
Scrambling as the Combination of
Relaxed Context-Free Grammars

in a Model-Theoretic Grammar Formalism

Ralph Debusmann
Programming Systems Lab
Universität des Saarlandes

Postfach 15 11 50
66041 Saarbrücken, Germany

rade@ps.uni-sb.de

1 Introduction

Five years after the first ESSLLI workshop on
Model-Theoretic Syntax (MTS), Pullum and Scholz
(2001) stated that since the work on MTS had largely
focused on reformulating existing GES frameworks,
in a sense, it had been done in the shadow of
Generative-Enumerative Syntax (GES).

In the following five years, the bulk of work has
still been invested in model-theoretic reformulations
of GES frameworks. Reformulations of GB can be
found in (Rogers, 1996, 2003), of LFG in (Blackburn
and Gardent, 1995), of GPSG in (Kracht, 1995) and
(Rogers, 1996, 2003), of HPSG in (Kepser, 2000)
and (Kepser and Mönnich, 2003), and of TAG in
(Rogers, 2003).

Recently (Rogers, 2004), there have been attempts
to step out of the shadow of GES, and to use MTS
not only to reformulate and compare existing frame-
works, but to utilize the more declarative, clarify-
ing perspective of MTS to also exploreextensions
of them. This is what we set out to do in this paper
as well.

We base our work on the model-theoretic meta
grammar formalism of Extensible Dependency
Grammar (XDG) (Debusmann, 2006). XDG can be
used to axiomatize grammatical theories based on
dependency grammar, to extend them, and to imple-
ment them using the constraint-based XDG Develop-
ment Kit (XDK) (Debusmann et al., 2004), (Debus-
mann and Duchier, 2007). XDG is novel in support-
ing the axiomatization ofmulti-dimensionalgram-
matical theories, where the linguistic aspects of e.g.
syntax and semantics can be modeled modularly by
separate dependency analyses.

This paper contributes a new, previously unpub-
lished formalization of XDG in first-order logic (sec-
tion 2), and the first results on the closure properties
of the string languages licensed by XDG (section 3).
The closure properties are proven based on the oper-
ation ofgrammar composition, where the string lan-
guage resulting from the composition of two gram-
marsG1 andG2 is the difference, union or intersec-
tion of that ofG1 andG2.

In section 4, we recap the axiomatization of
Context-Free Grammar (CFG) of (Debusmann,

1

2006), which we employ as our launch pad to go be-
yond CFG in section 5. First, we explore therelax-
ation of the contiguity criterion of CFG, and second,
we explore theintersectionof CFGs. This brings
us into the position to formulate a simple and ele-
gant account of German scrambling loosely based on
(Duchier and Debusmann, 2001).

2 Extensible Dependency Grammar

XDG models tuples of dependency graphs sharing
the same set of nodes, which are anchored by the
same string of words. The components of the tu-
ple are calleddimensions, and XDG analysesmulti-
graphs.

Figure 1 shows an example multigraph with two
dimensions:SYN provides a syntactic, andSEM a se-
mantic analysis in terms of predicate-argument struc-
ture. The nodes are identified by indices (1 to 6),
and associated with words (e.g.Mary, wants, etc.).
The edge labels onSYN aresubj for “subject”, vinf

for “full infinitive”, part for “particle”, obj for “ob-
ject” andadv for “adverb”. OnSEM, ag stands for
“agent”,pat for “patient” andth for “theme”.

Contrary to other dependency-based grammar for-
malisms such as (Gaifman, 1965), XDG dimensions
need not be projective trees, but can in fact be gen-
eral graphs as in Word Grammar (Hudson, 1990). An
example is theSEM dimension in Figure 1, which is
not a tree but a directed acyclic graph (DAG). Here,
to, which does not have any semantic content, has no
ancestor, andMary, which is the agent of bothwants
andeat, has two.

Multigraphs are constrained bygrammarsspeci-
fying:

1. A multigraph typedetermining the possible di-
mensions, words, edge labels and additional at-
tributes associated with the nodes callednode
attributes.

SYN:

1

Mary

2

wants

3

to

4

eat

5

spaghetti

6

today

advsubj vinf

objpar
t

SEM:

1

Mary

2

wants

3

to

4

eat

5

spaghetti

6

today

ag
th

ag pat

th

Figure 1: XDG multigraph forMary wants to eat
spaghetti today.

2. A lexicondetermining a subset of the node at-
tributes of each node, depending on the associ-
ated word.

3. A set of principles stipulating the well-
formedness conditions of the multigraphs.

XDG is ametagrammar formalism.Instancesof
XDG are defined by fixing a multigraph type and a
set of principles, and leaving the lexicon variable.

XDG principles stipulate e.g. treeness, DAG-ness,
projectivity, valency and order constraints. They can
also constrain the relation of multiple dimensions,
which is used e.g. in the linking principle to con-
strain the relation between arguments onSEM and
their syntactic realization onSYN. Some principles
are lexicalized, i.e., they constrain the analysis with
respect to the lexicon.

The lexicon constrains all dimensions simultane-
ously, and thereby synchronizes them. Figure 2 de-
picts an example graphical lexical entry for the word
eat. On SYN, by the lexicalized valency principle,
the lexical entry licenses zero or one incoming edges
labeledvinf, precisely onepart, zero or oneobj, ar-

2

bitrary manyadv dependents, and no other incoming
and outgoing edges. By the order principle, thepart

dependents must precede the headeat, which must
precede theobj and theadv dependents. OnSEM,
the lexical entry licenses arbitrary many incomingth

edges, and requires precisely oneag dependent and
zero or onepat dependents (valency principle). It li-
censes no other incoming and outgoing edges. The
patient must be realized by the object (linking princi-
ple). The realization of the agent is not constrained.

