
Universität des Saarlandes

Fachrichtung 6.2 – Informatik

Diplomarbeit

Drawings as Models of Syntactic Structure:

Theory and Algorithms

Mathias Möhl

Februar 2006

Angefertigt unter der Leitung von Prof. Dr. Gert Smolka

Betreuung durch Marco Kuhlmann

Erklärung

Hiermit erkläre ich, Mathias Möhl, an Eides statt, dass ich die vorliegende Diplomarbeit

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel

verwendet habe.

Saarbrücken, den 21. Februar 2006

iii

iv

Abstract

This thesis introduces drawings, a class of mathematical structures suitable to represent

the syntactic structure of natural language sentences. Drawings are simple structures,

and independent of any grammar formalism or generating device. The derived struc-

tures of many grammar formalisms can be interpreted as a drawing. Structures derived

by different formalisms can thus be compared on a common base.

Drawings are not restricted to projective analyses. We present two measures for the

level of non-projectivity of drawings: gap degree and well-nestedness. With these two

measures we characterise the class of drawings that corresponds to the derivations of

Tree Adjoining Grammar (tag).

Furthermore, a description language for well-nested drawings is presented and com-

plemented with an algorithm that enumerates all drawings for an expression of that

language.

v

vi

Acknowledgements

I would like to thank Professor Dr. Gert Smolka for proposing this interesting subject

to me, and for enabling me to work in the pleasant atmosphere of the Programming

Systems Lab.

I also want to thank my supervisor Marco Kuhlmann. Most of the results of this thesis

originated from extensive discussions with Marco; the weekly meetings were always a

rich source of new ideas and motivation. Beyond scientific questions, his comprehensive

support covered also help with typesetting in LATEX, and with English phrasing.

I am grateful to Alexander Koller who read drafts of Chapter 7 and provided me with

helpful comments on saturation algorithms.

Furthermore, I want to thank Manuel Bodirsky, Ralph Debusmann, Robert Grabowski,

and Guido Tack for fruitful discussions and support in various aspects. In particular I

want to mention that Ralph extended his LATEX package for the visualisation of drawings

to meet my needs.

While working on this thesis, I was funded by the project CHORUS in the Collab-

orative Research Centre 378 ‘Resource-Adpative Cognitive Processes’ of the Deutsche

Forschungsgemeinschaft (DFG).

I also want to thank my parents for their support. Finally, I am grateful to Tina for

helping me typesetting some figures and even more for supporting me in a stressful

time.

vii

viii

Contents

1 Introduction 1

2 Drawings as relational structures 3

2.1 Relational structures . 3

2.2 Forests and trees . 4

2.3 Total orders . 5

2.4 Ordered forests . 6

2.5 Drawings . 7

3 Gap degree 9

3.1 Drawings with gaps . 9

3.2 The relation between the number of nodes and the number of gaps 10

3.2.1 The number of gaps in a drawing . 10

3.2.2 The number of gap sets . 12

3.2.3 Consequences for algorithms . 14

3.3 An algorithm to compute the gap degree . 14

3.4 Gap restrictions in grammar formalisms . 16

4 Well-nestedness 19

4.1 Well-nested drawings . 19

4.2 Algorithms to test well-nestedness . 20

4.2.1 Optimising a naïve approach . 20

4.2.2 An alternative test for well-nestedness 22

4.3 The gap forest . 24

4.3.1 Gap forests in sets . 24

4.3.2 Gap forests in drawings . 25

4.4 Gap sets in well-nested drawings . 27

4.5 Planarity . 28

5 TAG-drawings 31

5.1 Tree Adjoining Grammar . 31

5.2 The correspondence between tag derivations and drawings 34

5.3 tag drawings have a gap degree of at most one 35

5.4 tag drawings are well-nested . 36

5.5 Constructing a tag grammar for a drawing . 37

5.5.1 Extending the gap forest . 37

ix

Contents

5.5.2 The algorithm . 38

5.5.3 Correctness . 41

6 A description language for well-nested drawings 43

6.1 Locality . 43

6.2 Structural characterisation of extended gap forests 45

6.2.1 The structure of a single extended gap forest 45

6.2.2 Structural dependencies among forests of different nodes 46

6.3 Constructing the drawing for a description . 46

6.4 The description language . 48

6.5 An extension of tag . 50

6.6 Towards some underspecification . 50

7 A saturation algorithm for constraints on ordered forests 53

7.1 Introduction to saturation algorithms . 53

7.2 Syntax and semantics . 54

7.3 Saturation rules . 54

7.4 Termination and soundness . 57

7.5 Completeness . 58

7.6 Extension to the indexed case . 59

7.6.1 The new syntax and semantics . 59

7.6.2 The new set of saturation rules . 60

7.6.3 Termination and soundness . 62

7.6.4 Completeness . 62

7.7 Further extensions . 63

7.8 Towards more efficient algorithms . 65

8 Conclusions and future work 67

8.1 Structural properties of drawings . 67

8.2 Drawings and grammar formalisms . 67

x

Chapter 1

Introduction

The analysis of the syntax of natural language sentences is an important subject of

computational linguistics. Here, the aim is to generate automatically the syntactic struc-

ture for a given sentence. Systems dealing with such problems rely on a grammar that

is based on some grammar formalism. The grammar formalism provides methods to

characterise the syntactic rules and properties of a certain language. The grammar uses

these methods to describe the syntax of a certain language, for example English.

Existing grammar formalisms differ in a variety of aspects. However, the syntactic

analyses they produce are often of a similar kind. Most grammar formalisms use either

a phrase structure or a dependency structure to represent the syntactic structure of a

sentence.

The phrase structure subdivides the sentence recursively into smaller syntactic units.

The sentence: ‘Dan loves his girlfriend’, for example, could be subdivided into a noun

phrase (‘Dan’), and a verb phrase (‘loves his girlfriend’). The verb phrase can be subdi-

vided into the verb (‘loves’) and the object (‘his girlfriend’), which again could be subdi-

vided.

In contrast to that, the dependency structure represents the dependencies among the

words of the sentence. In the sentence ‘Dan loves his girlfriend’, the words ‘Dan’ and

‘girlfriend’ depend on ‘loves’, and ‘his’ depends on ‘girlfriend’.

In this thesis, we introduce a class of mathematical structures, called drawings, that

is suitable to represent the dependency structure of a sentence. Drawings are indepen-

dent of any grammar formalism, and encapsulate the central relations of a dependency

structure. It is possible to interpret the structures generated by different grammar for-

malisms as drawings, and to compare them on that basis.

The focus in this thesis is put on the structural properties of drawings. Drawings are

not necessarily projective (dependencies may overlap), and we develop two relaxations

of projectivity: gap degree and well-nestedness.

In order to illustrate how the derivation of a grammar formalism is interpreted as

a drawing, we explain how derivations in lexicalised Tree Adjoining Grammar (tag)

correspond to drawings. Furthermore, we structurally characterise the drawings that

correspond to tag derivations. This allows us to decide whether a drawing is inducible

by a TAG grammar without referring to the derivational machinery that underlies tag.

Grammar formalisms are usually based on local descriptions of the structures they

derive. Since the local description of non-projective drawings is not straightforward, we

develop a local description language for well-nested drawings.

1

Chapter 1 Introduction

The remainder of the thesis is structured as follows:

In Chapter 2 we formalise the notion of drawings and along the way we introduce

related mathematical structures like total orders and forests.

Chapter 3 introduces the gap degree as a measure of how non-projective a drawing

is. In that context we also answer the question how many gaps a drawing has at most.

Furthermore, we present an algorithm to compute the gap degree.

Chapter 4 explains well-nestedness, a second relaxation of projectivity that is orthog-

onal to the gap degree. We analyse the structure of well-nested drawings, present algo-

rithms to decide whether a drawing is well-nested or not and compare well-nestedness

to another property called planarity.

Chapter 5 contains a brief introduction to Tree Adjoining Grammar (tag) and explains

how derivations in tag correspond to drawings. Following, a purely structural charac-

terisation of these tag drawings is given, based on the structural properties discussed

in the previous two chapters.

Chapter 6 presents a description language for well-nested drawings and indicates how

this language can be interpreted as an extension of tag.

Chapter 7 presents an algorithm, that is needed to enumerate all drawings for a given

description of the language presented in Chapter 6.

The main contributions of this thesis are

• the formalisation of drawings as a class of mathematical structures to represent

the dependency analysis of a sentence,

• the definition of two relaxations of projectivity: gap degree and well-nestedness,

• a purely structural characterisation of tag derivations based on well-nestedness

and gap degree,

• a description language for well-nested drawings.

2

Chapter 2

Drawings as relational structures

In this chapter, we introduce drawings, a class of structures suitable to represent the

dependency structure of a sentence. First we describe the general concept of a relational

structure, and discuss different kinds of relational structures, in particular forests and

total orders. Equipped with this formal basis, we then define drawings as a further kind

of relational structure.

2.1 Relational structures

Definition 2.1 (Relational structure) A relational structure is a tuple G whose first com-

ponent is a set V , and whose remaining components are relations on V . The set V is

referred to as the carrier of G. ⊣

Although a relational structure may contain relations of arbitrary arity, in this thesis,

we confine ourselves to binary relations. Given a binary relation R on V , we write Rvw

(or vRw for relations with infix notation) as a shorthand for (v,w) ∈ R, and use the

standard notation and terminology for binary relations (cf. Table 2.1). To add a slightly

non-standard concept, we define the relational image of an object v ∈ V under R as

the set Rv := {w ∈ V | Rvw }. Furthermore, we will make use of a transitive reduction

R̃ of a relation R, which is defined as a relation with minimal number of edges such

that R̃ and R have the same transitive closure. The transitive reduction is not unique

in general, but Aho, Garey and Ullman [1] have shown that the transitive reduction of a

directed acyclic graph is unique. Since a relation can be interpreted as a directed graph,

it is sufficient to show that a relation is acyclic to ensure that its transitive reduction is

unique. We will do this in all cases in which we have to consider a transitive reduction.

Relational structures with only binary relations can be seen as labelled digraphs: the

elements of the carrier correspond to nodes, and each element (u,v) of the i-th relation

Ri corresponds to an i-labelled edge between u and v . With this visualisation in mind,

all the standard graph-theoretic terminology can be applied to relational structures. In

this spirit, we refer to the elements of the carrier of a relational structure G as the

nodes of G, and often refer to elements of its relations as labelled edges. We freely mix

graph-theoretic and relational terminology as we go along.

3

Chapter 2 Drawings as relational structures

U := { (u,v) | u,v ∈ V } (full relation)

I := { (v,v) | v ∈ V } (identity relation)

R1 ◦ R2 := { (u,w) | ∃v : R1uv ∧ R2vw } (composition)

R0 := I (0-fold composition)

Rn+1 := R ◦ Rn ((n+ 1)-fold composition)

R−1 := { (w,v) | Rvw } (converse)

R+ := ∪n≥1 R
n (transitive closure)

R∗ := ∪n≥0 R
n (reflexive transitive closure)

R|V ′ := { (u,v) ∈ R | u,v ∈ V ′ ⊆ V } (domain restriction)

Table 2.1: Notation and terminology for binary relations

Example The relational structure G = (V ;R1, R2) with

V = {a,b, c, d}

R1 = {(a, b), (a, c)}

R2 = {(a,d), (c, d)}

corresponds to the graph shown in Figure 2.1. Note that in the graph view the relational

image of a node corresponds to the set of nodes reachable from that node by a path of

length one, following an edge in the corresponding relation. ⊣

a

b c

d

1

1

2

2

Figure 2.1: An example of a relational structure

2.2 Forests and trees

We want to define a relational structure that represents the dependency structure of

a sentence. Using the set of words of a sentence (or – more precisely – the set of word

instances) as the carrier of a relational structure, we can model the dependencies among

the words with a single relation. An element Rvw in this relation indicates that w

depends on v . The dependencies within a sentence usually form a tree or forest.

Definition 2.2 (Forest and tree) A relational structure (V ;R) is called a forest, if it is

acyclic, and each v ∈ V has at most one R-predecessor. Each node v ∈ V with no

4

2.3 Total orders

predecessor with respect to R is called a root. A forest with exactly one root is called a

tree.1 ⊣

We will often use the symbol ⊳ to refer to the relation R in the preceding definition.

We choose infix notation for⊳, so thatu⊳v should be read as “v is an R-successor ofu”.

Furthermore, in linguistic contexts, we will use the familiar genealogical terminology to

refer to relations between nodes in a forest: for any nodes u,v ∈ V , if u ⊳ v , the node

v is a child of u, and, symmetrically, u is the parent of v ; for a given node u, the set

(⊳)+u is called the set of descendants of u; the set (⊳−1)+u is called the set of ancestors

of u. The set ⊳∗u is referred to as the yield of u.

Definition 2.3 (Subtree) Given a forest (V ;⊳) and a node u ∈ V , the relational structure

(⊳∗u;⊳|⊳∗u) is a tree, the subtree rooted at u. ⊣

Definition 2.4 (Disjointness) Let F = (V ;S) be a forest. The disjointness relation on F is

defined as ⊥ := U− I− S+ − (S−1)+.

Two nodes v,w ∈ V are disjoint at u ∈ V , if and only if {v,w} ⊆ S∗u and {v,w} 6⊆

S∗u′ for all children u′ of u. ⊣

2.3 Total orders

Total orders are, like forests, a kind of relational structure. They are, for example, suit-

able to represent the order among the words of a sentence.

Definition 2.5 (Total order) A binary relation R over a set V is said to be trichotomic, if

and only if for all a,b ∈ V , exactly one of the following conditions holds: Rab, a = b,

or Rba.

A relational structure (V ;R) is a total order, if R is trichotomic and transitive. ⊣

Orders are often defined as reflexive, antisymmetric and transitive relations in the liter-

ature. For our purpose, however, it is more convenient to exclude the reflexive elements

from the relation. According to our definition, for example, < (with its usual interpreta-

tion) instead of ≤ would be the canonical total order over the natural numbers.

In the context of total orders, we will often use the infix symbol ≺ for the respective

order relation R. Furthermore, we will use the notation a � b as a shorthand for a ≺ b∨

a = b .

Definition 2.6 (Interval and convex hull) Let (V ;≺) be a total order. For nodes a,b ∈ V

with a � b, the set [a, b] := {x ∈ V | a � x ∧ x � b } is the interval with endpoints a

and b; the empty set is the empty interval. Two intervals [a1, b1], [a2, b2] overlap, if and

only if a1 ≺ a2 ≺ b1 ≺ b2 or a2 ≺ a1 ≺ b2 ≺ b1. For a given set V ′ ⊆ V the convex hull

of V ′, H (V ′), is the smallest interval containing V ′. A set V ′ ⊆ V is said to be convex, if

and only if V ′ =H (V ′). ⊣

1In graph theory, the structures such defined are known as rooted trees.

5

Chapter 2 Drawings as relational structures

Sets that are not convex have nodes between their elements that do not belong to the

set. These nodes form gaps in the set. Later on, gaps will be relevant in connection with

non-projective parts of dependency structures.

Definition 2.7 (Gap) Let (V ;≺) be a total order. A gap in a set V ′ ⊆ V is a maximal (with

respect to set inclusion) non-empty convex set in V ′ := H (V ′) − V ′. The number of

gaps of V ′ is called the gap degree of V ′. Two different gaps of V are always (set-wise)

disjoint. They thus can be ordered from left to right according to ≺. The k-th gap of V ′

according to this order as denoted as Gk(V ′). The elements of a gap are called holes. ⊣

Example Let Ω = ({1,2,3, ...,10};≺) be the standard total order on the first ten natural

numbers. The set {1,3,4,7} has the convex hull [1,7] and two gaps, {2} and {5,6}.

Hence, its gap degree is two. ⊣

2.4 Ordered forests

Ordered forests are forests that are extended with a second relation: an order among

disjoint nodes. Since only disjoint nodes are ordered, the order is partial.

Definition 2.8 (Partial order) A partial order is a relational structure (V ;R) where R is

a binary relation on V that is transitive and acyclic. ⊣

Definition 2.9 (Ordered forest) An ordered forest is a relational structure (V ;⊳,<),

such that (V ;⊳) forms a forest and (V ;<) is a partial order with ∀v,w ∈ V

I v ⊥w⇔ (v < w ∨w < v)

II v < w ⇒ ⊳+v ×⊳+w ⊆< ⊣

In some of the following chapters we will need the following non-standard extension of

ordered forests.

Definition 2.10 (Indexed ordered forest) An indexed ordered forest with k indices is

an ordered forest (V ;⊳,<) together with a function index : ⊳→ [1, k] such that

III v ⊳w ∧ v ⊳w′ ∧ index(v,w) < index(v,w′)⇒ w < w′

We will use v ⊳iw as an abbreviation for v ⊳w ∧ index(v,w) = i. ⊣

Condition (I) states that the order is defined on all disjoint nodes, condition (II) en-

sures that the order of two nodes is inherited by their descendants. Equivalently, an

ordered forest can be thought of as a forest where only the children of each node and

the roots are ordered. All other elements of < that are required in (I) can then be gener-

ated by the implication given in (II).

Condition (III) says that the outgoing edges of each node are ordered according to

their index.

6

2.5 Drawings

a b

1

3

1
2

4
2

2

(a) valid indexing

a b

1

3

2 1
4

2
2

(b) invalid indexing

Figure 2.2: The left forest has a valid indexing the right violates the condition at the

incoming edges of nodes a and b

Example Figure 2.2 shows two indexed ordered forests where the first indexing is valid

and the second violates the condition (III) for the indices of the incoming edges of nodes

a and b: node a is left of b, but the index of a is larger than the one of b.

