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Abstract
Despite its powerful module system, ML has not yet evolved for
the modern world of dynamic and open modular programming,
to which more primitive languages have adapted better so far. We
present the design and semantics of a simple yet expressive first-
class component system for ML. It provides dynamic linking in a
type-safe and type-flexible manner, and allows selective execution
in sandboxes. The system is defined solely by reduction to higher-
order modules plus an extension with simple module-level dynam-
ics, which we call packages. To represent components outside pro-
cesses we employ generic pickling. We give a module calculus for-
malising the semantics of packages and pickling.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Modules, packages; F.3.3 [Studies of Program
Constructs]: Type structure

General Terms Languages, Theory

Keywords modules, units, separate compilation, dynamic linking,
components, dynamic typing, distributed programming, pickling

1. Introduction
ML modules [18, 15, 16, 10] are an indispensable aid for large-
scale programming, thanks to their ability to express complex mod-
ular abstractions. They provide namespacing, encapsulation, gener-
icity, and architectural configuration in form of a small higher-order
language with an expressive, strong type system. However, all this
expressive power is purely static: a program must be determined
and provided in its entirety at build time, prior to running it. Once
built, configuration, functionality and extent of an ML program is
fixed – in other words, programs are closed.

1.1 Typed Open Programming
This situation is increasingly at odds with the requirements of to-
day’s computing reality. Many applications today require an open
approach to programming, where additional functionality can be
acquired at runtime, or behaviour can be exchanged with other,
probably remote processes. Frequent requests for features like dy-
namic linking, marshalling, and distribution in different ML forums
indicate that the demand has reached ML.

No serious support for this has yet been provided in practical
ML systems, or similar languages. If at all, they only offer basic
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– and unsafe – marshalling functionality. Ironically, ‘lesser’ lan-
guages, especially Java [4], have long taken the lead with respect
to safe integration of respective features. Of course, they have done
so only with considerable compromises in language design and se-
mantics For example, Java is safe, but does not have any legitimate
notion of type safety for open programs (cf. Section 9).

So the question is, how can we add comparable functionality to
ML in a cleaner and safer way? That is, how can we support open
programming without throwing all of ML’s nice properties out of
the window, especially with respect to its beloved type system?

1.2 Components
To address this question, we present the design and semantics of a
simple yet powerful system of components for ML. A component
is a software block that can be created, deployed, and loaded inde-
pendently from others. We distinguish components from modules:
while modules provide logical separation, lexical scoping, generic-
ity, and encapsulation, components provide physical separation and
dynamic composition. Both mechanisms complement each other.
In our system, components contain modules. The component sys-
tem we present provides all of the following:

• Separate compilation. Components are independent units.
• Dynamic linking. Loading can be performed when needed.
• Type safety. Components carry fully checked type information.
• Subtyping. Type checking is tolerant against interface changes.
• Static linking. Components can be bundled into larger ones.
• Dynamic creation. Components can be computed at runtime.
• Sandboxing. Component managers enable custom policies.

From the user perspective, the most visible extension to ML is
allowing compilation units to be preceded by a number of import
declarations of the form

import specs from url

where specs are ML signature specifications and url a string denot-
ing the URL under which the component with the respective signa-
ture can be located. The necessary linking is performed at runtime
and involves a structural dynamic type check on ML signatures.

More interestingly, components are in fact first-class and can be
created at runtime: an expression of the form

comp imports in specs with decs end

denotes a value of the abstract type component that will be evalu-
ated dynamically. Its export signature is described by specs and im-
plemented by decs . Both can refer to objects from the surrounding
environment, which will be captured in the component’s closure.
Such computed components can be transmitted to other processes,
as a flexible means for exchanging behaviour, while abstracting
from site-specific resources.

Our component system is defined solely by reduction to higher-
order modules [10], extended with only two generic mechanisms:



• Packages. A variation of dynamics [1] which carries modules.
• Pickling.1 A mechanism for importing/exporting values.

Loading pickles requires dynamic type checks to verify consistent
use. To separate concerns, we uncouple dynamic type checking
from (un)pickling by introducing packages as a stand-alone fea-
ture that provides universal dynamic typing. This choice has sev-
eral advantages: (1) dynamic typing is usable independent from
pickling; (2) a pickle can easily be checked against multiple types;
(3) the type of a pickle may be known statically, such that always
including type information is redundant. The component system
we are going to present will explore the first two points to realise
link-time type checking. Ad (1), components are first-class, so they
are not necessarily obtained from pickles. Ad (2), a single com-
ponent may be imported by several others, and hence has to be
checked against multiple, potentially different signatures. We only
tangentially touch the third point in this paper. As a sketch, consider
typed communication channels between processes. A dynamic type
check may only be necessary for establishing a connection, not
for every transmission. In particular, we want to avoid transmitting
repetitive type descriptions with every single value (in Section 3.2
we briefly mention proxies as an example of such a mechanism).

1.3 Alice ML
Packages and pickling, and the presented component system, form
a fundamental part of Alice ML [28, 2], a conservative extension of
Standard ML [19] designed for open programming. It adds higher-
order modules, packages, components, as well as concurrency with
futures, laziness, and support for distributed programming.

We will hence use Alice ML for concrete syntax and examples,
although our design is equally applicable to other ML dialects with
higher-order modules.

The present paper extends on [28], which gave an overview of
the concepts found in Alice ML, including components, but omitted
much of the details and did not provide any formal treatment.

1.4 Structure
We approach our component design in two parts. First we describe
packages (Section 2) and pickling (Section 3) as stand-alone ex-
tensions to ML, and present a formal semantics in the framework
of a higher-order module calculus (Section 4). In the second part
we introduce the notions of component (Section 5) and component
manager (Section 6) and show how they are expressible in terms of
the former constructs (Section 7). Based on this, we briefly discuss
some extensions of the framework (Section 8). Finally, we compare
to related work (Section 9) and conclude (Section 10).

2. Packages
The core problem of dynamically exchanging program fragments
is how to do type-safe I/O of language-level entities. The solution
is well-known: dynamics [1]. They complement the type system
with just the amount of dynamic checking necessary to gain the
desired flexibility, by adding a single universal type that carries
a value along with dynamic type information. Unlike so-called
“dynamically typed” languages, or hybrids like Java, dynamics still
maintain most of the invariants of a strong type system, because
they isolate dynamic type checks to well-defined operations.

Unfortunately, dynamics never really caught on. There are sev-
eral reasons for this, but we presume the following ones are most
severe:

1 Also known as serialisation or marshalling – the more abstract term pick-
ling emphasizes the fact that the representation always is self-contained,
which is not the case with most existing serialization or marshalling mech-
anisms, especially with respect to code.

• Dynamics, carrying a single value, do not have the right granu-
larity for most applications.

• The complex typecase construct proposed for unpacking dy-
namics is too unwieldy. A simple type equality check on the
other hand would be too inflexible.

• Omnipresent runtime types are considered too expensive.

We hence propose a variation of dynamics that is based on ML
modules, and which we call packages. Packages address the above
issues: unlike dynamics, a package carries a (possibly higher-order)
module, along with its dynamic signature. Unpacking only per-
forms a subtype test, but incorporates the full structural subsigna-
ture relation of ML modules, providing for a high amount of flexi-
bility. Finally, runtime type passing is confined to the module level.

2.1 Basics
A package is a first-class value of the primitive type package.
Intuitively, it contains a module, along with a dynamic description
of the module’s signature, which we call the package signature.
Package signatures exist only in the dynamic semantics, they are
not tracked by the static type system. That property sets packages
apart from other proposals for modules as first-class values [29, 10],
where the signature is always fixed statically.

