
A Parallel Abstract Machinefor the Thread-Based Concurrent Language Oz(Extended version)Konstantin PopovPS Lab, University of SaarlandGeb. 45, Postfach 15 11 50, D{66041 Saarbr�ucken, Germanypopow@ps.uni-sb.deSeptember 22, 1997AbstractA parallel abstract machine for Oz (PAMOz) is presented in this paper. Oz is athread-based concurrent constraint programming language with state. Oz is convenientfor concurrent programming like modelling multi-agent systems, as well as for solvingcombinatoric problems. PAMOz models the execution of a sublanguage of Oz withoutits constraint solving facilities. PAMOz has been implemented in the parallel Oz system,which is derived from the sequential Oz system and inherits its optimizations. PAMOzis targeted to shared-memory multiprocessors. PAMOz executes Oz threads in paral-lel. PAMOz is derived from AMOz, a sequential abstract machine for Oz. There aretwo principal di�erences between PAMOz and AMOz: the architecture of the abstractmachine, and the implementation of operations on stateful data. PAMOz can be con-servatively extended for full Oz; there is an interface between PAMOz and its constraintsolving extension.1 IntroductionPAMOz (Parallel Abstract Machine for Oz) is an abstract machine for a parallel imple-mentation of Oz. This paper is dedicated to motivating it, explaining it, and sketching bothits usage in the parallel Oz system and its extensions.Parallelizing Oz. PAMOz is implemented in the parallel Oz system [Pop97] with the goalto achieve parallel speedups, compared to the existing sequential implementation of Oz [OzS].Parallelizing Oz is promising because:� Oz is convenient and e�cient programming language for concurrent programming (e.g.modelling multi-agent systems) and constraint solving [HW95, W�ur96b, W�ur96a].1



� There is an e�cient sequential implementation of Oz. The parallel system is derivedfrom it and preserves its optimizations.� A parallel implementation of Oz is arguably less complex than implementations ofsimilar concurrent constraint languages like AKL [JH94].Oz [Smo95a, Smo95b] is a concurrent constraint (henceforth cc, see [SR90]) program-ming language with state. Computation in Oz is organized into sequential threads. Threadsare created explicitly. Oz provides for convenient functional and object-oriented program-ming. It provides also for constraint solving based on its constraint systems (rational tree,�nite domains and �nite sets) and innovative control facilities as �rst-class computationspaces [Sch97b, SS94].Concurrent threads and sequential composition within threads in Oz allow to exploitconcurrency where it is necessary and avoid it where it is not desirable [Smo95a]. This makesit easy to model, for instance, a multi-agent system whose agents' behaviors are speci�edby sequential algorithms. In problem solving, a next node to be explored in a search tree ischosen by a sequential algorithm too. Such an algorithm consequently collects informationabout the current node, applies a heuristic to that information, and �nally decides whichnode to take as a next one [Smo95a, MPSW94, MM97].On the contrary, implicit concurrency in concurrent constraint languages like AKL makesit di�cult to encode sequential algorithms. In general, implicit concurrency tends to be �ne-grained. This has also performance disadvantages: as the amount of concurrency increases,lower parallel speedups can be obtained because of the scheduling overhead.The parallel Oz system is derived from the sequential one [OzS]. The parallel systeminherits optimizations of the sequential one. The parallel system running on a single pro-cessor approaches the speed of the sequential system: currently it is about 70% as fast, butevaluating and optimizing it is not yet completed.The Oz sub-language for PAMOz. PAMOz models a parallel implementation of a subsetof Oz without constraint solving facilities. In the following, this subset is called just Oz, whileOz with constraint solving facilities is referenced as full Oz.Concurrent threads in Oz communicate and synchronize over a shared store by means oflogic variables. The Oz store contains information in the form of variable bindings, producedby the binding operation. The matching conditional allows to synchronize on the store: athread executing a conditional is blocked until a variable being matched is bound. One canview variable bindings in the store as constraints, and binding of a variable and synchronizingon a variable as instances of ask/tell operations in the cc languages.Object-oriented programming in Oz is supported by Oz cells. An Oz cell is a statefuldata structure that holds a variable or a value. A cell's content can be exchanged using thecell exchange operation.This subset of Oz is choosen for PAMOz because it supports functional and object-oriented styles of programming, it makes PAMOz simple, and, �nally, PAMOz is conserva-tively extendible for full Oz. Full Oz contains yet uni�cation (known from Prolog), condi-tionals that check logical entailment of a constraint by the store, further constraint systems2