2.5 Drawings

A drawing is a relational structure that is suitable to represent the dependency analysis

of a natural language sentence. It consists of two different relations: a tree structure

representing dependencies among the words, and a total order representing word order.

Definition 2.11 (Drawing) A drawing is a relational structure (V ;S,≺) in which (V ;S)

forms a tree, and ≺ is a total order on V . ⊣

We use the symbols S and ≺ for successorship and order in drawings, while we use ⊳

and < for successorship and order in ordered trees.

Example Figure 2.3(a) shows how we visualise drawings throughout this thesis. The

circles and solid edges reflect the tree structure underlying the drawing. The dotted lines

a b c d

(a) A drawing

Dan loves his girlfriend

(b) A drawing that represents the

depencency structure of a sentence

Figure 2.3: Sample drawings

7

Chapter 2 Drawings as relational structures

mark the horizontal positions of the nodes with respect to the order in the drawing. The

labels at the lower end of the dotted lines give names to the nodes.

Figure 2.3(b) shows how a drawing can represent the dependency structure of a sen-

tence. The nodes of the drawing are the words of the sentence. The tree structure rep-

resents the dependencies among the words. For example, the outgoing edges of ‘loves’

indicate that both ‘Dan’ and ‘girlfriend’ depend on ‘loves’. The order of the nodes corre-

sponds to the order of the words in the sentence. ⊣

Note that there is an important difference between drawings and ordered trees: the

order in drawings is total, whereas in ordered trees, only the order among disjoint nodes

is specified (see condition (I) of Definition 2.9). In particular, the order among a node and

its children is not specified in an ordered tree. Since the words in a sentence are totally

ordered, and in a dependency analysis, each node corresponds to a word, drawings are

the right models for the dependency analysis of natural language sentences.

Drawings are simple structures only encapsulating the core notions of a dependency

analysis. They do not contain additional material specific for a certain grammar for-

malism, such as additional information that is required during the derivation process

of that formalism. In that sense, drawings are a minimal common base of all grammar

formalisms that use dependency structures to represent their analyses.

A major aspect of this thesis is the investigation of structural properties of drawings.

In particular we identify several – purely structurally motivated – subclasses of draw-

ings. The results gained in this investigation are independent of any grammar formal-

ism, but can be transferred to each formalism that is based on dependency structures.

For example, one could discover that the drawings derived by a certain formalism all

belong to a certain subclass, or, in other words, all fulfil a certain structural constraint.

The results also help to compare different formalisms, if, for example, the class of draw-

ings derivable by one grammar formalism is a superclass of the drawings derivable by

another.

The only commonly used structural property of dependency analysis is projectivity.

It is of particular interest because, on the one hand, many grammar formalisms are

only able to derive projective structures, on the other hand, there is evidence that the

dependencies within natural language are not always projective.

Definition 2.12 (Projectivity) A drawing is projective if and only if all of its subtrees

have convex yields. Drawings that are not projective are called non-projective draw-

ings. ⊣

Example The drawing in Figure 2.3(b) is projective. The drawing in Figure 2.3(a) is not

projective: the yield of the node d consists of the nodes b and d, but {b,d} is not convex

since {c} is a gap in {b,d}. ⊣

8

Chapter 3

Gap degree

This chapter analyses drawings with gaps. First we explain what gaps in a drawing are,

and introduce the notion of gap degree. Gap degree is a measure of how non-projective

a drawing is.

After the introduction of gap degree we will first analyse how many gaps a drawing

may have at most, second present an algorithm to compute the gap degree, and third

see how gaps are related to derivation mechanisms in different grammar formalisms.

3.1 Drawings with gaps

Non-projective drawings have subtrees whose yields are not convex, and therefore have

gaps. It thus makes sense to lift the notion of gaps from total orders to drawings.

Definition 3.1 (Gap degree) Let D = (V ;S,≺) be a drawing. The gaps of a node v ∈ V

are the gaps of S∗v . The gap degree of D is the maximum among the gap degrees of the

nodes of D.

(gap degree)(D) := max
v∈V

(gap degree)(S∗v) ⊣

A gap of a node v may consist of two different kinds of nodes: nodes that dominate v

and nodes that are disjoint to it. We call nodes of the first kind parent holes, and nodes

of the second kind disjoint holes. Sometimes we refer to v itself as the gap host.

Note that a drawing D is projective, if and only if (gap degree)(D) = 0. The gap degree

can hence be interpreted as a scale of non-projectivity in the sense that a drawing with

gap degree n+ 1 is ‘less projective’ than a drawing with gap degree n.

a b c d e

(a) gap degree 0

c a b d e

(b) gap degree 1

c a d b e

(c) gap degree 2

Figure 3.1: Drawings with different gap degrees

9

Chapter 3 Gap degree

Example Figure 3.1 shows three drawings with the same underlying tree structure, but

different node orders and different gap degrees. The left drawing is projective and con-

sequently has a gap degree of 0. In the two remaining drawings only the node e has

gaps. In the first one it has one gap, [a, b], in the second one it has two gaps, [a] and

[b]. The drawings thus have a gap degree of 1 and 2, respectively. In both drawings,

a is a disjoint hole and b is a parent hole, since a is disjoint to the gap host e and b

dominates it. ⊣

The gaps of a node v are always subsets of the convex hull of the yield of v . For

convenience, we give a name to the convex hull of the yield of v :

Definition 3.2 (Cover) Let D = (V ;S,≺) be a drawing. The cover of a node v ∈ V is

defined as C(v) :=H (S∗v). ⊣

From this definition an alternative description for the gaps of a node v can be derived:

the gaps of v are the maximal non-empty convex sets in C(v)−S∗v = S∗v . Furthermore,

a node has no gaps if its yield equals its cover.

Related work The term ‘gap’ and the intuition behind it is adopted from Plátek et

al. [10]. In contrast to our approach, they define gaps with respect to a certain grammar

formalism that generates tree structures. Our definition of gaps can be considered as a

purely structural reconstruction of their intuition and makes the term ‘gap’ independent

of any special grammar formalism.

In this section, we have defined gaps in a drawing, and the gap degree. In the remain-

der of this chapter, we look into certain details that are relevant for drawings with gaps.

We start with investigating how many gaps a drawing may have at most.

3.2 The relation between the number of nodes and the number of gaps

In addition to the number of nodes of a drawing, the number of gaps is a second im-

portant factor that might influence the complexity of algorithms1. However, these two

factors are not completely independent. Therefore, this section analyses their relation-

ship. We will see that the tightest general bound on the number of gaps in a drawing

with n nodes is O(n2) and that this can be narrowed to O(n ∗ log(n)) if we do not

count identical gaps of different nodes twice.

3.2.1 The number of gaps in a drawing

The number of gaps in a drawing is in O(n2) :

1Note that the gap degree and the number of gaps of a drawing are not the same: The gap degree of a

drawing is the maximum of the gap degrees of the nodes, while the number of gaps is the sum of them.

10

3.2 The relation between the number of nodes and the number of gaps

1 2 3 4 5 6 7

Figure 3.2: A drawing with quadratic number of gaps

Lemma 3.3 Let D = (V ;S;≺) be a drawing and |V | = n. Then

∑

v∈V

(gap degree)(v) ≤ n2

2

Proof Since two gaps must always be separated by an element of the yield, for each

node v ∈ V it holds that

(gap degree)(v) < |S∗v|.

With |S∗v| ≤ n it follows that (gap degree)(v) ≤ n and thus

∑

v∈V

(gap degree)(v) ≤ n2

�

This upper bound of O(n2) gaps is tight. To show this, we present a family of draw-

ings Dk with k > 0, where each drawing Di has ni = 2i − 1 nodes and O(n2i) gaps. The

members of the family are defined by the following rules:

D1 := ({v};0, 0)

and for Dk = (Vk;Sk,≺k) with Vk = {v1, . . . , vn} and v1 ≺k v2 ≺k · · · ≺k vn

Dk+1 := (Vk+1;Sk+1,≺k+1) with

Vk+1 := Vk ∪ {w1, . . . ,wn,wn+1}

Sk+1 := Sk ∪ {(vn,w1)} ∪ { (wi,wi+1) | i ∈ {1, . . . , n},≺k+1 }

≺k+1 s.t. w1 ≺k+1 v1 ≺k+1 w2 ≺k+1 v2 ≺k+1 · · · ≺k+1 vn ≺k+1 wn+1

As an example, the instance D3 is shown in Figure 3.2. The instance D2 is obtained if

the nodes 1,3,5 and 7 and the corresponding edges are removed from D3.

For each instance, the tree structure just consists of one singe path from the root

node to a single leaf node. This ensures that the sum of the yields of the nodes is

n + (n − 1) + (n − 2) + ... + 1 ∈ O(n2). This is necessary, since the sum of the yields

11

Chapter 3 Gap degree

is an upper bound on the sum of the gaps (see the proof of Lemma 3.3). The order is

chosen such that a maximum number of gaps is reached. The total number of gaps of a

drawing Dk is

0+ 1+ 2+ ...+ (2k−1 − 2)+ (2k−1 − 1)+ (2k−1 − 2)+ (2k−1 − 3)+ ...+ 1+ 0,

where the i-th component of the sum corresponds to the i-th node on the path from the

root to the leaf. The sum can be reordered to

(0+ (2k−1 − 1))+ (1+ (2k−1 − 2))+ ...+ ((2k−1 − 2)+ 1)

= (2k−1 − 1)∗ (2k−1 − 1) = (2k−1 − 1)2 = (
1

2
2
k − 1)2

Since Dk has 2k − 1 nodes, the number of gaps grows quadratically with the number of

nodes.

3.2.2 The number of gap sets

If we look at the quadratic number of gaps of the drawings Dk, we observe that many

of these gaps consist of the same nodes. The singleton set that consists only of the root

of D3 (see Figure 3.2), for example, is a gap of the nodes 1,2,3 and 6. An algorithm

that represents a gap just by the set of its nodes would represent these four gaps with

just one element, or in other words would not distinguish between them. Regarding the

complexity of such an algorithm, it is interesting to know the number of different gaps:

the number of node sets that form a gap for some node. We will call these sets gap sets.

Similar to the upper bound on the number of gaps, we now determine an upper bound

on the number of gap sets of a drawing. To reach this goal, we first show some relevant

lemmata.

Lemma 3.4 For each drawing D = (V ;S;≺) the following holds:

|
⋃

v∈V

(gap sets)(v)| =
∑

(v,w)∈S

|(gap sets)(w)− (gap sets)(v)|
2

This means basically that if we are interested in the number of different gaps of a

drawing, it is sufficient to count the gaps that differ from the gaps of its parent for each

node.

Proof Root nodes have no gap sets, and hence it is sufficient to count only gaps of

nodes that have a parent. With regard to these nodes, we must only take care to count

each gap set exactly once. For each node w, it suffices to count each gap set, except the

ones that are also gap sets of w’s parent, since nodes that are disjoint to w will have

no common gap sets with w, and any ancestor of v only has a common gap set with w

if v also has this gap set. �

12

3.2 The relation between the number of nodes and the number of gaps

Lemma 3.5 Let D = (V ;S;≺) be a drawing, v,w ∈ V and (v,w) ∈ S. Then

|(gap sets)(w)− (gap sets)(v)| ≤ |S∗v − S∗w|
2

The Lemma states that the number of gaps of a node w that are not equal to any

gaps of w’s parent v is limited by the number of nodes in the yield of v that are not

in the yield of w. Thus, not only |S∗w|, but also |S∗v − S∗w| is an upper bound to the

number of w’s gaps, if we do not want to count identical gaps twice.

Proof Each gap of w must contain at least one node from S∗v if it should not also be

a gap of v . Since a gap of w cannot contain nodes from S∗w, the node must be from

S∗v −S∗w. Since two gaps of w cannot have a common node, |S∗v −S∗w| is an upper

bound on the gaps of w that are no gaps of v . �

Now we have all the necessary details to give an upper bound on the number of gap

sets:

Lemma 3.6 Let D = (V ;S;≺) be a drawing and |V | = n. Then

|
⋃

v∈V

(gap sets)(v)| ≤ n∗ log(n)
2

Proof Due to Lemma 3.4 the following holds:

|
⋃

v∈V

(gap sets)(v)| =
∑

(v,w)∈S

|(gap sets)(w)− (gap sets)(v)|

A first bound on this is

∑

(v,w)∈S

|(gap sets)(w)− (gap sets)(v)| ≤
∑

(v,w)∈S

|(gap sets)(w)| <
∑

(v,w)∈S

|S∗w|,

and a second bound is given by Lemma 3.5:

∑

(v,w)∈S

|(gap sets)(w)− (gap sets)(v)| ≤
∑

(v,w)∈S

|S∗v − S∗w|.

If we increase |S∗w| for any node w, the first bound will get weaker and the second

bound will get stronger. If we decrease |S∗w|, it will be the other way around. The

maximum is thus reached when both bounds are equal, that is |S∗w| = |S∗v−S∗w|. The

optimum is consequently a balanced binary tree. In such a balanced tree, the following

holds:
∑

(v,w)∈S

|S∗w| ≤ n∗ log(n)

The statement holds since the yields of nodes with a common height in the tree are

disjoint, and thus all together they cover no more than n elements. A balanced tree with

n nodes has a height of log(n). If each height level contributes at most n to the sum,

the sum of all yields is bounded by n∗ log(n). �

13

Chapter 3 Gap degree

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.3: A drawing withO(n∗log(n)) different gaps (some edges omitted to maintain

readability)

This bound is asymptotically tight as the following family D′k, k > 0, of drawings

shows:

D′k := ({v1, v2, . . . , v2k−1};S,≺) with

v1 ≺ v2 ≺ · · · ≺ v2k−1

(vi, vj) ∈ S ⇐⇒ i = 2m + r with r < 2m ∧ (j = 2m+1 + r ∨ j = 2m+1 + i)

As an example, D′4 is shown in Figure 3.3; instance D′3 is obtained by removing nodes

8 to 15 and their incoming edges.

The order of the nodes is such that between two nodes of each yield another node is

placed. Each node v , except the root, then has |S∗v| − 1 gaps. The sum of the yields of

all nodes with some height h in the tree is at least
1

2
∗ n, the nodes of height h hence

contribute O(1
2
∗ n) = O(n) gaps. Thus, overall, there are O(n ∗ log(n)) gaps for all

log(n) different heights together. Furthermore, gaps of nodes always differ from the

gaps of their parents: each child combines two of the gaps of its parent into another

gap.

3.2.3 Consequences for algorithms

We have seen that a drawing with n nodes in the worst case has n2 gaps. Any algorithm

that does some computation with the gaps and treats each gap separately hence cannot

have a better worst case complexity than O(n2). The only chance to achieve a better

worst case complexity is to treat several gaps together in one operation. One possible

way is to consider the gap sets instead of the gaps itself, such that all gaps consisting

of the same gap set are treated together in one step. With this idea, the complexity can

be reduced to O(n∗ log(n)).

3.3 An algorithm to compute the gap degree

The gap degree can be computed in a simple bottom-up traversal over the tree structure

of the drawing. At each node u, first u’s yield is computed, and then the number of its

14

3.3 An algorithm to compute the gap degree

x ∧y bitwise and

x ∨y bitwise or

x = y equality test

∼ x bitwise inverse

x << n bitshift n bits to the left

RBound(x) Most-significant bit in x

LBound(x) Least-significant bit in x

Singleton(p) BV in which only position p is set to 1

Prefix(p) BV covering all positions ≤ p

Suffix(p) BV covering all positions ≥ p

Table 3.1: Operations on bit vectors

gaps. This number of gaps is compared with the numbers computed in the recursive

calls for each of u’s children, and the maximum is passed upwards in the tree. The

value for the root is then the gap degree of the drawing.

One efficient implementation uses bitvectors to represent the yields of the nodes: the

bits of such a vector correspond to the nodes of the drawing. A bit set to one means that

the corresponding node is contained in the respective yield. The necessary operations

on bit vectors are shown in Table 3.1. The first five operations are atomic. The remaining

ones can be computed in constant time, as shown by Daniels and Meurers [4].

Using bitvectors, the yield of a node can be computed as the disjunction of the yields

of its children, and the singleton vector where only the bit of the node itself is set to

one. Since the yield of each node is involved only in the computation of the yield of its

parent, there are O(n) disjunctions necessary to compute the n yields of all nodes.

The number of gaps in a yield represented by a bitvector Y is then computed as

follows:

1: count := 0

2: X := Y∧ ∼ (Y << 1)

3: while X 6= zero-vector do

4: count := count+ 1

5: X := X ∧ (∼ RBound(X))

6: end while

7: return count− 1

In line 2 a bitvector X is computed, such that in X only the bit immediately left of

each gap, and the last bit of the yield Y are set to one. In each iteration of the loop, one

of these bits is removed and counted, until all bits are set to zero. If Y has g gaps, the

15

Chapter 3 Gap degree

while loop is iterated g+1 times, and since all other operations need constant time, the

computation of g gaps of Y costs O(g) time. Consequently, the time that the algorithm

needs to count all gaps in the drawing equals the number of gaps in the drawing. This

is bounded by n2 and even tighter by n∗ (gap degree)(D).

Summarising all costs, we have O(n) time for the computation of all yields and

O(n∗(gap degree)(D)) for the computation of the gap degrees of all nodes. For projec-

tive drawings ((gap degree)(D) = 0) the complexity hence is O(n); for non-projective

drawings the complexity is O(n∗ (gap degree)(D)) ≤ O(n2).

