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Abstract

A parallel abstract machine for Oz (PAMOZ) is presented in this paper. Oz is a
thread-based concurrent constraint programming language with state. Oz is convenient
for concurrent programming like modelling multi-agent systems, as well as for solving
combinatoric problems. PAMO?Z models the execution of a sublanguage of Oz without
its constraint solving facilities. PAMOZ has been implemented in the parallel Oz system,
which is derived from the sequential Oz system and inherits its optimizations. PAMOZz
is targeted to shared-memory multiprocessors. PAMO7z executes Oz threads in paral-
lel. PAMOZ is derived from AMO7z, a sequential abstract machine for Oz. There are
two principal differences between PAMOZz and AMOZz: the architecture of the abstract
machine, and the implementation of operations on stateful data. PAMOZ can be con-
servatively extended for full Oz; there is an interface between PAMOZ and its constraint
solving extension.

Introduction

PAMOz (Parallel Abstract Machine for Oz) is an abstract machine for a parallel imple-
mentation of Oz. This paper is dedicated to motivating it, explaining it, and sketching both

its usage in the parallel Oz system and its extensions.

Parallelizing Oz. PAMOz is implemented in the parallel Oz system [Pop97] with the goal
to achieve parallel speedups, compared to the existing sequential implementation of Oz [OzS].

Parallelizing Oz is promising because:

e Oz is convenient and efficient programming language for concurrent programming (e.g.

modelling multi-agent systems) and constraint solving [HW95, Wiir96b, Wiir96a).



e There is an efficient sequential implementation of Oz. The parallel system is derived
from it and preserves its optimizations.

e A parallel implementation of Oz is arguably less complex than implementations of
similar concurrent constraint languages like AKL [JH94].

Oz [Smo95a, Smo95b] is a concurrent constraint (henceforth cc, see [SR90]) program-
ming language with state. Computation in Oz is organized into sequential threads. Threads
are created explicitly. Oz provides for convenient functional and object-oriented program-
ming. It provides also for constraint solving based on its constraint systems (rational tree,
finite domains and finite sets) and innovative control facilities as first-class computation
spaces [Sch97b, SS94].

Concurrent threads and sequential composition within threads in Oz allow to exploit
concurrency where it is necessary and avoid it where it is not desirable [Smo95a]. This makes
it easy to model, for instance, a multi-agent system whose agents’ behaviors are specified
by sequential algorithms. In problem solving, a next node to be explored in a search tree is
chosen by a sequential algorithm too. Such an algorithm consequently collects information
about the current node, applies a heuristic to that information, and finally decides which
node to take as a next one [Smo95a, MPSW94, MM97].

On the contrary, implicit concurrency in concurrent constraint languages like AKL makes
it difficult to encode sequential algorithms. In general, implicit concurrency tends to be fine-
grained. This has also performance disadvantages: as the amount of concurrency increases,
lower parallel speedups can be obtained because of the scheduling overhead.

The parallel Oz system is derived from the sequential one [OzS]. The parallel system
inherits optimizations of the sequential one. The parallel system running on a single pro-
cessor approaches the speed of the sequential system: currently it is about 70% as fast, but
evaluating and optimizing it is not yet completed.

The Oz sub-language for PAMOz. PAMOZ models a parallel implementation of a subset
of Oz without constraint solving facilities. In the following, this subset is called just Oz, while
Oz with constraint solving facilities is referenced as full Oz.

Concurrent threads in Oz communicate and synchronize over a shared store by means of
logic variables. The Oz store contains information in the form of variable bindings, produced
by the binding operation. The matching conditional allows to synchronize on the store: a
thread executing a conditional is blocked until a variable being matched is bound. One can
view variable bindings in the store as constraints, and binding of a variable and synchronizing
on a variable as instances of ask/tell operations in the cc languages.

Object-oriented programming in Oz is supported by Oz cells. An Oz cell is a stateful
data structure that holds a variable or a value. A cell’s content can be exchanged using the
cell exchange operation.

This subset of Oz is choosen for PAMOZ because it supports functional and object-
oriented styles of programming, it makes PAMOZ simple, and, finally, PAMOZ is conserva-
tively extendible for full Oz. Full Oz contains yet unification (known from Prolog), condi-
tionals that check logical entailment of a constraint by the store, further constraint systems



(finite domains and finite sets), and Oz first-class computation spaces.

PAMOz essentials. PAMOZ is targeted for shared-memory multiprocessor (SMP in the
following) computers. The Oz computation model is mapped naturally on SMP computers:
Oz threads are executed by working in parallel processors, and the shared Oz store lies in
the computer’s shared memory.

PAMOZ is derived from AMOz [MSS95], an abstract machine for the sequential imple-
mentation of Oz [OzS]. Both abstract machines are emulator-based, as opposed to native-
code compilation systems. They inherit ideas for data representation and code generation
from the WAM [War83, AK91], and the representation scheme for first-class procedures and
compilation of pattern matching from functional languages [PJ87].

PAMOZ executes Oz threads in parallel. Threads are executed by running parallel work-
ers. Workers are the only active entities in PAMOZ. Runnable threads are taken from the
thread pool which is shared among workers. The thread pool also implements a scheduling
strategy, for instance — FIFO. Since the thread pool is shared among workers, access to it in
the parallel Oz system is serialized in order to guarantee the internal consistency of the pool.

The PAMOZ worker looks like a sequential Oz system: this is a procedure that executes
Oz programs. Workers are executed in parallel by the operating system of an underlying
SMP computer. The worker is a stateful entity; its state contains at least the current thread.
The state is allocated explicitly and passed to a worker procedure when a worker is created.
The state cannot be put into a static, globally visible region as it is done in the sequential
Oz system, since there are multiple workers, each with its own state.

The Oz store is implemented in PAMOZ as an abstract data type (in the following — just
object). The store is shared among workers. It encapsulates an area to keep representations
of Oz variables and data, and provides for methods for accessing that data. The store holds
store objects. There are variable objects, value objects and reference objects. A variable
is bound by replacing the variable object with a reference object. Blocking a thread on a
variable (synchronizing with the conditional) results in preempting the thread and storing it
in the variable object; a worker executed the thread goes for a next runnable one. Binding a
variable that keeps blocked threads follows by scheduling the blocked threads for execution.