There are only two basic operations on packages. A package
is created by injecting a module into the type package. Alice ML
employs the following syntax for this purpose:

pack modexp : sigexp

This expression creates a package from the module expressed by
modexp (which may denote a functor, thanks to higher-order mod-
ules). The signature expression sigexp defines the package signa-
ture. Of course, the module expression must match this signature.

The inverse operation is projection, eliminating a package. The
module expression

unpack exp : sigexp

takes a package computed by exp (which needs to have type
package) and extracts the contained module – provided that the
package signature matches the target signature denoted by sigexp.
That is, unpacking performs a dynamic type check. If the check
fails, the pre-defined exception Unpack is raised.2 Statically, the
whole expression has the signature sigexp.

For example, we can wrap the SML library structure Array into
a package,

val p = pack Array : ARRAY

and unpack it successfully using the same signature:

structure Array’ = unpack p : ARRAY

Any attempt to unpack p with an incompatible signature will fail.
On the other hand, all subsequent accesses to Array’ or members of
it are statically type-safe, no further checks are required.

Dynamic type checking for packages is performed on full ML
signatures. Signatures describe interfaces, and support a rich no-
tion of subtyping, often called matching in ML nomenclatura. The
Definition of Standard ML [19] formalises it quite intuitively as a
relation that consists of two dimensions:

• Enrichment. The more specific signature may contain more
fields (of more general types) than the less specific one.

• Instantiation. Abstract types in the less specific signature can
be realised by concrete types in the more specific signature.

2 In the current version of Alice ML that exception is named Mismatch.



Subtyping hence allows a great amount of flexibility with respect
to composing modules. In particular, it is robust against extension
or refinement of a module interface. That is essential for adequately
describing program architectures in a modular manner. Obviously,
it is even more desirable in ever-changing dynamic applications.

Note that the same flexibility would not be given by simply pro-
viding ordinary (core) dynamics plus modules as first-class values:
to unwrap a dynamic and retrieve a first-class module value, its pre-
cise actual signature had to be known. Unwrapping modulo subtyp-
ing would require subtyping to pervade the core language.

2.2 Dynamic Type Sharing
Although the module Array’ obtained by packing and unpacking the
library module Array as shown above is identical to the original,
there is a caveat: the ARRAY signature contains an abstract type
array; the way we unpacked it, type Array’.array will be statically
incompatible with the original type Array.array. Since the types in a
package generally cannot be determined statically, all abstract types
in the target signature must indeed be considered fully abstract –
and hence different from any other – by the (static) type system.

However, type compatibility can be obtained easily – we just
need to enforce it in the usual ML way, namely by putting suitable
type sharing constraints on the target signature:

structure Array’ = unpack p
: ARRAY where type α array = α Array.array

With this formulation, the type Array’.array is statically known to
be equal to Array.array. Of course, unpacking will only succeed if
the package actually meets this requirement at runtime.

The constraint effectively expresses dynamic type sharing. By
restricting the target signature we ensure static compatibility, at the
cost of preventing successful use of non-standard implementations
of arrays. Much like for programming with functors, it depends on
the application how much sharing is required.

As a fine point, dynamic type sharing works as demonstrated
only because the package signature supplied with a pack expression
is interpreted transparently. That is, writing

val p = pack Array : ARRAY

is actually equivalent to

val p = pack Array : ARRAY where type α array = α Array.array

This behaviour mirrors the semantics of SML’s transparent ascrip-
tion operator (:), but dynamically: the actual package signature
is obtained by refining the ascribed signature with the concrete
types found in the respective module. Technically, dynamic selfi-
fication [15], or strengthening [16], is performed (Section 4.4). It is
worth noting that without this behaviour, the fragment

val p = pack Array : ARRAY
structure Array’ = unpack p

: ARRAY where type α array = α Array.array

would fail with an Unpack exception (as one would expect), but the
contorted, yet seemingly equivalent example

val p = pack Array : ARRAY
structure Aux = unpack p : ARRAY
val p’ = pack Aux : ARRAY where type α array = α Aux.array
structure Array’ = unpack p’

: ARRAY where type α array = α Array.array

would still succeed (see the formal semantics in Section 4). Obvi-
ously, such pathological behaviour is neither desirable nor useful,
thus we chose the transparent interpretation.

2.3 Parametricity
Dynamic type sharing can be utilised to dynamically test for type
equivalences. Consequently, evaluation is not parametric [24, 5],

because a program can behave differently depending on the out-
come of such a test.

Parametricity is a valuable property for polymorphic languages,
because it enables all of the following:

• Type erasure. Programs can be compiled and executed without
maintaining costly type information at runtime.

• Theorems [34]. Polymorphic types state strong invariants about
terms, which allow deriving a variety of useful laws.

• Abstraction [24, 20]. It is possible to achieve encapsulation
solely by abstracting or quantifying over types.

Looking closer, it is obvious that evaluation of modules cannot
be parametric in the presence of packages – the behaviour of unpack
must depend on dynamic type information. However, for Alice ML
the semantics of dynamic types has been crafted such that the core
language, where polymorphism is ubiquitous, is not affected. In
particular, unlike functors, polymorphic functions are still fully
parametric: the usual laws still hold, and they can be compiled
using standard type erasure techniques.

This nicely fits the syntactic setup of ML: on the module level,
passing types is always made explicit in the syntax. Core polymor-
phism, on the other hand, is completely implicit. Thus the syntax
provides a clear model to the programmer: only types explicitly
supplied in a program, by means of named type declarations, can
potentially affect its operational behaviour, and induce a cost.

In order to maintain parametricity for core polymorphism we
need strict separation between implicit and explicit types: it is re-
quired that no operation consuming dynamic types – i.e. unpack
and sealing – may ever depend on the instantiation of a polymor-
phic type variable. Fortunately, this comes for free: both these oper-
ations require an explicit signature annotation. Signatures can only
refer to other types and signatures, and neither type declarations
nor signatures are allowed to contain free type variables [19]. Con-
sequently, the meaning of a signature expression cannot depend on
polymorphic type variables, even in local scopes. For instance, nei-
ther of the following definitions is valid:3

fun α mypack1 (x : α) = pack (val it = x) : (val it : α)
fun α mypack2 (x : α) = let type t = α (* illegal! *)

in pack (val it = x) : (val it : t) end

In the first case, the local α in the signature is considered locally
quantified, but x does not have the universal type ∀α.α. In the
second example, the local type declaration for t, containing a free
occurence of α, is syntactically invalid.4

The maintenance of parametricity in the core language is not
without drawback. The fact that ordinary core-level evaluation can-
not directly depend on types may appear to be a severe restriction.
The expressive power of dynamic typing remains relatively limited,
maybe too limited. However, that objection can be diluted by the
existence of work-arounds that allow emulating most of the miss-
ing expressiveness:

• Local modules and higher-order functors often enable lifting
polymorphic function definitions to the module level, by turn-
ing them into functors. For example, the function mypack from
above can be reformulated straightforwardly as a functor:

functor MyPack (type t; val x : t) =
struct val p = pack (val it = x) : (val it : t) end

However, this technique potentially requires turning all poly-
morphic functions up the call chain into functors, which might
quickly become unwieldly. Moreover, the module language is

3 Alice ML allows abbreviating struct . . . end and sig . . . end as (. . . ).
4 Note that the closedness restriction on local type declarations would not be
necessary for plain ML. However, for Alice ML its presence was fortunate.



not Turing-complete, so not all desired functions may be ex-
pressible (still, it contains System Fω).