The algorithm can be modified such that for a given constant k, it decides whether

the given drawing has a gap degree of at most k or not. In this case, the traversal

can be aborted as soon as any visited node has more than k gaps. The complexity is

then O(k ∗ n); deciding if a drawing has a gap degree of at most 2 for example needs

O(2∗n) = O(n) time.

3.4 Gap restrictions in grammar formalisms

In this section, we will analyse how far different grammar formalisms are able to derive

a dependency analysis that contains gaps. We first show how strictly lexicalised Context-

Free Grammars induce drawings, and argue why these drawings are always projective.

Then we show how strictly lexicalised Multiple Context-Free Grammars are able to derive

drawings with gaps.

Context-Free Grammar Since we want to show how grammar formalisms are able to

derive drawings with gaps, we first have to state more precisely how the derivation in a

certain grammar formalism corresponds to a drawing. First we explain how a derivation

within a strictly lexicalised Context-Free Grammar can be interpreted as a drawing. A

Context-Free Grammar is called strictly lexicalised, if each production rule has exactly

one terminal symbol on its right-hand side. The terminal symbols are the nodes of the

drawing. Due to the lexicalisation, each node of the derivation tree has one correspond-

ing terminal symbol. The derivation tree builds the tree structure of the drawing, the

order among the nodes is the order among the terminals in the derived string.

The drawing in Figure 3.1(a) can, for example, be derived by a grammar with non-

terminal symbols {A,B,C,D, E}, terminal symbols {a,b, c, d, e}, start symbol B and the

following production rules:

p1 : B → AbE p2 : E → CDe p3 : A→ a p4 : C → c p5 : D → d

From the perspective of a drawing, each of these rules describes the adjacencies of

one node. Rule p1, for example, states that the node b has two children: one is the root

of a subtree of type A and the other one is the root of a subtree of type E. Furthermore,

the order among these two subtrees and the node b is specified: the subtree of type A is

left of b, the one of type E right of it. Rule p2 states that node e is the root of a subtree

16

3.4 Gap restrictions in grammar formalisms

of type E and that it has two children whose corresponding subtrees have types C and

D, respectively. Here, the subtree of type C is to the left of the subtree of type D, and e

is to the right of both of them.

Multiple Context-Free Grammar The drawing in Figure 3.1(b) cannot be derived by a

Context-Free Grammar. This is due to the fact that a subderivation within a Context-Free

Grammar always contributes a convex substring of the finally derived string. This im-

plies for the corresponding drawing, that each subtree may only contribute a convex set

of nodes to the node set of the drawing. Since the yields of nodes with gaps are not con-

vex, Context-Free Grammars are only able to derive projective drawings. In Figure 3.1(b),

for example, the yield of node e consists of two convex subsets, {c} and {d, e}, but a

context-free rule like p2 does not allow any external material to be inserted between C

and D.

One formalism that allows a subderivation to contribute several convex substrings

to the derived string is Multiple Context-Free Grammar2 [11]. Here, a nonterminal X

may consist of several parts X1, . . . , Xk, and each of them contributes a convex part of

the derived string. The derivations for the different parts X1, . . . , Xk are carried out in

parallel; the left- and right-hand sides of the rules consist of tuples to account for this

parallelism. In a Multiple Context-Free Grammar, the rules p1 and p2 can be replaced

with

p′
1

: B → E1AbE2 p′
2

: (E1, E2)→ (C,De)

With these additional rules, the drawing in Figure 3.1(b) is derivable. The rule p′1 says

that b has two children whose subtrees have type A and E, respectively, and a part of

the subtree of type E is left of the subtree of type A, and a second part is right of b.

Rule p′
2

then specifies that C is contained in the first part of the subtree of type E, and

D and e are contained in the second part. By splitting up a subtree into several parts,

it is possible to place gaps between these parts. The arity of the tuples indicates the

gap degree: In a 2-tuple there is only one position for a gap (between the two tuple

components) and hence the nodes whose corresponding production rules consist of 2-

tuples have a gap degree of at most one. In order to derive the drawing in Figure 3.1(c),

which has a gap degree of two, we need a rule with 3-tuples:

p′′
1

: B → E1AE2bE3 p′′
2

: (E1, E2, E3)→ (C,D, e)

Summarising, we can say that a grammar formalism must allow a subderivation to

contribute non-convex parts of the derived string if the corresponding drawing should

have gaps. Multiple Context-Free Grammar is a formalism that allows this with the

help of several parallel derivations that are all together represented in one production

rule. Multiple Context-Free Grammar is just one among many tuple-based extensions

of Context-Free Grammar. The ideas presented in this section are similarly applicable

2Sometimes the formalism meant here is also called Linear Multiple Context-Free Grammar

17

Chapter 3 Gap degree

for the more general class of Linear Context-Free Rewriting Systems which, for exam-

ple, subsumes Head Grammars, Tree Adjoining Grammars and Multicomponent Tree

Adjoining Grammars [12].

18

Chapter 4

Well-nestedness

4.1 Well-nested drawings

In the last chapter, we have presented the gap degree as a relaxation of projectivity.

In this chapter, we introduce well-nestedness, a second relaxation of projectivity. Well-

nestedness is orthogonal to the gap degree in the sense that for each gap degree there

exist both drawings that are well-nested, and drawings that are not.

Later on, we will show that drawings that are induced by tag derivations are always

well-nested. In the same manner as the gap degree, well-nestedness originates from a

property of ordered sets that can be generalised to drawings.

Definition 4.1 (Interleaving sets) Let (V ;≺) be a total order. Two sets V1, V2 ⊆ V inter-

leave, if and only if there are nodes l1, r1 ∈ V1 and l2, r2 ∈ V2 such that [l1, r1] and

[l2, r2] overlap. We call l1, l2, r1 and r2 the witnessing nodes. ⊣

Definition 4.2 (Well-nestedness) Let T1 and T2 be subtrees in a drawing D = (V ;S,≺),

and let the node sets of T1 and T2 be disjoint. We say that T1 and T2 interleave, if and

only if the node sets of T1 and T2 interleave. D is well-nested, if and only if it does not

contain any interleaving subtrees. ⊣

Figure 4.1 shows examples for interleaving and non-interleaving subtrees. The sub-

trees shown in Figure 4.1(a) are placed side by side. In projective drawings, subtrees are

always placed side by side, but well-nested drawings also allow the alternative shown

in Figure 4.1(b): subtrees are also non-interleaving, if one is placed within a gap of the

other. Subtrees interleave if a part of one subtree is contained in a gap of the other, and

another part is located outside this gap. This is shown in Figure 4.1(c), where l2 is in the

first gap of l1, but r2 is outside. Summarising, one can say that in projective drawings,

l1 r1 l2 r2

(a) non-interleaving

and projective

l1 l2 r1 r2

(b) non-interleaving

but not projective

l1 l2 r1 r2

(c) interleaving

Figure 4.1: Examples for non-interleaving and interleaving subtrees

19

Chapter 4 Well-nestedness

1 2 3 4 5 1 2 3 4 5 6

Figure 4.2: Drawings that are not well-nested

subtrees are always placed side by side, and in well-nested drawings it is also allowed

to place one subtree in the gap of another one.

An alternative characterisation of interleaving subtrees T1 and T2 is that at least one

node from T1 is a hole in T2 and the other way around: witnessing nodes l1, r1 from T1
and l2, r2 from T2 always correspond to such gaps because with l1 ≺ l2 ≺ r1 ≺ r2 the

node l2 is a hole in T1 and r1 is a hole in T2.

Example The drawings in Figure 3.1 on page 9 are all well-nested; the drawings in Fig-

ure 4.2 are not well-nested.

In the left drawing in Figure 4.2, the subtree rooted at node 2 interleaves with the

subtree rooted at 3, since [2,4] overlaps with [3,5] or from the alternative perspective

since 3 ∈ S∗3 is a gap of 2 and 4 ∈ S∗2 is a gap of 3.

The right drawing in Figure 4.2 shows that it is not sufficient to check whether the

largest intervals within two subtrees (that is their covers) overlap. Although the covers

of 2 and 5 do not overlap, their subtrees contain overlapping intervals: [2,4] overlaps

with [3,5]. The intuitive argument, why this drawing is not well-nested, is that 3 is

contained in the first gap of 2, but 5 is not. In this case 5 is also located in a gap of 2,

but not in the same gap as 3. ⊣

4.2 Algorithms to test well-nestedness

In this section, we present two different algorithms that decide whether a given drawing

is well-nested or not.

4.2.1 Optimising a naïve approach

The naïve algorithm that decides if a drawing is well-nested, tests for each pair of sub-

trees, whether they interleave. Since a drawing with n nodes has also n different sub-

trees, this naïve algorithm performs O(n2) tests. Each single test involves the search

for witnessing nodes which, naïvely implemented, increases the complexity even more.

Based on this naïve approach, an efficient algorithm can be obtained by first minimis-

ing the number of tests that are carried out, and second finding an efficient method to

perform every single test.

The algorithm that is presented in the following only needs constant time for each in-

terleave test, but in the worst case still performs O(n2) of these tests. However, in most

20

4.2 Algorithms to test well-nestedness

cases the number of tests is much lower, in particular for drawings where the outdegree

of the nodes is bounded by some constant k, only O(k2 ∗n) tests are performed. For a

binary tree the algorithm, for example, performs O(4∗n) tests.

The following lemma says that it is not necessary to check for all pairs of subtrees

whether they interleave or not. It is sufficient to check whether the subtrees of sibling

nodes interleave:

Lemma 4.3 For a drawing D = (V ;S,≺) it holds that if there are two nodes v,w with

interleaving subtrees, then there also exist two sibling nodes v′ and w′ whose subtrees

interleave. 2

Proof Let l1, r1 ∈ S∗v and l2, r2 ∈ S∗w be the witnessing nodes of the interleaving

subtrees rooted at v andw. Let v andw be disjoint at u. Then u has two children v′ and

w′ with v ∈ S∗v′ w ∈ S ∗w′. Then also l1, r2 ∈ S∗v′ and l2, r2 ∈ S∗w′. Consequently

the subtrees rooted at v′ and w′ interleave with witnessing nodes l1, l2, r1, r2. �

Due to this lemma, the algorithm only needs to test the subtrees of sibling nodes

for interleaving. All other tests for interleaving subtrees would be redundant. The next

lemma shows how each of these tests can be performed efficiently.

Lemma 4.4 Let D = (V ;S;≺) be a drawing and let v1, v2 ∈ V be two disjoint nodes.

Then the subtrees rooted at v1 and v2 interleave, if and only if C(v1) ∩ S∗v2 ≠ 0 and

C(v2)∩ S∗v1 ≠ 0. 2

Proof Since v1 and v2 are disjoint, C(v1) ∩ S∗v2 ≠ 0 implies that some node in the

yield of v2 is a hole in C(v1). Symmetrically C(v2) ∩ S∗v1 ≠ 0 implies that some node

in the yield of v1 is a hole in C(v2). Consequently the two subtrees interleave. �

The algorithm works as follows. In a bottom-up traversal through the tree structure

of the drawing, for each node u we compute C(u) and S∗u, and then check for each pair

v1, v2 of u’s children whether the conditions C(v1)∩S∗v2 ≠ 0 and C(v2)∩S∗v1 ≠ 0 are

fulfilled. If we find such a pair, we stop and report that the drawing is not well-nested;

if the traversal reaches the root without finding one, the drawing is well-nested.

Correctness and complexity The correctness of the algorithm follows directly from

Lemmata 4.3 and 4.4. The complexity depends on the implementation.

In an efficient implementation, we represent the yields and covers as bitvectors and

use the operations of Table 3.1 in Section 3.3. As in the algorithm used to compute the

gap degree, the computation of all n yields can then altogether be done in O(n) time.

Furthermore, the cover of a node can be computed in constant time once its yield Y is

computed:

C(Y) := Suffix(LBound(Y))∧ Prefix(RBound(Y))

21

Chapter 4 Well-nestedness

Also the tests C(v1) ∩ S∗v2 ≠ 0 and C(v2) ∩ S∗v1 ≠ 0 can be done in constant time,

since only conjunction and equality test are necessary. The complexity thus depends

just on the number of tests that must be carried out. Since only nodes with a common

parent node are tested, the worst case occurs when all nodes (except the root itself)

have the same parent1. In this case (n − 1)2 tests must be carried out, and the worst

case complexity of the algorithm is thus O(n2).

However, if we consider only drawings where the outdegree of the nodes is bounded

by some constant k, at most k2 tests must be carried out among the children of each

node. Overall less than k2∗n tests are then necessary and the complexity is reduced to

O(k2 ∗n) = O(n).

4.2.2 An alternative test for well-nestedness

Now we present a second algorithm that checks whether a drawing is well-nested or not.

This algorithm offers an alternative characterisation of well-nestedness, which is based

on gap graphs. The gap graph for a drawing D makes the relation between gaps and

their gap hosts explicit.

Definition 4.5 Let D = (V ;S,≺) be a drawing. The gap graph for D is the graph G(D) :=

(W,E) with W = V and E = S ∪ { (v,w) | v ∈ S∗u∧u⊥ v } ⊣

In other words, G(D) is an extension of the tree relation underlying D by additional

edges between (disjoint2) holes and their gap hosts. It will be convenient to have a

special name to refer to these additional edges; we will call them gap edges.

Given a gap graph for a drawing, the question of whether this drawing is well-nested

can be answered in time linear in the number of nodes of the drawing. However, since a

drawing may have a quadratic number of gaps (as we have shown in Chapter 3) the gap

graph may have a quadratic number of edges, which makes its construction quite costly.

The algorithm presented here might therefore be interesting, for example, in scenarios

where a drawing is constructed or modified step by step, and well-nestedness must be

checked frequently during this process. The gap graph can then easily be adopted each

time the drawing is modified, and each single well-nestedness test is cheap.

The algorithm is based on the following theorem.

Theorem 4.6 Let D be a drawing, and let G(D) be the gap graph for D. Then D is well-

nested if and only if G(D) is acyclic. 2

1If all nodes except the root have the same parent, the drawing is always well-nested, since each subtree

consists of only one node and cannot interleave with any other subtree. A more practical worst case

would be that each of these subtrees consists of two nodes. Then the root has still O(1
2
∗ n) = O(n)

children and their subtrees possibly interleave.
2It suffices to consider only additional edges from disjoint holes, since the algorithm we present is only

concerned with transitive dominance in the gap graph and additional edges from parent holes are always

subsumed by a path in the tree structure.

22

4.2 Algorithms to test well-nestedness

l1

root(T1)

l2 r1

root(T2)

r2

(a) The cycle of interleaving subtrees

x1 x2 x3 xn

ynyn−1y2y1

. . .

(b) Normal form of a cycle in a gap graph

Figure 4.3: Situation in the proofs of Lemmata 4.7 and 4.8. Gray edges denote gap edges,

dotted black edges denote sequences of tree edges.

Since the existence of a cycle in a graph with n nodes can be checked in O(n), for

a given gap graph, well-nestedness can also be checked in linear time. The theorem

follows directly from Lemmata 4.7 and 4.9 below.

Lemma 4.7 Let D be a drawing, and G(D) be the gap graph for D. If D is not well-nested,

G(D) contains a cycle. 2

Proof If D is not well-nested, we have the following situation: D contains two disjoint

subtrees T1, T2 with nodes l1, r1 ∈ T1 and l2, r2 ∈ T2 and without loss of generality

l1 ≺ l2 ≺ r1 ≺ r2. Then l2 is in a gap of the root of T1 and r1 is in a gap of the root of T2.

The corresponding gap edges (l2, root(T1)) and (r1, root(T2)) together with the paths

from root(T1) to r1 and from root(T2) to l2 build a cycle as shown in Figure 4.3(a). �

To prove the other direction of Theorem 4.6, we first prove

Lemma 4.8 If a gap graph contains a cycle, it also contains a cycle in which all nodes

reached by a gap edge are pairwise disjoint. 2

Proof Each cycle c in a gap graph G contains a sub-cycle c′ of the form depicted in

Figure 4.3(b). Assume that there are two distinct nodes xi and xj in c′ that are both

reached by a gap edge, but are not disjoint. More specifically, without loss of generality,

assume that xi⊳∗xj . The graph G then contains a path p from xi to xj using tree edges

only. We can therefore find a new cycle d in G that is smaller than c′ in the sense that

it contains at least one gap edge less than c′. Since each application of this procedure

eliminates a non-disjointness link between two nodes reached by a gap edge, it will

eventually yield a cycle in which all nodes reached by a gap edge are pairwise disjoint.�

Lemma 4.9 Let D be a drawing, and let G(D) be the gap graph for D. If G(D) contains a

cycle, D cannot be well-nested. 2

Proof by contradiction. Let D be a well-nested drawing, and let G(D) be a gap graph

for D containing a cycle. By Lemma 4.8, we may assume that the cycle in G(D) has

23

Chapter 4 Well-nestedness

the form depicted in Figure 4.3(b), where all of the xi are pairwise disjoint. Each path

x · · ·yx′ in the cycle translates into the requirement that C(x) ⊂ C(x′): y is a hole in

the yield of x′ because of the gap edge between y and x′, and since x and x′ are disjoint,

the assumed well-nestedness of D tells us that y together with all other elements of

C(x) must form a convex proper subset of C(x′) because otherwise the subtree rooted

at x interleaves with the subtree rooted at x′. By transitivity of set inclusion, we thus

arrive at the requirement that C(x) ⊂ C(x), which is a contradiction. �

4.3 The gap forest

In this section, we describe a structure called gap forest. The existence of gap forests is

a major property of well-nested drawings, and offers a deeper insight into their nature.