(�nite domains and �nite sets), and Oz �rst-class computation spaces.PAMOz essentials. PAMOz is targeted for shared-memory multiprocessor (SMP in thefollowing) computers. The Oz computation model is mapped naturally on SMP computers:Oz threads are executed by working in parallel processors, and the shared Oz store lies inthe computer's shared memory.PAMOz is derived from AMOz [MSS95], an abstract machine for the sequential imple-mentation of Oz [OzS]. Both abstract machines are emulator-based, as opposed to native-code compilation systems. They inherit ideas for data representation and code generationfrom the WAM [War83, AK91], and the representation scheme for �rst-class procedures andcompilation of pattern matching from functional languages [PJ87].PAMOz executes Oz threads in parallel. Threads are executed by running parallel work-ers. Workers are the only active entities in PAMOz. Runnable threads are taken from thethread pool which is shared among workers. The thread pool also implements a schedulingstrategy, for instance { FIFO. Since the thread pool is shared among workers, access to it inthe parallel Oz system is serialized in order to guarantee the internal consistency of the pool.The PAMOz worker looks like a sequential Oz system: this is a procedure that executesOz programs. Workers are executed in parallel by the operating system of an underlyingSMP computer. The worker is a stateful entity; its state contains at least the current thread.The state is allocated explicitly and passed to a worker procedure when a worker is created.The state cannot be put into a static, globally visible region as it is done in the sequentialOz system, since there are multiple workers, each with its own state.The Oz store is implemented in PAMOz as an abstract data type (in the following { justobject). The store is shared among workers. It encapsulates an area to keep representationsof Oz variables and data, and provides for methods for accessing that data. The store holdsstore objects. There are variable objects, value objects and reference objects. A variableis bound by replacing the variable object with a reference object. Blocking a thread on avariable (synchronizing with the conditional) results in preempting the thread and storing itin the variable object; a worker executed the thread goes for a next runnable one. Binding avariable that keeps blocked threads follows by scheduling the blocked threads for execution.Maintaining stateful data in PAMOz, as well as in every parallel system, requires specialcare compared to a sequential abstract machine. This can be illustrated abstractly as follows.A new state of an object depends on a previous one, so if the state becomes changed afterreading an old one but before writing a new one, that change will be overwritten and thereforejust dissapears.There are two stateful objects in PAMOz { variable objects and cell objects. Let usconsider �rst executing a matching conditional that blocks its thread. It proceeds as follows:�rst it checks whether the variable being matched is bound (reads its state), and if it is not {the thread is put into the variable object. If the variable becomes bound between these twosteps, trying to put the thread into the variable object will end up with the error: there isno variable object anymore, but the reference object.A naive implementation of the cell exchange operation that �rst reads a cell's contentand then stores a new one su�ers from the same problem. Here, if two exchanges of the same3