SYN:

eat

↓

vinf?

part! adv*obj?

< obj < advpart <

SEM:

eat

th*

ag!
(obj)
pat?

Figure 2: Lexical entry for the wordeat

2.1 Multigraph

We turn to the formalization of XDG. Contrary to
(Debusmann, 2006), which is higher-order, our for-
malization is first-order, and hence called FO XDG.
We begin with multigraphs. Multigraphs are formu-
lated over thelabeled dominance relation. This cor-
responds to the transitive closure of the labeled edge
relation, where the label is the label of the first edge.
The purpose of including this relation and not the
labeled edge relation itself is to stay in first-order
logic: if we included only the labeled edge relation,
we could not express the transitive closure without

extending the logic with fixpoints or second-order
quantification.

Definition 1 (Multigraph). Given a finite set of
dimensions D, a finite set of words W, a finite
set of edge labels L, a finite set of attributes A,
and a finite set of set types T , a multigraph M=
(V,E+,<,nw,na) consists of a finite set of nodes V ,
the set of labeled dominances E+ ⊆V×V×L×D, a
total order< ⊆V ×V on the set of nodes, the node-
word mapping nw∈V →W, and the node-attributes
mapping na∈V → D → A→∪{u | u∈ T}. We de-
fine V as a finite interval of the natural numbers
starting with1. (v,v′, l ,d) ∈ E+ iff on dimension d,
the multigraph contains an edge from v to v′′ labeled
l, and a path of arbitrary many edges from v′′ to v′

with any labels.

2.2 Grammar

Definition 2 (Grammar). A grammar
G = (MT, lex,P) consists of a multigraph type
MT, a lexicon lex, and a set of principles P.

Definition 3 (Multigraph Type). Given a
set of atoms At, a multigraph type MT=
(D,W,L,dl,A,T,dat) consists of a finite set of
dimensions D⊆At, a finite set of words W⊆ At, a fi-
nite set of labels L⊆ At, a dimension-label mapping
dl ∈ D → 2L, a finite set of attributes A⊆ At, a finite
set of types T⊆ Ty, and a dimension-attributes-type
mapping dat∈ D → A → T. Ty is the set of types
built from finite domains Fd: Ty::= 2Fd1×...×Fdn,
where Fd::= V | {a1, . . . ,an}, V is a placeholder for
the set of nodes, and a1, . . . ,an ∈ At.

Definition 4 (Multigraph of Multigraph Type). A
multigraph M= (V,E+,<,nw,na) is of multigraph
type MT= (D,W,L,dl,A,T,dat) iff the sets of di-
mensions D, words W, edge labels L, attributes A
and types T match, all labeled dominances on di-
mension d∈ D have only edge labels in dl d, and

3

all node attributes a∈ A on dimension d∈ D have a
value in dat d a.

Definition 5 (Lexicon). The lexicon is a function
from words to sets of lexical entries: lex∈ W →
2D→A′→∪{u|u∈T ′}, where A′ ⊆ A is the subset of lex-
ical attributes, and for all w∈ W, if e∈ lex w,
then for all d∈ D, a ∈ A′, (e d a) has a value in
(dat d a). T′ ⊆ Ty′, where Ty′ is the set of types built
from finite domains Fd′: Ty′ ::= 2Fd′1×...×Fd′n, where
Fd′ ::= {a1, . . . ,an}.

That is, whereas non-lexical attributescan talk
about nodes in the multigraph, lexical attributes can-
not, since the set of nodes is unknown at the time of
lexicon creation.

Definition 6 (Principles). Principles are a finite set
P ⊆ φ of first-order formulas built from terms t::=
c | x, where c is an individual constant and x an indi-
vidual variable.φ is defined as follows:

φ ::= ¬φ | φ1∧φ2 | ∃x : φ | t1 = t2 | ψ

where thepredicatesψ are defined further below.
We define the usual logical operators (∨, ⇒, ⇔,
∀, ∃!, 6=) as syntactic sugar, and allow to use
variables other than x for convenience (e.g. v for
nodes, l for labels, w for words and a for attributes
etc.). The constants and predicates of the logic
are defined with respect to a multigraph type MT=
(D,W,L,dl,A,T,dat). The constants are taken from
the set C:

C = D∪W∪L∪A∪
{Fdi | 2Fd1×...×Fdn ∈ T, 1≤ i ≤ n}∪N

where N is the set of natural numbers. The uni-
verse of the logic is defined given a multigraph M=
(V,E+,<,nw,na), and equals C with the exception
that N is replaced by V, the actual set of nodes.
All constants are interpreted by the identity function.

As the universe contains only the nodes of the given
multigraph, only this finite subset of the natural num-
bers can be interpreted, i.e., a principle mentioning
node 42 can only be interpreted with respect to a
multigraph with at least42nodes. Here are the pred-
icatesψ:

ψ ::= v
l

−→d →
∗
d v′

| v < v′

| (W v) = w
| (t1 . . . tn) ∈ (d v).a

where v
l

−→d →
∗
d v′ is interpreted as the labeled

dominance relation, i.e.,(v,v′, l ,d) ∈ E+ and v< v′

by the total order<, i.e.,(v,v′)∈<. (W v) = w is in-
terpreted by the node-word mapping, i.e., nw v= w,
and (t1 . . . tn) ∈ (d v).a by the node-attributes map-
ping, i.e.,(t1, . . . , tn) ∈ na v d a.