• A more general work-around is to abuse packages as means
for communicating types and modules as first-class values. Of
course, that approach could be deemed somewhat questionable,
because it essentially means evading the static type system and
relying on dynamic typing more than necessary.

• If this should prove to be insufficient, adding conventional first-
class modules [29] to the language would be a general solution.

So far, we have only encountered few interesting examples – in
the context of what dynamic typing in Alice ML is intended for
– which needed to employ any work-around, and the former two
were adequate enough in those cases.

2.4 Abstract Types
A remaining problem is the third utilisation of parametricity men-
tioned in the previous section: type abstraction. Type abstraction is
a central feature of the ML module system. Its type system guar-
antees abstraction safety: values of abstract type can only be con-
structed and deconstructed by the implementation of the abstraction
itself. There is no means, within the language, that allows client
code to break an abstraction.

The addition of dynamic typing raises delicate issues, because
the accompanying loss of parametricity invalidates the standard ex-
istential model of type abstraction. To maintain abstraction safety,
abstract types must be represented by dynamically generated type
names instead, as described in previous work [25]. For Alice ML
we hence employ such a dynamically generative semantics of type
abstraction. In order to maintain abstraction safety even across pro-
cess boundaries (e.g. when transferring types via pickling), dy-
namic type names are globally unique.

3. Pickling
Our main motivation for adding dynamic typing is type-safe im-
port and export. Packages are the key primitive for enabling high-
level, type-safe interfaces for exchanging language-level data struc-
tures between a process and the outside world. However, in order
to export a value, it has to be transformed into a self-contained,
platform-independent external representation. Such a representa-
tion is called a pickle. The transformation is known as pickling.

3.1 Persistence
One obvious application of pickling is persistence, i.e. I/O to an
external medium, e.g. a hard drive. In Alice ML, it is available
through two simple library functions:

val save : string × package → unit
val load : string → package

The save operation writes a package to a file of a given name. The
inverse operation load retrieves a package from a file.

All saved pickles contain a single value of the type package – re-
ducing the problem of dynamically checking the type of imported
values to the type checking performed by unpack. Since packages
contain modules, and modules can embed arbitrary language enti-
ties (values, types, higher-order modules, and in Alice ML, even
signatures), allowing only packages to be pickled is not a restric-
tion. Note that a pickle contains all reachable code, too.

For example, instead of just wrapping the library module Array
into a package as demonstrated in Section 2, we can in fact write it
to disk, using the following idiomatic code:

Pickle.save (”array.alc”, pack Array : ARRAY)

The package can be loaded – by the same process, or an arbitrary
different one – by composing the inverse operations, in reverse
order:

structure Array’ = unpack Pickle.load ”array.alc” : ARRAY

The obtained structure Array’ can now be used as a substitute for
Array – it is an identical copy (however, see Section 2.2 for the
issue of type sharing). Any attempt to unpack the loaded package
with an incompatible signature will fail with an Unpack exception.
All subsequent accesses to Array’ or members of it are statically
type-safe.

To achieve full safety, two kinds of checks have to be performed:

1. The load operation has to check that the file contains a well-
formed pickle. This resembles low-level verification, as e.g.
performed by the Java Virtual Machine [17] for its byte code
– however, unlike Java class files, pickles not only contain
(strongly typed) code, but also arbitrary structured data. Failure
at this point is considered I/O failure.5

2. The unpack operator has to check that the package signature
matches the static assumptions, i.e. the target signature. Failure
at this point is a dynamic type error.

Note that the nature of the two checks might be quite different in
practice, because they operate on different abstraction levels.

3.2 Distribution
Other applications of pickling in Alice ML involve distributed
programming. For example, there is a pair of functions that allows
a process to make available a module on the net, and enables other
processes to grab it:

val offer : package → url
val take : url → package

The offer function returns a so-called ticket, a URL that identifies
the package in the network (e.g. via host name, port number, and a
running ID). Another process that is communicated this ticket can
retrieve the offered package as a pickle.

Usually, the transferred package will contain a structure with
proxy functions [28], which are mobile wrappers for stationary
functions that transparently perform remote function calls when
invoked at other sites. Proxy calls are again realised by employing
pickling to transmit argument and result values. However, unlike
save/load and offer/take, proxy communication is statically typed –
it is an example of a typed communication channel as mentioned in
the introduction. Hence there is no need to communicate packages.
If the sender is not trusted, it may still be necessary to verify well-
formedness of every received value, though.

3.3 Resources and Security
Pickling is not without restrictions. It is disallowed to export so-
called resources, i.e. values that are private to a process – this
includes critical operations, local information like file handles, and
all stateful data. We say that resources are sited, and any attempt
to pickle a resource will be dynamically detected and yield the
exception Sited.

Resources are precluded from pickling for security reasons.
Under this restriction, pickles are always secure – code loaded from
a pickle cannot perform any critical actions without the receiving
site explicitly giving it the capability to do so. In particular, there
deliberately is no implicit rebinding [6] in Alice ML. If rebinding
is desired, it must be requested explicitly, either by procedural
abstraction, or more comfortably, by component abstraction. We

5 This check is not yet implemented in the current version of Alice.



types τ ::= Typm | Πx:σ.τ | τ1 × τ2 | 〈|?|〉 | Ψ
terms e ::= Valm | fix f(x:σ):τ.e | em | 〈e1, e2〉 | πie |

letx=m in (e : τ) | packm as σ | ψ(v) |
pickle e | unpicklex⇐e1 in e2 else (e3 : τ)

signatures σ ::= 1 | [[Ω]] | [[τ ]] | Πx:σ1.σ2 | Σx:σ1.σ2 | S(m)

modules m ::= x | 〈〉 | [τ ] | [e : τ ] | λx:σ.m | m1m2 |
〈x=m1,m2〉 | πim | letx=m1 in (m2 : σ) |
unpackx⇐e as σ in m1 else (m2 : τ)

Figure 1. Calculus syntax

get back to this in Section 5.2, and explain how security policies
can be programmed in Section 6.2.

Stateful data is excluded from pickling because stateful pickling
would essentially provide a generic cloning operation, which is
well-known to break stateful abstractions.6 An alternative would
be distributed state. For Alice ML we decided against it because of
the complexity involved, and because it would significantly weaken
the self-containment property of pickles (in particular, the potential
for dead references in pickles seems high).

4. Formal Semantics
We will now present a formal semantics of an ML module system
with packages and pickling. In order to keep the complexity man-
ageable, we idealise the ML language to a much simpler calculus.
The basis of this calculus is (a subset of) the higher-order module
system by Dreyer, Crary & Harper (DCH) [10]. We equip their sys-
tem with an operational semantics, and extend it with packages and
pickling. For simplicity, we omit applicative functors and first-class
modules (though packages provide somewhat similar functionality,
so we reuse the syntax); both could easily be reintegrated.

A more serious omission is that the calculus leaves out any form
of sealing (type abstraction). In a language as rich as the one at
hand, reconciling sealing with dynamic typing is not at all straight-
forward: it would significantly complicate the operational seman-
tics, at least if we wanted to preserve abstraction safety in the pres-
ence of dynamic typing. To cope with that, we would have to in-
troduce dynamic type generativity and fully-fledged (dependently
typed) higher-order coercions to both the core and the module level.
We have developed a respective extension for Fω [25], including an
account of applicative generativity (as with weak sealing). The gen-
eralisation to a dependently typed language like the one discussed
here is certainly interesting, but intricate. We hence leave it for fu-
ture work.7

The Alice ML implementation realises generativity, but because
of type erasure it does not have to worry about coercions. The
corresponding operational semantics of SML with packages and
generative type abstraction has been defined elsewhere [26], in the
framework of the SML Definition [19].

