AC1 s0j�, weget u =AC1 t0 and thus u =AC1 t. Figure 1 depicts the situation. 2We can say that AC1-rewriting rewrites equivalence classes with respect toAC1 and is equivalent to rewriting modulo AC1, when we are only interestedin one representantive of the equivalence class of terms to which a term isrewritten. In particular, we obtain the following results.Proposition 4.2 (1) The relation -AC1nR terminates if and only if-R=AC1 terminates; (2) the relation -AC1nR is Church-Rosser moduloAC1 if and only if -R=AC1 is Church-Rosser modulo AC1.
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??@ @ @ @ @ @ @R ?� ! u AC1nR AC1AC1 R=AC1 RR AC1 t0t s0sAC1rr0 F latten [ZeroFigure 1: Illustration to Proposition 4.1Proof. (sketch) Using Proposition 4.1, we can show that if -R=AC1 does notterminate then neither does -AC1nR (see Figure 2). The reverse direction istrivial.We can show by induction using Proposition 4.1 that if -R=AC1 isChurch-Rosser modulo AC1 then so is -AC1nR (see Figure 3). The re-verse direction is trivial. 2Now, we can rephrase a well-known fact (see [Huet 80]) using AC1-rewritinginstead of rewriting modulo AC1 in a lemma that shall be the foundation ofour completion procedures.Lemma 4.1 Let R be constrained rewrite system such that -AC1nR termi-nates. The relation -R=AC1 is Church-Rosser modulo AC1 if and only if-AC1nR is locally conuent modulo AC1.Remark: AC1-rewriting will be reasonably e�cient, when all terms, includingthe left and right hand side of constrained rewrite rules are kept in normal
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CHAPTER 4. COMPLETION 56form with respect to Flatten[ Zero. In this case, AC1-matching proceduresas described in Appendix A can be applied.During the process of completion, local conuence modulo AC1 is tested when-ever a new constrained rewrite rule is found. On failure of this test, \criticalpairs" are added. In rewriting modulo an equational theory, \extensions" ofrewrite rules are often used to test for local conuence. The concepts of crit-ical pairs and extensions are captured by the following lemma that implies acriterion for local conuence modulo AC1.Lemma 4.2 (Critical Pair Lemma) Let E1 = C1 j l � r and E2 = C2 j g �d be constrained rewrite rules that have no variables in common. There existterms t, v and w such that v � AC1nE1 t -AC1nE2 w if and only if� there exist terms v0 and w0 such that v -AC1nE2 v0 =AC1 w0 � AC1nE1w, or� there exists a subterm l0 in l and a substitution � 2 Sol(C1) \ Sol(C2)such that l0� =AC1 g�, or� there exists a subterm g0 in g and a substitution � 2 Sol(C1) \ Sol(C2)such that g0� =AC1 l�, or� there exists a subterm l00 in l+x and a substitution � 2 Sol(C1)\Sol(C2)such that l00� =AC1 g�, where root(l) = + 2 FAC and x is a new variable,or� there exists a subterm g00 in g+x and a substitution � 2 Sol(C1)\Sol(C2)such that g00� =AC1 l�, where root(g) = + 2 FAC and x is a new variable.