For convenience, we define shortcuts for strict
dominance (with any label), labeled edge and edge
(with any label):

v→+
d v′

def
= ∃l : v

l
−→d →

∗
d v′

v
l

−→d v′
def
= v

l
−→d →

∗
d v′∧¬∃v′′ : v→+

d v′′∧v′′→+
d v′

v→d v′
def
= ∃l : v

l
−→d v′

where we define labeled edge as labeled dominance
between v and v′ with the restriction that there must
be no node v′′ in between.

2.3 Models

Definition 7 (Models). The models of a grammar
G = (MT, lex,P), m G, are all multigraphs of multi-
graph type MT which satisfy the lexicon lex and the
principles P.

Definition 8 (Lexicon Satisfaction). Given a
grammar G= (MT, lex,P), a multigraph M =
(V,E+,<,nw,na) satisfies the lexicon lex iff for all
nodes v∈ V, there is a lexical entry e for the word

4

of v, and for all dimensions d∈ D and all lexical at-
tributes a∈ A′, the value of the lexical attribute a on
dimension d for node v equals the value of the lexical
attribute a on dimension d of e:

∀v∈V : ∃e∈ lex (nw v) : ∀d ∈ D : ∀a∈ A′ :
(na v d a) = (e d a)

Definition 9 (Principles Satisfaction). Given a
grammar G= (MT, lex,P), a multigraph M =
(V,E+,<,nw,na) satisfies the principles P iff the
conjunction of all principles in P is true.

2.4 String Language

By concatenating the words of its nodes, each multi-
graphM = (V,E+,<,nw,na) defines a strings M:

s M = nw 1 . . . nw |V|

Definition 10 (String Language). The string lan-
guage L G of a grammar G is the set of strings of
the models of G:

L G = {s M | M ∈ m G}

The definition already suggests that for parsing,
the set of nodes is determined by the input strings:
there are always as many nodes as words in the input
string. Parsing then consists of adding a finite num-
ber of edges between these nodes, i.e., crucially, no
nodes are added. This so-calledfixed-size assump-
tion makes XDG parsing amenable to constraint pro-
gramming (Schulte, 2002), (Apt, 2003), which we
indeed use for the parser implementation in the XDG
Development Kit (XDK) (Debusmann et al., 2004),
(Debusmann and Duchier, 2007).

2.5 Recognition Problems

Definition 11 (XDG Recognition Problem (RP)).
Given a grammar G and a string s, is s in L G?

We distinguish the following three flavors:

1. universal recognition problem (URP): bothG
andsare variable

2. fixed recognition problem (FRP):G is fixed and
s is variable

3. instance recognition problem (IRP): the princi-
ples are fixed, and the lexicon andsare variable

In (Debusmann, 2007), we prove using results
from (Vardi, 1982), that the URP is PSPACE-
complete, the FRP and IRP are NP-complete.

2.6 Example Principles

We present a number of illustrative example princi-
ples. For generality, the principles are parametrized
by the dimensions that they constrain.

Tree principle. Given a dimensiond, the tree prin-
ciple stipulates that 1) there must be no cycles, 2)
there is precisely one node without a mother (the
root), 3) all nodes have zero or one mothers, and 4)
all differently labeled subtrees must be disjoint:

treed =
∀v : ¬(v→+

d v) ∧
∃!v : ¬∃v′ : v′→d v∧
∀v : (¬∃v′ : v′→d v)∨ (∃!v′ : v′→d v) ∧

∀v : ∀v′ : ∀l : ∀l ′ : v
l

−→d →
∗
d v′ ∧ v

l ′
−→d →

∗
d v′ ⇒ l = l ′

Projectivity principle. Given a dimensiond, the
projectivity principle forbids crossing edges by stip-
ulating that all nodes positioned between a head and
a dependent must be below the head.

projectivityd =
∀v,v′ :
(v→d v′ ∧ v < v′ ⇒∀v′′ : v < v′′∧v′′ < v′ ⇒ v→+

d v′′)∧
(v→d v′ ∧ v′ < v⇒∀v′′ : v′ < v′′∧v′′ < v⇒ v→+

d v′′)

5

For example, this principle is violated on theSEM di-
mension in Figure 1, wherewantsis positioned be-
tweeneatandMary, but is not beloweat.

To explain the lexicalized valency, order and link-
ing principles, we show an example concrete lexical
entry foreat in Figure 3, modeling the graphical lex-
ical entry in Figure 2.

Valency principle. Given a dimensiond, the va-
lency principle constrains the incoming and outgoing
edges of each node according to the lexical attributes
in andout of type 2(dl d)×{!,+,?,∗}, which models the
function (dl d) → {!,+,?,∗} from edge labels on
d to cardinalities, where ! stands for “one”,+ for
“more than one”, ? for “zero or one”, and∗ for “ar-
bitrary many”.

valencyd =
∀v : ∀l :

((l , !) ∈ (d v).in ⇒ ∃!v′ : v′
l

−→d v) ∧

((l ,+) ∈ (d v).in ⇒ ∃v′ : v′
l

−→d v) ∧

((l ,?) ∈ (d v).in ⇒ ¬∃v′ : v′
l

−→d v ∨ ∃!v′ : v′
l

−→d v) ∧
(¬(l , !) ∈ (d v).in ∧ ¬(l ,+) ∈ (d v).in ∧ ¬(l ,?) ∈ (d v).in ∧

¬(l ,∗) ∈ (d v).in ⇒ ¬∃v′ : v′
l

−→d v) ∧

((l , !) ∈ (d v).out ⇒ ∃!v′ : v
l

−→d v′) ∧
. . .