4.1 Terms and Modules
Figure 1 presents the full syntax of our calculus. It mostly resem-
bles DCH, and we reuse their type system almost unchanged. The
calculus consists of two layers: terms and modules. Terms are as-
signed types, and modules are assigned signatures, respectively.

6 The current implementation still allows stateful pickling.
7 Note that most of the complications already arise with dependent kinds,
so that specifying the operational semantics in terms of a “phase-splitting”
transformation to Fω enriched with singleton kinds [9] is not any easier.

σ → τ := Πx:σ.τ where x /∈ FV(τ)
λx:σ.e := fix f(x:σ):τ.e where f /∈ FV(e)

σ1 → σ2 := Πx:σ1.σ2 where x /∈ FV(σ2)
σ1 × σ2 := Σx:σ1.σ2 where x /∈ FV(σ2)
〈m1,m2〉 := 〈x=m1,m2〉 where x /∈ FV(m2)
unpickle e := unpicklex⇐e in Valx else (⊥〈|?|〉 : 〈|?|〉)

unpack e as σ := unpackx⇐e as σ in x else (⊥σ : σ)

Figure 2. Syntactic abbreviations

The term language provides recursive functions (fix f(x:σ):τ.e :
Πx:σ.τ ) and tuples (〈e1, e2〉 : τ1 × τ2), and the ability to project a
value from a module (Valm). The type language provides a similar
operation to project a type from a module (Typm). Functions take
modules as arguments, which allows them to also express poly-
morphism (by taking modules that embed types); consequently,
they are dependently typed. Furthermore, the term language in-
cludes let, and the new constructs for packages (of type 〈|?|〉) and
pickles (of type Ψ), which will be described later. Note that let also
binds a module, so that the system only has module variables.

The module level contains trivial modules (〈〉 : 1), embedded
types ([τ ] : [[Ω]]) and embedded values ([e:τ ] : [[τ ]]) as primi-
tives. From these we can form binary structures (〈x=m1,m2〉 :
Σx:σ1.σ2) and functors (λx:σ.m : Πx:σ1.σ2); larger structures
have to be expressed as nested binary structures. For simplicity,
we consider all functors impure (that is, Πx:σ1.σ2 in our system
corresponds to Πgenx:σ1.σ2 in DCH). The module language also
provides a let construct, and the unpack operator for packages, de-
scribed below. Finally, the signature language provides singleton
signatures S(m), which are explained in the next section.

For clarity, we will also use a number of abbreviations, which
are collected in Figure 2. Moreover, we will often omit type an-
notations from embedded terms, let expressions, and unpack and
unpickle branches (the latter are necessary to maintain a minimal
typing property for local binders, as discussed in [10]).

As a concrete example using most of the basic constructs of the
calculus, consider the following SML code:

functor F (X : sig type t; type u = t × t; val f : t → u end) =
struct

fun α g (x : X.t) (y : α) = (y, X.f x)
end

The functor F can be expressed in the calculus as follows:

λX : (Σt:[[Ω]].Σu: S([Typ t× Typ t]).Σf :[[[[Typ t]] → Typu]].1).

〈g = [λα:[[Ω]].λx:[[Typ(π1X)]].λy:[[Typα]].

〈Val y, π1(π2(π2X))x〉],
〈〉〉

Note the structure nesting and embedding of types and terms, and
the corresponding projections. The role of the singleton signature
assigned to u will be explained in the next section.

4.2 Type System
We reuse the type system of DCH almost unchanged, only omit-
ting applicative functors and first-class modules. See [27] for the
complete typing rules. For space reasons we will not go into de-
tails, and mostly restrict our discussion to the rules that have been
added for packages and pickling (Sections 4.4 and 4.5). We refer
the interested reader to [10] for an in-depth discussion. Although
we will not discuss algorithmic type checking either, we note that
the DCH type checking algorithm is easy to adapt to our system
(primarily because we only require very minor modifications to the
module equivalence algorithm, where two new forms of path arise,



values v ::= fix f(x:σ):τ.e | 〈v1, v2〉 | packw as σ | ψ(v)

m-values w ::= 〈〉 | [τ ] | [v:τ ] | λx:σ.m | 〈w1, w2〉
contexts E ::= | Em | 〈E, e〉 | 〈v,E〉 | πiE |

pickleE | unpicklex⇐E in e1 else (e2:τ) |
Ē{M̄{E}}

Ē ::= Val | v | letx= in (e:τ) | pack as σ | E{Ē}
m-contexts M ::= |Mm | wM | 〈x=M,m〉 | 〈w,M〉 | πiM |

letx=M in (m:σ) | M̄{Ē{M}}
M̄ ::= [ :τ ] | unpackx⇐ as σ in m1 else (m2:σ) |

M{M̄}

Figure 3. Values and evaluation contexts

[〈|?|〉] and [Ψ], both of which are trivial; the only new module-level
expression, unpack, is impure and hence irrelevant).

We have to comment on one particular feature of the type sys-
tem, because it appears in the operational semantics of unpack:
singleton signatures. Their purpose is to express non-trivial equiv-
alences between modules: S(m) is the signature of all modules
equivalent to m. For a module m : [[Ω]] we may derive m : S(m),
a derivation that is sometimes called selfification. Givenm′ : S(m)
we can derive the static module equivalence m′ ∼= m. In general
however, module expressions may have effects (one pro-forma ef-
fect is sealing), DCH hence employ a simple effect system, that pre-
cludes impure modules from being used in equivalence judgements
and singletons (in our subset, the only two effects distinguished are
purity P and impurity W).

Since a type equivalence relation Typm1 ≡ Typm2 is reduced
to m1

∼= m2 in the system, singleton signatures enable the expres-
sion of type sharing. If, for instance, m : S([τ ]), then Typm ≡ τ
can be derived. Hence a singleton signature expresses the manifest
type specification type u = t×t in the argument of functor F above.

Although singletons are only defined on modules embedding
types (i.e. with signature [[Ω]]) a priori, they can be generalised to
higher order by means of syntactic sugar. Higher-order singletons
allow to selfify arbitrary modules: the rulem : Sσ(m) is admissible
for all pure m : σ, propagating identities of all types embedded
in m. [27] defines higher-order singletons Sσ(m) and gives the
corresponding admissible rules.

4.3 Operational Semantics
DCH do not include an operational semantics. In order to model
dynamic typing, we have to provide such a semantics for the subset
of the system considered here. We employ a standard call-by-value,
left-to-right evaluation regime. Figures 3 and 4 show the definition
of values and evaluation contexts for term and module language,
and the reduction rules.

Most reduction rules are standard, except for packages and
pickling, which are explained below. The main complication is with
respect to the definition of evaluation contexts, because we must
accomodate mutual nesting of term and module expressions. The
special contexts Ē and M̄ encode the possible positions of modules
in terms and vice versa.

Given the technical development in the extended version of
[10], it is not difficult to show soundness for the calculus:

Proposition 1 (Preservation).

1. If ` e : τ and e→ e′, then ` e′ : τ .
2. If `κ m : σ and m→ m′, then `κ m

′ : σ.