We first introduce the notion of a gap forest independently of drawings, and in the

second step show that the nodes of drawings have corresponding gap forests.

4.3.1 Gap forests in sets

The basic idea behind gap forests is that we can represent the relations among different

subsets of an ordered set as a relational structure or graph. Doing this we identify each

subset with a node in the graph, and consider two binary relations on these nodes: the

‘being in the gap’ relation among the sets, and an order among them which is simply

the order of their nodes lifted to sets. This order is partial and defined only for pairs

of sets where all elements of the one set are before all elements of the second. Under

certain conditions this structure is an ordered forest.

Definition 4.10 Let (V ;≺) be a total order and V1, . . . , Vk disjoint, non-interleaving sub-

sets of V , and let Γ be a bijection from some set W to {V1, . . . , Vk}. Then the correspond-

ing gap forest is the relational structure (W ;⊳,<) with

⊳+ := { (v,w) | v,w ∈ W ∧ Γ(v) ⊇ Γ(w) }

< := { (v,w) | v,w ∈ W ∧ Γ(v)× Γ(w) ⊆≺}

⊳ := transitive− reduction(⊳+)

and a function index which assigns to each edge (v,w) ∈ ⊳ an index i indicating that

Γ(w) is located in the i-th gap of Γ(v). Note that Γ(w) is located in exactly one gap of

Γ(v), since the sets are non-interleaving.

Furthermore, the transitive reduction of ⊳+ is unique since ⊳+ is acyclic (see the first

paragraph of Section 2.1). ⊣

Lemma 4.11 The gap forest is an indexed ordered forest. 2

24

4.3 The gap forest

Proof Collecting all the properties in the definition of a forest (Definition 2.2), an or-

dered forest (Definition 2.9), and an indexed ordered forest (Definition 2.10), we have to

show that (a) (W ;⊳) is acyclic and each node has at most one ⊳ predecessor; (b) < is

transitive and acyclic and, furthermore, satisfies the conditions (I) and (II) of the defini-

tion of ordered forests (Definition 2.9); (c) condition (III) of the definition of an indexed

ordered forest (Definition 2.10) is satisfied.

(a) Because ⊃ is acyclic, also ⊳+ and, furthermore, ⊳ is acyclic. To show that each node

has at most one predecessor, consider a node w with v ⊳+ w and v′ ⊳+ w and

v 6= v′. Then Γ(w) is in a gap of both Γ(v) and Γ(v′). Since Γ(v) and Γ(v′) do not

interleave and are disjoint, one of them must be in the gap of the other. It follows

that either v ⊳+ v′ or v′⊳+ v , and hence either (v,w) or (v′,w) is not contained in

the transitive reduction ⊳.

(b) < inherits the transitivity and acyclicity directly from ≺.

Condition (I) is satisfied:

The first equivalence holds since Γ(v) and Γ(w) are disjoint and non-interleaving.

v ⊥w

⇐⇒ C(Γ(v))∩C(Γ(w)) = 0

⇐⇒ C(Γ(v))×C(Γ(w)) ⊆ ≺ ∨ C(Γ(w))×C(Γ(v)) ⊆ ≺ (covers are convex)

⇐⇒ Γ(v)× Γ(w) ⊆ ≺ ∨ Γ(w)× Γ(v) ⊆ ≺

⇐⇒ v < w ∨w < v (definition of <)

Condition (II) is satisfied:

v < w ⇒ Γ(v)× Γ(w) ⊆ ≺ (definition of <)

⇒ C(Γ(v))×C(Γ(w)) ⊆ ≺

⇒ ⊳+v ×⊳+w ⊆< (since ∀v′ ∈ ⊳+v.Γ(v′) ⊆ C(Γ(v)))

(c) Condition (III) is satisfied: if a node v has two children w, w′ and index(v,w) = i,

index(v,w′) = j and i < j then Γ(v) has Γ(w) in its i-th gap and Γ(w′) in its j-th

gap. With i < j all elements of Γ(w) are left of all elements of Γ(w), and conse-

quently w < w′.

�

4.3.2 Gap forests in drawings

So far we have defined gap forests for arbitrary sets, only with the restriction that these

sets are disjoint and do not interleave. For a node v of a well-nested drawing the yields

of v ’s children are sets which fulfil these requirements: obviously the yields are disjoint,

and since the drawing is well-nested, they do not interleave.

Definition 4.12 (Gap forest) Let D = (V ;S,≺) be a well-nested drawing and v ∈ V . The

gap forest of v is the gap forest (Sv ;⊳,<) with ∀w ∈ Sv.Γ(w) = C(w). ⊣

25

Chapter 4 Well-nestedness

a b c d e f g h

(a) drawing

a

1 2

c e

1

f

(b) gap forest of node

b

(c) relative positions of the children of b

Figure 4.4: A drawing together with the gap forest of node b

The gap forest of a node v represents the relation among the subtrees that were

spanned from v ’s children: If one child w dominates another child w′ in the gap forest,

then the whole yield ofw′ is located in a gap ofw, and the index of the first edge on the

path from w to w′ indicates which gap it is exactly. If on the other hand w and w′ are

disjoint in the gap forest, the order among them is identical to the order of their yields

in the drawing.

Example Figure 4.4 shows a drawing together with the gap forest of its root node b.

Since the gap forest of b represents the relative positions of the subtrees of b’s children,

these relative positions are visualised in Figure 4.4(c). Node b has four nodes in its gap

forest: a, c, e and f . The outgoing edges from node a indicate that the subtree rooted

at c is contained in the first gap of a and the subtrees rooted at e and f are contained

in the second gap of it. Furthermore, the subtree rooted at f is contained in the first

gap of e.

The gap forests of the other nodes are much simpler: node a has two children, its gap

forest hence consists of two nodes, d and h where d is left of h because C(d)×C(h) =

{(d,h)} ⊆≺. The gap forest of node e only consists of one node, the gap forests of the

leaves of the drawing have empty node sets.

Note that the gap forest for a node v only exists if the yields of v ’s children do not

interleave. This is always the case in well-nested drawings, but drawings which are not

well-nested always have sibling nodes whose yields interleave (see Lemma 4.3). This

implies that a drawing is well-nested if and only if corresponding gap forests exist for

all of its nodes.

26

4.4 Gap sets in well-nested drawings

4.4 Gap sets in well-nested drawings

In Section 3.2, we have shown that a drawing has at most O(n2) gaps, and at most

O(n∗ log(n)) different gaps or gap sets. The worst case example for the O(n2) bound

is well-nested, but the worst case example that we presented for the O(n∗ log(n)) gap

sets (see Figure 3.3) is not. In fact, the question whether we can also find a family of

well-nested drawings with O(n ∗ log(n)) gap sets must be answered in the negative.

If we consider only well-nested drawings, the bound of n ∗ log(n) is no more tight. In

this section, we therefore compute a new tight bound for the number of gap sets in a

well-nested drawing: well-nested drawings have at most O(n) gap sets.

Lemma 4.13 Let D = (V ;S;≺) be a well-nested drawing and |V | = n. Then

|
⋃

v∈V

(gap sets)(v)| ≤ n
2

Proof

|
⋃

v∈V

(gap sets)(v)| =
∑

(v,w)∈S

|(gap sets)(w)− (gap sets)(v)|

=
∑

v∈V

|(
⋃

w∈Sv

(gap sets)(w))− (gap sets)(v)|

≤
∑

v∈V

|Sv|

≤ n

The first equality holds due to Lemma 3.4 and the first ≤ due to the postponed

Lemma 4.14. �

Lemma 4.14 Let D = (V ;S;≺) be a well-nested drawing and v ∈ V . Then

|(
⋃

w∈Sv

(gap sets)(w))− (gap sets)(v)| ≤ |Sv|.
2

Proof Let Sv = w1, . . . ,wm. Since we only count the gap sets ofw1, . . . ,wm that are not

also gaps sets of v itself, it suffices to consider for each wi the gaps sets that contain

elements of the yield of some sibling of wi, or contain the parent v . At most one of all

these gap sets contains v but no elements of the yields of sibling nodes. The number

of gap sets that contain material from sibling nodes can be measured based on the gap

forest of v : since D is well-nested, the gap forest of v exists, and each of these gap

sets corresponds to an edge in this forest. The lemma then follows from the fact that a

forest with m nodes has at most m− 1 edges. �

The bound of O(n) different gaps in a well-nested drawing with n nodes is tight: each

drawing of the family Dk (see Figure 3.2 on page 11) with n nodes is well-nested and has

⌊n
2
⌋ different gaps: the leftmost node alone has already ⌊n

2
⌋ ∈ O(n) gaps.

27

Chapter 4 Well-nestedness

a b x c

a b x c

(a) planar and

well-nested

1 2 3 4

1 2 43

(b) not planar but

well-nested

1 2 3 4 5

1 2 3 4 5

(c) not planar and not

well-nested

Figure 4.5: Examples of planar and not planar drawings. The upper part contains the

drawings and the lower part the same structures in link grammar style in

which the crossing edges are visible.

4.5 Planarity

Well-nestedness is a relaxation of projectivity in the sense that the set of projective

drawings is a proper subset of the set of well-nested drawings. In this section, we will

compare well-nestedness to another relaxation of projectivity, called planarity.

Planarity has been defined by Yli-Jyrä [13]. It originates from the work on link gram-

mar, and differs from the concept of planarity known from graph theory: while in graph

theory, a graph is planar if it can be drawn in a plane without crossing edges, the analy-

sis of a sentence is called planar if the dependency links can be drawn in the half-plane

above the sentence without crossing edges. This notion of planarity can be adopted to

drawings as shown in Figure 4.5.

Making planarity formal Yli-Jyrä defines planarity informally as

Planarity of a dependency tree is the requirement that the links do not cross

when drawn above the sentence

and formally as follows: a drawing (V ;S,≺) is planar if and only if for all nodes a, b, c

in V the following holds: a ≺ b ≺ c ∧ (Sac ∨ Sca) ⇒ S∗ab ∨ S∗ba ∨ S∗cb ∨ S∗bc 3.

The formal definition and the informal one unfortunately do not coincide, as shown by

the examples in Figures 4.5(a) and 4.5(b).

The drawing in Figure 4.5(a) is planar according to the informal definition but the

condition of the formal definition does not hold. In Figure 4.5(b) this condition is satis-

fied for all possible a, b and c, but the drawing is not planar according to the informal

definition.

3Yli-Jyrä uses the notation ≺∗ instead of ≺, a linked b instead of Sab ∨ Sba and a linked
∗ b instead of

S∗ab ∨ S∗ba

28

4.5 Planarity

In order to compare planarity and well-nestedness on a proper formal background,

we need to give a new formal definition of planarity that coincides with the informal

definition of Yli-Jyrä. The following is a straightforward formalisation of the informal

description:

Definition 4.15 A drawing (V ;S,≺) is planar if and only if there do not exist a,b, c, d ∈

V with the following properties: a ≺ b ≺ c ≺ d and Sac ∨ Sca and Sbd∨ Sdb ⊣

If such nodes a, b, c and d exist, the edge between a and c and the one between b

and d must cross. On the other hand, if there are some crossing edges, then the nodes

that are connected by these edges always form witnessing nodes a, b, c and d.

Planarity and well-nestedness Planarity and well-nestedness are two closely related

concepts. Every planar drawing is well-nested, but the reverse statement does not hold.

The similarity between both properties becomes apparent in the following lemma, which

characterises planarity in the same way as well-nestedness is defined (see Definition 4.2).

Lemma 4.16 A drawing D = (V ;S,≺) is planar if and only if there do not exist two sets

V1, V2 ⊂ V such that

(a) V1 ∩ V2 = 0

(b) ∀v,w ∈ V1.(v,w) ∈ (S|V1 ∪ S
−1|V1)

∗ and ∀v,w ∈ V2.(v,w) ∈ (S|V2 ∪ S
−1|V2)

∗

(c) V1 and V2 interleave (with respect to ≺)

We call sets V1 and V2 that satisfy conditions (a) and (b) disjoint connected components.

If they also satisfy (c), they are called interleaving disjoint connected components. 2

Proof Let a,b, c, d be nodes of D as specified in Definition 4.15. Then V1 = {a, c} and

V2 = {b,d} are disjoint connected components and interleave.

To proof the backward direction, consider two arbitrary disjoint interleaving con-

nected components of a drawing. These interleaving connected components have at

least one pair of crossing edges. The four nodes at the endpoints of those two cross-

ing edges then fulfil the properties of the nodes a,b, c, d stated in Definition 4.15. The

drawing is thus not planar. �

In contrast to well-nestedness, planarity does not prohibit disjoint interleaving sub-

trees, but disjoint interleaving connected components in the tree structure. Since each

subtree is also a connected component, it is not weaker than well-nestedness. In other

words: each planar drawing is well-nested.

Planarity is even stricter than well-nestedness, because two disjoint connected com-

ponents V1, V2 cannot always be extended to two disjoint subtrees: if one node from V1
dominates a node in V2, each tree containing V1 also contains nodes of V2, and the sub-

trees are no more disjoint. An example for this case is shown in Figure 4.5(b). V1 = {1,3}

29

Chapter 4 Well-nestedness

and V2 = {2,4} are interleaving connected components, but they cannot be extended to

disjoint interleaving subtrees: V1 can only be extended to the subtree with node set

{1,2,3,4}, which is no more disjoint to {1,2}.

Multi-planarity Multi-planarity is another relaxation of planarity that is proposed by

Yli-Jyrä [13]: a graph is m-planar, if its edge set can be partitioned into m parts in such

a way that each of the m subgraphs is planar. Each drawing with n nodes has n − 1

edges and is consequently at least (n− 1)-planar. If we want to show that a drawing is

not m-planar for some m < n − 1, we have to consider each partition of the edge set

into m parts, and have to show that in each of these partitions at least one subgraph is

not planar. Therefore, determining the minimal m for a given drawing to be m-planar

is an optimization problem, and finding a solution to this problem may be quite costly.

In contrast to that, well-nestedness is purely structurally motivated, and easy to check.

We can conclude that well-nestedness is a relaxation of planarity in the sense that the

set of well-nested drawings is a proper superset of the set of planar drawings. Multi-

planarity is another relaxation of planarity but of a quite different nature.

30

Chapter 5

TAG-drawings

In this chapter, we define a certain class of drawings called tag drawings. The key idea

here is that each drawing of that class corresponds to a derivation in a lexicalised Tree

Adjoining Grammar (tag) [6]. We first give an overview on tag. Then we explain how

the correspondence between tag derivations and drawings looks like, and characterise

the class of tag drawings as the class of well-nested drawings with a gap degree of at

most one. The major relevance of this result is that we provide a purely structural char-

acterisation of ’tag-ness’, which is completely independent of the grammar formalism

itself. Given the analysis of a sentence in form of a drawing, we can decide whether

this analysis is describable by some tag grammar without looking at the operational

machinery that underlies tag derivations.

The results of this chapter have been published as joint work with Manuel Bodirsky

and Marco Kuhlmann [2].

5.1 Tree Adjoining Grammar

Tree Adjoining Grammar is a grammar formalism whose derivations manipulate tree

structures. This section gives a brief overview on the formalism.

The building blocks of a tag grammar are called elementary trees; they are ordered

trees in which each node has one of three types: anchor (or terminal node), non-terminal

node, or foot node. Anchors and foot nodes must be leaves; non-terminal nodes may be

either leaves or inner nodes. As a further restriction, each elementary tree can have one

foot node at most. Foot nodes are usually represented with a⋆-symbol. Elementary trees

without a foot node are called initial trees; non-initial trees are called auxiliary trees. A

tag grammar is strictly lexicalised, if each of its elementary trees contains exactly one

anchor.

Example Figure 5.2(a) shows some elementary trees. The nodes ‘what’, ‘does’, ‘Dan’ and

‘like’ are anchors. They are all leaves, and, since the grammar is strictly lexicalised, each

tree has exactly one anchor. The first three trees are initial trees, the last one is an

auxiliary tree because it has a foot node. ⊣

Trees in tag can be combined using two operations (see Figure 5.1): Substitution com-

bines a tree structure T1 with an initial tree T2 by identifying a non-terminal leaf node π

of T1 with the root node of T2 (see Figure 5.1(a)). Adjunction identifies an inner node π

31

Chapter 5 TAG-drawings

π

T1

T2

(a) substitution

π

T1

T2

(b) adjunction

Figure 5.1: The combining operations for tag elementary trees

S

VBSE

does

VBSE

NP1 ⋆ NP2 like

NP1

what

NP2

Dan

(a) elementary trees

does

like

what Dan

VBSE

NP1

NP2

(b) derivation tree

NP1 VBSE NP2 like

what does Dan

VBSE

S

(c) derived tree

Figure 5.2: An example for a tag derivation

32

5.1 Tree Adjoining Grammar

of a tree T1 with the root node of an auxiliary tree T2; the subtree of T1 rooted at π

is excised from T1 and inserted below the foot node of T2 (see Figure 5.1(b)). Combing

operations are disallowed at root and foot nodes.

tag derivation trees record information about how tree structures were combined

during a derivation. Formally, they can be seen as unordered trees whose nodes are

labelled with elementary trees, and whose edges are labelled with the nodes at which

the combining operations took place. If v is a node in a derivation tree, we write ℓ(v) for

the label of v (that is, the corresponding elementary tree). When we visualise derivation

trees, we usually only use the anchor of an elementary tree as the node label, not the

whole tree. In order to indicate the difference, we use a Sans serif font for the nodes

of the derivation tree (for example ‘like’ represents the node of the derivation tree and

‘like’ the anchor of the corresponding elementary tree).