CHAPTER 4. COMPLETION 574.2 Some Operations on ConstraintsLet C1 = Wi2[1::n] 9~zi:(ci; ki) and C2 = Wj2[1::m] 9~zj 0:(c0j; k0j) be disjunctive con-straints and let DNF = Wi2[1::n0] 9~zi0:gi be a disjunctive normal form of theformula Wi2[1::n] 9~zi:ci ^ ki ^ Wj2[1::m] 9~zj 0:c0j ^ k0j . Then C1 ^ C2 denotes thedisjunctive constraint Wi2[1::n0] 9~zi0:(gi;>).Proposition 4.3 For any two constraints C1 and C2 holds Sol(C1 ^ C2) =Sol(C1) \ Sol(C2).The application of a substitution � to a constraint C = Wi2[1::n] 9~zi:(ci; ki) isde�ned to be the constraint Wi2[1::n](ci� ^ ki�;>).Proposition 4.4 If Ran(�) \ V ar(C) = ;, Dom(�) \ Si 2 [1::n] ~zi = ; and� 2 Sol(C), then Sol(C�) = f�� j � 2 Sol(C)g.Let C = Wi2[1::n](Vj2[1::mi] ti;j 6= 0i;j;Vj02[1::m0i] t0i;j0 6= 00i;j0) be a disjunctive con-straint that contains no atomic uni�cation problem and let DNF = Wi2[1::k]Vj2[1::li] si;j ?=1i;j ^ Vj02[1::l0i] s0i;j0 ?=10i;j0 be a disjunctive normal form of theformula Vi2[1::n] Wj2[1::mi] ti;j ?=0i;j _ Wj02[1::m0i] t0i;j0 ?=00i;j0 . Then the negationof C, denoted C is de�ned to be the constraint Wi2[1::k](Vj2[1::li] si;j ?=1i;j ^Vj02[1::l0i] s0i;j0 ?=10i;j0;>).Proposition 4.5 If C is a disjunctive constraint that contains no atomic uni-�cation problem, then �(V (C)) = Sol(C) ] Sol(C).4.3 Auxiliary TransformationsAC1-completion can be viewed as a transformation process on pairs consistingof a set of unoriented constrained equations on the left hand side and an



CHAPTER 4. COMPLETION 58constrained rewrite system on the right hand side.In order to interleave constraint solving with completion, we introduce theset Aux of transformation rules in Table 4. Each transformation rule in Auxrepresents a binary relation on pairs of sets of constrained equations. Wedenote the union of these relations by )Aux.Proposition 4.6 (Soundness) If E;N )Aux E 0;N 0 then the relations-AC1nE [N and -AC1nE0 [N 0 are equal.Note that in Equation Distribute and Rule Distribute the constraint Cmay be ?. In this case, the rule or equation is discarded.4.4 The Transformation RulesAC1-CompleteTable 5 shows the set AC1 �Complete of transformation rules, whose goalis to generate from a given set of constrained equations a constrained rewritesystem that is convergent modulo AC1. Each transformation rule describes arelation on pairs of sets of constrained equations. The union of these relationsis denoted by )AC1�Complete.



CHAPTER 4. COMPLETION 59Equation Unify:E [ fC j l � rg ; N ) E [ fC 0 j l � rg ; Nif C )Disequation�AC1�Unify C 0Rule Unify:E ; N [ fC j l � rg ) E ; N [ fC 0 j l � rgif C )Disequation�AC1�Unify C 0Equation Distribute:E [ fWh2[1::k] eh j l � rg ; N ) E [ Sh2[1::k]feh j l � rg ; NRule Distribute:E ; N [ fWh2[1::k] eh j l � rg ) E ; N [ Sh2[1::k]feh j l � rgEquation Apply:E [ f9~z:(>;Vi2[1::n] xi 6= 0i ^ Vj2[1::m] yj ?=tj) j l � rg ; N) E [ fVi2[1::n] xi 6= 0i j l� � r�g ; Nwhere � = Vj2[1::m] yj ?=tjif 9~z:(>;Vi2[1::n] xi 6= 0i ^ Vj2[1::m] yj ?=tj) in solved formRule Apply:E ; N [ f9~z:(>;Vi2[1::n] xi 6= 0i ^ Vj2[1::m] yj ?=tj) j l � rg) E ; N [ fVi2[1::n] xi 6= 0i j l� � r�gwhere � = Vj2[1::m] yj ?=tjif 9~z:(>;Vi2[1::n] xi 6= 0i ^ Vj2[1::m] yj ?=tj) in solved formTable 4: The transformation rules Aux