cell interleave in such a way that a �rst one does its \read" and \write" between \read" and\write" of another one, the new content put by the �rst exchange will disappear.Compared to Oz variables and cells, Oz values are stateless and accessed as in a sequentialsystem.Correctness of the bind and block operations on variables is guaranteed by serializ-ing them for each variable. This is achieved by means of so-called \spin locks", knownfrom [Cra88, LMT95, MA95]. A spin lock transforms temporarily the variable object intothe self-reference object. The e�ect of the lock is that the original object becomes inacces-sible to other thread(s): a worker executing it falls into an endless loop until the object isunlocked. Note that no deadlock is possible: there are no PAMOz instructions that requireto lock more than one variable object at a time.The PAMOz implementation of the cell exchange operation performs atomic swap of theprevious and new contexts of the cell, which combines reading and writing a cell into anatomic operation. Both taking a spin lock of a variable and atomic swap of a cell exploit aspecial machine instruction (e.g. Sparc's swap) provided by an SMP computer.PAMOz versus AMOz. At the glance, PAMOz principally di�ers from AMOz in tworespects: the PAMOz architecture and the implementation of synchronizing primitives. Thesame set of changes can be applied to other cc languages since they all contain ask/tell {based operations1, while data itself is stateless and accessed as in a sequential abstract ma-chine. Additionally, the PAMOz implementation of the cell exchange needs special carecompared to a sequential abstract machine (AMOz does not provide for cells).Extending PAMOz for constraint solving. PAMOz can be extended nearly conserva-tively for full Oz. This proceeds as follows: �rst, one adds uni�cation like it is done in [MA95].Second, PAMOz is extended for �rst-class spaces through a dedicated interface, and �nallyit is extended for other constraint systems like �nite domains, sets, etc. by means of a parallelimplementation of the constraint programming interface (Cpi) [MW97].PAMOz and the parallel Oz system. PAMOz is implemented in the parallel Oz sys-tem [Pop97]. The parallel implementation of Oz is concerned with the full language except(by now) its �nite domains and sets constraint systems.The main implementation detail is that methods of PAMOz abstract objects whose im-plementation are not considered here are atomic. An example of such objects is the PAMOzthread pool. Atomic methods allow to neither see nor modify intermediate states of objects.This is ensured by mutex locks over methods that can violate this property. The implemen-tation contains also a lot of low-level optimizations, primarily dealing with enhancing thememory usage (such as using more compact data representations, and caching informationin a worker's registers), and increasing the speed of method applications in the Oz objectsystem. The implementation has reached a stable state, but has not been fully evaluated yet.Related work. The most direct sibling ofPAMOz isAMOz, which deals with the sequentialexecution of programs written in a larger subset of Oz than the PAMOz's one.1While, of course, constraint systems and synchronized entities are in general di�erent.4



KL1 is a �ne-grained concurrent programming language with annotations for controllingparallelism. KL1 does not contain constraint solving facilities. Its parallel implementaionKLIC [FCRN94] is a native-code system. Synchronizing between executed in parallel activ-ities has been added to the original sequential system through a special construct, insteadof re-implementing basic primitives in PAMOz. Another implementation of KL1 { the Su-per Monaco system [LMT95] is also a native-code system, which was specially designed forparallel execution.AKL is a �ne-grained concurrent constraint programming language, suitable for bothconcurrent programming and constraint solving. Its parallel implementation Penny [MA95]constitutes a major redesign of the original sequential, emulation-based implementation ofAKL. The abstract machine for Penny deals with full AKL; there are no obvious componentsdealing with concurrent programming and constraint solving.The contributions of the paper are:� PAMOz models a parallel implementation of the subset of Oz, suitable for concurrentand object-oriented programming. PAMOz executes Oz threads in parallel. PAMOzideas are exploited in the implemented parallel Oz system.� PAMOz approach for deriving a parallel abstract machine from a sequential one ispromising for other concurrent constraint programming languages.� PAMOz is a minimal model for an Oz system without constraint solving facilities. Itis simpler than AMOz, since it does not contain such things like uni�cation or localcomputation spaces, which are necessary for constraint solving only.Plan of the paper. The rest of the paper is organized as follows. The relevant subset of Ozis introduced in Section 2. The architecture of PAMOz is presented in Section 3. Section 4 isdevoted to the representation scheme of Oz data types. PAMOz is introduced in Section 5,where the compilation of Oz code for PAMOz is presented. The PAMOz implementation ofsynchronizing Oz operations is discussed in Section 6. The interface between PAMOz andits extension providing for problem solving is sketched in Section 7. Implementation detailsof the parallel Oz system are considered in Section 8. Related works are listed in Section 9.Finally, conclusions and directions for further work are given in Section 10.2 OzComputation Model. Oz is a concurrent constraint program-ming language with state. Computation in Oz is organized intoconcurrent threads which contain computation tasks composed se-quentially. Threads process data from the shared store. Data inthe store describe values of logic variables. A logic variable denotesa certain value, like does a variable in mathematic. Information5