Val[v : τ ] → v
(fix f(x:σ):τ.e)w → e{fix f(x:σ):τ.e/f, w/x}

π1〈v1, v2〉 → v1
π2〈v1, v2〉 → v2

letx=w in e→ e{w/x}
pickle v → ψ(v)

unpicklex⇐ψ(v) in e1 else e2 → e1{[v]/x} if ` v : 〈|?|〉
unpicklex⇐ψ(v) in e1 else e2 → e2 otherwise

(λx:σ.m)w → m{w/x}
〈x=w,m〉 → 〈w,m{w/x}〉 (x ∈ FV(m))
π1〈w1, w2〉 → w1

π2〈w1, w2〉 → w2

letx=w in m→ m{w/x}
unpackx⇐(packw as σ) as σ′

in m1 else m2 → m1{w/x} if ` Sσ(w) ≤ σ′

unpackx⇐(packw as σ) as σ′

in m1 else m2 → m2 otherwise

Figure 4. Reduction Rules

Proposition 2 (Progress).

1. If ` e : τ and e 6= v, then e→ e′.
2. If `κ m : σ and m 6= w, then m→ m′.

4.4 Packages
Packages are supported by an additional type, which we write 〈|?|〉,
and the corresponding introduction and elimination constructs:

packm as σ

unpackx⇐e as σ in m1 else m2

Since the calculus does not have exceptions, unpack requires
branching to handle the failure case. Two reduction rules define
the operational semantics of packages:

unpackx⇐(packw as σ) as σ′

in m1 else m2 → m1{w/x} if ` Sσ(w) ≤ σ′

unpackx⇐(packw as σ) as σ′

in m1 else m2 → m2 otherwise

The subtyping test is defined by the subtyping judgement of the
static semantics. If the involved signatures are not in the required
subtyping relation the else branch will be invoked. In the rest of
the paper we will mostly omit the branching for clarity, and just
write unpack e as σ, courtesy of the syntactic abbreviation given
in Figure 2. It diverges in case of failure, approximating the use of
exceptions (all signatures are inhabited by diverging computations,
see the definition of ⊥σ in [27].

Since evaluation is call-by-value, the environment Γ in the sub-
typing judgement will always be empty. The target signature is not
simply checked against the package signature σ, but against the
singleton signature of the contained module w, which formally re-
alises the selfification of the package signature σ we already men-
tioned in Section 2.2. We can make the motivating example for this
behaviour more concrete now – consider:

let p = [pack [τ ] as [[Ω]]] in
letx = unpack Val p as S([τ ]) in . . .

Without the selfification in the unpack evaluation rule, evaluation
of x would fail (diverge), because [[Ω]] 6≤ S([τ ]). However, the type
identity can still be propagated and rediscovered by an indirection;



Γ `κ m : σ

Γ ` packm as σ : 〈|?|〉 (1)

Γ ` e : 〈|?|〉 Γ, x:σ `κ m1 : σ′ Γ `κ m2 : σ′

Γ ` σ′ : �
Γ `W unpackx⇐e as σ in m1 else (m2 : σ′) : σ′ (2)

Γ ` e : 〈|?|〉
Γ ` pickle e : Ψ

(3)
Γ ` �

Γ ` ψ(v) : Ψ
(4)

Γ ` e1 : Ψ Γ, x:[[〈|?|〉]] ` e2 : τ Γ ` e3 : τ Γ ` τ : �
Γ ` unpicklex⇐e1 in e2 else (e3 : τ) : τ

(5)

Figure 5. Selected typing rules

evaluation of
let p = [pack [τ ] as [[Ω]]] in
letx′ = unpack Val p as [[Ω]] in
let p′ = [packx′ as S(x′)] in
letx = unpack Val p′ as S([τ ]) in . . .

would still succeed, yielding the original module [τ ] for x, under
the statically transparent signature S([τ ]). The reason is that [τ ]
will be substituted for x′ in the package signature of p′ during
evaluation, leaving

let p′ = [pack [τ ] as S([τ ])] in
letx = unpack Val p′ as S([τ ]) in . . .

after reduction of the first two let-bindings. Consequently, it is
more natural to make the former example succeed already (in
a language with sealing a possible alternative is to have pack
perform sealing, but experiments in early versions of Alice ML
revealed it to be a nuisance in practice: for instance, the dynamic
type sharing example in Section 2.2 would require unexpected and
tedious annotations at pack time to prevent unwanted sealing).

Figure 5 contains the typing rules for packages (1 and 2). Rule
1 enforces that the module wrapped in a package matches the
provided package signature. Rule 2 defines that unpack delivers a
module of the target signature σ, bound to x in the success branch
– or takes the failure branch. Both branches need to match σ′.

Note that unpacking is an impure operation (specified by the
W effect annotation in the conclusion). For obvious reasons, this
treatment is essential for soundness in presence of a potentially im-
pure core language, where the argument might evaluate to different
package values at different points in time.

We should note that the calculus is only intended as an idealised
model language, not as an internal language targettable by trans-
lation (as e.g. the original DCH) – the use of the subtyping judge-
ment in the operational semantics prevents a direct translation from
a richer external language. For that purposes, the unpack side con-
dition had to be replaced by a separate judgement mirroring the
external subtyping relation. Moreover, reduction would probably
have to perform dynamic conversions to bridge between both sig-
natures. Such considerations are outside the scope of this paper.
See [26] for an operational semantics that encompasses full SML.

4.5 Pickling
Our calculus provides an abstract account of pickling, in the form
of three constructs:

• pickle e creates a pickle of the value computed by e.
• unpicklex⇐e in e1 else e2 takes a pickle e and extracts its

value, binding it to x in e1; if the pickle is malformed, e2 is
evaluated instead.

• ψ(v) represents a pickle itself, i.e. a value that is some serial-
ized representation of the value v (think of a byte string or a
file). Pickles are assigned type Ψ.

The key characteristic of this mechanism is that there is no require-
ment for the term v in a pickle ψ(v) to actually be well-formed!
This models the fact that in practice, pickles can be created out-
side the runtime, by extra-linguistic means, and the language has
no way to enforce that they are well-formed. Indeed, a pickle may
be deliberately forged by an attacker. This liberty is visible in the
typing rules, shown in Figure 5. In particular, rule 4 does not have
any premise regarding v.

If pickles may be malformed, how can we establish soundness?
How can the runtime guarantee its integrity? This requires verifi-
cation when the pickle is loaded. In our model, verification simply
amounts to a well-formedness side condition in the reduction rules
for unpickle:

unpicklex⇐ψ(v) in e1 else e2 → e1{[v]/x} if ` v : 〈|?|〉
unpicklex⇐ψ(v) in e1 else e2 → e2 otherwise

Upon loading, it is checked that a pickle actually contains a well-
formed representation of a value (of type 〈|?|〉). Because a pickle is
self-contained, i.e. a closed expression, the environment in the side
condition’s judgement is empty.

Despite this robustness, we want to preclude that malformed
pickles can be created from within the language. A programmer
has to invoke pickle e to create pickles (the form ψ(v) should be
considered inaccessible in the surface language). This first evalu-
ates e and then creates a pickle from the result. That is, we have a
simple reduction rule

pickle v → ψ(v)

Unlike rule 4, typing rule 3 requires the operand of pickle to be a
well-formed term.

Consider the following four examples:

1. unpack (unpickle pickle(packλx:1.〈〉 as 1→1)) as 1→1
2. unpack (unpickle pickle(packλx:1.〈〉 as 1→1)) as 1→1→1
3. unpack (unpickle ψ(packλx:1.x 〈〉 as 1→1)) as 1→1
4. unpack (unpickle pickle(packλx:1.x 〈〉 as 1→1)) as 1→1

The first three are all statically well-typed, but only the first will
evaluate successfully. The second will fail (i.e. diverge) due to a
dynamic type error in unpack, the third due to a verification error
during unpickling. The last example is rejected by the (static) type
system, because the pickled value is not denoted by a well-formed
expression. Contrast this to the third example, which represents a
(statically valid) malformed pickle.