CHAPTER 4. COMPLETION 60Remarks:� We assume given a predicate T such that if T E for all rules E in Rthen -AC1nR terminates (see Section 4.5 for further discussion oftermination).� The symbol ' is used to denote unoriented equations in a commutativeway: E [ fC j l ' rg denotes that either C j l � r or C j r � l occurs ina set of constrained equations and the remainder of this set is denotedby E.� The symbol � in Collapse denotes the strict part of the encompassmentordering, which is de�ned as follows: s � t if some subterm of s is aninstance of t, but not vice versa.De�nition 4.5 An AC1-completion procedure is a subset of the relationAux [AC1 �Complete.Lemma 4.3 (Soundness) If E;N )AC1�Complete E 0;N 0 then the relations-� AC1nE [N � and -� AC1nE0 [N 0 � are equal.We describe the fairness of a derivation in Aux [AC1 �Complete. Let(CP (N);N) = )!Deduce (;;N) be the pair of sets of constrained equationsresulting from exhaustively applying the rule Deduce to the constrainedrewrite system N . CP (N) is called the set of critical equations of N . Let(EXT (N);N) = )!DeduceExtended (;;N) be the pair of sets of constrainedequations resulting from exhaustively applying the rule Deduce Extend to



CHAPTER 4. COMPLETION 61Deduce: E ; N ) E [ fC1 ^ C2 ^ lj� ?=g j l[d]� � rg ; Nif ( C1 j l � r and C2 j g � d 2 N� 2 Fpos(l)Deduce Extended:E ; N )E [ fC1 ^ C2 ^ (l + x)j� ?=g j (l + x)[d]� � rg ; Nif ( C1 j l � r and C2 j g � d 2 N� 2 Fpos(l + x)Orient:E [ fC j l ' rg ; N ) E ; N [ fC j l � rgif T (C j l � r)Simplify:E [ fC1 j l ' rg ; N )E [ fC1 ^ C2� j l0 � rg [ fC1 ^ C2� j l � rg ; Nif 8<: C2 j g � d 2 Nl � -AC1nC2 j g � d l0Delete:E [ fC j l � rg ; N ) E ; Nif l =AC1 rCompose:E ; N [ fC1 j l � rg )E ; N [ fC1 ^ C2� j l � r0g [ fC1 ^ C2� j l � rgif 8<: C2 j g � d 2 Nr � -AC1nC2 j g � d r0Collapse:E ; N [ fC1 j l � rg )E [ fC1 ^ C2� j l0 � rg ; N [ fC1 ^ C2� j l � rgif 8>><>>: C2 j g � d 2 Nl � -AC1nC2 j g � d l0l � gTable 5: The transformation rules AC1-Complete



CHAPTER 4. COMPLETION 62the constrained rewrite system N . CP (N) is called the set of extensionsof N . Let E0;N0 )Aux[AC1�Complete E1;N1 )Aux[AC1�Complete . . . bea derivation in Aux [AC1 �Complete. The set of constrained equationsS1n=0(T1i=nNi) is denoted by N1.A derivation E0;N0 )Aux[AC1�Complete E1;N1 )Aux[AC1�Complete . . .is said to be fair, if [E2CP (N1)[EXT (N1)( -AC1nE ) � 1[i=0( -AC1nEi ):In a fair derivation E0;N0 )Aux[AC1�Complete E1;N1 )Aux[AC1�Complete. . . all critical equations and critical extensions ofN1 are instances of equationsin the union of all Ei in the sense that whenever r -AC1nE s for two termsr and s and a constrained equation E 2 CP (N1) [ EXT (N1) there existsan i 2 N and a constrained equation E 0 2 Ei such that r -AC1nE 0 s. AnAC1-completion procedure is fair, if all derivations it produces are fair.Lemma 4.4 (Completeness) Let the derivation E0;N0)Aux[AC1�CompleteE1;N1 )Aux[AC1�Complete . . . )Aux[AC1�Complete ;;Nk be fair. For allterms v and w holds: If v -� AC1nE0 [N0 w then there exist terms u and u0such that v -AC1nNk � u =AC1 u0 � AC1nNk � w.Proof. (sketch) As in [JM 90], the completeness can be shown using prooforderings, a technique developed in [BD 89]. A rewrite system on proofs,based on the transformation rules in AC1-Complete, must be de�ned andthe correctness and termination of this rewrite system must be established. 2