Maintaining stateful data in PAMOZz, as well as in every parallel system, requires special
care compared to a sequential abstract machine. This can be illustrated abstractly as follows.
A new state of an object depends on a previous one, so if the state becomes changed after
reading an old one but before writing a new one, that change will be overwritten and therefore
just dissapears.

There are two stateful objects in PAMOZz — variable objects and cell objects. Let us
consider first executing a matching conditional that blocks its thread. It proceeds as follows:
first it checks whether the variable being matched is bound (reads its state), and if it is not —
the thread is put into the variable object. If the variable becomes bound between these two
steps, trying to put the thread into the variable object will end up with the error: there is
no variable object anymore, but the reference object.

A naive implementation of the cell exchange operation that first reads a cell’s content
and then stores a new one suffers from the same problem. Here, if two exchanges of the same



cell interleave in such a way that a first one does its “read” and “write” between “read” and

“write” of another one, the new content put by the first exchange will disappear.

Compared to Oz variables and cells, Oz values are stateless and accessed as in a sequential
system.

Correctness of the bind and block operations on variables is guaranteed by serializ-
ing them for each variable. This is achieved by means of so-called “spin locks”, known
from [Cra88, LMT95, MA95]. A spin lock transforms temporarily the variable object into
the self-reference object. The effect of the lock is that the original object becomes inacces-
sible to other thread(s): a worker executing it falls into an endless loop until the object is
unlocked. Note that no deadlock is possible: there are no PAMOZ instructions that require
to lock more than one variable object at a time.

The PAMOZ implementation of the cell exchange operation performs atomic swap of the
previous and new contexts of the cell, which combines reading and writing a cell into an
atomic operation. Both taking a spin lock of a variable and atomic swap of a cell exploit a
special machine instruction (e.g. Sparc’s SWAP) provided by an SMP computer.

PAMOz versus AMOz. At the glance, PAMOZ principally differs from AMOZ in two
respects: the PAMOZ architecture and the implementation of synchronizing primitives. The
same set of changes can be applied to other cc languages since they all contain ask/tell —
based operations!, while data itself is stateless and accessed as in a sequential abstract ma-
chine. Additionally, the PAMOZ implementation of the cell exchange needs special care
compared to a sequential abstract machine (AMOz does not provide for cells).

Extending PAMOz for constraint solving. PAMOZ can be extended nearly conserva-
tively for full Oz. This proceeds as follows: first, one adds unification like it is done in [MA95].
Second, PAMOZ is extended for first-class spaces through a dedicated interface, and finally
it is extended for other constraint systems like finite domains, sets, etc. by means of a parallel
implementation of the constraint programming interface (Cp1) [MWO97].

PAMOz and the parallel Oz system. PAMOZ is implemented in the parallel Oz sys-
tem [Pop97]. The parallel implementation of Oz is concerned with the full language except
(by now) its finite domains and sets constraint systems.

The main implementation detail is that methods of PAMOzZ abstract objects whose im-
plementation are not considered here are atomic. An example of such objects is the PAMOz
thread pool. Atomic methods allow to neither see nor modify intermediate states of objects.
This is ensured by mutex locks over methods that can violate this property. The implemen-
tation contains also a lot of low-level optimizations, primarily dealing with enhancing the
memory usage (such as using more compact data representations, and caching information
in a worker’s registers), and increasing the speed of method applications in the Oz object
system. The implementation has reached a stable state, but has not been fully evaluated yet.

Related work. The most direct sibling of PAMOZ is AMOZz, which deals with the sequential
execution of programs written in a larger subset of Oz than the PAMOZ’s one.

!While, of course, constraint systems and synchronized entities are in general different.



KL1 is a fine-grained concurrent programming language with annotations for controlling
parallelism. KL1 does not contain constraint solving facilities. Its parallel implementaion
KLIC [FCRN94] is a native-code system. Synchronizing between executed in parallel activ-
ities has been added to the original sequential system through a special construct, instead
of re-implementing basic primitives in PAMOZ. Another implementation of KL.1 — the Su-
per Monaco system [LMT95] is also a native-code system, which was specially designed for
parallel execution.

AKL is a fine-grained concurrent constraint programming language, suitable for both
concurrent programming and constraint solving. Its parallel implementation Penny [MA95]
constitutes a major redesign of the original sequential, emulation-based implementation of
AKL. The abstract machine for Penny deals with full AKL; there are no obvious components
dealing with concurrent programming and constraint solving.

The contributions of the paper are:

¢ PAMOZ models a parallel implementation of the subset of Oz, suitable for concurrent
and object-oriented programming. PAMOZ executes Oz threads in parallel. PAMOz
ideas are exploited in the implemented parallel Oz system.

e PAMOZzZ approach for deriving a parallel abstract machine from a sequential one is
promising for other concurrent constraint programming languages.

¢ PAMOZ is a minimal model for an Oz system without constraint solving facilities. It
is simpler than AMOZ, since it does not contain such things like unification or local
computation spaces, which are necessary for constraint solving only.

Plan of the paper. The rest of the paper is organized as follows. The relevant subset of Oz
is introduced in Section 2. The architecture of PAMOZ is presented in Section 3. Section 4 is
devoted to the representation scheme of Oz data types. PAMOZ is introduced in Section 5,
where the compilation of Oz code for PAMOgz is presented. The PAMOZ implementation of
synchronizing Oz operations is discussed in Section 6. The interface between PAMOZ and
its extension providing for problem solving is sketched in Section 7. Implementation details
of the parallel Oz system are considered in Section 8. Related works are listed in Section 9.
Finally, conclusions and directions for further work are given in Section 10.

2 Oz

Computation Model. Oz is a concurrent constraint program-
ming language with state. Computation in Oz is organized into l Lheead ]

concurrent threads which contain computation tasks composed se- N\ | /

quentially. Threads process data from the shared store. Data in (ot ie
the store describe values of logic variables. A logic variable denotes

a certain value, like does a variable in mathematic. Information



cannot be retrieved from the store. A thread is blocked until the store contains enough in-
formation for performing the next computation task. Concurrent computation in Oz has
interleaving semantics. This means in particular that operations on the store are sequential-
ized.

The logic variable is the main distinguishing feature of the Oz computation model when
compared to imperative and functional languages. Concurrent threads and sequential com-
position within threads is the most important Oz feature when compared to other concurrent
constraint languages such as Strand [FT89], Janus [SKL90], KL1 [UC90] and AKL [JH94].
These language features implicit, fine-grained concurrency. The Oz computation model with
its explicit concurrency is simpler to use yet support common programming paradigms [Smo95a].