In the derivation tree, an edge (v1, v2) with label π signifies that the elementary trees

ℓ(v1) and ℓ(v2) where combined at node π . If ℓ(v2) is an initial tree, this combining

operation is a substitution, otherwise it is an adjunction.

Example A sample derivation tree is shown in Figure 5.2(b). The edge between the nodes

‘does’ and ‘like’ indicates that the auxiliary tree of ‘like’ is adjoined into the initial tree

of ‘does’ at the node VBSE. The remaining two edges represent substitutions, since the

elementary tree of ‘what’ and ‘Dan’ are initial trees. ⊣

tag derived trees represent results of derivations; we write drv(D) for the derived

tree corresponding to a derivation tree D. Derived trees are ordered trees made up

from the accumulated material of the elementary trees participating in the derivation.

In particular, each tag derivation induces a mapping ρ that maps each node v in D to

the root node of ℓ(v) in drv(D). In strictly lexicalised tags, a derivation also induces a

mapping α that maps each node v in D to the anchor of ℓ(v) in drv(D).

For nodes v in derivation trees D of strictly lexicalised tags we define

derived(v) := {α(u) | v ⊳∗ u in D } and

yield(v) := {π | π is an anchor and ρ(v) ⊳∗ π in drv(D) } .

The set derived(v) contains those anchors in drv(D) that are contributed by the partial

derivation starting at ℓ(v); yield(v) contains those anchors that are dominated by the

root node of ℓ(v).

Example Figure 5.2(c) shows the tag derived tree that is obtained when the elementary

trees of Figure 5.2(a) are combined according to the derivation tree of Figure 5.2(b).

For the node ‘like’ of this derivation tree derivation, we have

α(like) = like

ρ(like) = VBSE

derived(like) = {what,Dan, like}

yield(like) = derived(like)∪ {does} .

33

Chapter 5 TAG-drawings

what does Dan like

Figure 5.3: The tag drawing that corresponds to the tag derivation shown in Figure 5.2

⊣

5.2 The correspondence between tag derivations and drawings

In this section, we show how a derivation of a strictly lexicalised tag grammar can be

interpreted as a drawing.

In a tag derivation, the derivation tree represents the dependencies among the par-

ticipating elementary trees. Since in a lexicalised tag, each elementary tree has exactly

one anchor, a derivation tree also represents the dependencies among these anchors,

that is among the words of the sentence that is derived. If we complement this tree with

the word order of the derived sentence, we obtain a drawing.

Definition 5.1 (tag drawing) LetD = (V ;⊳) be a derivation tree for a strictly lexicalised

tag. A drawing D = (V ′;S,≺) is the tag drawing corresponding to D if and only if

• V ′ = {α(v) | v ∈ V }

• S = { (α(v),α(w)) | (v,w) ∈ ⊳ }

• ≺ is the order of the leaves of drv(D) ⊣

The order is defined as the order of the leaves in the derived tree since this represents

the word order of the derived sentence in tag derivations.

Example Figure 5.3 shows the tag drawing of the tag derivation shown in Figure 5.2.

The tree structure of the drawing corresponds to the tree structure of the derivation

tree shown in Figure 5.2(b), while the node order is the leaf order of the derived tree

shown in Figure 5.2(c). ⊣

At this point, the question arises whether each drawing is a tag drawing. This ques-

tion must be answered to the negative. The class of tag drawings is a proper subclass

of the class of all drawings, as we will show in the subsequent sections.

34

5.3 tag drawings have a gap degree of at most one

5.3 tag drawings have a gap degree of at most one

Gaps in tag drawings correspond to adjunctions in tag derivations: during an adjunc-

tion, disjoint material – namely the material that is inserted at the foot node – is placed

in between the nodes of a subtree and causes a gap. Since each elementary tree has one

foot node at most, the gap degree of tag drawings is limited to one.

Example Consider the derivation shown in Figure 5.2. The elementary tree of ‘like’ is

adjoined into the elementary tree of ‘does’, and during this operation, the anchor ‘does’

is placed in between the dependents of ‘like’ (NP1 and NP2), although it does not depend

on it. Consequently, in the induced drawing (see Figure 5.3), the node ‘does’ is a gap in

the subtree rooted at ‘like’, and, furthermore, it is the only gap of it, since the elementary

tree of ‘like’ has only the one foot node where ‘does’ is placed during the adjunction. ⊣

We now make this intuition precise.

Lemma 5.2 Let D be a tag derivation tree and let v be a node in D. Then

(a) derived(v) ⊆ yield(v)

(b) yield(v)− derived(v) is convex

(c) derived(v) contains at most one gap. 2

Proof (a) Each a ∈ derived(v) is either the anchor of ℓ(v) or has been derived from

ℓ(v) in one or more steps. In both cases a is dominated by the root node of ℓ(v)

in the derived tree, since during adjunction or substitution operations, the root of

the tree in which other material is adjoined or substituted remains the topmost

node. Thus a ∈ yield(v).

(b) Define G := yield(v)−derived(v) and let al and ar be the leftmost and rightmost

anchor in G, respectively (assuming that G is non-empty). The only way by which

an anchor can have entered G is by an adjunction of ℓ(v) into some other ele-

mentary tree (see Figure 5.1(b)). Now assume that G was not convex, i.e. there is

an anchor a ∉ G such that al ≺ a ≺ ar . Since yield(v) is convex, a must be an

element of derived(v). Since both al and ar are dominated by the foot node of

ℓ(v), a is dominated by that node as well. This is a contradiction: neither can an

anchor be dominated by the foot node of its own elementary tree (the foot node

always is a leaf), nor can the foot node be the starting node of a sub-derivation

(substitution and adjunction are disallowed at foot nodes). Thus, G is convex.

(c) The third item follows from the preceding two and from the observation that

yield(v) is convex. �

Corollary 5.3 With Lemma 5.2 (c) each subtree of a tag drawing has at most one gap.

Consequently tag drawings have a gap degree of at most one. 2

35

Chapter 5 TAG-drawings

l1 l2 r1 r2

ρ(v2)

ρ(v1)

∈ yield(v1)− derived(v1)

∈ derived(v1)

Figure 5.4: The tag derived tree in the proof of Lemma 5.4

5.4 tag drawings are well-nested

The gap restriction alone does not yet characterise the class of tag drawings exactly.

A second important restriction is that each tag drawing is well-nested. The cause of

this restriction has its origin again in the fact that gaps originate from adjunctions. In a

drawing that is not well-nested, two subtrees exist so that a part of the first is contained

in a gap of the second and vice versa. On the tag side, this implies that each of the two

trees must be adjoined into the other one. This is not possible, since the derivation tree

is acyclic.

Lemma 5.4 tag drawings are well-nested. 2

Proof Let D be a derivation tree. Imagine the tag drawing for D, and assume that it

contains two interleaving subtrees T1 and T2 with witnessing nodes l1 ≺ l2 ≺ r1 ≺ r2.

We will show that this leads to a contradiction. Let v1 and v2 be the nodes of the

derivation tree whose anchors α(v1) and α(v2) are the roots of T1 and T2, respectively.

The witnessing nodes define two overlapping intervals in the leaves of drv(D): [l1, r1]

and [l2, r2]. Let π be an anchor present in both of these intervals. Since π is dominated

in drv(D) by both ρ(v1) and ρ(v2), either ρ(v1) also dominates ρ(v2), or vice versa.

We assume that ρ(v1) dominates ρ(v2), the other case is symmetric. The situation is

then as shown in Figure 5.4: yield(v1) ⊇ yield(v2), l1, r1 ∈ derived(v1) and l2, r2 ∈

yield(v1)− derived(v1) (l2 and r2 are not in derived(v1) since they are derived from v2
which is disjoint to v1 in D). With l2 ≺ r1 ≺ r2 it follows that yield(v1)− derived(v1) is

not convex. This contradicts Lemma 5.2 (b). �

36

5.5 Constructing a tag grammar for a drawing

5.5 Constructing a tag grammar for a drawing

The final step in our characterisation of tag drawings is to show that each well-nested

drawing with a gap degree of at most one is a tag drawing. We give a constructive proof

in form of an algorithm that takes a well-nested drawing with gap degree of at most

one as input, and returns a tag grammar whose only derivation corresponds to that

drawing.

A tag grammar consists of a set of elementary trees. The task of the algorithm is

hence to generate for each node of the drawing an elementary tree so that their combi-

nation (according to the derivation tree, which equals the tree structure of the drawing)

results in a derivation that corresponds to the drawing. These elementary trees are

based on an extended form of the gap forests of the nodes.

5.5.1 Extending the gap forest

The gap forest of a node u as presented in Section 4.3 describes the relation among the

yields of the children of u. If one of these children – call it w – dominates another child

w′ in the gap forest, the yield ofw′ is contained in a gap ofw. Hence, the subtrees below

the outgoing edges of w in the gap forest represent the material within w’s gaps that

is contributed by its siblings. However, there might also be other material within w’s

gaps; for example, w’s parent could be a hole in C(w). We will now define an extended

form of gap forests, in which all ‘being in the gap’ relations are represented, not only

the ones among sibling nodes. For this purpose, we add further nodes to the gap forest

of a node u that represent the node u itself and the gaps of u.

Definition 5.5 (Extended gap forest) Let D = (V ;S,≺) be a well-nested drawing, and

u ∈ V be a node with n gaps. Then the extended gap forest of u is the gap forest

(Su∪ {self , ⋆1, . . . , ⋆n};⊳,<) with

Γ(x) :=

{u} if x = self

Gi(u) if x = ⋆i for some i ∈ [1, n]

C(x) otherwise

Compared to the original definition of a gap forest, we have only added a few nodes:

the node self represents the singleton set {u}, and the ⋆-nodes represent the gaps of

u. As before, the sets are disjoint and do not interleave (the new sets are all convex

and hence cannot interleave with any disjoint sets). In fact, the new extension only adds

some additional leaves to the forest structure: since the new sets are all convex, they do

not have any gaps, and accordingly no dependents in the extended gap forest.

Example Figure 5.5 shows a drawing together with the extended gap forests of two of

its nodes. The extended gap forest of node 3 consists of the children of 3 (that is 1, 4

and 5), the self node, and one ⋆-node, since 3 has one gap. The outgoing edges from

37

Chapter 5 TAG-drawings

1 2 3 4 5 6 7

(a) well-nested drawing

1

self 5 ⋆1

4

1
2

2

(b) extended gap forest

of node 3

2 ⋆1 self ⋆2 7

(c) extended gap forest of node 4

Figure 5.5: A well-nested drawing together with the extended gap forests of the nodes 3

and 4

node 4 indicate that 4 has two gaps: its parent 3 makes up the first gap, and the second

gap consists of the yield of 5 and the gap of node 3, where the yield of 5 is left of the

gap of 3. The yield of 1 is not in the gap of any of its sibling nodes. It is located left of

all the other sets, and builds a second root in the extended gap forest.

All elements of the extended gap forest of node 4 have no gaps at all. Consequently

all nodes are leaves (and simultaneously roots). They are ordered from left to right in

the way their associated sets are ordered in the drawing. ⊣

5.5.2 The algorithm

We want to construct tag elementary trees that correspond to the nodes of a well-nested

drawing with gap degree of at most one. These trees must be such that we can interpret

the tree structure of the drawing as a derivation tree, and compose the elementary trees

of the different nodes in a way that the order of the leaves in the derived tree is identical

to the order of the nodes in the drawing. This is done by Algorithm 1.

In each iteration, the algorithm generates one elementary tree. First, the extended gap

forest of the respective node v is computed (line 3), and its nodes are renamed (lines

4–8): the anchor self is replaced by the node v itself (line 4) to ensure that the leaves

of the derived tree equal the nodes of the drawing, and the nodes for the children of

v are replaced by corresponding nonterminals (lines 6–8). These nonterminals offer the

adjunction and substitution sites for the elementary trees of the children of v . The non-

terminals for the different nodes are generated via a function NT , which is a bijection

between the nodes of the drawing and a set of nonterminal symbols. The function NT

38

5.5 Constructing a tag grammar for a drawing

Algorithm 1 tag-grammar(V , S,≺)

1: Lexicon := 0

2: for all v ∈ V do

3: F := extended gap forest(v)

4: rename self by v in F

5: rename ⋆1 by ⋆ in F

6: for all w ∈ Sv do

7: rename w by NT(w) in F

8: end for

9: T := tree with nodes and edges from F and root node NT(v)

10: Lexicon := Lexicon∪ {T}

11: end for

is arbitrary, with the only restriction that the set of nonterminal symbols must be dis-

joint to the node set of the drawing: the nodes of the drawing equal the anchors of the

elementary trees, and these must be distinguishable from the nonterminal nodes.

After the renaming steps, the forests are transformed into trees by simply adding

an additional node that dominates all the roots of the forest (line 9). This root of the

elementary tree is labelled with the nonterminal of v , such that the elementary tree can

be adjoined or substituted into the elementary tree of the parent of v . If v is the root

of the drawing, then NT(v) is the start symbol of the grammar.

The algorithm shows that the self node and ⋆-nodes of extended gap forests corre-

spond to the anchors and the foot nodes of elementary trees, respectively. To point out

this similarity, in the following we will use the terms anchor and foot node also for ex-

tended gap forests: the self node is the anchor of an extended gap forest; the ⋆-nodes

are the foot nodes.

Example Figure 5.6(a) shows a drawing D, and Figure 5.6(c) shows the corresponding

elementary trees generated by the algorithm. Since 2 and 4 are children of 3 in D, their

elementary trees must be adjoined or substituted into the elementary tree of 3. Con-

sequently, the elementary tree of 3 contains nodes NT(2) and NT(4) where these op-

erations can take place. If we compose all elementary trees, we obtain the derived tree

shown in Figure 5.6(b), whose leaf order equals the order of D.

If we compare the elementary trees in Figure 5.6(c) to the extended gap forests they

are based on (see Figure 5.6(d)), we observe that always a new root is added and the

nodes are renamed. In the elementary tree of node 4, for example, the new root is

NT(4), the node 2 is renamed as NT(2) and self as 4. The ⋆i nodes are replaced by foot

nodes, ⋆ and since all tag drawings have a gap degree of at most one, each elementary

tree has at most one foot node.

As a second example, we can again consider the drawing for the sentence ‘What does

39

Chapter 5 TAG-drawings

1 2 3 4

(a) drawing

NT(3)

NT(4)

NT(1) NT(4) 4

1 NT(2) 3

2

(b) derived tree

NT(1)

1

NT(2)

2

NT(3)

NT(4)

NT(2) 3

NT(4)

NT(1) ⋆ 4

(c) elementary trees

self self 4

2 self

1 ⋆1 self

(d) extended gap forests

Figure 5.6: A drawing D together with the corresponding elementary trees generated by

a call of tag-grammar(D), the extended gap forests they are based on, and

the derived tree that is obtained by combining the elementary trees.

40

5.5 Constructing a tag grammar for a drawing

Dan like’ (see Figure 5.3). The corresponding elementary trees shown in Figure 5.2(a) are

obtained with a function NT such that

NT(what) = NP1

NT(does) = S

NT(Dan) = NP2

NT(like) = VBSE

⊣

5.5.3 Correctness

We have to give arguments for two different aspects of the algorithm: first, the produced

structures must be valid elementary trees, and second, they must be combinable such

that the resulting leaf order equals the order of the drawing.

The first aspect is easy: we must only ensure that anchor and foot-node are leaves,

and that there is exactly one anchor and at most one foot node. All these properties are

inherited from the self and the ⋆1 nodes in the extended gap forest.

If we combine the trees, we obtain the correct leaf order because of the construction

of the extended gap forests. The nodes in the gap forest are ordered according to the

sets they are associated with by Γ (as defined in Definition 5.5). For each node in the ele-

mentary tree, this set consists of the anchors that are contributed by the subderivation

starting at this node. Consequently, one node NT(v) dominates another node NT(w) in

an elementary tree, if the leaves contributed by NT(w) must be placed in between the

leaves contributed by NT(v). On the other hand, NT(v) and NT(w) are placed side by

side if the leaves contributed by NT(v) and the leaves contributed by NT(w) are located

side by side in the derived tree.

The correctness of the algorithm establishes the following:

Lemma 5.6 Each well-nested drawing with a gap degree of at most one is a tag draw-

ing. 2

Corollary 5.3 and Lemmata 5.4 and 5.6 together imply:

Theorem 5.7 A drawing is a tag drawing if and only if it is well-nested and has a gap

degree of at most one. 2

In this section we have seen that strictly lexicalised tag can be interpreted as a for-

malism that describes sets of drawings. Furthermore, we have shown that the class of

tag drawings is the class of well-nested drawings with a gap degree of at most one. In

the next chapter we develop a description language for well-nested drawings with an

arbitrary gap degree. We also indicate how this description language can be interpreted

as an extension of tag.

41

Chapter 5 TAG-drawings

42

Chapter 6

A description language for well-nested drawings

In this chapter, we present a description language for well-nested drawings. We will start

with analysing the grammar formalisms we have discussed in the previous chapters.

6.1 Locality

In the course of this thesis, we have already discussed some grammar formalisms that

are suitable to describe sets of drawings. In Section 3.4, we have shown how lexicalised

Context-Free Grammars (cfgs) induce drawings, and in Chapter 5, we have explained

the correspondence between lexicalised tag derivations and drawings. In this section,

we shall analyse how both formalisms can describe drawings locally.