cannot be retrieved from the store. A thread is blocked until the store contains enough in-formation for performing the next computation task. Concurrent computation in Oz hasinterleaving semantics. This means in particular that operations on the store are sequential-ized.The logic variable is the main distinguishing feature of the Oz computation model whencompared to imperative and functional languages. Concurrent threads and sequential com-position within threads is the most important Oz feature when compared to other concurrentconstraint languages such as Strand [FT89], Janus [SKL90], KL1 [UC90] and AKL [JH94].These language features implicit, �ne-grained concurrency. The Oz computation model withits explicit concurrency is simpler to use yet support common programming paradigms [Smo95a].Data Types. In this paper we consider records, procedures and cells. An Oz record consistsof a symbolic label and zero or more components, each of them is an Oz value again. Record'scomponents have symbolic names. A record having no components is called atom.Oz procedures are primitive data structures which encapsulate \closures". A closureconsist of code to be executed and references to variables that are lexically non-local to aprocedure de�nition but are referenced inside it. This is similar to other languages withlexical scoping and �rst-class procedures, e.g. Common Lisp.Cells are similar to records, but have only one component, and this component can beexchanged by means of a dedicated cell operation.Storage Model. The Oz storage model de�nes how Oz data is stored in memory from thepoint of view of an Oz programmer. In fact, the PAMOz data representation model is are�nement of the storage model presented here.The Oz store contains store objects. A store object is ei-
Figure 1: Binding a Variable.

ther a primitive value object (like integers), a compound one(like e.g. structures in C), a variable object or a reference ob-ject which points to another object. Primitive objects repre-sent their values, compound ones contain additionally one ormore references to other objects, variable objects representOz variables that values are not known yet, and referenceobjects are auxiliary structures explained below.Variable identi�ers in a running Oz program are mappedto store locations, which originally contain variable objects. Store objects have inde�niteextent, that is, they are kept alive until they cannot be reached by a running programanymore.Information about values of variables is represented by means of binding variables todata objects. A variable is bound by replacing its object with a reference object, pointing toanother object. Thus, one can think about information in the store as a graph whose nodesare objects and edges are references to objects.The example on Figure 1 shows how a variable x whose location is known to a thread isbound to the integer 5. The result of binding is shown on the example of another variable y.Accessing a value of a bound variable involves skipping reference objects on a path from theoriginal variable's location up to a non-reference data object. This is called dereferencing.6



Program Structure. Oz is a statically scoped language with the block structure. An Ozprogram is a sequence of expressions. Thus, Oz programs look very similar to block-structuredimperative programming languages.Expressions. There are the following expressions2, where x; y; z are variable identi�ers anda; b are symbolic constants:V ::= f(a : y) j a j proc fyg E end j cell[y] valuesE;F ::= skip skipj E F sequential compositionj local x inE end declarationj x := V j x := y bindingj fx yg procedure applicationj exch x set y get z inE end cell exchangej case x of f(a : y) thenE else F end conditionalj threadE end thread creationRecords are speci�ed as f(a : y) terms, where f is a label, a are components' names, andy are the components themselves. Atoms are given by their symbolic names a. A procedure iscreated as procfygE end, where y are formal arguments and E is a body. Cells are speci�edas cell[y], where y is an initial cell's content.Two expressions written one after another are composed sequentially. A new block withthe variable x in the scope of E is introduced by means of the expression local x inE end.Procedure bodies, cell exchange expressions and threads are other types of program blocks.A variable x can be bound either to a value V or another variable y by means of x := Vand x := y respectively. A variable can be bound only once. Note that executing both x := yand y := x is a programming error in the Oz subset considered here.Procedure application fx yg of a procedure proc fzg E end proceeds by executing theexpression E[y1=z1; : : : ; yn=zn]. Thus, actual parameters y are passed by name. Argumentpassing can be seen also as \call-by-reference" since only variables are allowed at argumentpositions. Applying a non-procedure is a programming error.A cell's content is exchanged by means of the exch expression. In this expression x isexpected to be a cell, y is a new cell's content, and z is a variable within the scope of E. exchputs a reference to y into a cell and continues with E[y0=z], where y0 references a previouscell's content3. Applying exch to a non-cell is a programming error.A conditional case x of f(a : y) then E else F end proceeds by executing either E orF , depending on whether a value bound to the variable x matches the linear pattern f(a : y)or not. The matching procedure is similar to e.g. the SML's one [MTH90]. Records matchif they have the same label and the same components' names. Variables y from a pattern2We don't follow the actual Oz syntax here, because it is designed with respect to many other requirementsand language features that are not considered here. Neither do we claim that this subset is \minimal".3Note that z is a variable identi�er: it is not bound, but replaced by the cell's content. This allows to binda variable, say x, that has been retrieved from a cell: otherwise, if the exchange would just bind a variable uto x, x could not be bound since the only way to access it is to refer u which is bound already.7