Data Types. In this paper we consider records, procedures and cells. An Oz record consists
of a symbolic label and zero or more components, each of them is an Oz value again. Record’s
components have symbolic names. A record having no components is called atom.

Oz procedures are primitive data structures which encapsulate “closures”. A closure
consist of code to be executed and references to variables that are lexically non-local to a
procedure definition but are referenced inside it. This is similar to other languages with
lexical scoping and first-class procedures, e.g. Common Lisp.

Cells are similar to records, but have only one component, and this component can be
exchanged by means of a dedicated cell operation.

Storage Model. The Oz storage model defines how Oz data is stored in memory from the
point of view of an Oz programmer. In fact, the PAMOZ data representation model is a
refinement of the storage model presented here.

The Oz store contains store objects. A store object is ei-
ther a primitive value object (like integers), a compound one
(like e.g. structures in C), a variable object or a reference ob-
ject which points to another object. Primitive objects repre-
sent their values, compound ones contain additionally one or
more references to other objects, variable objects represent
Oz variables that values are not known yet, and reference
Figure 1: Binding a Variable. objects are auxiliary structures explained below.

Variable identifiers in a running Oz program are mapped
to store locations, which originally contain variable objects. Store objects have indefinite
extent, that is, they are kept alive until they cannot be reached by a running program
anymore.

Information about values of variables is represented by means of binding variables to
data objects. A variable is bound by replacing its object with a reference object, pointing to
another object. Thus, one can think about information in the store as a graph whose nodes
are objects and edges are references to objects.

The example on Figure 1 shows how a variable z whose location is known to a thread is
bound to the integer 5. The result of binding is shown on the example of another variable y.
Accessing a value of a bound variable involves skipping reference objects on a path from the
original variable’s location up to a non-reference data object. This is called dereferencing.




Program Structure. Oz is a statically scoped language with the block structure. An Oz
program is a sequence of expressions. Thus, Oz programs look very similar to block-structured
imperative programming languages.

Expressions. There are the following expressions?, where z,y, z are variable identifiers and
a,b are symbolic constants:

V u= f(@:y) | a | proc{y}Eend | cell]y] values

E F == skip skip
| EF sequential composition
| local zinEend declaration
o=V | zi=y binding
. {z7} procedure application
| exchzset yget zin Eend cell exchange
| casezof f(a:y)then Eel se Fend conditional
| thread E end thread creation

Records are specified as f(a : §) terms, where f is a label, @ are components’ names, and
y are the components themselves. Atoms are given by their symbolic names a. A procedure is
created as proc {7} E end, where 7 are formal arguments and F is a body. Cells are specified
as cel | [y], where y is an initial cell’s content.

Two expressions written one after another are composed sequentially. A new block with
the variable z in the scope of E is introduced by means of the expression | ocal zi n F end.
Procedure bodies, cell exchange expressions and threads are other types of program blocks.

A variable z can be bound either to a value V or another variable y by means of z :=V
and z := y respectively. A variable can be bound only once. Note that executing both z :=y
and y := z is a programming error in the Oz subset considered here.

Procedure application {zy} of a procedure proc {Z} E end proceeds by executing the
expression Ely;/z1,...,yn/2n]. Thus, actual parameters § are passed by name. Argument
passing can be seen also as “call-by-reference” since only variables are allowed at argument
positions. Applying a non-procedure is a programming error.

A cell’s content is exchanged by means of the exch expression. In this expression z is
expected to be a cell, y is a new cell’s content, and z is a variable within the scope of E. exch
puts a reference to y into a cell and continues with E[y’/z], where y' references a previous
cell’s content®. Applying exch to a non-cell is a programming error.

A conditional case z of f(a : y)then E el se F end proceeds by executing either E or
F, depending on whether a value bound to the variable z matches the linear pattern f(a : 7)
or not. The matching procedure is similar to e.g. the SML’s one [MTH90]. Records match
if they have the same label and the same components’ names. Variables 7 from a pattern

2We don’t follow the actual Oz syntax here, because it is designed with respect to many other requirements
and language features that are not considered here. Neither do we claim that this subset is “minimal”.

®Note that z is a variable identifier: it is not bound, but replaced by the cell’s content. This allows to bind
a variable, say z, that has been retrieved from a cell: otherwise, if the exchange would just bind a variable u
to x, © could not be bound since the only way to access it is to refer v which is bound already.



decl are ProcessRequest in ProcessRequest := proc {Request} ... end

decl are QueueRequest

in

| ocal Cell RequestStream Server in
Cell := cell[RequestStreani
QueueRequest : = proc {Request}

[ ocal NewTail in
exch Cell set NewTail get AdTail in
A dTail := cons(car: Request cdr: NewTail)
end
end
end
Server := proc {Strean}

case Stream of cons(car: Request cdr: Rest) then

{ProcessRequest Request}
{Server Rest}
el se skip %term nated

end
end

t hread {Server RequestStreant end

end

Figure 3: Concurrent Server in Oz.

have the scope of E, and are bound to corresponding components of a record being matched.
Without the loss of generality we omit in this paper nested patterns, token matching of
procedures and cells, and multi-pattern conditionals which are present in Oz.

sdedule

BRoeck

|

{'u’m‘-v\&{& un m’° ok

Figure 2: Thread
States.

Procedure application, cell exchange and conditionals are the
synchronizing operations: they wait until a variable z is bound to
a value. Other primitives are unsynchronizing ones.

A thread is created by means of t hread E end. A thread can
be either runnable, running or blocked (see Figure 2).

Functional and Object-Oriented Programming. Functional
notation can be easily added to the Oz subset considered here. Its
encoding uses procedures and logic variables [Smo95a]. The Oz
object system [HSW95, Hen97, Smo95a] can be also implemented
in this susbset of Oz. Its implementation exploits lexical scoping,
first-class procedures and cells in style of e.g. [ASS96).

An Example of Concurrent Programming. The example on Figure 3 shows the im-
plementation of a concurrent (autonomous) server in Oz. The example exploits Oz threads,
sequential composition within threads, logic variables, cells and conditionals.