For simplicity, our calculus does not model resources. Proper
handling of resources would be relatively straightforward: it amounts
to extending the pickle operator to conditional form and adding a
side condition to its primary reduction rule that ensures that no
resource names occur in v (assuming resources are simply repre-
sented as names). Otherwise it would fail.

5. Components
Packages already allow dynamic loading and exchanging of mod-
ules. However, these modules have to be fully evaluated and closed.
If we wanted to delay evaluation, or have it depend on other mod-
ules then we had to resort to functional (or functorial) abstraction.
The notion of components we are introducing now provides a much
more comfortable and flexible means for achieving the same effect.
Nevertheless, in Section 7 we will see that it can actually be ex-
pressed as a – relatively simple – higher-order abstraction.



5.1 Compilation Units
A program in our system consists of a potentially open set of com-
ponents that are created separately and loaded dynamically [28].
Every component provides a module (its export) and accesses an
arbitrary number of modules retrieved from other components (its
imports). Import and export interfaces are typed by ML signatures.

Each source file defines a component: the contained ML decla-
rations are interpreted as a structure body, forming the export mod-
ule. Other components can be accessed through a prologue of im-
port declarations:

import specs from url

The signature specifications specs describe the entities used from
the imported structure, along with their types. All identifiers bound
in the specification are in scope in the rest of the component.
Thanks to higher-order modules, these entities can include functors.
For instance, the following are valid imports:

import structure Server : sig val run : (α→β) → (α→β) end
from ”http://my.org/server”

import functor MkRedBlackMap (Key : ORDERED) : MAP
from ”x-alice:/lib/data/MkRedBlackMap”

The string in an import declaration contains the URL under which
the component is to be acquired at runtime. Although the URL is
hardwired into the code, its interpretation is completely up to the re-
sponsible component manager (Section 6), and hence configurable.
Usually it is either a local file, an HTTP address, or a virtual URL
denoting system library components (Alice ML uses the x-alice:
scheme for this purpose).

To execute a program, a designated root component is eval-
uated, meaning that its defining declarations are evaluated in se-
quence, according to the dynamic semantics of the language. Eval-
uation of an import declaration triggers loading and evaluation of
the respective component, a process referred to as dynamic link-
ing. However, every component is loaded at most once. We defer
discussion of the details of linking until Section 6.

Compilation units are always syntactically closed. There are no
free identifiers, not even for most primitive operators like op+.
They are all bound by imports, thus enabling separate compilation.

However, writing down the signatures for all imported modules
would be tedious in practice. As syntactic sugar, we hence allow the
type annotations on import specifications to be dropped. It suffices
that the imported components are accessible (in compiled form)
during compilation, so that the compiler can insert the respective
types from their export signatures. For example, the previous im-
port declarations could be abbreviated to

import structure Server from ”http://my.org/server”
import functor MkRedBlackMap

from ”x-alice:/lib/data/MkRedBlackMap”

As an additional service, the Alice ML compiler automatically
thins implicit signatures by removing all entities that are not di-
rectly or indirectly referred in the remainder of the component. Do-
ing so makes the compiled component maximally robust against
eventual changes to unused parts of an interface.

For convenience, and for compatiblity with Standard ML, Alice
ML furthermore allows to omit imports for modules from the Stan-
dard ML Basis library [13] by default. The respective import decla-
rations are implicitly prepended to every compiled source. Again,
the compiler thins signatures, and removes all redundant imports.

5.2 Computed Components
Compilation is the most obvious, but not the only way to cre-
ate components. Nor do components necessarily live in files. In
fact, components are first-class entities in our design, and can be

structure Component :
sig

type component
exception Failure of url × exn
val fromPackage : package → component
val save : string × component → unit
val load : string → component
...

end

Figure 6. The Component structure

constructed dynamically by an ML process. We call such compo-
nents computed components, as opposed to compiled components
(strictly speaking, a compiled component is just the special case of
a component computed by the compiler, though).

Within the language, a component is a value of the abstract type
component, which is defined in the library structure Component.
Figure 6 shows an excerpt of its signature. Values of this type can
be constructed with a new syntactic form:8

comp imports in specs with decs end

A component expression has a syntactic structure similar to a com-
pilation unit. The main difference is that its export signature must
be given explicitly, in form of a sequence of signature specifications
specs between the keywords in and with. The environment obtained
from decs must match this signature. Naturally, imports and dec-
larations are not evaluated when the component is constructed, but
when it is linked. Thus it can not only import other components, it
can also perform sited operations and generate side effects (through
functionality obtained from imported library components).

Note also that the imports scope over the signature – an export
signature may depend on types defined in other components.

The less visible but more important difference between com-
piled and computed components is that the latter need not be
closed. Hence computed components can embody information that
is obtained dynamically. That is useful for at least two purposes:

• Pre-computation. Through a staged building process, compo-
nents can be created that readily provide data structures that are
expensive to compute, or should be “statically generated”.

• Mobility. Dynamic behaviour that depends on resources can be
wrapped into a component and be passed to other processes.

The former application requires pickling: by calling Component.save
a component can be pickled to disk. Component files created this
way behave exactly like components created by the compiler. In
fact, there is only one uniform file format: all pickle files are ac-
tually components and can be used as such – the package-based
pickling operations presented in Section 3 are simply convenient
wrapper functions.

As an example, the following program creates a component that
will print its creation date when invoked later:

val date = Date.toString (Date.fromTimeLocal (Time.now ()))
val component =
comp
import structure TextIO from ”x-alice:/lib/system/TextIO”

in
val hello : unit → unit

with
fun hello () =

TextIO.print (”Hello world! Created at ” ˆ date ˆ ”\n”)
end

val = Component.save (”hello”, component)

8 This syntax is not yet available in the Alice System; the library functor
Component.Create is provided as a substitute.



The created component can be loaded or imported. The simplest
possible program utilising it is the following:

import val hello : unit → unit from ”hello”
val = hello ()

Packages can be directly converted to components with the
Component.fromPackage function, which is sometimes convenient.
However, the key difference between a component and a simple
package is that a component enables access to resources and other
functionality local to the target site. For instance, the previous
example would not work if we omitted the import declaration
for TextIO – then the local instance of TextIO.print would be in
the closure of component, and pickling would fail with a Sited
exception because print is a resourceful operation. With the import,
we effectively enforce rebinding of all scoped references to TextIO
on the target site (the target site may choose to prevent the import,
see Section 6.2).

Rebinding is particularly important for distributed program-
ming. Exchanging dynamic behaviour between processes can be
achieved by creating a mobile component serving two purposes:

• it closes over all entities obtained at creation site, thus contain-
ing the necessary dynamic information (like date above),

• it abstracts over all entities to be obtained at the target site, thus
enabling pickling and (re)binding (like TextIO above).

The former is handled automatically by the semantics of pickling.
The latter can be controlled by the use of import declarations in
the definition of the mobile component. The rebinding itself is
automatic, by the process of dynamic linking.

The Alice ML library provides infrastructure for different dis-
tribution scenarios based on components. The simplest would be to
use the offer/take mechanism (Section 3.2) to communicate a com-
ponent and execute it locally. This is suitable for a client/server sce-
nario, for instance. Another possible scenario is distributed compu-
tation based on a master/slave architecture: a master site distributes
computational tasks to a number of slaves (or workers), which re-
turn their results. To spawn new processes on remote sites, the Alice
ML library offers the function

val run : string × component → package

which takes a host name and a component and evaluates the compo-
nent on the respective site. It communicates back the component’s
export module as a package. More detailed explanation and exam-
ples can be found in [28].