declare ProcessRequest in ProcessRequest := proc {Request} ... end
declare QueueRequest in
local Cell RequestStream Server in
Cell := cell[RequestStream]
QueueRequest := proc {Request}

local NewTail in
exch Cell set NewTail get OldTail in
OldTail := cons(car:Request cdr:NewTail)

end
end

end
Server := proc {Stream}

case Stream of cons(car:Request cdr:Rest) then
{ProcessRequest Request}
{Server Rest}

else skip % terminated
end

end
thread {Server RequestStream} end

end Figure 3: Concurrent Server in Oz.have the scope of E, and are bound to corresponding components of a record being matched.Without the loss of generality we omit in this paper nested patterns, token matching ofprocedures and cells, and multi-pattern conditionals which are present in Oz.Procedure application, cell exchange and conditionals are the
Figure 2: ThreadStates.

synchronizing operations: they wait until a variable x is bound toa value. Other primitives are unsynchronizing ones.A thread is created by means of thread E end. A thread canbe either runnable, running or blocked (see Figure 2).Functional and Object-Oriented Programming. Functionalnotation can be easily added to the Oz subset considered here. Itsencoding uses procedures and logic variables [Smo95a]. The Ozobject system [HSW95, Hen97, Smo95a] can be also implementedin this susbset of Oz. Its implementation exploits lexical scoping,�rst-class procedures and cells in style of e.g. [ASS96].An Example of Concurrent Programming. The example on Figure 3 shows the im-plementation of a concurrent (autonomous) server in Oz. The example exploits Oz threads,sequential composition within threads, logic variables, cells and conditionals.The server needs a procedure ProcessRequest which processes requests (variables thathave the inde�nite extent are declared with declare). The server de�nes the procedure8



void worker(WorkerState �w) f: : :while(running) fop = getInstruction();switch(op) fcase Bind(VarNum,RegNum):: : :gggFigure 4: PAMOz Architecture.
QueueRequest which can be used by clients having requests to the server. The server queueis an incomplete list RequestStream whose actual tail is an unbound variable kept in thecell Cell. Initially the queue is empty (RequestStream is an unbound variable). Elementsof the list are implemented as \cons" records. A request is queued by putting a new cons cellin the list, and storing a new tail into the cell.The server itself runs in a dedicated thread. The Server procedure synchronizes on thestore: it waits until a new request arrives (using the matching conditional), then processesit, and �nally goes recursively for a next request. Note that the server is secure because itsimplementation is hidden in the local : : : end block.3 PAMOz ArchitecturePAMOz executes threads in parallel. Threads are executed by workers. The architectureof PAMOz (see Figure 4) allows existence of multiple workers. Workers are the only activeentities in the system. Runnable threads are kept in a shared thread pool. Workers canaccess data in the shared store.The PAMOz worker is a procedure that executes PAMOz code, introduced in Section 5.Workers are executed in parallel by the operating system of the underlying SMP computer.The worker is a stateful entity; its state contains at least the current thread.Compared with AMOz, PAMOz abstracts the state of the worker. It is encapsulated inthe worker state object. Thus, one speaks about components of the state object rather thanabout global registers and memory locations keeping global data. PAMOz operations thatrequire access to the worker state take the state object as an additional argument.The thread pool encapsulates a scheduling strategy which is not speci�ed by PAMOz.It is required only that scheduling is fair (due to the language speci�ciation). A naiveimplementation of the pool contains a queue. A more elaborated one could try e.g. to avoidmoving threads between workers (while preserving fairness), if it would help to improve theperformance of the memory subsystem of the computer (see e.g. [ML92a, ML92b]).9