The remaining part of the principle dealing with the
outgoing edges proceeds analogously. Given the
concrete lexical entry in Figure 3, the principle con-
strains nodeeat on SYN such that there can be zero
or one incoming edges labeledvinf, there must be
precisely onepart dependent, zero or oneobj depen-
dents, arbitrary manyadv dependents, and no other
incoming or outgoing edges.

Order principle. Given a dimensiond, the order
principle constrains the order of the dependents of
each node according to the lexical attributeorder of
type 2(dl d)×(dl d). Theorder attribute models a par-
tial order ondl d, where we require thatdl d includes

the special label↑. The only purpose of↑ is to de-
note the head the partial order specified by theorder
attribute, which is why the principle also stipulates
that there must not be any edges labeled with↑.

orderd =

∀v : ∀v′ : ¬v
↑

−→d v′ ∧
∀v : ∀l : ∀l ′ : (l , l ′) ∈ (d v).order ⇒

(∀v′ : l = ↑ ∧ v
l ′

−→d v′ ⇒ v < v′) ∧

(∀v′ : v
l

−→d v′ ∧ l ′ = ↑ ⇒ v′ < v) ∧

(∀v′ : ∀v′′ : v
l

−→d v′ ∧ v
l ′

−→d v′′ ⇒ v′ < v′′)

For instance, given the concrete lexical entry in Fig-
ure 3, the order principle orders allpart dependents
to the left of the headeat, and to the left of theobj

andadv dependents ofeat. The head is ordered to
the left of its obj and adv dependents, and theobj

precede theadv dependents.

Linking principle. Given two dimensionsd1 and
d2, the linking principle requires for all edges from
v to v′ labeled l on d1 that if there is a labell ′ ∈
(d1 v).link, then there must be a corresponding edge
from v to v′ labeledl ′ ond2. The lexical attributelink
of type 2(dl d1)×(dl d2) models the function(dl d1) →
2(dl d2) mapping labels ond1 to sets of labels ond2.

linkingd1,d2
=

∀v : ∀v′ : ∀l : v
l

−→d1
v′ ⇒

(∃l ′ : (l , l ′) ∈ (d1 v).link ⇒ v
l ′

−→d2
v′)

This is only one instance of a family of linking prin-
ciples. Others are presented e.g. in (Debusmann,
2006). In the concrete lexical entry in Figure 3,
d1 = SEM and d2 = SYN, and the linking principle
stipulates e.g. that the patient ofeaton SEM must be
realized by its object onSYN.

2.7 Example Grammars

To illustrate how XDG grammars look like, we
present two example grammars. The first,G1, mod-

6

eat 7→

SYN :

in : {(vinf,?)}
out : {(part, !),(obj,?),(adv,∗)}

order : {(part,↑),(part,obj),
(part,adv),(↑,obj),
(↑,adv),(obj,adv)}

SEM :

in : {(th,∗)}
out : {(ag, !),(pat,?)}
link : {(pat,obj)}

, . . .

Figure 3: Concrete lexical entry foreat

els the string languageL1 of equally manyas,bs and
cs, in any order:

L1 = {s∈ (a∪b∪c)+ | |w|a = |w|b = |w|c}

This grammar demonstrates how to docounting. On
its sole dimension calledID (for “immediate domi-
nance”, in analogy to GPSG), we count using a chain
of as, each of which is required to take oneb and one
c. An example analysis is depicted in Figure 4. Here,
thea with index 1 builds a chain with thea with in-
dex 6. The firsta takes theb with index 3 and thec
with index 4, and the seconda theb with index 2 and
thec with index 5.

ID:

1

a

2

b

3

b

4

c

5

c

6

a

cb

cb a

Figure 4:G1 ID example analysis ofa b b c c a

G1 makes use of the tree principle and the va-
lency principle, where the latter does the counting.
The lexicon is depicted graphically in Figure 5. The
chain ofas is built by the lexical entry fora licensing
zero or one incoming and outgoing edges labeleda.
In addition, we require eacha to take precisely one

b and precisely onec dependent. The lexical entries
for b andc require precisely one incoming edge la-
beled resp.b andc.

ID:

a

a?

b!
a?

c!

b

b! c!

c

Figure 5:G1 lexical entries fora, b andc

The second example grammar,G2, models the
string languageL2 of arbitrary manyas followed by
arbitrary manybs followed by arbitrary manycs:

L2 = a+b+c+

With this grammar, we demonstrate how to door-
dering. On its sole dimensionLP (for “linear prece-
dence”), the idea is for the leftmosta to be the root,
having arbitrary many outgoing edges to arbitrary
many otheras (labeled1), andbs (2) andcs (3) to
its right. We show an example analysis in Figure 6.