CHAPTER 4. COMPLETION 63Equation Split:E [ fC j l ' rg ; N ) E [ fC ^ C 0 j l ' rg [ fC ^ C 0 j l ' rg ; NTable 6: The transformation rule Equation Split4.5 Application StrategiesThe transformation rulesAC1-Complete describe a large class of procedures,not all of which are suitable for completion. An obvious limitation is imposedby the negation of constraints in the rules Simplify,Compose and Collapse.Since negation of constraints is only de�ned on constraints that contain noatomic uni�cation problems, we require that the rules in N are always innormal form with respect to Aux.The di�culties in applying the rule Orient are to �nd an appropriatepredicate T and to transform a given constrained equation C j l � r suchthat T is ful�lled. Both problems are solved in [JM 90], where a criterionfor termination of constrained rewrite systems is developed and an algorithmto generate a constraint for a constrained equation such that the criterion isful�lled is presented.Let E = C j l � r be an AC1-equation in E and C 0 a constraint suchthat T (C ^ C 0 j l � r). We can split E into two parts: E 0 = C ^ C 0 j l � rand E 00 = C ^ C 0 j l � r. Now, we can apply Orient to E 0. E 00 remains inE. We can schematize this operation by the transformation rule EquationSplit shown in Table 6, whose soundness follows from Propositions 4.3 and 4.5.Regarding the application of the transformation rules inAux to the unorientedequations, we shall discuss two strategies.



CHAPTER 4. COMPLETION 64The �rst strategy is to apply Aux eagerly, transforming all occurring con-straints into solved constraints consisting of conjunctions of zero-disequations.This leads to a total separation of completion and uni�cation as in [JM 90],but maintaining the possibility of constraining unoriented equations.The second strategy consists in postponing the solving of particularly harduni�cation problems and \shelving" the unoriented equations in which theyoccur. Proceeding with the completion process, the rule Simplify may applyto the postponed uni�cation problem and make it easier to solve. In applyingthe rule Orient, we may solve uni�cation problems in unoriented equations(lazily) only when no other equation can be oriented.Example 4.1 For the uni�cation problem(x+ 1) � (y + 1) � (z + 1) ?=u � v � w;216 solutions are computed. In the presence of the rewrite rule x+ 1 � f(x),we can simplify the problem tof(x) � f(y) � f(z) ?=u � v � w;for which only 27 solutions are computed.We can show the termination of lazy uni�cation under certain conditions,imposed by the complexity measure in De�nition 3.5, on the form of the ruleswith which the uni�cation problems are simpli�ed.



Chapter 5ImplementationIn this chapter, we present an overview of the experimental environment forTerm Rewriting in Associative Commutative theories with Identities, TRA-CONE, which is currently being implemented in the programming languageStandard ML (see [HMM 86]) in Version 75 of New Jersey.The overall structure of TRACONE is outlined in Figure 4. Each modulerepresents an SML-functor that can be separately compiled, allowing for aneasy testing and recombination of the modules and a fast loading of the system.We shall briey discuss the main features of the modules.� A variety of modules is designed to provide basic abstract data types andfunctions. The module parser o�ers the facility to read data from a �leand lexically analyze it. The abstract data structure of a �nite binaryrelation and specializations of it are provided by the modules relation,function, and ordering. Various versions of the abstract data types ofsets and multisets are provided, allowing the user to specify the equalityof elements and the ordering in which the elements are stored.65
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Figure 4: The structure of TRACONE



CHAPTER 5. IMPLEMENTATION 67� The module signature is designed to interpret a user given signature,providing for multiple types, declaration of in�x notation, associativityand commutativity of function symbols, and identity symbols.� In variable, multi-typed variables are speci�ed, including a mechanismto make data structures variable distinct, and a utility to generate newvariables.� The module term provides various functions operating on terms. Theimplementation of subterms and positions of terms is consistent withSection 2.1. Equality on terms is implemented as equality modulo AC1and after every operation on terms the result is normalized with respectto Flatten[ Zero.� The module substitution provides the application of substitutions to vari-ables, terms and substitutions.� The notion of constraints in constraint is consistent with Section 2.4.Full and partial solving of constraints is supported, implementing thetransformation rules in Section 3.4. For the basic simpli�cation steps inthe AC- and AC1-case,� the module simpli�er is used. It represents an implementation of thefunction dio in [Fag 84], using� the solving of linear diophantine equations, implemented in diophant andbased on [Huet 78].