Bool StoreObject::bind(StoreObject �var,StoreObject �to) fif (var!type == Var) fvar!type = Ref;var!u.ref.ptr = to;return (TRUE);g else freturn (FALSE);ggFigure 5: Erroneous Behavior of the AMOz bind in the Context of PAMOz.4 Data RepresentationThe PAMOz data representation model is a specialization of the Oz storage model. It issimilar to the AMOz one, which, in turn, is based on ideas from WAM [War83, AK91].A store object contains a type tag and further data depending on its type (the C++ likenotation is used here):typedef enum fAtom, Record, Cell, Proc, Var, Refg Type;class StoreObject fType type;union f struct f char �name; g atom;struct f char �name; Signature �sig; StoreObject components[]; g record;struct f StoreObject �content; g cell;struct f int arity; ProgramCounter pc; int varNumber; StoreObject vars[]; g proc;struct f ThreadList �blockedThreads; g var;struct f StoreObject �ptr; g ref; g u;g;Here the sig records' substructure keeps a mapping from symbolic components' names totheir indexes in the array components. The structure of procedures is considered in Section 5.The blockedThreads substructure holds a list of threads; its purpose is discussed in Section 6.PAMOz assumes that an underlying SMP computer is sequentially consistent. Thatis [Lam79], \the result of any execution is the same as if the operations of all the processorswere executed in some sequential order, and the operations of each individual processorappear in this sequence in the order speci�ed by its program"4.There are two basic operations on the store: binding a variable and dereferencing a chainof references. The bind operation checks consequently whether a store object is a variable4It is not considered yet which weakest consistency model is su�cient for PAMOz. The real parallel Ozsystem runs on SPARC multiprocessors running in the so-called \total store order" mode, which relaxes theorder constraints in the case of a write followed by a read to a di�erent location [SPA92].10



one, and if it is { replaces it with the reference object. Dereferencing skips reference objectson the path to a non-reference object. This operation allows to access an object a variablehas been bound to, as discussed in Section 2.A straightforward encoding of the bind operation (see the code on Figure 5) is su�cientfor sequential AMOz [MSS95], but needs improvement when put into a parallel system. Thisis illustrated on Figure 5. There, the �rst thread binds the variable Y (at t3) between checkingthe variable (at t2) and binding it (at t4) by the second thread. Clearly, both threads believethey have bound Y, and no exception is raised.The problem with the bind from AMOz when it is used in PAMOz is �xed by serializingaccess to each variable. This is achieved by means of locking of store objects. The idea of thePAMOz lock is to convert temporarily a store object to a reference object pointing to itself,so other workers will \spin" while dereferencing it. A content of a succefully locked objectis saved in another store object, which location is known only to the worker that has lockedthe object. A locked object is unlocked by restoring its content back:StoreObject� lock(StoreObject �obj) fStoreObject �lock = new StoreObject;lock!type = Ref;lock!u.ref.ptr = obj;swapObjects(obj, lock);return (lock);g
void unlock(StoreObject �obj,StoreObject �lock) fswapObjects(obj, lock);delete lock;gThe swapObjects procedure that exchanges contents of two objects is atomic. That is,objects are exchanged in a single step from the point of view of all workers. swapObjectsrequires hardware support, like the Sparc's swap instruction that exchanges two machinewords. A non-atomic implementation of swapObjects lets other workers to observe partiallyoverwritten objects, as well as to lock an object by two workers simultaneously. The laterproblem is similar to the erroneous behavior of the AMOz bind in the context of PAMOz.The bind operation locks the object that is supposed to be a variable, and works with itscontent from the copy:Bool StoreObject::bind(StoreObject �var,StoreObject �to) fStoreObject �lock = lock(var);if (lock!type == Var) flock!type = Ref;lock!u.ref.ptr = to;unlock(var, lock); return (TRUE);g else funlock(var, lock); return (FALSE);gg
StoreObject� deref(StoreObject �obj) fwhile (obj!type == Ref)obj = obj!u.ref.ptr;return (obj);g
11