G2 makes use of the tree, valency and order prin-
ciples. The lexical entries for the latter two are de-
picted in Figure 7. Here, the worda is lexically am-
biguous: it can either be a root (leftmost lexical en-
try), or a dependent (second from the left). As the

7

LP:

1

a

2

a

3

b

4

c

5

c

6

c

7

c

333321

Figure 6:G2 LP example analysis ofa a b b c c

grammar uses the tree principle, only onea will ever
become the root, as which it licenses arbitrary many
1 dependents, followed by and one or more2 depen-
dents, followed by one or more3 dependents.

LP:

< 1 < 2 < 3

a

↓

1*
2+

3+

↓

1!

a

↓

2!

b

↓

c

3!

Figure 7:G2 lexical entries fora, b andc

3 Closure Properties

In the new formalization presented in section 2, the
models and hence also the string languages of XDGs
are constrained by FO formulas. This suggests that
basic set operations on the string languages of XDGs
can all be expressed, and that the XDG string lan-
guages areclosedunder these set operations. In this
section, we will show that the XDG languages are in-
deed closed under the following basic set operations:

1. difference and complement

2. union

3. intersection

3.1 Grammar Composition

For our proof, we take a detour and define the com-
position of two XDGs.

Definition 12 (Grammar Composition). We de-
fine the composition of G= G1 ⊚ G2 of G1

and G2 given two grammars G1 = (MT1, lex1,P1)
and G2 = (MT2, lex2,P2) with multigraph types
MT1 = (D1,W1,L1,dl1,A1,T1,dat1) and MT2 =
(D2,W2,L2,dl2,A2,T2,dat2), and a principles com-
position operator◦.

The prerequisites are that 1) the sets of dimensions
must be disjoint, and 2) the sets of words must be the
same.

The resulting grammar G= G1 ⊚ G2 with
G = (MT, lex,P) has multigraph type MT=
(D,W,L,dl,A,T,dat) with:

D = D1∪D2

W = W1

L = L1∪L2

dl = dl1∪dl2
A = A1∪A2

T = T1∪T2

dat = dat1∪dat2

The lexicon lex of G is defined such that lex w con-
tains the product of the lexical entries for w from G1

and G2, for all w ∈W:1

lex w = {e1∪e2 | e1 ∈ lex1 w ∧ e2 ∈ lex2 w}

The principles P of G are defined using the princi-
ples composition operator, which combines the con-
junction of all principles in P1 and the conjunction
of all principles in P2:

P = {
V

φ1∈P1

φ1 ◦
V

φ2∈P2

φ2}

1This clarifies why we demand thatG1 andG2 have the same
set of words—otherwise, parts of the lexicon ofG would be un-
defined.

8

Next, we define what it means for a multigraph
to be restricted to a subset of the dimensions of its
multigraph type.

Definition 13 (Multigraph Restriction). Given a
multigraph M = (V,E+,<,nw,na) of multigraph
type MT= (D,W,L,dl,A,T,dat), we define its re-
striction to dimensions D′ ⊆ D as:

M|D′ = (V,E+
|D′ ,<,nw,na|D′)

where E+
|D′ is the set of edges restricted to D′:

E+
|D′ = {(v,v, l ,d) | (v,v, l ,d) ∈ E+∧ d ∈ D′}

and na|D′ is the node-attributes mapping restricted to
D′, which we define as follows for all v∈V:

na|D′ v = {d 7→ {a 7→ u | u∈ na v d a} | d ∈ D′}

This brings us to the following lemma.

Lemma 1 (Grammar Composition). Basic set oper-
ations on the string languages licensed by two XDG
grammars G1 and G2 can be realized using grammar
composition G1 ⊚G2 with the corresponding princi-
ples composition operator◦.

Proof. We start with:

L (G1 ⊚G2) = L G1⊚L G2

It follows that:

s∈ L (G1 ⊚G2) ≡ s∈ L G1 ◦ s∈ L G2

where◦ is the logical operator corresponding to the
set operation⊚. By Definition 10:

s∈ {s M | M ∈ m (G1 ⊚G2)} ≡
s∈ {s M | M ∈ m G1} ◦ s∈ {s M | M ∈ m G2}

As the models ofG1 are determined by dimensions
D1, and those ofG2 by D2, we know:

s∈ {s M|D1∪D2
| M|D1∪D2

∈ m (G1 ⊚G2)} ≡

s∈ {s M|D1 | M|D1 ∈ m G1} ◦ s∈ {M|D2 | M|D2 ∈ m G2}

From which it follows that:

M|D1∪D2
∈ m (G1 ⊚G2) ≡ M|D1

∈ m G1 ◦ M|D2
∈ m G2

That is, a multigraphM with dimensionsD1∪D2

is a model inm (G1 ⊚G2) if and only if M restricted
to D1 is a model ofm G1, M restricted toD2 is a
model ofm G2, andM|D1

∈ m G1 ◦ M|D2
∈ m G2 is

true. That is, we can model the set operation⊚ us-
ing grammar composition with the logical principles
composition operator◦.

3.2 Difference and Complement

Our first use of lemma 1 is to show that the XDG
string languages are closed under difference.

Proposition 1 (Difference). The XDG string lan-
guages are closed under difference.

Proof. Given two grammarsG1 andG2 with string
languagesL G1 andL G2, we can, by lemma 1, con-
struct a grammarG = G1−G2 with L G = L G1−
L G2 using grammar composition with principles
composition operator◦ = λp1.λp2.p1∧¬p2:

P =
V

φ1∈P1

φ1 ∧ ¬
V

φ2∈P2

φ2

Proposition 2 (Complement). The XDG string lan-
guages are closed under complement.