There is an important similarity between cfg and tag: the descriptions within these

formalisms are local in a sense that a description of a drawing is split up into several

small units. Each of these units describes one local fragment of a drawing. These units

are usually called lexicon entries. In a cfg, lexicon entries are production rules, in tag,

lexicon entries are elementary trees. Each lexicon entry describes a part of the tree

structure, and a part of the order of the drawing. The tree structure is usually described

with the concept of valencies. The local description of the order differs in tag and cfg.

This difference is a reason for the higher expressivity of tag.

Local description of the tree structure The tree structure is described by giving each

node v a type, and by specifying the types of its children. The types of the children of

v are also called the valencies of v . The type of a node v can also be considered as

an edge label for the incoming edge of v . Each lexicon entry then describes a fragment

of the tree structure like the one shown in Figure 6.1(a): one node with its type and its

valencies. Two lexicon entries can be combined if the type of the one is a valency of the

other.

Tree structures are described similarly in lexicalised cfg and lexicalised tag. Both

context-free production rules and tag elementary trees consist of nonterminals and

one terminal v . One dedicated nonterminal represents the type of v , the other nonter-

minals represent the valencies of v . In the context-free production rules, the left-hand

side nonterminal represents the type of v , and the right-hand side nonterminals rep-

resent the valencies of it. In a tag elementary tree, the root represents the type of v ,

and the other nonterminals are the valencies. Examples for such production rules and

43

Chapter 6 A description language for well-nested drawings

A

a

B C

(a) local part of

the tree structure

A → aBC

A → BaC

(b) context-free rules

A

a B C

A

B C

a

(c) tag elementary trees

Figure 6.1: A local part of the tree structure of a drawing and several context-free rules

and tag elementary trees that describe it

elementary trees are given in Figure 6.1(b) and 6.1(c), respectively. They all describe the

tree fragment shown in Figure 6.1(a), but specify different local orders for it.

Local description of the order In cfg rules, the local order is described by the order

among the terminal and the nonterminals on the right-hand side of the rule. In the

first rule in Figure 6.1(b), for example, the node a is located before the two subtrees

represented by B and C ; in the second rule, a is placed in between them.

In tag elementary trees, the order is encoded in a forest structure that underlies the

elementary tree: if we leave out the root of the elementary tree (which specifies the type

of v and is not relevant for the order), we obtain a forest that can be interpreted as an

extended gap forest (according to Definition 5.5). The anchor represents the self -node

of the extended gap forest, and the nonterminals represent the yields of the children.

Their relative position within the forest represents their local order. While in context-

free production rules all valencies have to be ordered from left to right, in the gap

forest there are two alternatives: either two valencies are ordered side by side, or one

is dominated by the other. In the first case, the subtrees represented by the different

valencies are ordered side by side, in the second case, one is placed within a gap of the

other.

Context-free production rules can also be interpreted as a restricted form of tag ele-

mentary trees with a different notation: the root of the tree is written on the left-hand

side of the rule, the gap forest dominated by it on the right-hand side. As a restriction,

the gap forest may only consist of roots, that is all nodes must be ordered from left to

right. For example, the first production rule shown in Figure 6.1(b) specifies the same

information as the first elementary tree shown in Figure 6.1(c).

Limitations of cfg and tag So far we have seen that cfg and tag use the same mech-

anism to specify the tree structure of a drawing, but tag has an extended method to

specify the local order. This has also consequences for the expressivity of both for-

malisms: whereas cfg only describes projective drawings, tag is able to describe well-

44

6.2 Structural characterisation of extended gap forests

nested drawings with a gap degree of at most one. The gap restriction is due to the fact

that the gap forest underlying a tag elementary tree may have one foot node at most.

In the remainder of this chapter, we will investigate how this expressivity can be fur-

ther extended. The idea is to eliminate the gap restriction by allowing arbitrary gap

forests as a specification of the order within one lexicon entry. There are several ques-

tions arising within that context:

(a) Does the combination of the local orders described by the gap forests always

result in a total order?

(b) Can the local descriptions within different lexicon entries always be combined, or

is it possible that they contradict each other?

Since these questions are independent of the way how the tree structure of the drawing

is described, we assume that the tree structure is already given, and at each of the nodes

one extended gap forest is annotated. One can assume that the tree structure is built out

of one lexicon entry for each node, containing the type and valencies of this node, but

we abstract away this detail in the next sections, since our questions are only concerned

with the local description of the order.

In the next section, we shall analyse the structural properties of the gap forests of the

different nodes of a drawing, and shall ask whether they are completely independent of

each other or not. This will answer question (b). Then we will present an algorithm that

constructs a corresponding drawing for a given tree structure with annotated extended

gap forests for all nodes. This will answer question (a).

6.2 Structural characterisation of extended gap forests

Not every indexed ordered forest is a valid gap forest. In this section we analyse the

structure of gap forests and hence characterise which structure indexed ordered forests

must have if they describe the local order within a lexicon entry.

6.2.1 The structure of a single extended gap forest

Lemma 6.1 Let D = (V ;S,≺) be a drawing and v ∈ V . Then the extended gap forest

(W ;⊳,<) of v has the following properties:

(a) The node set contains an anchor and possibly foot nodes:

W = Sv ∪ {self , ⋆1, . . . , ⋆k} for some k ∈ IN

(b) The anchor and the foot nodes are leaves: ⊳self = ⊳⋆1 = · · ·⊳⋆k = 0

(c) The foot nodes are ordered according to their index: ∀i, j ∈ [1, k].i < j ⇒ ⋆i < ⋆j

(d) If a node has an i-th gap (for i > 1), it has also an (i− 1)-th gap:

∀w,w′ ∈ W.w ⊳iw′ ∧ i > 1⇒ ∃w′′.w ⊳i−1w′′

45

Chapter 6 A description language for well-nested drawings

(e) A foot node is never the leftmost or rightmost node in the gap forest:

∄i ∈ [1, k].(∀w ∈ W − {⋆i}.w < ⋆i)∨ (∀w ∈ W − {⋆i}.⋆i < w)

(f) Two gaps are never next to each other:

∀⋆i, ⋆j ∈ W with i 6= j.

∃w ∈ W,R ∈ {<,>,⊳1, . . . , ⊳k, ⊲1, . . . , ⊲k}.wR ⋆i ∧¬wR⋆j 2

Most of the properties are obvious, only the last two need some explanations. Property

(e) holds since a foot node represents a gap of v , and a gap is always surrounded by

material of the yield of v . This material is also represented by nodes in the extended

gap forest. Property (f) formalises that two gaps must never be next to each other: there

must always be some material between two gaps. This material must belong to some

node in the extended gap forest, and this node has a different relation to ⋆i than to ⋆j .

6.2.2 Structural dependencies among forests of different nodes

The extended gap forests of the nodes of a drawing are not completely independent

of each other. Not every combination of gap forests for the different nodes describes

a valid total order. This is a crucial point for our description language: if we want to

combine two lexicon entries, we do not only have to take care whether the type of

the one is a valency of the other, but in addition, we have to take care that the two

corresponding gap forests match. Fortunately, the dependencies among the different

gap forests are quite limited. The gap forest of a node v matches the gap forest of

its child w, if the number of foot nodes in the gap forest of w equals the number of

different outgoing edge indices of the node w in the gap forest of v .

Lemma 6.2 Let (V ;S,≺) be a drawing, v,w ∈ V with Svw and let (Wv ;⊳v , <v) and

(Ww ;⊳w , <w) be the extended gap forests of v and w respectively. Then

⊳vi w 6= 0 ⇐⇒ ⋆i ∈ W
w

Proof ⊳vi w 6= 0 ⇐⇒ w has an i-th gap ⇐⇒ ⋆i ∈ Ww
�

This dependency exists only because the extended gap forests of both the parent and

the child node depend on the gap degree of the child. For a grammar formalism, this

means that a lexicon entry for some node v does not only require a certain type for its

children, but also a certain gap degree. Considering the gap degree as a part of the type

is an elegant way to take care of this requirement.

6.3 Constructing the drawing for a description

In the previous section, we have identified necessary properties for the extended gap

forests of a drawing. Now we will show that they are also sufficient in the following

46

6.3 Constructing the drawing for a description

sense: a description in form of a tree with annotated indexed ordered forests for all

nodes has a corresponding drawing if the indexed ordered forests have the properties

specified in the Lemmata 6.1 and 6.2. We will show this with an algorithm that takes

such a description as input and generates the (only) corresponding drawing. Since each

well-nested drawing has gap forests for all nodes, the algorithm also implies that each

well-nested drawing is describable in such a setup.

The algorithm constructs the drawing bottom-up. For each node v , it constructs an

intermediate drawing that represents the part of the final drawing which is dominated

by v . Furthermore, the order of this intermediate drawing is extended with some ad-

ditional placeholders 1, . . . , k that represent the gaps of v . At these placeholders the

parent of v inserts nodes during the construction of its drawing.

The drawing for v is constructed as follows. Let Sv = {w1, . . . ,wn}, and let,for each

i ∈ {1, . . . , n}, (Vi;Si,≺i) be the drawing of wi, and ≺′i the extension of the order such

that ≺i ∪ ≺
′
i is a total order among the nodes of the drawing and the placeholders. Then

the drawing for v is (V ;S,≺) with

V = {v} ∪
⋃

i∈[1,n]

Vi

S = { (v,wi) | i ∈ 1, . . . , n } ∪
⋃

i∈[1,n]

Si

The order ≺ ∪ ≺′ is defined by a left-to-right depth-first traversal over the extended gap

forest of v . During this traversal, the nodes and the placeholders are enumerated from

left to right. Each node w of the extended gap forest contributes the nodes Con(w, j)

at its j-th visit, where Con(w, j) is defined as follows:

Con(self ,1) := {v}

Con(⋆i,1) := { i}

Con(wi, j) :=

{u ∈ Vi | u ≺
′
i 1 } if j = 1

{u ∈ Vi | j−1 ≺
′
i u ≺

′
i j } if 1 < j < (gap degree)(wi)

{u ∈ Vi | j−1 ≺
′
i u } if j = (gap degree)(wi)

The anchor contributes v , and the foot nodes contribute the new placeholders. Inner

nodes always represent a child wi of v . They contribute the nodes of the drawing of

this child step by step. At the first visit, the nodes before the first placeholder are

contributed; at the second visit, the nodes between the first and the second placeholder,

and so on.

If an inner node of the extended gap forest has several outgoing edges with the same

index, the descent to them counts as one visit. In other words: The j-th visit of an inner

node w is between descending to the outgoing edges with index j − 1 and descending

to the edges with index j.

47

Chapter 6 A description language for well-nested drawings

w1

1

w2

1 2

self ⋆1

(a) extended gap

forest of v

w1 2 1 8 3 1 w2 2 7

(b) drawings D1, D2 for the children w1, w2 respectively

w1 2 3 v w2 1 7 8

(c) resulting drawing for v

Figure 6.2: A sample iteration of the algorithm: the drawing for node v is constructed

from the drawings for v ’s children and its extended gap forest

Lemma 6.2 guarantees that the number of placeholders for each inner node in the

extended gap forest matches up exactly with the number of different outgoing edge

indices. Lemma 6.1 ensures the rest of the necessary details, for example, that anchor

and foot nodes are leaves, and that there are always nodes between two placeholders.

Example An example iteration of the algorithm is shown in Figure 6.2. The drawing for

node v is constructed out of the drawings for v ’s children and its extended gap forest.

The corresponding traversal over the extended gap forest visits the nodes as follows:

current node contributed part of order

w1 Con(w1,1) = {w1,2}

w2 Con(w2,1) = {3}

self Con(self ,1) = {v}

w2 Con(w2,2) = {w2}

⋆1 Con(⋆1,1) = { 1}

w2 Con(w2,3) = {7})

w1 Con(w1,2) = {8})

⊣

6.4 The description language

In the previous sections we have shown that each well-nested drawing is uniquely de-

scribable as a tree structure with an extended gap forest for each node. The description

language we are going to describe now hence describes such a structure.

48

6.4 The description language

(a,A,

B

1 1

self C

) (c, C, self)

(b, B, self ⋆1 D) (d,D, self)

(a) lexicon entries

b a c d

(b) described

drawing

Figure 6.3: Some lexicon entries and a drawing that is described by their combination.

An expression of the language simply consists of a set of lexicon entries.

Definition 6.3 (Lexicon entry) Let V be a set of nodes and T a set of types. Then a

lexicon entry is a tuple (v, t,F). We call v ∈ V the node, and t ∈ T the type of the lexicon

entry. The structure F is an indexed ordered forest with node set {self , ⋆1, . . . , ⋆g}∪val,

where the elements of val∈ P(T) are called the valencies of v , and g ∈ IN the gap degree

of v . Furthermore, F must satisfy the conditions of Lemma 6.1. ⊣

The forest F represents the gap forest of v , but since within the lexicon entry, the

children of v are not known, their respective nodes in F are represented by the valencies

of v .

A drawing D is described by an expression of the description language, if for each

node v of D a lexicon entry can be found such that

• the valencies of v are the types of the children of v ;

• the gap forest of v equals the forest F of its lexicon entry, modulo the fact that the

latter contains the types of the children of v rather than the children themselves.

In order to enumerate all drawings described by a set of lexicon entries, one has to

enumerate all possibilities to combine these entries. In oder to decide whether a node

v described by a lexicon entry l1 can be the parent of a node w with lexicon entry

l2, it suffices to check whether the type of w is within the (open) valencies of v , and

whether in the indexed ordered forest of v , the type of w has outgoing edges with

indices 1, . . . , gw , where gw is the gap degree of w. The second condition ensures that

the property stated in Lemma 6.2 is satisfied. This guarantees that after generating a

complete tree structure, a corresponding drawing exists. This drawing can be computed

with the algorithm of Section 6.3.

Example Some sample lexicon entries are shown in Figure 6.3(a). The lexicon entries

can be combined such that the drawing in Figure 6.3(b) is obtained. The tree structure

results from the valency information. For example, the lexicon entry for node a contains

the valency information that a has two children with respective types B and C . The order

of the drawing is computed according to the algorithm of Section 6.3. ⊣

49

Chapter 6 A description language for well-nested drawings

6.5 An extension of tag

The description language which we presented in the previous section can also be inter-

preted as an extension of tag. This extension can describe well-nested drawings with

arbitrary gap degree. In this section we briefly sketch this extension.

The information contained in a lexicon entry of a node v can be represented as an

elementary tree: the type t of v is the root node, the rest of the tree consists of the

extended gap forest F. The anchor self is replaced by the node v that represents the

anchor of the elementary tree. A sample elementary tree and its corresponding lexicon

entry are shown in Figure 6.5(a) and (b).

In contrast to a tag elementary tree, such an extended elementary trees now may

have an arbitrary number of foot nodes. Furthermore, all edges except the outgoing

edges of the root are indexed, since they originate from an indexed ordered forest. In

fact, the outgoing edges of the root are of a different nature compared to the other

edges: whereas the other edges describe the local order contained in the lexicon entry,

the outgoing edges from the root are only an artefact of our syntax. They transform the

forest into a tree and allow us to visualise the combination of two lexicon entries as a

combining operation over trees.

In tag, there are two kinds of combining operations: substitution inserts a tree with-

out foot node at a leaf, and adjunction inserts a tree with one foot node at an inner

node. In the extension, these two operations are only special cases of a more general

combining operation. If a node v of a tree T1 has outgoing edges with labels 1, . . . , k, a

tree T2 with nodes ⋆1, . . . , ⋆k can be inserted at v (see the condition of Lemma 6.2). The

subtrees below v with some label i are then placed below the i-th foot node of T2. The

general scheme of this operation for trees with two foot nodes is given in Figure 6.4.

Example An example for this combining operation is shown in Figure 6.5. In this ex-

ample, tree T2 is inserted into T1 at node B. The material below the edges with index

1 is placed below the first foot node of T2, the material below the edge with index 2 is

placed below the second foot node. Note that the outgoing edges of the root nodes of

the elementary trees are not indexed, since they do not belong to the gap forest. As in

tag, no combining operations may take place at root nodes, and hence the indices are

not needed. The tree in Figure 6.5(d) has no edge indices at all, since there is no inner

node left where a combining operation could take place. ⊣

6.6 Towards some underspecification

So far, we were mostly concerned with the description of single drawings. Sets of draw-

ings with a similar structure are described with underspecification. Underspecification

in the description of the tree structure means, for example, that the valencies of a node

50

6.6 Towards some underspecification

1 2

v

21

T1

T2

T

Figure 6.4: Combining operation for trees with two foot nodes

A

B

1
1

2

C D a

(a) extended

elementary tree

T1

(a,A,

B

1
1

2

C D self

)

(b) corresponding lexicon

entry for T1

B

E ⋆1 b ⋆2 F

(c) extended elementary tree T2

A

B

E B⋆1 b B⋆2 F

C D a

(d) result of the combining

operation

Figure 6.5: An example for the combining operation of the tag extension

51

Chapter 6 A description language for well-nested drawings

are not completely fixed. Underspecification in the order means, that there are several

alternatives to order a node and its valencies.

In cfg, tag, and the description language we presented in Section 6.4, the order and

tree structure in a single lexicon entry is always completely specified. Underspecification

is realised in these systems as enumeration of the different alternatives. For example,

the two context-free rules of Figure 6.1(b) on page 44 together state that the node a

has two valencies B and C , where C is rightmost, but the order among a and B is not

specified.