CHAPTER 5. IMPLEMENTATION 68� The module matching provides constrained AC1-matching and repre-sents an optimized implementation of the transformation rules given inAppendix A.� The modules rules and trs o�er mechanisms to build AC1-rewrite sys-tems and compute normal forms, whereas� the modules equation and equationset provide methodes to build sets ofunoriented equations.� In the module termorderings, various versions of recursive path order-ings ([Der 82]) are integrated into the framework of AC-path orderings(see [BP 85]). The user can specify a precedence ordering and the sta-tus of free function symbols (lexicographic left, lexicographic right, andmultiset). AC-symbols have the status multiset.In Appendix B, the use of TRACONE is demonstrated on a variety of exam-ples.
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Appendix AAC1-matchingA term s AC1-matches a term t via the substitution �, if s =AC1 t�. Just likeAC1-uni�cation, AC1-matching can be described with transformation rules.In Table 7, we give the set AC1-Match of transformation rules. Note that werequire both terms to be in normal form with respect to Flatten[Zero. AC1-matching procedures can be de�ned similar to AC1-uni�cation procedures(see De�nition 3.7) and can be proved to be sound and complete similar toLemmas 3.4 and 3.5. AllAC1-matching procedures terminate as can be shownusing an ordering based on (the multiset extension of the set extension of) asimple ordering on terms.Remarks:� We employ the notation from section 3.2 but can do without existentialquanti�cation. The symbol ?=M is not commutative.� In the rules AC Decompose and AC1 Decompose, the followingnotations are used: f̂ (X) denotes zero(f) if jXj = 0, X1 if jXj = 1,73



APPENDIX A. AC1-MATCHING 74Delete:(r ?=Ms ^ c; k) _ d ) (c; k) _ dif r =AC1 s and r groundFail:(f(X) ?=Mg(Y ) ^ c; k) _ d ) dif f 62 FAC1 and f 6= gEliminate:(x ?=Mt ^ c; k) _ d ) (c; x ?=M t ^ k) _ dif ( x 2 Vno x ?=M t0 with t0 6=AC1 t in kClash: (x ?=Mt ^ c; k) _ d ) dif ( x 2 Vsome x ?=Mt0 with t0 6=AC1 t in kFree Decompose:(f(X) ?=Mf(Y ) ^ c; k) _ d ) (Vi2[1::jXj]X i ?=MY i; k) _ dif f 2 FfreeAC Decompose:(f(X) ?=Mf(Y ) ^ c; k) _ d )Wp2ACPartit(f;X;Y )(Vi2[1::jXj]X i ?=M f̂(p(i)) ^ c; k) _ dif f 2 FAC and f 62 FAC1AC1 Decompose:(f(X) ?=Mf(Y ) ^ c; k) _ d )Wp2AC1Partit(f;X;Y )(Vi2[1::jXj]X i ?=M f̂(p(i)) ^ c; k) _ dif f 2 FAC1AC1 Collapse:(f(X) ?=Mt ^ c; k) _ d )Wi2[1::jXj](Vj2[1::jXj];j 6=iXj ?=Mzero(f) ^X i ?=Mt ^ c; k) _ dif f 2 FAC1 and t 2 V or root(t) 6= fTable 7: The transformation rules AC1-Match