The server needs a procedure ProcessRequest which processes requests (variables that
have the indefinite extent are declared with decl are). The server defines the procedure
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ocke
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Figure 4: PAMOZ Architecture.

QueueRequest which can be used by clients having requests to the server. The server queue
is an incomplete list Request St r eam whose actual tail is an unbound variable kept in the
cell Cel | . Initially the queue is empty (Request St reamis an unbound variable). Elements
of the list are implemented as “cons” records. A request is queued by putting a new cons cell
in the list, and storing a new tail into the cell.

The server itself runs in a dedicated thread. The Server procedure synchronizes on the
store: it waits until a new request arrives (using the matching conditional), then processes
it, and finally goes recursively for a next request. Note that the server is secure because its
implementation is hidden in the | ocal ...end block.

3 PAMOz Architecture

PAMOZ executes threads in parallel. Threads are executed by workers. The architecture
of PAMOz (see Figure 4) allows existence of multiple workers. Workers are the only active
entities in the system. Runnable threads are kept in a shared thread pool. Workers can
access data in the shared store.

The PAMOZ worker is a procedure that executes PAMOZ code, introduced in Section 5.
Workers are executed in parallel by the operating system of the underlying SMP computer.
The worker is a stateful entity; its state contains at least the current thread.

Compared with AMOz, PAMOZz abstracts the state of the worker. It is encapsulated in
the worker state object. Thus, one speaks about components of the state object rather than
about global registers and memory locations keeping global data. PAMOZ operations that
require access to the worker state take the state object as an additional argument.

The thread pool encapsulates a scheduling strategy which is not specified by PAMOZ.
It is required only that scheduling is fair (due to the language specificiation). A naive
implementation of the pool contains a queue. A more elaborated one could try e.g. to avoid
moving threads between workers (while preserving fairness), if it would help to improve the
performance of the memory subsystem of the computer (see e.g. [ML92a, ML92b]).



Bool StoreObject::bind(Storelbject *var,
: StoreObject *to) {
'\f:fz,:' if (var—type == Var) {

L i {
G T
;’, : ‘, | var—type = Ref;
bd( D e s \:Ni(( D i y 01’ var—u.ref.ptr = to;
F v o s=Va
/ ,‘S,,(ln(-»'\-«/pea.‘lnf) ')“ b 7": . g’ return (TRUE);
l ‘ l 4 .[N—-bu,r% P =
,vo(-)u el plc =, ’ ’, AN 1
\ 2“ e / /‘ Pt P } else {
N | ‘\' B ,“/‘/\y’ ‘o 5 N L return (FALSE);
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: / N }
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Figure 5: Erroneous Behavior of the AMOZz BIND in the Context of PAMOZ.

4 Data Representation

The PAMOZzZ data representation model is a specialization of the Oz storage model. It is
similar to the AMOZ one, which, in turn, is based on ideas from WAM [War83, AK91].

A store object contains a type tag and further data depending on its type (the C++ like
notation is used here):

typedef enum {Atom, Record, Cell, Proc, Var, Ref} Type;
class StoreObject {

Type type;
union { struct { char xname; } atom;
struct { char xname; Signature xsig; StoreObject components[]; } record;
struct { StoreObject xcontent; } cell;
struct { int arity; ProgramCounter pc; int varNumber; StoreObject vars[]; } proc;
struct { ThreadList *blockedThreads; } var;
struct { StoreObject *ptr; } ref; } u;

h

Here the sig records’ substructure keeps a mapping from symbolic components’ names to
their indexes in the array components. The structure of procedures is considered in Section 5.
The blockedThreads substructure holds a list of threads; its purpose is discussed in Section 6.

PAMOZ assumes that an underlying SMP computer is sequentially consistent. That
is [Lam79], “the result of any execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program”?.

There are two basic operations on the store: binding a variable and dereferencing a chain
of references. The BIND operation checks consequently whether a store object is a variable

“It is not considered yet which weakest consistency model is sufficient for PAMOz. The real parallel Oz
system runs on SPARC multiprocessors running in the so-called “total store order” mode, which relaxes the
order constraints in the case of a write followed by a read to a different location [SPA92].
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one, and if it is — replaces it with the reference object. Dereferencing skips reference objects
on the path to a non-reference object. This operation allows to access an object a variable
has been bound to, as discussed in Section 2.

A straightforward encoding of the BIND operation (see the code on Figure 5) is sufficient
for sequential AM Oz [MSS95], but needs improvement when put into a parallel system. This
is illustrated on Figure 5. There, the first thread binds the variable Y (at ¢3) between checking
the variable (at ¢2) and binding it (at ¢4) by the second thread. Clearly, both threads believe
they have bound Y, and no exception is raised.

The problem with the BIND from AMOZ when it is used in PAMOZ is fixed by serializing
access to each variable. This is achieved by means of locking of store objects. The idea of the
PAMOZz lock is to convert temporarily a store object to a reference object pointing to itself,
so other workers will “spin” while dereferencing it. A content of a succefully locked object
is saved in another store object, which location is known only to the worker that has locked
the object. A locked object is unlocked by restoring its content back:

StoreObject* lock(StoreObject *obj) { void unlock(StoreObject *obj,
StoreObject *lock = new Store(Object; StoreObject *lock) {
lock—type = Ref; swapObjects(obj, lock);
lock—u.ref.ptr = obj; delete lock;
swapObjects(obj, lock); }
return (lock);

}

The swAPOBJECTS procedure that exchanges contents of two objects is atomic. That is,
objects are exchanged in a single step from the point of view of all workers. SWAPOBJECTS
requires hardware support, like the Sparc’s SWAP instruction that exchanges two machine
words. A non-atomic implementation of SWAPOBJECTS lets other workers to observe partially
overwritten objects, as well as to lock an object by two workers simultaneously. The later
problem is similar to the erroneous behavior of the AMO?Z BIND in the context of PAMOZz.