6. Component Managers
6.1 Dynamic Linking
Evaluation of an import declaration triggers dynamic linking. Link-
ing a component involves four steps:

1. Resolution. The import URL is normalised relative to the URL
of the current component.

2. Acquisition. If the component is being requested for the first
time, it is loaded.

3. Evaluation. If the component has been loaded afresh, its body
is evaluated and its dynamic export signature computed.

4. Type Checking. The component’s export signature is matched
against the respective import signature.

Each of the steps can fail: the component might be inaccessible or
malformed, evaluation may terminate with an exception, or type
checking may discover a mismatch. Under each of these circum-
stances the exception Component.Failure (Figure 6) is raised. The
URL it carries denotes the requested component, and the nested
exception describes the precise cause of the failure. In particular, it

signature COMPONENT MANAGER =
sig

exception Conflict
val acquire : url → component
val eval : component → package
val enter : url × package → unit
val lookup : url → package option
val link : url → package

end

Figure 7. The signature of a component manager

can be an I/O exception, the exception Unpack (Section 2.1), or a
number of other exceptions defined in the library.

To enable control over this process, linking is performed with
the help of a component manager. It is the entity responsible for lo-
cating and loading components, and keeping a table of components
loaded already. The default component manager is a module of the
runtime library that is initialised on startup of an Alice ML process.
It starts with an empty table and incrementally fills it as required by
evaluation of the root component or any of its imports.

To a program, the responsible component manager is accessible
not only implicitly for imports, but also explicitly as the library
structure ComponentManager (Figure 7). Using that structure, a
program can operate on first-class components and influence the
manager in more direct ways. It provides several basic services
on component values, most of which implement one of the above
steps:

• acquire retrieves a component, without actually evaluating or
entering it into the table,

• eval evaluates a component into a package containing its export,
without entering it into the table,

• enter enters an export package under a specified URL, raising
Conflict if the URL is already taken,

• lookup retrieves a component from the table,
• link loads and enters a component from a specified URL.

The function link combines the sequence of operations usually
required to link a component given its URL, i.e. aquires, evaluates
and enters a component, in a single operation.

Ultimately, eval is the only operation that actually consumes a
value of type component – no other ways exist to access it. Possible
example scenarios for its use are a client that sends a component
to a server to utilise special services local to the server; the server
has to apply eval from its local component manager to run it. In
a master/slave architecture the slaves will evaluate a component
received from the master – the run function from Section 5.2 can
actually be implemented in terms of some lower-level service like
SSH and a stub component on the slave site that retrieves and
evaluates a first-class component.

6.2 Sandboxing
The relevance of component managers lies in their ability to control
imports. In an open setting it is important to handle untrusted
components, and to restrict their capabilities. For example, they
should not be given unrestricted access to the local file system.

To deal with this, we adopt the approach taken by Java: com-
ponents can be executed in a sandbox. Sandboxing relies on two
factors: (1) all critical resources and capabilities are sited (Sec-
tion 3.3) and hence have to be acquired via import through local
system components; (2) it is possible to create custom managers
that restrict the access to certain components.

A custom manager simply is a user-defined implementation of
the COMPONENT MANAGER signature. For example, the Alice
ML library provides a functor to create new managers with spe-



cialised behaviour. When a component is evaluated by a specific
manager (e.g. by using its eval or link procedure), this manager is
inherited by all components that are directly or indirectly requested
by the first one. Thus, if the manager restricts access to critical sys-
tem libraries, none of these components can gain access to them.

There are several possible ways in which a custom manager
can restrict access: (1) It can simply reject loading from specific
system URLs. (2) It can restrict the signature under which specific
system components are made available, by forwarding the request
to its parent manager, but repackaging the result with a thinner
signature (e.g. removing the operations for opening output files
from TextIO). (3) It can substitute critical components by security-
sensitive wrappers, that dynamically check for more fine-grained
policies with each operation (this is basically what Java does).

So far there is only minimal infrastructure for sandboxing in the
Alice ML library. We are still exploring the design space, and plan
to extend the library in future versions of the system.

7. Decomposing Components
At first, components may look like a complex mechanism. In this
section we will show that this is not the case, by giving a simple
reduction of components to functions and packages. The merit of
this reduction is three-fold: (1) it keeps the language conceptually
simple, (2) it defines the semantics of components without the need
for additional technical machinery, (3) type soundness follows.

7.1 Components
A component can be understood as a function that evaluates to a
package containing the export module. More precisely, the abstract
type component can be implemented as a higher-order function
type:

type component = (url → package) → package

Its argument encapsulates the component manager, needed to ac-
quire imports. Applying the function evaluates the component.

Accordingly, a component expression

comp imports in specs with decs end

can be viewed as syntactic sugar for the function

fn import ⇒ let importdecs in pack (decs) : (specs) end

where import is a reserved identifier and importdecs is obtained
from imports by rewriting every import declaration

import specs from url

to

structure strid = unpack import url : (specs)
open strid

where strid is a fresh identifier.
This simple transformation fully determines the semantics of

components. In particular, it makes obvious how dynamic type
checking is performed for imports, and how acquisition of imported
component is delegated to the component manager: every compo-
nent receives the function import for acquiring its imports. It eval-
uates to a package that contains its own export.

The most subtle point is that export signatures are actually
determined dynamically, due to the transparent interpretation of
pack (Section 2.1). This enables complex type sharing: an export
signature may mention a type that has been imported abstractly, still
other components further down the dependency graph may match
this type concretely.

7.2 Component Managers
It remains to be shown how component managers themselves can
be implemented. Figure 8 contains a simple model implementation.

exception Conflict
val table = ref [] : (url × package) list ref

fun import’ parent =
let

fun acquire url =
Component.load url handle e ⇒ raise Failure (url, e)

fun lookup ”x-alice:/lib/system/ComponentManager” =
pack (
exception Conflict = Conflict
val acquire = acquire
val lookup = lookup val enter = enter
val eval = eval’ ”.” val link = import’ ”.”

) : COMPONENT MANAGER
| lookup url =

List.find (fn (x, ) ⇒ x = url) (!table)

and enter (url, package) =
if isSome (lookup url) then raise Conflict
else table := (url, package) :: !table

and eval’ url component =
component (import’ url) handle e ⇒ raise Failure (url, e)

fun link url =
let val url’ = resolve (parent, url) in

case lookup url’ of
SOME package ⇒ package
| NONE ⇒
let val package = eval’ url’ (acquire url’) in

enter (url’, package); package
end

end
in

link
end

Figure 8. A canonical component manager

Apparently, most functions are straightforward. However, we show
a quite limited version of acquire, which can only handle file URLs.
For other URL schemes (particularly http:) additional services may
be accessed, which we will not describe here.

The main complication is URL resolution: all URLs in an im-
port declaration have to be interpreted relative to the domain and
path of the URL under which the importing component was ac-
quired. This is necessary to make groups of components relocatable
across directory structures and network domains. Consequently, the
import function passed to a component must know about that com-
ponent’s associated URL, that URL has to be passed as an addi-
tional parent argument. Assuming existence of an auxiliary func-
tion resolve : url × url → url, the internal link function can then
perform the necessary resolution. When evaluating a component C,
link passes along C’s URL to the evaluation function eval’, which
constructs an import function from it that is suitable for loading C’s
own imports.