Instead of enumerating all alternatives, a description language can also offer a syntax

that is powerful enough to leave some aspects of a lexicon entry underspecified. In the

next chapter, we develop a language for the underspecified description of gap forests.

By replacing the forests in the lexicon entries of our description language by such an

underspecified description, it is possible to specify only partially the order within a

single lexicon entry.

52

Chapter 7

A saturation algorithm for constraints on ordered forests

In this chapter, we introduce a constraint language for ordered forests and a saturation

algorithm that decides in NP time whether an expression of that language is consistent

or not. It can also be used to enumerate all solutions, that is, to enumerate all ordered

forests described by the expression. The second half of the chapter is concerned with

an extension to describe indexed ordered forests.

The algorithm is related to saturation algorithms that have been developed to solve

dominance constraints. The first of these algorithms was presented by Koller, Niehren

and Treinen [9]; extended versions for richer constraint languages have been proposed

by Duchier and Niehren [5] and Koller [7].

7.1 Introduction to saturation algorithms

The algorithm is formulated with the help of saturation rules that successively enlarge

a given constraint ϕ until it describes a solution, or an inconsistency is detected. The

constraint ϕ is a conjunction of atomic formulas. A saturation rule is applicable, if

ϕ contains all atoms of the precondition, and no atom of the conclusion. If a rule is

applied, one atom of its conclusion is added to ϕ. There are two different kinds of

rules: propagation rules and distribution rules.

Propagation rules have only one atom in their conclusion, and are hence determinis-

tic. They state that any solution satisfying the precondition also satisfies the conclusion.

Some propagation rules have no atom of the constraint language but the special item

fail as their conclusion. This represents the fact that any constraint satisfying the pre-

condition is inconsistent.

Distribution rules have more than one atom in their conclusion, and each solution

that satisfies the precondition satisfies at least one of them. If we only want to check

the consistency of a constraint, we nondeterministically choose a satisfiable alternative,

if one exists. If we want to enumerate all solutions, we have to treat all alternatives

separately, since the extension of ϕ with any atom of the conclusion may lead to a

solution.

The saturation algorithm applies the rules until no more new atoms can be added.

The constraint is then called saturated. If fail is derived, the constraint is inconsistent,

otherwise the final constraint describes a solution. The order in which we apply the rules

does not matter (as long as we are not concerned with efficiency), since the rules are

monotonic in the sense that only new atoms are added. Furthermore, the preconditions

53

Chapter 7 A saturation algorithm for constraints on ordered forests

only require the existence of some atoms, not their absence, and consequently a rule

whose preconditions are fulfilled remains applicable no matter which other rules are

applied in between.

Saturation algorithms of that kind can be implemented in a constraint programming

system. Such a system applies the nondeterministic distribution rules only if no more

deterministic propagation rules are applicable. This strategy is efficient since it mim-

imises the search tree that is generated by the distribution rules.

7.2 Syntax and semantics

We want to describe ordered forests with the constraint language. Ordered forests con-

sist of nodes and two binary relations on it: successorship for the forest represented by

⊳, and the order < among disjoint nodes. The nodes are represented by the variables of

the constraint. More precisely, there is a one to one correspondence between the vari-

ables of the constraint and the nodes of the forest: distinct variables describe distinct

nodes, and each node must correspond to a variable. To keep things simple, we assume

the identity of variables in the tree and nodes in the constrained forest.

A constraint ϕ ranging over variables Vars(ϕ) = {x,y, . . . } is a set of atoms of the

form xRy , where R ⊆ {<,>,⊳+, ⊲+}. The set R represents a disjunction. An atom xRy

has the semantics that for at least one r ∈ R, xry holds in the constrained forest. Note

that only transitive successorship and not immediate successorship is expressible.

7.3 Saturation rules

The set of saturation rules is shown in Figure 7.1. With the help of these rules, the

saturations and solved forms of a constraint can be computed.

Definition 7.1 (Saturation and solved form) A saturation of a constraint ϕ is a con-

straint ϕ′ that is obtained by applying all inference rules exhaustively to ϕ. We call

ϕ′ a solved form, if it is failure-free, that is no rule with fail as conclusion is applicable

on it. ⊣

The saturation rules can be distinguished according to their role within the inference

system. In particular, there are two main classes of rules. The rules init, intersection,

fail, and choice build a kind of core structure. They are mainly concerned with the

general fact that the atoms of the constraints represent disjunctions, and they are in-

dependent of the concrete semantics of the describes relations. In contrast to that, the

remaining rules ensure certain properties of the relations. These remaining rules hence

characterise the class of structures that we want to accept as solutions, and are more

specific to the problem that is solved by the algorithm.

54

7.3 Saturation rules

Propagation rules:

init
x{<,>,⊳+, ⊲+}y

x 6= y

intersection
xR1y xR2y

xRy
R = R1 ∩ R2

fail
x0y

fail

order trans
x{<}y y{<}z

x{<}z

x{⊳+}y y{⊳+}z

x{⊳+}z
dom trans

order to dom (1)
x{<}y x{⊳+}x′

x′{<}y

x{<}y y{⊳+}y ′

x{<}y ′
order to dom (2)

order inverse (1)
x{>}y

y{<}x

x{<}y

y{>}x
order inverse (2)

dom inverse (1)
x{⊲+}y

y{⊳+}x

x{⊳+}y

y{⊲+}x
dom inverse (2)

Distribution rules:

choice
xRy

xR1y ∨ xR2y
R = R1 ⊎ R2

Figure 7.1: The set of saturation rules

55

Chapter 7 A saturation algorithm for constraints on ordered forests

We now prove some properties of our saturation rules to simplify the subsequent

proofs for termination, soundness and completeness of the system. We first address

the properties that are ensured by the core rules init, intersection, fail, and choice.

Lemma 7.2 Letϕ be a failure-free constraint on which the rules intersection and fail

are not applicable. Then for all x,y there are no disjoint sets R1,R2 such that xR1y ∈ϕ

and xR2y ∈ϕ. 2

Proof Let xR1y ∈ ϕ and xR2y ∈ ϕ for some disjoint sets R2, R2. Since intersec-

tion is not applicable, also x0y ∈ ϕ. This would make the fail rule applicable and

contradicts the assumption that ϕ is failure-free. �

Lemma 7.3 Let ϕ be a constraint on which the rule choice is not applicable. Then for

each atom xRy ∈ϕ, there exists an r ∈ R such that x{r}y ∈ϕ. 2

Proof We prove the statement by induction over |R|. If |R| = 1 then R = {r} and hence

the atom xRy itself is the atom x{r}y . For |R| = k + 1 we know that there exist R1
and R2 with R1 ⊎ R2 = R and either xR1y ∈ ϕ or xR2y ∈ ϕ since otherwise choice

would be applicable. Without loss of generality we assume xR1y ∈ ϕ. By induction

hypothesis, there exists a singleton set {r} with r ∈ R1 and x{r}y . Since R1 ⊂ R, also

r ∈ R. �

Lemma 7.4 Let ϕ be a failure-free constraint where none of the rules init, intersec-

tion, fail and choice is applicable. Then for each pair of variables x,y with x 6= y

there exists exactly one r ∈ {<,>,⊳+, ⊲+} such that x{r}y ∈ϕ. 2

Proof We first show by contradiction that at most one such r exists. Assume the exis-

tence of r1 and r2 with r1 6= r2 such that both x{r1}y and x{r2}y are atoms inϕ. Since

{r1} and {r2} are disjoint this contradicts Lemma 7.2.

Now we show that at least one r exists such that x{r}y ∈ ϕ. Since init is not ap-

plicable, x{<,>,⊳+, ⊲+}y ∈ ϕ. Hence by Lemma 7.3 for at least one r ∈ {<,>,⊳+, ⊲+}

xry ∈ϕ. �

So far we have shown general properties that are independent of the semantics of the

relations <, >, ⊳+, and ⊲+. Now we show how certain properties of these relations are

guaranteed by the inference rules.

Lemma 7.5 A transitive, irreflexive relation does not contain cycles. 2

Proof Let a relation r be transitive and irreflexive. Assume a cycle x1rx2, x2rx3, . . . ,

xnrx1. Transitivity implies x1rx1 which is not possible since r is irreflexive. �

Corollary 7.6 The relation {⊳+} does not contain a cycle for any saturated failure-free

constraint ϕ. 2

56

7.4 Termination and soundness

Proof {⊳+} is transitive since it is saturated under dom trans. It is irreflexive since

any atom x{⊳+}x implies via dom inverse the existence of an atom x{⊲+}x, which

contradicts Lemma 7.2. �

Corollary 7.7 The relation {<} does not contain a cycle for any saturated failure-free

constraint ϕ. 2

Proof {<} is transitive since it is saturated under order trans and it is irreflexive

since any atom x{<}x implies via order inverse the existence of an atom x{>}x,

which contradicts Lemma 7.2. �

Corollary 7.8 Since {⊳+} is acyclic, the transitive reduction of {⊳+} is unique (see the

first paragraph in Section 2.1). 2

7.4 Termination and soundness

Termination guarantees that a saturation of a constraint can be computed with a finite

number of saturation steps.

Lemma 7.9 (Termination) For a constraint with n variables the algorithm performs at

most O(n2) saturation steps. 2

Proof Each saturation step adds one atom xRy that was not there before. For n

variables, there are at most 16 ∗ n2 of these atoms, since there are 16 subsets of

{<,>,⊳+, ⊲+}, and thus 16 possible values for R. Since no variables are added and no

atoms are deleted during the saturation, the algorithm terminates after at most 16∗n2

saturation steps. �

Soundness ensures that inconsistency is only reported for constraints that have no

solution.

Lemma 7.10 (Soundness) If all saturations of a constraint ϕ contain fail, ϕ is unsatis-

fiable. 2

Proof We prove the contrapositive: if ϕ is satisfiable, it has a saturation that does not

contain fail.

Each propagation rule is sound in the sense that the atoms in the precondition imply

the atom in the conclusion. Hence, if during the saturation process a propagation rule

with conclusion c is applied on a satisfiable constraint ϕ, then ϕ ∧ c is also satisfiable.

The distribution rules have the property that, if the precondition holds, at least one

of the conclusions holds, too. Consequently, if a distribution rule with conclusions

c1, . . . , cn is applied on a satisfiable constraint ϕ, there is one ci such that ϕ ∧ ci is

satisfiable. Hence, in the search tree that is spanned by the distribution rules, there is at

least one path that always remains satisfiable. Furthermore, the search tree is finite due

to Lemma 7.9. The last node of the path that always remains satisfiable then represents

a saturation that is satisfiable and hence does not contain fail. �

57

Chapter 7 A saturation algorithm for constraints on ordered forests

7.5 Completeness

Completeness is the converse of soundness: If a constraint ϕ is unsatisfiable, all satu-

rations of ϕ contain fail. An equivalent formulation, as the contrapositive, is: if ϕ has a

solved form ϕ′ then ϕ is satisfiable. Since ϕ is satisfiable if ϕ′ is satisfiable, it suffices

to show:

Theorem 7.11 (Completeness) Each constraint in solved form is satisfiable. 2

Proof The proof will be split into three parts. First we construct a solution for an

arbitrary solved form ϕ, second we show that the solution is an ordered forest, and

third we show that this forest satisfies the constraint.

1. (Construction of a possible solution)

The solution is the ordered forest (Vars(ϕ);⊳,<) with

⊳+ := { (x,y) | x{⊳+}y ∈ϕ }

< := { (x,y) | x{<}y ∈ ϕ) }

⊳ := transitive-reduction(⊳+)

This is well-defined, if and only if the transitive reduction of ⊳+ is unique. This is the

case due to Corollary 7.8.

2. (Ordered forest) To ensure that our constructed solution is an ordered forest, we

show that

(a) ⊳ is acyclic.

(b) each node has at most one ⊳ predecessor.

(c) < is transitive.

(d) < is acyclic.

(e) v ⊥w⇔ (v < w ∨w < v)

(f) v < w ⇒ ∀v′ ∈ ⊳+v,∀w′ ∈ ⊳+w.v′ < w′

(a) and (b) ensure that (V ;⊳) forms a forest, (c) and (d) ensure that (V ;<) is a partial

order and (e) and (f) are the two additional constraints (I) and (II) in the definition of

ordered forests (Definition 2.9).

(a) ⊳ is acyclic, since ⊳+ is acyclic as we showed in Corollary 7.6.

(b) Assume a node u has two ⊳ predecessors, that is v ⊳u∧w ⊳u. Then v{⊳+}u ∈ϕ

and w{⊳+}u ∈ ϕ, and furthermore v{⊳+}w ∉ ϕ and v{⊲+}w ∉ ϕ. Due to

Lemma 7.4, for exactly one r ∈ {<,>,⊳+, ⊲+}, we have that v{r}w ∈ ϕ; the re-

maining two alternatives are v{<}w ∈ϕ or v{>}w ∈ϕ.

58

7.6 Extension to the indexed case

We first consider v{<}w ∈ ϕ. The rule order to dom (1) infers from v{<}w ∈ ϕ

and v{⊳+}u ∈ ϕ, that u{<}w ∈ ϕ. Together with w{⊳+}u ∈ ϕ this implies via

dom inverse also u{⊲+}w ∈ϕ, and hence contradicts Lemma 7.4.

The case v{>}w ∈ ϕ is obtained symmetrically to v{<}w ∈ ϕ by swapping v and

w and applying order inverse.

(c) Assume u < v and v < w. Then u{<}v ∈ϕ and v{<}w ∈ϕ. By order trans also

u{<}w ∈ϕ and hence u < w.

(d) The acyclicity of < is shown in Corollary 7.7.

(e) v⊥w⇔ (v < w∨w < v) is equivalent to the fact that an atom v{<}w orw{<}v is

inϕ if and only if no atom v{⊳+}w orw{⊳+}v is inϕ. With the rules dom inverse

and order inverse we can reduce this to the proposition that v{<}w or v{>}w

is in ϕ if and only if no atom v{⊳+}w or v{⊲+}w is in ϕ, which is subsumed by

Lemma 7.4.

(f) Let v < w and let v′,w′ be arbitrary nodes such that v ⊳+ v′ and w ⊳+ w′. Con-

sequently, v{<}w ∈ ϕ, and furthermore v{⊳+}v′ ∈ ϕ and w{⊳+}w′ ∈ ϕ, since

{⊳+} is transitive due to dom trans. By order to dom 1 also v′{<}w ∈ ϕ, and by

order to dom 2 then v′{<}w′ ∈ϕ. It follows that v′ < w′.

3. (Solution) We show that the constructed solution satisfies the constraint by demon-

strating that each single atom is satisfied. Due to Lemma 7.3 it suffices to show that

the atoms xRy with |R| = 1 are satisfied: any other atom xRy is satisfied if xR′y is

satisfied for some R′ ⊆ R.

There are four different kinds of atoms xRy with |R| = 1: x{<}y , x{⊳+}y , x{>}y

and x{⊲+}y . The first two are satisfied by construction of < and ⊳, respectively. The

atoms of the third and fourth kind are satisfied since the rules order inverse and dom

inverse imply the existence of constraints with the same semantics that are of kind one

or two, respectively. �

7.6 Extension to the indexed case

In this section, we discuss how the system can be extended to handle indexed ordered

forest. We will use terms like core system or core syntax to refer to parts of the original

system without the extensions.

7.6.1 The new syntax and semantics

We extend our syntax by adding an index to the ⊳+ relation. The new atoms are of the

form xRy with x,y ∈ Vars(ϕ) and R ⊆ {<,>,⊳+
1
, . . . , ⊳+k , ⊲

+
1
, . . . , ⊲+k } for some k ∈ IN.

59

Chapter 7 A saturation algorithm for constraints on ordered forests

An indexed ordered forest F satisfies an atom x{⊳+i }y , if the node x is an ancestor

of y in F, and the first edge on the path from x to y has index i. An atom x{⊲+i }y has

the same semantics as y{⊳+i }x.

We can assume that k ≤ |Vars(ϕ)|, since a forest with |Vars(ϕ)| nodes has less

than |Vars(ϕ)| edges, and hence, a constraint with more than |Vars(ϕ)| different edge

indices is always unsatisfiable.

We define a translation of a constraint ϕ into a constraint of the core syntax as

follows:

JϕK :=
⋃

{ {xJRKy} | xRy ∈ϕ }

JRK :=
⋃

{ JrK | r ∈ R }

J<K := {<}

J⊳+i K := {⊳+}

The translation does nothing else than removing all indices from the symbols ⊳+i such

that they match the old syntax.

7.6.2 The new set of saturation rules

The new saturation rules are shown in Figure 7.2. The only new rule is index, which

ensures a valid indexing. All other rules remain unchanged or have only minor modifi-

cations to be suitable for the extended syntax (Modified rules are marked with a prime,

for example, init’ instead of init).

The coherence of the core system and the new system is expressed in the following

lemma:

Lemma 7.12 If a constraint ϕ is saturated and failure-free with respect to the new sat-

uration rules, the constraint JϕK is saturated and failure free with respect to the core

system. 2

Proof If JϕK would not be saturated and failure-free, at least one rule must be applica-

ble to add new atoms or indicate a failure. But for every rule in the core system there

is a corresponding rule in the new system that only differs in the additional indices. We

show the argumentation in detail for the rules dom trans and fail, all other cases are

analogous.