The BIND operation locks the object that is supposed to be a variable, and works with its
content from the copy:

Bool StoreObject::bind(StoreObject *var, | StoreObject* deref(StoreObject *obj) {
StoreObject *to) { while (obj—type == Ref)

StoreObject *lock = lock(var); obj = obj—u.ref.ptr;
if (lock—type == Var) { return (obj);
lock—type = Ref; }

lock—u.ref.ptr = to;
unlock(var, lock); return (TRUE);
} else {
unlock(var, lock); return (FALSE);
}
}

11



C[® ... l1ocal zin®Ezvi-vaend” " ...] =

cee case MoveEX(n,r):
MoveEX (A% [[yl]] , 1D w—rcurrentThread—X[r] = w—currentThread—E[n];
s DISPATCH;
MoveEX (A [yn],n) case Push(pc):
Push(L1) w—rcurrentThread—push(pc, currentThread—E);
Allocate(n+1) DISPATCH;
MoveXE(1,.A? [yi]d case Allocate(n):
ce w—rcurrentThread—E = new StoreObjectx[n];
MoveXE(n, A° [y,]) DISPATCH;
NewVariable (A”° [z]h case NewVariable(i):
C[E*Y-¥n] w—>currentThread—E[i] = new StoreObject(Var);
Return DISPATCH;
L1: --- case Return:
goto popTask;

Figure 6: Compiling and Executing a Block.

5 Executing Oz Programs

In this section the compilation and execution of Oz programs is introduced. The implementa-
tions of the non-synchronizing operations presented here are shared by sequential and parallel
abstract machines. That is, they are inherited “as is” from a sequential machine.

PAMOz Byte-Code. Oz programs are compiled to PAMOZ byte-code [Sch97a]. The Oz
Compiler translates a sequence of Oz expressions constituting a program into a sequence of
PAMO?z instructions: C[E F] = C[E]C[F] (C[] is the compilation function). C[E], C[F]
are interpreted sequentially by the PAMOZ emulator loop. Each thread is equipped with a
program counter (pc).

Execution of code from a program block a proceeds in an enviroment mapping variable
identifiers (variables for short) T to store locations. Variables are compiled to indexes A[z]
into an environment E. So, variable locations are referred as ELA“[z]]1. A variable can be
indexed differently in nested blocks. Each thread is equipped with a pointer to the current
environment.

Nested Blocks. Compilation and execution of the expression (¥l ocal zi n (8 E#¥1-¥» end
is shown on Figure 6. Here, the variables z,y;..y, are global to E. « is the name of the
enclosing block, and (3 is the name of the block which is entered. PAMOZ instructions are
given on the left side, and their implementations — on the right one. For simplicity, programs
with renamed apart variables are considered here. w is a pointer to the worker state object.
The macro DISPATCH causes the emulator to fetch and execute the next instruction.

Entering the block [ requires a new enviroment, which is allocated by the ALLOCATE
instruction. The environment keeps locations of variables z,y1..y,. Locations of variables
y1..yn are passed through temporary registers x[il. This register set is used also for pass-
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C[(™ -z :=proc {yi.ym} B EV-¥m:21-2 end®2 ... {ruy.u,,} -] =
case Proc(regNum,pc,arity,varNumber,R):
Proc(nproc,Ll,m,k, StoreObject *p = new StoreObject(Proc,pc,arity,varNumber) ;
<AYz1]s -5 AYzm]» for (int i = 0; i ( varNumber; i++)

Bind (A% [[:U]] sNproc) p—setClosureVar (i, w—currentThread—E[R[i]]);
Goto(L2) w—>currentThread—X[regNum] = p;

L1: Allocate (m+k) case Bind(varNum,regNum) :
MoveXE(l,A’B[[yl]]) StoreObject *var = w—>currentThread—E[varNum] ;
cee StoreObject *obj = w—currentThread—X[regNum] ;
MoveXE(m , A [y,,]) if (var—bind(obj)) DISPATCH;
MoveXE(m+1,Af3[[z1]]) else ERROR("Binding a non-variable");
ce case Apply(varNum) :
MoveXE(m+k‘,Af3[[zk]]) StoreObject *proc = w—currentThread—E[varNum];
C[[Eyl..ym721..zk]] for (int i = 0; i ( proc—varNumber; i++)
Return w—rcurrentThread—X [proc—arity+i] = proc—getClosureVar(i);

L2: --- GOTO (proc—pc) ;
MoveEX (A*[u1], 1) case Rec(regNum,label,n,sig):
X[regNum] = new StoreObject(Record,label,n,sig);
MoveEX (A [um],m) DISPATCH;
Push(L3) case SetComp(regNum,name, compRegNum) :
Apply (A*[z]) StoreObjec *recObj = X[regNum];

L3: - recObj—setComponent (name, compRegNum) ;

DISPATCH;

Figure 7: Compiling and Applying a Procedure.

ing locations of actual parameters when applying a procedure. The PAMOZ instructions
MovEEX and MoOVEXE are used for accessing X registers. A variable z introduced in the
block is created by means of the NEWVARIABLE instruction. This instruction allocates a new
variable object and stores its location into a given environment cell.

Entering a nested block requires also saving the enclosing environment together with the
continuation address after the block, which together form a task. A task is saved in a thread’s
stack by means of the PUSH instruction. The last instruction in a block is RETURN which
causes the emulator to pop and execute the next task at the thread’s stack (see Figures 6
and 8)

Procedures. The procedure application {zu} (see Figure 7) is similar to entering a block.
The code for the application starts after the label L2. The actual arguments u1..u,, are passed
through temporary registers 1..m, and the environment is saved on the stack by the PusH
instruction. After that APPLY jumps to the procedure body.

The procedure closure is created by means of the PROC instruction. The closure keeps
the pc of the procedure body (L1), the number of procedure’s formal arguments, and locations
of variables z;..z; which are global to the procedure body. These locations are copied from
the current environment, where they are indexed as A*[z], .., A*[2].

13



C[[(Of) ... thread (5)Ey1.-yn endyl"y" - ]]

cee emulate:
MoveEX (A*[y1].1) loop {
MoveEX (A [yn],n) case Thread(pc):
Thread (L1) Thread *thr = new Thread;
Allocate(n) thr—push (w—currentThread—pc+1, (StoreObject x)NULL);
MoveXE (1 ,A’B [[yl]]) threadPool—insert (thr); GOTO(pc);
. )
MoveXE(n, A% [yn]) | popTask:
C[EY'-¥] if (w—>currentThread—isEmptyStack()) goto getThread;
Return Task *t = w—currentThread—popQ);
Li: --- w—rcurrentThread—E = t—E; GOTO0(t—PC);
getThread:

if (threadPool—isEmpty()) exit();

w—currentThread = threadPool—extract(); goto popTask;
preemptThread:

w—>currentThread—push(pc, w—currentThread—E);

threadPool—insert (w—currentThread); goto getThread;

Figure 8: Compiling and Executing a Thread.