APPENDIX A. AC1-MATCHING 75and f(X) if jXj > 1. When f 2 FAC and X and Y are sequences ofterms, then ACPartit(f;X; Y ) is the set of all mappings p from [1::jXj]to the set of all subsequences of Y such that for all j 2 [1::jY j] holdsjY jY j = Pi2[1::jXj] jp(i)jY j , and such that for all i 2 [1::jXj] holds jp(i)j �1. When f 2 FAC1 then AC1Partit is the set of all mappings p from[1::jXj] to the set of all subsequences of Y such that for all j 2 [1::jY j]holds jY jY j = Pi2[1::jXj] jp(i)jY j .� When we want to �nd the substitutions with which a term s matches aterm t, we apply the rules in AC1-Match exhaustively to the matchingproblem (t #F latten[Zero ?=Ms #F latten[Zero ^>) _ ?.� We obtain the matching substitutions from a solved form Wi2[1::n](>; ki)by removing redundant atomic problems from ki for each i 2 [1::n]. Re-dundant are problems of the form x ?=My, where x = y, and problemsx ?=Mt, for which x ?=Mt0 occurs in the rest of ki. Note that in the lattercase, t =AC1 t0 (see condition for Eliminate).� A complete set of matching substitutions is computed. If a most generalcomplete set of matching substitutions is wanted, redundant substitu-tions must be eliminated in an additional pass over the resulting set ofsubstitutions.



Appendix BExamplesWe demonstrate the use of TRACONE by giving an example session. Theresult of an evaluation of an SML-statement is indicated by \>>".B.1 RewritingThe �le sign contains the signature from Example 2.1 in the syntax of TRA-CONE.(* sign *) a : -> xb : -> xc : -> xd : -> xe : -> x- : x -> xf : x -> x 76



APPENDIX B. EXAMPLES 77g : x x -> xac infix # : x x -> xac infix + : x x -> xzero 0 to +ac infix * : x x -> xzero 1 to *The �le sign is interpreted as a signature and a string as a term on thissignature.val sign = read_signature "sign";val t1 = Term.parse "1 + (0 + (f(x_1) + f(x_2)))" sign;Term.print t1;>> f(x_1) + f(x_2)Note that terms are reduced to normal form with respect to Flatten [ Zeroafter every operation on terms such as parsing. TRACONE uses the extendednotion of subterms and positions as described in Section 2.1.val t2 = Term.parse "g(0,x_1) * (x_1 + x_2) * 0" sign;Term.print t2;>> (x_1 + x_2) * g(0,x_1) * 0positions t2;>> [position ([],[2,3]),position ([],[1,3]),position ([],[1,2]),position ([],[]), position ([3],[]), position ([2],[]),position ([2,2],[]),position ([2,1],[]),position ([1],[]),position ([1,2],[]),position ([1,1],[])]Term.list_print (subterms t2);



APPENDIX B. EXAMPLES 78>> g ( 0 , x_1 ) * 0( x_1 + x_2 ) * 0( x_1 + x_2 ) * g ( 0 , x_1 )( x_1 + x_2 ) * g ( 0 , x_1 ) * 00g ( 0 , x_1 )x_10x_1 + x_2x_2x_1Note that the order of the subterms in an AC-term may change. The �le ringcontains a convergent AC1-rewrite system for the algebra commutative ringwith unit (see [BPW 89]).(* ring *) | u + (- v) + v => u .| - (- u) => u .u /= 0 v /= 0 | - (u + v) => (- u) + (- v) .w /= 1 u /= 0 v /= 0 | w * (u + v) => (w * u) + (w * v).u /= 1 | u * 0 => 0 .u /= 1 | ( -v) * u => - (v * u) .The �le ring is interpreted as a rewrite system and the terms t3 and t4are reduced to normal form with respect to this rewrite system using AC1-matching.