Proof. Given a grammarG2 with string language
L G2, lemma 1 allows us to construct a grammarG=
G1−G2 with L G = L G1−L G2 = /0−L G2 = G2

using grammar composition with principles compo-
sition operator◦ = λp1.λp2.p1∧¬p2 and a “dummy
grammar”G1, whose string language is the empty
set.

9

3.3 Union

Proposition 3 (Union). The XDG string languages
are closed under union.

Proof. Given two grammarsG1 andG2 with string
languagesL G1 andL G2, we can construct a gram-
marG= G1∪G2 with L G= L G1∪L G2 using gram-
mar composition with principles composition opera-
tor ◦ = ∨:

P =
V

φ1∈P1

φ1 ∨
V

φ2∈P2

φ2

3.4 Intersection

Proposition 4 (Intersection). The XDG string lan-
guages are closed under intersection.

Proof. Given two grammarsG1 andG2 with string
languagesL G1 andL G2, we can construct a gram-
marG= G1∩G2 with L G= L G1∩L G2 using gram-
mar composition with principles composition opera-
tor ◦ = ∧:

P =
V

φ1∈P1

φ1 ∧
V

φ2∈P2

φ2

3.5 Example

As an example, we present the intersection of the two
grammarsG1 andG2 from section 2 to obtain the lan-
guageL3 = L1∩L2 of n as followed byn bs followed
by n cs.

L3 = L1∩L2 = {s∈ anbncn | n≥ 1}

The models ofG3 are multigraphs with two di-
mensions: the dimensionID from G1, and the dimen-
sion LP from G2. ID ensures that there are equally

ID:

1

a

2

a

3

b

4

b

5

c

6

c

cb

cba

LP:

1

a

2

a

3

b

4

b

5

c

6

c

33221

Figure 8:G3 ID/LP example analysis ofa a b b c c

manyas, bs andcs, whereasLP ensures that theas
precede thebs precede thecs. We depict an example
analysis in Figure 8.

The lexicon ofG3 is the product of the lexicons of
G1 andG2. We depict it in Figure 9. Note that the
product construction of the lexicon yields two lexical
entries fora which are different onLP, but equal on
ID.

ID:

a

a?

b!
a?

c!

a

a?

b!
a?

c!

b

b! c!

c

LP:

< 1 < 2 < 3

a

↓

1*
2+

3+

↓

1!

a

↓

2!

b

↓

c

3!

Figure 9:G3 lexical entries fora, b andc

4 LCFGs as XDGs

(Debusmann, 2006) includes a constructive proof
based on (McCawley, 1968) and (Gaifman, 1965)
that reformulates lexicalized CFGs (LCFGs) as

10

XDGs. LCFGs are CFGs where each rule has pre-
cisely one terminal symbol on its right hand side.
Given an LCFGG, it is easy to construct an XDG
G′ with one dimension calledDERI (for “derivation
tree”). The derivation trees of the LCFG stand in the
following correspondence to the models onDERI:

1. The non-terminal nodes in the derivation tree
correspond to the nodes onDERI.

2. The labels of the non-terminal nodes in the
derivation tree are represented by the incom-
ing edge labels of the corresponding nodes on
DERI, except for the root, which has no incom-
ing edge.

3. The terminal nodes in the derivation tree corre-
spond to the words onDERI.

We depict an example LCFG derivation tree and the
corresponding XDGDERI tree in Figure 10.

a

a b

b

S

B

BS

1

a

2

a

3

b

4

b

S

B

B

Figure 10: LCFG derivation tree (left) and corre-
sponding XDGDERI tree (right)

The constructed XDG grammar uses the tree, pro-
jectivity, valency and order principles. The lexicon
includes for each ruleA→ B1 . . .BkaBk+1 . . .Bn (1≤
k≤ n) of the LCFG, given that each non-terminal oc-
curs at most once on the RHS, and given thatA is not
the start symbol, a lexical entry graphically depicted
in Figure 11. Here, the anchor is the terminal symbol
a of the RHS of the LCFG rule. We require precisely
one incoming edge labeled by the LHS of the rule,

i.e., A.2 As for the outgoing edges, we require pre-
cisely one for each non-terminal on the RHS of the
rule. The order requirements reflect the order among
the non-terminals and the anchor.

B1! Bn!

Bk! Bk+1!

B1<...<Bk< <Bk+1<...<Bn

...

a

A!

↓

Figure 11: Lexical entry for LCFG ruleA →
B1 . . .BkaBk+1 . . .Bn

5 Scrambling as the Combination of
Relaxed LCFGs

In German, following the theory oftopological
fields, the word order in subordinate sentences is
such that all verbs are positioned in the so-called
verb-clusterat the right end, preceded by the non-
verbal dependents (e.g. NPs) in the so-calledMit-
telfeld. In the verb cluster, the heads follow their de-
pendents. We show an example in Figure 12, where
the subscripts indicate the dependencies between the
NPs and the verbs:JohnandMary are dependents of
sah, Peterof helfenandTiereof füttern.

Figure 13 shows an LCFG calledGID which gen-
erates this word order. The problem with this gram-
mar is that it generates only one analysis for the ex-
ample sentence, shown in Figure 14 (left), whereas
12 are grammatical. This is because the NPs in the
Mittelfeld can occur in any permutation3 irrespec-

2If A is the start symbol, we license zero or one incoming
edges labeledA instead of precisely one.