The locations from the closure are used by the APPLY instruction: it copies them into X
registers just after actual arguments. So, the procedure body expects m actual arguments in
regiesters 1..m, and k environment variables in registers m + 1..m + k.

The location of the closure that has been created is kept temporarily in a free X register
nproc- The environment variable z is bound to the closure using the BIND instruction.

The PAMOZ variable management scheme is similar to the scheme used in imperative
programming languages with block structure. Oz compiler exploits typical optimizations like
using temporary registers for short-lived variables and re-using environment slots.

Data structures. Binding variables to a primitive data structure is similar to the z :=
proc {Z} Eend example from above. Records are constructed as follows. First, a record store
object is allocated by the REC instrucion which is shown on Figure 7. Then, references to
components are set by means of the SETCOMP instruction. Its arguments are the temporary
register with the location of the record object created by REC, a symbolic component’s name
and a temporary register keeping the component. Note that records are constructed in the
bottom-up fashion. That is, a variable is bound to a record first when all record’s components
are set’.

Threads. New threads are created by means of the THREAD instruction (see Figure 8). Tts

°In fact, there is a difference to AMOz as presented in [MSS95]: there a not yet completed structure is
bound to a variable first, and after that structure components are set. This solution has been choosen in order
to make possible the WAM-style access to structure elements — through an “S” pointer.
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C[[(Of) ... exch zset Y get zin (ﬁ)EI’y’Z’m--un end®:yu1--tn . ]]

MoveEX (A*[u1], 1)

MoveEX (A [u,],n)
MoveEX (A*[z],n+1)
MoveEX (A% [[y]] ,n+2)
Push(L1)

Allocate (n+2)
MoveXE(1,¢4ﬁﬂu1ﬂ)

MOVeXE(n,J46HUnH)
MoveXE(n+1, A%[z])
MoveXE(n+2,44ﬁﬂy])
Wait(¢4ﬁﬂx])

case Wait(n):
StoreObject *var = w—currentThread—E[n];
loop {
var = var—deref(); StoreObject %lock = lock(var);
if (lock—type == Var) {
w—currentThread—push (w—currentThread—pc,
w—currentThread—E);
lock—raddBlockedThread (w—>currentThread) ;
unlock(var, lock); goto getThread;
} else if (lock—type == Ref) {
unlock(var, lock); continue; // bound after deref();

} else {

unlock(var, lock); DISPATCH; // a non-wvariable;

}

Exch(A%z], ALy, AL | }
CHZEZW7LU1““"] case Exch(nCell,nNewValue,n0ldValue):
Return StoreObject *cell = w—currentThread—E[nCell] —deref();
Li: .- w—rcurrentThread—E[n01dValue] =
cell—exchange (w—>currentThread—E [nNewValue]) ;
DISPATCH;

Figure 9: Compiling and Executing a Synchronizing Operation: Cell Exchange.

argument is the address of the next instruction in the current block. Since the thread’s extent
is not known apriori, a new environment is allocated. Variables y;..y, global to E are passed
through x registers, which are copied for the new thread. The very last instruction in the
compiled thread body is the RETURN one, which terminates a thread.

From time to time (e.g. when the APPLY instruction occurs) the emulator checks whether
the current thread must be preempted. The condition for preempting a thread might be, for
instannce, whether it has exceeded its time slot. In the case of preemption the emulator jumps
to the label preemptThread (see Figure 8), where the task starting at the current instruction is
pushed to the thread, and the thread itself is inserted into the thread pool. After that the
next thread is taken (see at the label getThread) and its topmost task is executed (popTask).

Note that locations of store objects are freely copied because store objects are never moved
or destroyed. This is particularly essential when creating an environment for a new thread.
Inaccessible objects are the subject for garbage collection, similarly to other programming
languages with data’s indefinite extent.

6 Synchronizing On The Store

The PAMOZ implementation of Oz synchronizing operations is presented in this section on
the example of the Oz cell exchange. The idea is shared with AMOZz: a thread missing a
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case Wait(n):

StoreObject *var = w—rcurrentThread—E[n];

N Ahcead ‘P\\VGOJ %2
aTRES : : Loop {
\oRendCal : TN var = var—rderef();
FESCITT RN NG <Y . ’
;o RSN AR if (var—rtype == Var) {
", - w—>currentThread—push (w—>currentThread—>pc,
- T T ST L \
, Cage Wairk.D : T~ ';, w—>currentThread—E) ;
‘ S s es
| ;;;; Cvac = {ype ==vac) } \ Coiwmd €0 var—>addBlockedThread (w—>currentThread) ;
1 e ,,‘ T
‘,\ o addbeedked Mead « N K goto getThread;

L e cucedThesad) T " } e1se if (lock—type == Ref) {
\ -~ Vd ‘ yal 15 not a
N e N continue; // bound after deref() - retry;
‘.’ // “} } else {
) . Y e

-+ + DISPATCH; // a mon-variable;

}
}

Figure 10: Erroneous Behavior of the WAIT Instruction Without Locking in PAMOz.

value of a variable is preempted and saved in the variable object. A worker executed the
thread that has been blocked picks up from the thread pool a next runnable one. A thread
blocked on a variable is pushed back into the thread pool first when this variable becomes
bound. A continued thread retries the operation that has caused it to block.

Compiling and executing the cell exchange operation is presented on Figure 9. The new
block § introduced by the operation is handled similarly to ®l ocal zin?FE end, considered
in Section 5. Exchanging the cell proceeds in two steps. First, the WAIT instruction is used
to check whether the variable denoting the cell is bound. If it is (checking the type of a value
object is omitted here for simplicity), then the cell’s content is exchanged by means of the
EXCH instruction; otherwise WAIT blocks the thread.

WAIT puts the thread blocked on the variable into the blockedThreads list in the variable
object. WAIT in PAMOZ needs to lock the variable similarly to BIND. This is illustrated on
Figure 10. There, a version of WAIT without locking is given on the right side. On the left
side the first thread starts the cell exchange of a yet unbound variable, and the second thread
binds that variable to a cell. In the scenario shown on the figure the variable Y becomes
bound (at t3) when WAIT has found Y to be a variable (at #;) but before the thread is put
into the blockedThreads list (at ¢3). The problem is that at ¢3 the variable object has been
overwritten already, so the method addBlockedThread cannot be executed.