APPENDIX B. EXAMPLES 79val ring = Trs.read "ring" sign;val t3 = Term.parse "f(x_1) + f(x_2) + (-(f(x_1)))" sign;Term.print t3;>> (-(f(x_1))) + f(x_2) + f(x_1)val normal = Trs.normal_form ring t3;Term.print normal;>> f(x_2)val t4 = Term.parse "f((x_1 + x_2) * g(x_3,x_1))" sign;Term.print t4;>> f((x_1 + x_2) * g(x_3,x_1))val normal = Trs.normal_form ring t4;Term.print normal;>> f((x_1 * g(x_3,x_1)) + (x_2 * g(x_3)))Note that the rewriting facilities of TRACONE represent the implementationof a programming language based on term rewriting, in which functions canbe declared as being associative commutative and as identities to associativecommutative functions.B.2 Constraint SolvingThe solving of the constraint C1 = x1#x2 ?=x3#x4 demonstrates the solvingof linear diophantine equations and the introduction of new variables.val solutions_1 = Constraint.solve C_1;Constraint.list_print solutions_1;



APPENDIX B. EXAMPLES 80>> (* Constraint: *)(* Substitution *)x_1 <- x_6 # x_5x_2 <- x_8 # x_7x_3 <- x_8 # x_6x_4 <- x_7 # x_5(* Constraint: *)(* Substitution *)x_1 <- x_3 # x_5x_4 <- x_2 # x_5(* Constraint: *)(* Substitution *)x_1 <- x_5 # x_4x_3 <- x_2 # x_5(* Constraint: *)(* Substitution *)x_2 <- x_3 # x_5x_4 <- x_5 # x_1(* Constraint: *)(* Substitution *)x_3 <- x_2



APPENDIX B. EXAMPLES 81x_4 <- x_1(* Constraint: *)(* Substitution *)x_2 <- x_5 # x_4x_3 <- x_5 # x_1(* Constraint: *)(* Substitution *)x_3 <- x_1x_4 <- x_2val number_of_solutions = length solutions_1;>> val number_of_solutions = 7 : intThe presence of the indentity 0 for the function symbol + makes all but onesolution of C2 = x1 + x2 ?=x3 + x4 redundant.val solutions_2 = Constraint.solve C_2;Constraint.list_print solutions_2;>> (* Constraint *)(* Substitution *)x_1 <- x_6 + x_5x_2 <- x_8 + x_7x_3 <- x_8 + x_6



APPENDIX B. EXAMPLES 82x_4 <- x_7 + x_5val number_of_solutions = length solutions_2;>> val number_of_solutions = 1 : intThe following examples are taken from the benchmark acuni in [BHK 88](acuni-001, acuni-036, acuni-064, acuni-079, acuni-096) and were runon a SUN-4 (Sparc).For C3 = x#a#b ?=u#c#d#e, we obtain:>> Computing time for constraint solving in seconds: 0.450000val number_of_solutions = 2 : intFor C4 = x#y#a ?=u#v#w#c, we obtain:>> Computing time for constraint solving in seconds: 3.200000val number_of_solutions = 204 : intFor C5 = x#x#a ?=u#v#c#d, we obtain:>> Computing time for constraint solving in seconds: 1.190000val number_of_solutions = 60 : intFor C6 = x#x#y ?=u#v#c#d, we obtain:>> Computing time for constraint solving in seconds: 3.580000val number_of_solutions = 228 : intFor C7 = x#x#x ?=u#v#w#c, we obtain:



APPENDIX B. EXAMPLES 83>> Computing time for constraint solving in seconds: 172.070000val number_of_solutions = 6006 : intThe solving of the constraint C8 = x1 6= 1^x1 ?=x2+x3 demonstrates the appli-cation of the transformation ruleDisequation Decompose inDisequation-AC1-Unify.val solutions_8 = Constraint.solve C_8;Constraint.list_print solutions_8;>> (* Constraint: *)(* Substitution *)x_1 <- x_2 + x_3(* Disequations *)x_2 /= 0 x_2 /= 1(* Constraint: *)(* Substitution *)x_1 <- x_2 + x_3(* Disequations *)x_3 /= 0 x_2 /= 0(* Constraint: *)(* Substitution *)x_1 <- x_2 + x_3(* Disequations *)x_2 /= 1 x_3 /= 1



APPENDIX B. EXAMPLES 84(* Constraint: *)(* Substitution *)x_1 <- x_2 + x_3(* Disequations *)x_3 /= 0 x_3 /= 1val number_of_solutions = length solutions_8;>> val number_of_solutions = 4 : int