Explicit access to the component manager is enabled in this
implementation by special-casing the internal lookup function on
the system URL of the component manager. If applied to that
URL, lookup just returns an appropriate package containing the
required functionality. Note that these functions do not interpret
URLs relative to a parent – no unambiguous notion of parent exists
in their case, because the functions can be passed around first-class.
Instead, URLs are pragmatically resolved relative to the local host
and current working directory, which we indicate with ”.” here.



Given the described reduction of components and component
managers, execution of a program can be thought of as evaluation
of the simple application

import’ ”.” root

where root is the URL of the program’s root component, and
”.” again denotes the current working directory. All observable
properties of program execution follow from this decomposition.

8. Extensions
8.1 Lazy linking
So far, we have assumed that all dynamic linking is to be performed
eagerly. However, in practice it is often desirable to delay linking
of individual components until they are actually accessed, in order
to keep the working set smaller, minimize startup times, or access
remote locations just in time.

Given a language with support for laziness, it is straightforward
to extend our model to lazy dynamic linking. There is only one
crucial change: the right-hand side of a rewritten import declaration
has to be evaluated lazily. Taking Alice ML as our vehicle, which
supports module-level laziness through its future mechanism [21],
this amounts to simply rewriting an import declaration to

structure strid = lazy (unpack import url : (specs))
open strid

(Note that open just affects scoping, it does not trigger evaluation.
Evaluation is triggered when the first field is needed.)

This is the semantics that is actually used in Alice ML. More de-
tails can be found in [28], which also describes how the component
manager has to be refined to deal with concurrency.

8.2 Static Linking
When developing an application, it usually is good advice to split
it into small enough components, so that they can be modified and
compiled independently. When the final application is deployed,
however, it is preferable to have it consist of as few parts as possi-
ble, to ease installation and minimize potential for failure. It is thus
important to decrease the level of granularity of components when
moving from individual programming tasks to the final product.

The Alice System supports this with a simple notion of static
linking, or bundling: it provides a linker tool that takes a set of
components, including one designated root component, and bun-
dles them to form a single large component (in practice, the set
is computed automatically from the dependency graph and URL-
based cut-off rules given by the user). The resulting component has
the same export as the root component, and the collective imports
of all components required by one of the bundled components, but
not in the set. The linker checks that all pairs of import/export sig-
natures of internalized import edges match, otherwise the whole
operation is rejected with a type error message.

Interestingly, the semantics of static linking can be defined
in terms of custom component managers. Here is a brief sketch:
consider linking of two components A and B, were B imports A and
is used as the root component. Slightly simplifying (and ignoring
URL resolution), what the static linker does is to create a wrapper
component that looks as follows in desugared form (assuming the
original component values are bound to a and b in the context, and
hence will be in the closure):

fn import ⇒ let
val aExport = lazy (unpack a import : A SIG)
fun import’ ”A” = aExport
| import’ url = import url

in b import’ end

Basically, the new component creates a trivial custom component
manager that treats requests for the URL ”A” of the bundled com-
ponent specially. All other component requests are just forwarded
to the parent manager. This specialised manager is then passed on
to the root component, ensuring that it will see the internalized ver-
sion of A when requesting it. We here show the lazy semantics,
where linking does not change the relative evaluation order of the
linked components: A is still evaluated lazily.

The linker of the actual Alice System performs an additional op-
timization: since import/export signatures are checked at bundling
time, it is statically known that the inserted unpack operations will
not fail. The linker hence can safely remove the corresponding dy-
namic type checks, saving space and time. However, this transfor-
mation cannot be expressed on the language level, due to the lack
of static first-class modules in Alice ML.

9. Related Work
There is extensive literature on dynamics as well as ML-style
module systems, but to the best of our knowledge, combining the
two has not been considered before. There have been different
proposals for defining separate compilation for ML [7, 32], but
they do not provide dynamic linking. The problem of software
configuration and dynamic linking has been approached from a
more general direction by many authors [8, 12, 3]. Most of this
work is concerned with basic calculi, that introduce components as
primitive concepts. There is relatively little work that investigates
concrete language design in the context of ML or similar languages.

Facile [33] was an earlier extension of Standard ML for dis-
tributed programming. It provides structure servers for making per-
sistent ML structures. A structure is retrieved from the server by re-
questing a module with a suitable signature, which implies a form
of dynamic signature check. If several structures match a given sig-
nature, the last one stored is returned.

Closest to ours is the work on Acute [30], which like Alice ML
extends an ML-like language with marshalling, concurrency, and
support for dynamic loading. The mechanisms in Acute are com-
paratively complex, with no obvious reduction into simpler con-
structs like in our approach. Acute has no equivalent to computed
components, a different concept of linear marks is needed to con-
trol the extent of rebinding, which is not directly comparable. No
security mechanisms is provided, and due to uncontrolled implicit
rebinding it is not clear how a sandboxing mechanism could be
programmed. On the other hand, Acute provides other features not
directly available in Alice ML, e.g. versioning constraints and dif-
ferent levels of type generativity. In Alice ML, the latter can only be
simulated, to a certain degree, using pre-computation (Section 5.2).

Many of the concepts in Alice ML were inherited from Oz [31,
11], which has a component system similar to the one described
here, equally based on pickling. However, Oz is an untyped lan-
guage, no checking is performed for imports. Moreover, the de-
composition of Oz components (called functors) differs from the
one described in Section 7 and linking relies on untypable reflec-
tive capabilities on varyadic procedures.

Java [14] was the first major language with a serious focus on
open programming. Instead of modules, Java components (class
files) carry classes. Our approach to dynamic linking and sand-
boxing through component managers has clearly been inspired by
Java’s concept of class loader. However, there is no signature lan-
guage or structural checking when a class is loaded, subsequent
method calls may cause a NoSuchMethodError exception any time,
undermining the type system. Java has no generic pickling mecha-
nism, the provided serialisation requires considerable support from
the programmer. Code cannot be serialised; consequently, there is
no equivalent to computed components.



Scala [22] provides a much more expressive static type sys-
tem, specifically intended for modular components. However, Scala
reuses Java’s runtime and library infrastructure and hence suffers
from the same shortcomings regarding dynamic type checking.

Other functional languages have incorporated variants of dy-
namics to support type-safe I/O. Most notably, Clean supports a
comparably rich form, with a full typecase construct [23]. How-
ever, no existing language seems to have generic pickling support
for modules, and none has a higher-level component system that
unifies pickles and compiled binaries.

10. Conclusion
We have described a simple but expressive approach for enriching
ML with dynamic components suitable for open and distributed
programming. It reuses much of what is already provided by ML
modules and does require only very few new concepts. The central
one are packages, which lift the well-known idea of dynamics to
the level of modules. Another highlight of the design is its uniform
use of pickling for representing components externally.

The system forms the basis of Alice ML and has been success-
fully implemented and used for a non-trivial code base. Pickling
works surprisingly well in practice. In particular, pickles are usu-
ally pretty compact (in the order of few to few ten kilobytes), even
when they contain computed components with significant amounts
of code in their closure.

There are several open questions and directions for future
work: formally, we want to reconcile the package semantics with
abstraction-safe sealing, and integrate laziness into the calculus.
It also might be interesting to look at type systems that trace use
of resources to avoid sitedness errors. Implementation-wise, the
main remaining issue is the integration of pickle verification into
the system. This requires the ability to type-check the heap repre-
sentation of data structures. Finally, pragmatically we would like
to design suitable abstractions for making sandboxing accessible to
the programmer.
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