When a variable is bound by BIND, threads from that list are put into the thread pool:

Bool StoreObject::bind(StoreObject *var, StoreObject *to) {
if (lock—isVar()) {

threadPool—insert (var—blockedThreads); // new code;
var—type = Ref;
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The EXCH instruction also needs to be atomic. It cannot be implemented as a couple of
READ and STORE operations: an error happens when such “read&store” exchange is executed
between READing and STOREing the same cell by another worker. In this case there are two
consequent reads followed by two consequent stores, so both cell exchanges return the same
values, and the first value stored just disappears.

Implementations of other Oz synchronizing operations are similarly split in two steps:
WAITing, and performing the action hereafter. Implementing first-class procedures with-
out synchronization has been considered before (see Section 5); the implementation of the
matching conditional is rather trivial: a PAMOZ code sequence for a conditional performs
the top-down matching of a structure similarly to a very naive implementation of a func-
tional programming language like SML. Matching a record uses the M ATCH instruction that
compares a record label with then given one, and the GETCOMP instruction that extracts
a record component into a register for further matching or accessing it within the “then”
expression.

7 Towards PAMOz for Full Oz

Full Oz is characterized by its constraint solving facilities [SSW94, MW97]:

e There is unification known from Prolog, and the matching conditional is extended to
conditionals i f ¥yt hen E el se F'fi, where 1 is a constraint which needs to be entailed
by the constraint store when taking the “t hen” branch.

e It offers a control mechanism suitable for programming search — first-class computation
spaces [SSW94, Sch97c]. A computation space encapsulate threads and constraints
produced by them. Spaces allow to explicitly exploit search alternatives. Oz as a
concurrent constraint language does not provide for the builtin search mechanism like
the backtracking-based one from Prolog; instead, the Oz synchronizing primitives wait
until sufficient information is available in the store.

Oz unification and general conditional can be seen as constructs orthogonal to binding and
matching conditional. The AMOZ unification algorithm is described in [MSS95]. PAMOz
unification exploits a different scheme for keeping track of rational (cyclic) trees. Another
point is that the variable-variable unification may not neither produce endless reference chains
nor allow workers to deadlock. Techniques used in PAMOQZ are similar to those described in
e.g. [Mon97].

The first-class spaces and general conditionals are implemented on the top of the PAMOz
local computation spaces. The PAMOZ implementation of the Oz store together with the
threads’ management routines can be seen as a primitive version of computation spaces. The
PAMOZ local space can manage yet constraints on non-local variables and keep track of local
threads.
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A local computation space is represented by an object (see Figure ??). There is the
interface between PAMOZ and space objects. It consists of two parts:

e Services provided by PAMOZ, like creating a new thread. In order to provide it, certain
PAMOZ objects are conservatively extended. An example is that thread objects and
variable store objects carry a space pointer — a pointer to the space they belong to.

e Services and event handlers provided by space objects. For example, the space object
provides for binding variables and creating threads. Events in PAMOZ like terminat-
ing a thread in the current space are reported to the space object through method
applications.

General conditionals mentioned above can be expressed by means of spaces. The idea
is to put a constraint 1 into a computation space: if it becomes stable, then the constraint
is entailed and the “t hen” expression is executed. If the space fails, then the constraint is
disentailed, and the “el se” expression is choosen. When a thread blocks on a space, then
there is not yet enough information to determine entailment, the the conditional blocks.

PAMOZz for full Oz can be extended for the constraint programming interface
(Cp1) [MWY7]. CPI is an interface between an abstract machine for Oz and propagators
written in C++ which are used to express non-trivial constraints. Propagators are sequen-
tial programs that try to amplify information in the store. For example, if a finite domain
propagator x = y + z sees that y and z can be either 1 or 2, then it adds the constraint
saying that £ must be in the range of 2..4. CPI provides propagators for reading and writing
information to the store, and controls their invocation.

The problem with executing propagators in a par-

propagalor allel system is that the store can be amplified during
aRAL the execution of a propagator. Consider the example
sheck /»r‘wv*‘ on Figure 12: the propagator fails to shrink the do-
ot main of x to 2..4 because the additional constraint on
) y arrives after reading parameters by the propagator.
2 The PAMOZ implementation of CPI solves the prob-
bt dumld ey lem by locking the propagator’s parameters during its
execution. Note that after the modification of the Cp1
implementation the propagators originally written for

Figure 12: Erroneous Behavior of ; i
the Sequential CPI in PAMO?Z, the sequential Oz system are reused in the parallel

one.

8 Parallel Oz Implementation

PAMOZ has been implemented in the parallel Oz system [Pop97]. The origin of this imple-
mentation is the (sequential) DFKI Oz System [OzS]. The emulator which is implemented
in C++ has been converted to the parallel one, while the Oz Compiler remained unchanged.
The parallel system runs currently on SPARC multiprocessors under Solaris 5.*.
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Two questions have been considered when implementing PAMOZ: how to implement it
correctly, and what could be done in order to speed up the implementation.

Correctness. Complex shared objects in PAMOZ are held consistent. For instance, if a
thread object has the allocated task stack, then the corresponding flag in the object is set, and
vice versa. In order to guarantee consistency methods that either (a) temporarily bring an
object into an inconsistent state and/or (b) allow to observe that inconsistency are serialized.
This is done by means of mutex locks.

Shared objects that relate to each other are maintained consistenly too. This is achieved
by serializing transactions on them. A standard deadlock-free locking scheme is exploited,
namely, each set of objects being locked together has a total order relation; objects are locked
starting from a smallest one.

Compiler optimizations in the implementation language (C++) concerning the caching of
data in machine registers are prohibited when compiling methods protected by locks. This is
because otherwise a compiler may move out actual memory operations from regions protected
by locks, as well as reorder them. These optimizations are switched off by declaring C data
structures to be volatile. Note that memory cells that hold busy-waiting locks are volatile
for the same reason as well.

Efficiency. The parallel system inherits all optimizations from the sequential Oz system.
Though this required a substantial engineering effort, no design changes were necessary. In
general, optimizations that are applicable to AMOz will be also applicable to PAMOZz,
possibly excepting those dealing with synchronizing primitives.