3Any permutation isgrammatical, though some are strongly
marked.

11

Mittelfeld verb cluster
(dass) John1 Mary1 Peter2 Tiere3 füttern3 helfen2 sah1

(that) John1 Mary1 Peter2 animals3 feed3 help2 saw1

Figure 12: German subordinate clause version of the
English sentence(that) John saw Mary help Peter
feed animals.

tively of the positions of their verbal heads.4 In or-
der to correctly model this so-calledscramblingphe-
nomenon, we would also have to also license e.g. the
discontinuous analysis shown in Figure 14 (middle).
But how can we do that, given that LCFG derivations
are always contiguous?

S → NP NP VPsah VP → NP VPhelfen
VP → NP füttern NP → John
NP → Mary NP → Peter
NP → Tiere

Figure 13: LCFGGID

5.1 Relaxing LCFGs

Our first idea is to reformulateGID in XDG. In XDG,
we can then relax the global contiguity constraint by
simply dropping the projectivity principle.

But this is not quite the solution as it leads to over-
generation: although the rules for VPs still position
their verbal dependents to their left, material from
verbs higher up in the tree can now interrupt them, as
in Figure 14 (right), where the VPPeter Tiere f̈uttern
helfenis interrupted by the NPsJohnandMary, and
as a result, the verbfüttern wrongly ends up in the
Mittelfeld.

4Why 12? The verbfütternhas 4 possibilities to fill its NP
argument slot, there remain 3 forhelfen, and 1 forsah.

5.2 Topological LCFG

Our second idea is to create a new,topologicalLCFG
called GLP in the spirit of topological fields theory,
as in (Kathol, 1995), (Gerdes and Kahane, 2001),
(Duchier and Debusmann, 2001).GLP basically or-
ders all NPs to the left of the verbs. We use the
non-terminals MF standing for “Mittelfeld” and VC
for “Verb Cluster”. The grammar is depicted in Fig-
ure 15, and an example analysis in Figure 16.

S → MF VC sah VC → VC helfen
VC → füttern MF → John
MF → JohnMF MF → Mary
MF → Mary MF MF → Peter
MF → PeterMF MF → Tiere
MF → TiereMF

Figure 15: Topological LCFGGLP

S

MF

MF

VC

VCMF

MFJohn

Mary

Peter

sah

helfen

füttern

Tiere

Figure 16: Topological derivation tree for(dass)
Tiere3 John1 Mary1 Peter2 füttern3 helfen2 sah1.

However, solely using theGLP is not viable: al-
though we get precisely the correct string language,
the derivation trees do not represent the syntactic de-
pendencies between verbs and their non-verbal de-
pendents, e.g. betweensahandJohnandMary. This
renders the grammar practically useless: it is impos-
sible to determine the semantics of a sentence with-
out these syntactic dependencies.

12

S

NP

John

NP

Mary

VP

NP VP

PeterNP

helfen

sah

füttern

Tiere

S

NP

John

NP

Mary

VP

NP VP

PeterNP

helfen

sah

füttern

Tiere

S

NP

John

NP

Mary

VP

VPNP

Peter NP

sah

füttern

Tiere

helfen

Figure 14: Derivation trees

5.3 Intersecting LCFGs

To recap our two previous ideas, relaxingGID lead
to overgeneration, and the sole use of the topological
LCFG GLP made us lose essential syntactic depen-
dencies. Our third idea is now tointersect GID and
GLP, following section 3.4. An analysis of the re-
sulting grammarGID /LP = GID ∩GLP is a pair of two
derivation trees, or, in terms of XDG, twodimen-
sions: one derivation tree forGID called ID tree, and
one derivation tree forGLP calledLP tree. We show
an example in Figure 17.

This idea combines the best of both worlds:
throughGLP, we avoid overgeneration, andGID rep-
resents the essential syntactic dependencies. That is,
the two intersected grammars can be considered as
“helping out” each other.

6 Use or Abuse of Intersection?

A related approach to model scrambling by intersec-
tion has been put forward in the context of Range
Concatenation Grammars (RCG) (Boullier, 2000).
Here, the structures generated by the two combined
grammars are correlated only by their yields. In his
paper “Uses and abuses of intersected languages”,
Chiang (2004) observes that from the point of view
of strong generative capacity, this use of intersection

ID:
S

NP

John

NP

Mary

VP

NP VP

PeterNP

helfen

sah

füttern

Tiere

LP:
S

MF

MF

VC

VCMF

MFJohn

Mary

Peter

sah

helfen

füttern

Tiere

Figure 17: Analysis ofGID /LP

amounts to only constraining the tail end of other-
wise independent parallel processes, which he calls
weak parallelism. He argues that it is easy to over-
estimate how much control this kind of parallelism
offers. He argues that the treatment of scrambling in
(Boullier, 2000) is not general enough, as it relies on
nonexistent information in the surface string.

13

Intersection in XDG offers more fine-grained con-
trol as Boullier’s, and we argue that it thus does
not fall into the category of “abuse”. First, the di-
mensions of XDG are synchronized by the input
string and the corresponding nodes, which are shared
among all dimensions. Second, XDG allows to stip-
ulate any number of additional constraints to corre-
late the two intersected grammars, such as the link-
ing principle. Linking constraints could e.g. be used
to synchronize the rules of the two combined CFGs.
For instance, we could use it to require that specific
rules in one of the combined CFGs can only be used
synchronously with specific rules in the other CFG,
similar to Multitext grammars (Melamed, 2003),
(Melamed et al., 2004).