Assume that dom trans would be applicable in JϕK. Then the atoms x{⊳+}y ∈ JϕK

and y{⊳+}z ∈ JϕK exist. These atoms can only exist if there are atoms x{⊳+i }y ∈ ϕ

and y{⊳+j }z ∈ϕ that were translated into the corresponding atoms of JϕK. Hence, dom

trans’ would be applicable to ϕ, which contradicts the assumption that ϕ is saturated

and failure-free.

Assume that fail is applicable in JϕK. Then x0y ∈ JϕK for some x,y . This atom can

only exist in JϕK if it also exists in ϕ. But then fail would be applicable to ϕ, which

contradicts the fact that ϕ is failure-free. �

60

7.6 Extension to the indexed case

Propagation rules:

init’
x{<,>,⊳+1 , . . . , ⊳

+
k , ⊲

+
1 , . . . , ⊲

+
k }y

x 6= y

intersection
xR1y xR2y

xRy
R = R1 ∩ R2

fail
x0y

fail

order trans
x{<}y y{<}z

x{<}z

x{⊳+i }y y{⊳+j }z

x{⊳+i }z
dom trans’

order to dom’ (1)
x{<}y x{⊳+i }x

′

x′{<}y

x{<}y y{⊳+i }y
′

x{<}y ′
order to dom’ (2)

order inverse (1)
x{>}y

y{<}x

x{<}y

y{>}x
order inverse (2)

dom inverse’ (1)
x{⊲+i }y

y{⊳+i }x

x{⊳+i }y

y{⊲+i }x
dom inverse’ (2)

index
x{⊳+i }y x{⊳+j }z

y{<}z
i < j

Distribution rules:

choice
xRy

xR1y ∨ xR2y
R = R1 ⊎ R2

Figure 7.2: The set of saturation rules for the indexed case

61

Chapter 7 A saturation algorithm for constraints on ordered forests

7.6.3 Termination and soundness

For the extended system, we again have to give termination and soundness arguments.

Lemma 7.13 (Termination) For a constraint with n variables, the algorithm performs at

most O(n4) saturation steps. 2

Proof The proof is analogous to the termination of the core system (see Lemma 7.9).

Instead of 42 = 16 different relations between two variables x and y , we now have

(2∗n+ 2)2 different possible relations, since the set {<,>,⊳+
1
, . . . , ⊳+n, ⊲

+
1
, . . . , ⊲+n} has

2 ∗ n + 2 elements. With n2 different possibilities to choose a pair (x,y), the number

of atoms xRy is then n2 ∗ (2∗n+ 2)2 = 4n4 + 8n3 + 4n2 ∈ O(n4).

Lemma 7.14 (Soundness) If all saturations of the inference system contain fail, the con-

straint is unsatisfiable. 2

Proof The proof is analogous to the proof for the core system (see Lemma 7.10), since

all new saturation rules are also sound in the sense that their preconditions imply their

conclusion. �

7.6.4 Completeness

With the help of the translation of a constraint ϕ into a constraint JϕK of the core

system, it is possible to reuse the completeness proof of the core system. We therefore

do not need to care about all the details that remained the same, but concentrate on the

things that changed with the extension.

Theorem 7.15 (Completeness) Each constrained in solved form is satisfiable. 2

Proof The completeness proof again has the same structure as in the proof for the core

system (Theorem 7.11): we construct a solution for a saturated failure-free constraint ϕ,

show that it describes a (now indexed) ordered forest, and finally show that this forest

satisfies the constraint.

1. (Construction of a solution) The solution for ϕ is an ordered forest together with

an indexing function. We define the ordered forest (Vars(ϕ);⊳,<) to be the solution

of JϕK with respect to the core system. This solution exists due to Lemma 7.12. The

indexing function which is now additionally required is defined as

index(v,w) := i ⇐⇒ v ⊳w ∧ v{⊳+i }w ∈ ϕ

This defines a function, since there are no i, i′ with v{⊳+i }w ∈ ϕ, v{⊳+i′}w ∈ ϕ and

i 6= i′ due to Lemma 7.2.

2. (Indexed ordered forest) The fact that (Vars(ϕ);⊳,<) is an ordered forest follows

from the fact that it is a solution for JϕK. It remains to show that index is a valid indexing

62

7.7 Further extensions

function. The only restriction for index is condition (III) of the definition of an indexed

ordered forest (see page 6). It is fulfilled due to the following implications.

v ⊳w ∧ v ⊳w′ ∧ index(v,w) < index(v,w′)

⇒ ∃i, j ∈ IN.i < j ∧ v{⊳+i }w ∈ϕ ∧ v{⊳+j }w
′ ∈ ϕ

⇒ w{<}w′ ∈ϕ

⇒ w < w′

The second implication follows from the application of the rule index.

3. (Solution) We have to show that each atom of ϕ is satisfied by the solution. As in

the completeness proof of the core system, Lemma 7.3 implies that it suffices to show

that atoms xRy with |R| = 1 are satisfied.

Atoms of kind x{<}y or y{>}x are satisfied since they are also atoms of JϕK, and

the forest is a solution for JϕK. For atoms of kind x{⊲+i }y , due to dom inverse’ there

exists a corresponding item of kind x{⊳+i }y that needs to be satisfied and has the same

semantics. It remains to show that the atoms of kind x{⊳+i }y are satisfied.

For an atom x{⊳+i }y , there is a licensing path in the forest because x{⊳+}y ∈ JϕK,

and the forest is also a solution of JϕK. We must show that the first edge of this path

has index i. We first consider the case that x ⊳ y is an edge in the forest (that is, the

path has length one). Then the edge has index i by definition of the indexing function.

If, on the other hand, x only transitively dominates y in the forest structure and the

first edge on this path has index i′ there are atoms x{⊳+}z1, z1{⊳+}z2, . . . , zn{⊳+}y in

JϕK for some z1, . . . , zn and corresponding atoms x{⊳+i′}z1, z1{⊳
+
j }z2, . . . , zn{⊳

+
k }y in

ϕ. By iteratively applying dom trans’, we infer x{⊳+i′}z1 ∈ ϕ, x{⊳+i′}z2 ∈ ϕ, . . . , and

finally also x{⊳+i′}y ∈ ϕ. By Lemma 7.2 it follows that i = i′, since both x{⊳+i′}y and

x{⊳+i }y are elements of ϕ. �

7.7 Further extensions

In our description language for well-nested drawings (Chapter 6), we want to use the

constraint language to describe the extended gap forests of the nodes. In that context,

we have special kinds of nodes, namely the foot nodes and the anchor. Furthermore, the

forests must have the structural properties stated in Lemma 6.1 (see page 45). In other

words the constraints must be interpreted over a restricted domain.

We account for these additional requirements with two modifications:

• The syntax is extended with constants for foot nodes and the anchor.

• Additional saturation rules ensure that each solution fulfils the required structural

properties.

The syntax is simply extended with some constants Cons(ϕ) = {self , ⋆1, . . . , ⋆l};

atoms have now the form xRy with x,y ∈ Vars(ϕ)∪Cons(ϕ). The constant self repre-

sents the anchor, each constant ⋆i represents a foot node of the forest. The additional

63

Chapter 7 A saturation algorithm for constraints on ordered forests

self leaf
self{⊳+i }w

fail

gap leaf
⋆i{⊳

+
j }w

fail

gaps ordered
⋆i{<}⋆j

i < j

index dense
w{⊳+i }w

′

∨

w′′∈Vars(ϕ)∪Cons(ϕ)

w{⊳+i−1}w
′′
i > 1

gaps separated ∨

w∈Vars(ϕ)∪Cons(ϕ)

∨

r∈Rfull

(⋆i{r}w ∧⋆j(Rfull − {r})w)
i 6= j

gap not leftmost
∀v ∈ (Vars(ϕ)∪ Cons(ϕ)− {⋆i}). ⋆i {<}v

fail

gap not rightmost
∀v ∈ (Vars(ϕ)∪ Cons(ϕ)− {⋆i}).v{<}⋆i

fail

Figure 7.3: Additional saturation rules

rules are shown in Figure 7.3. In the rules the symbol Rfull is used as an abbreviation for

the set {<,>,⊳+
1
, . . . , ⊳+k , ⊲

+
1
, . . . , ⊲+k } .

Termination and soundness are almost not affected by the extensions.

Lemma 7.16 (Termination) For a constraint ϕ with n = |Vars(ϕ)∪Cons(ϕ)|, the algo-

rithm performs at most O(n4) saturation steps. 2

Proof The proof is analogous to the proof of Lemma 7.13. �

Lemma 7.17 (Soundness) If all saturations of the inference system contain fail, the con-

straint is unsatisfiable. 2

Proof The proof is analogous to the proof for the core system (see Lemma 7.10), since

all new saturation rules are also sound in the sense that their preconditions imply their

conclusion. The implications of the new rules hold due to the structural properties of

gap forests stated in Lemma 6.1. The rules self leaf and gap leaf are sound due to

Lemma 6.1(b), gap ordered due to Lemma 6.1(c), index dense due to Lemma 6.1 (d),

gaps separated due to Lemma 6.1 (f) and gap not leftmost and gap not rightmost

due to part (e) of Lemma 6.1. �

Lemma 7.18 (Completeness) Each constraint ϕ in solved form has a valid gap forest as

solution. 2

64

7.8 Towards more efficient algorithms

Proof The solution (W ;⊳,<) has a node set W = Vars(ϕ)∪Cons(ϕ) and ⊳, < and the

indexing function are constructed in the same way as without the extension (see proof

of Theorem 7.15). We only need to show that this forest has the structural properties

(b)–(f) stated in Lemma 6.1.

(b) ⊳self = ⊳⋆1 = · · · ⊳ ⋆k = 0 holds since otherwise ϕ would contain atoms that

correspond to the outgoing edges of self or the ⋆-nodes and self leaf or gap leaf

would derive failure.

(c) ∀i, j ∈ [1, k].i < j ⇒ ⋆i < ⋆j holds since by gaps ordered the constraint ϕ

contains corresponding atoms ⋆i{<}⋆j .

(d) ∀w,w′ ∈ W.w ⊳i w′ ∧ i > 1 ⇒ ∃w′′.w ⊳i−1 w′′ holds since by index dense, the

constraint ϕ contains corresponding atoms w{⊳+i−1}w
′′.

(e) ∄i ∈ [1, k].(∀w ∈ W − {⋆i}.w < ⋆i) ∨ (∀w ∈ W − {⋆i}.⋆i < w) also holds:

if there would exist such an i, either for all w ∈ W − {⋆i} there would exist atoms

w{<}⋆i in ϕ, or for all of them there would exist atoms ⋆i{<}w in ϕ. In the first case,

gap not rightmost would infer failure, in the second case, gap not leftmost would

infer failure.

(f) ∀⋆i, ⋆j ∈ W with i 6= j.∃w ∈ W,R ∈ {<,>,⊳1, . . . , ⊳k}.wR ⋆i ∧¬wR⋆j holds

due to rule gaps separated. This rule nondeterministically chooses R and w and adds

corresponding atoms to ϕ. �

7.8 Towards more efficient algorithms

Due to its nondeterministic nature, we do not claim the algorithm presented in this

chapter to be efficient. Nevertheless, it offers deep insights in the nature of the problem

that it solves, and provides a basis for the development of faster algorithms. As men-

tioned in the beginning of this chapter, the algorithm is similar to saturation algorithms

that were developed to solve dominance constraints. The experience that was gained

with these algorithms helped to identify a subclass of dominance constraints, called

normal dominance constraints, and to develop deterministic polynomial algorithms for

this subclass (see Koller, Mehlhorn and Niehren [8]).

There are good chances that polynomial algorithms of that kind can also be developed

for the problem that we discussed here. A first important step towards this direction

was made by Bodirsky and Kutz [3], where a deterministic polynomial algorithm to check

the consistency of partial tree descriptions was proposed. How far this algorithm can

be adapted to solve our task is an interesting question for future work. Basically, the

algorithm and the underlying description language must be modified in such a way that

they can handle indexed ordered forests instead of unordered trees.

65

Chapter 7 A saturation algorithm for constraints on ordered forests

66

Chapter 8

Conclusions and future work

This chapter summarises the contents of the thesis, and indicates promising starting

points for future work.

In this thesis, we introduced drawings as models of syntactic structure. After the

formal definition of drawings, we mainly investigated structural properties of drawings,

and aspects that are concerned with grammar formalisms.

8.1 Structural properties of drawings

We presented two structural properties of drawings: gap degree and well-nestedness.

Both of them are relaxations of projectivity.

We developed polynomial algorithms to determine the gap degree of a drawing and to

decide whether a drawing is well-nested. These algorithms demonstrate that the prop-

erties are not only of theoretical interest, but also computationally tractable. Whereas

the computation of the gap degree is linear in the number of nodes, the presented

algorithms which test well-nestedness have a quadratic worst case complexity. Further

research is needed to investigate whether there also exist algorithms with a better worst

case complexity.

A question that we have not addressed, so far, is the linguistic relevance of well-

nestedness and gap degree. Are dependencies in natural language sentences usually

well-nested? Is there a bound on the gap degree? For many languages there exist de-

pendency treebanks, whose dependency structures can be interpreted as drawings. A

statistical evaluation of these treebanks may give answers to these questions.

8.2 Drawings and grammar formalisms

One main contribution of this thesis is the characterisation of tag drawings as well-

nested drawings with a gap degree of at most one. On the one hand, this result shows

that well-nestedness and gap degree are properties with theoretical relevance. On the

other hand, this result characterises the expressivity of tag. There is an important prop-

erty of grammar formalisms: up to what limits they can derive non-projective structures.

Our characterisation gives a precise answer to that question for tag. The characterisa-

tion is limited so far to single drawings. Since grammars describe sets of structures,

future work must investigate which sets of drawings are describable by a tag grammar.

67

Chapter 8 Conclusions and future work

As a further benefit, the characterisation of tag drawings offers a way to compare

tag to other grammar formalisms. For such a comparison, the classes of drawings that

are induced by other grammar formalisms must be identified. Possibly other formalisms

are also able to derive non-projective drawings or drawings with a higher gap degree

than one. This would indicate that these grammar formalisms are more expressive than

tag. Drawings corresponding to some other grammar formalism possibly cannot be

characterised by means of well-nestedness and gap degree. Such observations could

also lead to the development of further relaxations of projectivity.

Having identified the limitations of the structures derived by a formalism, a further

question is how to get over these limitations. We have sketched an extension of tag that

is able to derive drawings with a gap degree higher than one. Since higher expressivity

usually comes along with increased parsing complexity, an important open question is

whether efficient parsing of this extension is possible.

68

Bibliography

[1] Alfred V. Aho, M. R. Garey, and Jeffrey D. Ullman. The transitive reduction of a

directed graph. SIAM J. Comput., 1(2):131–137, 1972.

[2] Manuel Bodirsky, Marco Kuhlmann, and Mathias Möhl. Well-nested drawings as

models of syntactic structure. In 10th Conference on Formal Grammar and 9th

Meeting on Mathematics of Language, Edinburgh, Scotland, UK, 2005.

[3] Manuel Bodirsky and Martin Kutz. Pure dominance constraints. In Proceedings

of the 19th Annual Symposium on Theoretical Aspects of Computer Science (STACS

2002), 2002.

[4] Mike Daniels and W. Detmar Meurers. Improving the efficiency of parsing with dis-

continuous constituents. In Shuly Wintner, editor, Proceedings of NLULP’02: The 7th

International Workshop on Natural Language Understanding and Logic Program-

ming, number 92 in Datalogiske Skrifter, pages 49–68, Copenhagen, 2002. Roskilde

Universitetscenter.

[5] Denys Duchier and Joachim Niehren. Dominance constraints with set operators. In

Proceedings of the First International Conference on Computational Logic (CL2000),

volume 1861 of Lecture Notes in Computer Science, pages 326–341. Springer, July

2000.

[6] Aravind Joshi and Yves Schabes. Handbook of Formal Languages, volume 3, chapter

Tree Adjoining Grammars, pages 69–123. Springer, 1997.

[7] Alexander Koller. Constraint-based and graph-based resolution of ambiguities in

natural language. PhD thesis, Universität des Saarlandes, 2004.

[8] Alexander Koller, Kurt Mehlhorn, and Joachim Niehren. A polynomial-time frag-

ment of dominance constraints. In Proceedings of the 38th ACL, Hong Kong, 2000.

[9] Alexander Koller, Joachim Niehren, and Ralf Treinen. Dominance constraints: Algo-

rithms and complexity. In Proceedings of the Third Conference on Logical Aspects

of Computational Linguistics (LACL ’98), Grenoble, France. To appear in LNCS, 1998.

[10] Martin Plátek, Tomáš Holan, and Vladislav Kuboň. On relax-ability of word-order

by d-grammars. In Cristian Calude, Michael Dinneen, and Smaranda Sburlan, edi-

tors, Combinatorics, Computability and Logic, Discrete Mathematics and Theoretical

Computer Science, pages 159–174. Springer, Berlin, 2001.

69

Bibliography

[11] Hiroyuki Seki, Takashi Matsumura, Mamoru Fuji, and Tadao Kasami. On multiple

context-free grammars. Theoretical Computer Science, 88:191–229, 1991.

[12] David J. Weir. Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD

thesis, University of Pennsylvania, 1988. Available as Technical Report MS-CIS-88-74

of the Department of Computer and Information Sciences, University of Pennsylva-

nia.

[13] Anssi Yli-Jyrä. Multiplanarity – a model for dependency structures in treebanks. In

Second Workshop on Treebanks and Linguistic Theories, Mathematical Modelling in

Physics, Engineering and Cognitive Sciences, pages 189–200, Växjö, Sweden, 2003.

70