Both sequential and parallel systems feature space- and speed- efficient representations
of data. Primarily, they exploit tagged pointers instead of tagged data (as described e.g.
in [Gud93]). Both systems exploit threaded code made possible by the GNU C compil-
er [Sta96], which reduces the overhead of emulation by up to 50% [Sch97a]. Oz object-
oriented capabilities are supported directly by the emulator: method applications, first-class
methods and attribute accesses are as fast as procedure applications and accessing record
components. The speed of the sequential system is comparable to “state-of-the-art” imple-
mentations of Prolog like SICStus. Detailed analysis and evaluation of optimizations can be
found in [Meh97, Sch97a, Hen97].

The parallel system is optimized on its own. Optimizations serve for better sequential (i.e.
on a single worker) speed and/or help to obtain better parallel speedups. The most essential
one among the first group is the locking scheme that does not consume additional memory.
The idea of the scheme is to reuse temporarily a memory cell of the object’s representation
for the lock, while the content of that cell is kept as a local data in the PAMOZ procedure
that has taken the lock.

I believe that the most effective optimization among those that serve for better speedups
is the per-worker memory management scheme, as implemented in [Mon97], and to some
extent in [FCRN94]. Each worker has a local memory pool that is used to allocate locally
created store objects. This eliminates the contention on memory manager that takes place
in the case of a shared memory pool. Apparently, this helps also to reduce the so-called false
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sharing of cache lines [TLH94]S.

9 Related Work

Oz/AMOz [MSS95]. The most direct sibling for PAMOZ is the sequential abstract machine
for Oz. Both use similar data representation schemes and ideas for translating and executing
(P)AMOZ code. They differ in the implementation of operations crucial for parallel exe-
cution, and PAMOZ offers an interface between a “pure” concurrent sub-language and its
constraint solving extension, while AMOZ does both parts in a rather monolithic fashion.
KL1/KLIC [FCRN94]. KLI is a fine-grain concurrent programming language with logic
variables. The KLIC system exploits annotations to control the amount of parallelism. KLIC
is a native code system: KL1 programs are translated into C. The system contains both local
and shared heaps. Accessing a shared variable is implemented with the help of generic objects
which serve for synchronization between concurrent goals. Methods of a generic object are
applied whenever a variable is bound or a concurrent activity blocks on it. The generic
objects mechanism allows to preserve the sequential core unchanged at the expense of an
additional object type.

KL1/Super Monaco [LMT95]. Super Monaco is also a native code system. The native code
is derived by macro-expansion from the intermediate code. Native code calls functions from
a run-time library with implementations of complex operations like memory management
and unification. Operations crucial for parallel execution are encapsulated in the run-time
library; their implementations are not described in [LMT95]. Variable objects in the system
do not contain references to goals blocked on them; instead, suspensions are accessed through
a global “hook” table. Authors motivate this solution by measurements saying that goals
block rather seldom (which is also true for Oz). However, the impact of contention on a
shared global hook table is not measured.

AKL/Penny [MA95]. AKL (Agents Kernel Language [JH94]) is a concurrent constraint pro-
gramming language with fine-grain implicit concurrency. Penny exploits a store model and
compilation techniques similar to (P)AMOz. Since AKL does not contain a sub-language
without constraint solving facilities, the Penny abstract machine implements the whole lan-
guage. Penny originated from the sequential AKL system, similar to PAMOZz, but changes
made to the sequential system are not listed explicitly in publications on Penny.

PAMOz among KLIC, Super Monaco and Penny. The parallel implementation of
AKL (Penny) has faced the major problem of managing fine-grain concurrency. The problem
is solved in part by exploiting various scheduling heuristics. The impact of the scheduling
overhead is reduced also by careful encoding of benchmark programs. Since threads in Oz are
created explicitly, and concurrency in a typical Oz program appeared to be coarse-grained,
this problem is less of an issue for the parallel Oz system.

®False sharing takes place when a processor memory access results in prefetching a cache line that contains
also some irrelevant data being processed by other processor. As a result, two processors interactively invalidate
that cache line. Eliminating false sharing could result in 10% speedups [TLH94].
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PAMOZ is inherited from AMOZ by modifying some of its primitives. It seems to be that
similar changes are applicable in cases of other cc programing languages like KL.1 and AKL.
The KLIC approach of conservative extensions of the sequential core system is an alternative
way for building a parallel system. On the contrary, the Super Monaco and Penny systems
are presented in such a way like they were designed “from scratch”.

Oz is a language with constraint solving facilities, which appear as a conservative extension
of the base language. As mentioned before, PAMOZ can be extended for that facilities. AKL
is the only language among mentioned here that supports constraint solving. However, both
AKL and its parallel implementation are monolithic in the sense that they do not separate
concurrent programming and constraint solving.

10 Conclusions and Further Work

In this paper a parallel abstract machine for Oz (PAMOZz) is presented. PAMOz models an
implementation of a subset of Oz without constraint solving facilities. PAMOZ is derived
from AMOZ — a sequential abstract machine for Oz, which, in turn, has its origins in works
on implementations of Prolog [AK91], concurrent constraint languages [JH94, Jan94], and
functional programming languages [PJ87].

It turns out that PAMOZ can be derived from a sequential abstract machine like AMOz
only with a few changes. The first one is the implementation of primitives dealing with stateful
data structures — variables and cells. Accessing stateless data is not changed. Operations
on variables are serialized for each variable, which is achieved by means of spin locks. The
cell exchange is made atomic, so cells are inaccessible between reading a previous value and
storing a new one. The second change is the PAMOZ architecture: the state of the PAMOZz
worker is a dynamically allocated first-class entity, compared to AMOZ’s global registers.

Another PAMOZ contribution is that there is an interface to its extension providing
for Oz constraint solving facilities. This interface allows to add further constraint systems
convenient for problem solving, and to extend a sequential or parallel implementation for
search facilities (first-class computation spaces).

PAMOZ has been implemented in the parallel Oz system, which is now in a stable state.
This system is derived from the sequential Oz system (DFKI Oz 2.0) and has inherited all its
optimizations. In the future I plan the implementation of a parallel garbage collector, and a
complete evaluation of the system simultaneously with its profiling and further optimizations.
Profiling is performed using both standard profiling techniques (like GNU gprof), as well as
memory simulators like SimICS and WARTS [MW95, HLL'95].
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