7 Conclusions

We have shown that XDGs can becombinedusing
grammar composition, such that the string language
of the resulting grammar is e.g. theirintersection.
Using a model-theoretic axiomatization of LCFG in
XDG, we could then explore therelaxation of the
LCFG contiguity criterion, and, crucially, theinter-
sectionof LCFGs. Together, these two ideas lead us
to a model of one of the most complicated phenom-
ena in syntax by the combination of two grammars
formulated in one of the simplest of all grammar for-
malisms.

Acknowledgments

I’d like to thank Prof. Gert Smolka from Program-
ming Systems Lab in Saarbrücken, the people from
the CHORUS project, and the International Graduate
College (IGK) Saarbrücken/Edinburgh for support-
ing my research over the years. I’d also like to thank
the anonymous reviewers of this paper for their valu-
able suggestions.

References

Apt, Krzysztof R. (2003).Principles of Constraint
Programming. Cambridge University Press.

Blackburn, Patrick and Claire Gardent (1995). A
specification language for Lexical Functional
Grammars. InProceedings of EACL 1995.
Dublin/IE.

Boullier, Pierre (2000). Range Concatenation Gram-
mars. InProceedings of the Sixth International
Workshop on Parsing Technologies (IWPT 2000),
pp. 53–64. Trento/IT.

Chiang, David (2004). Uses and abuses of inter-
sected languages. InProceedings of TAG+7, pp.
9–15. Vancouver/CA.

Debusmann, Ralph (2006). Extensible Depen-
dency Grammar: A Modular Grammar Formalism
Based On Multigraph Description. Ph.D. thesis,
Universität des Saarlandes.

Debusmann, Ralph (2007). The complexity of First-
Order Extensible Dependency Grammar. Techni-
cal report, Saarland University.

Debusmann, Ralph and Denys Duchier (2007).
XDG Development Kit. Http://www.mozart-
oz.org/mogul/info/debusmann/xdk.html.

Debusmann, Ralph, Denys Duchier, and Joachim
Niehren (2004). The XDG grammar development
kit. In Proceedings of the MOZ04 Conference,
volume 3389 ofLecture Notes in Computer Sci-
ence, pp. 190–201. Springer, Charleroi/BE.

Duchier, Denys and Ralph Debusmann (2001).
Topological dependency trees: A constraint-based
account of linear precedence. InProceedings of
ACL 2001. Toulouse/FR.

14

Gaifman, Haim (1965). Dependency systems and
phrase-structure systems.Information and Con-
trol, 8(3):304–337.

Gerdes, Kim and Sylvain Kahane (2001). Word or-
der in German: A formal dependency grammar
using a topological hierarchy. InACL 2001 Pro-
ceedings. Toulouse/FR.

Hudson, Richard A. (1990).English Word Grammar.
B. Blackwell, Oxford/UK.

Kathol, Andreas (1995).Linearization-Based Ger-
man Syntax. Ph.D. thesis, Ohio State University,
Ohio/US.

Kepser, Stephan (2000). A coalgebraic modelling of
Head-driven Phrase Structure Grammar. InPro-
ceedings of AMiLP 2000.

Kepser, Stephan and Uwe Mönnich (2003). Graph
properties of HPSG feature structures. In Gerhard
Jäger, Paola Monachesi, Gerald Penn, and Shuly
Wintner, eds.,Proceedings of Formal Grammar
2003, pp. 115–124.

Kracht, Marcus (1995). Syntactic codes and gram-
mar refinement.Journal of Language, Logic and
Information, 4:41–60.

McCawley, J. D. (1968). Concerning the base com-
ponent of a Transformational Grammar.Founda-
tions of Language, 4:243–269.

Melamed, I. Dan (2003). Multitext grammars and
synchronous parsers. InProceedings of the Hu-
man Language Technology Conference and the
North American Association for Computational
Linguistics (HLT-NAACL), pp. 158–165. Edmon-
ton/CA.

Melamed, I. Dan, Giorgio Satta, and Benjamin
Wellington (2004). Generalized Multitext Gram-
mars. InProceedings of ACL 2004. Barcelona/ES.

Pullum, Geoffrey K. and Barbara C. Scholz (2001).
On the distinction between model-theoretic and
generative-enumerative syntactic frameworks. In
Philippe de Groote, Glyn Morrill, and Christian
Retoré, eds.,Logical Aspect of Computational
Linguistics: 4th International Conference, Lec-
ture Notes in Artificial Intelligence, pp. 17–43.
Springer, Berlin/DE.

Rogers, James (1996). A model-theoretic framework
for theories of syntax. InProceedings of ACL
1996.

Rogers, James (2003). Syntactic structures as multi-
dimensional trees.Journal of Research on Lan-
guage and Computation, 1(3/4).

Rogers, James (2004). On scrambling, another per-
spective. InProceedings of TAG+7. Vancou-
ver/CA.

Schulte, Christian (2002).Programming Constraint
Services, volume 2302 ofLecture Notes in Artifi-
cial Intelligence. Springer-Verlag.

Vardi, Moshe Y. (1982). The complexity of relational
query languages. InProceedings of the fourteenth
annual ACM symposium on Theory of Computing,
pp. 137–146. ACM Press, San Francisco/US.

15