C[[(�) � � � local x in (�)Ex;y1::yn endy1::yn � � � ]] �� � �MoveEX(A�[[y1]],1)� � �MoveEX(A�[[yn]],n)Push(L1)Allocate(n+1)MoveXE(1,A� [[y1]])� � �MoveXE(n,A� [[yn]])NewVariable(A� [[x]])C[[Ex;y1::yn ]]ReturnL1: � � �
case MoveEX(n,r):w!currentThread!X[r] = w!currentThread!E[n];DISPATCH;case Push(pc):w!currentThread!push(pc, currentThread!E);DISPATCH;case Allocate(n):w!currentThread!E = new StoreObject�[n];DISPATCH;case NewVariable(i):w!currentThread!E[i] = new StoreObject(Var);DISPATCH;case Return:goto popTask;Figure 6: Compiling and Executing a Block.5 Executing Oz ProgramsIn this section the compilation and execution of Oz programs is introduced. The implementa-tions of the non-synchronizing operations presented here are shared by sequential and parallelabstract machines. That is, they are inherited \as is" from a sequential machine.PAMOz Byte-Code. Oz programs are compiled to PAMOz byte-code [Sch97a]. The OzCompiler translates a sequence of Oz expressions constituting a program into a sequence ofPAMOz instructions: C[[E F ]] � C[[E]]C[[F ]] (C[[�]] is the compilation function). C[[E]], C[[F ]]are interpreted sequentially by the PAMOz emulator loop. Each thread is equipped with aprogram counter (pc).Execution of code from a program block � proceeds in an enviroment mapping variableidenti�ers (variables for short) x to store locations. Variables are compiled to indexes A�[[x]]into an environment E. So, variable locations are referred as E[A�[[x]]]. A variable can beindexed di�erently in nested blocks. Each thread is equipped with a pointer to the currentenvironment.Nested Blocks. Compilation and execution of the expression (�)local x in (�)Ex;y1::yn endis shown on Figure 6. Here, the variables x; y1::yn are global to E. � is the name of theenclosing block, and � is the name of the block which is entered. PAMOz instructions aregiven on the left side, and their implementations { on the right one. For simplicity, programswith renamed apart variables are considered here. w is a pointer to the worker state object.The macro DISPATCH causes the emulator to fetch and execute the next instruction.Entering the block � requires a new enviroment, which is allocated by the Allocateinstruction. The environment keeps locations of variables x; y1::yn. Locations of variablesy1::yn are passed through temporary registers X[i]. This register set is used also for pass-12



C[[(�) � � � x := proc fy1::ymg (�)Ey1::ym;z1::zk endz1::zk � � � fxu1::umg � � � ]] �� � �Proc(nproc,L1,m,k,<A�[[z1]],...,A�[[zm]]>)Bind(A�[[x]],nproc)Goto(L2)L1: Allocate(m+k)MoveXE(1,A� [[y1]])� � �MoveXE(m,A� [[ym]])MoveXE(m+1,A� [[z1]])� � �MoveXE(m+k,A� [[zk]])C[[Ey1::ym;z1::zk ]]ReturnL2: � � �MoveEX(A�[[u1]],1)� � �MoveEX(A�[[um]],m)Push(L3)Apply(A�[[x]])L3: � � �

case Proc(regNum,pc,arity,varNumber,R):StoreObject �p = new StoreObject(Proc,pc,arity,varNumber);for (int i = 0; i h varNumber; i++)p!setClosureVar(i, w!currentThread!E[R[i]]);w!currentThread!X[regNum] = p;case Bind(varNum,regNum):StoreObject �var = w!currentThread!E[varNum];StoreObject �obj = w!currentThread!X[regNum];if (var!bind(obj)) DISPATCH;else ERROR("Binding a non-variable");case Apply(varNum):StoreObject �proc = w!currentThread!E[varNum];for (int i = 0; i h proc!varNumber; i++)w!currentThread!X[proc!arity+i] = proc!getClosureVar(i);GOTO(proc!pc);case Rec(regNum,label,n,sig):X[regNum] = new StoreObject(Record,label,n,sig);DISPATCH;case SetComp(regNum,name,compRegNum):StoreObjec �recObj = X[regNum];recObj!setComponent(name,compRegNum);DISPATCH;Figure 7: Compiling and Applying a Procedure.ing locations of actual parameters when applying a procedure. The PAMOz instructionsMoveEX and MoveXE are used for accessing X registers. A variable x introduced in theblock is created by means of the NewVariable instruction. This instruction allocates a newvariable object and stores its location into a given environment cell.Entering a nested block requires also saving the enclosing environment together with thecontinuation address after the block, which together form a task. A task is saved in a thread'sstack by means of the Push instruction. The last instruction in a block is Return whichcauses the emulator to pop and execute the next task at the thread's stack (see Figures 6and 8)Procedures. The procedure application fxug (see Figure 7) is similar to entering a block.The code for the application starts after the label L2. The actual arguments u1::um are passedthrough temporary registers 1::m, and the environment is saved on the stack by the Pushinstruction. After that Apply jumps to the procedure body.The procedure closure is created by means of the Proc instruction. The closure keepsthe pc of the procedure body (L1), the number of procedure's formal arguments, and locationsof variables z1::zk which are global to the procedure body. These locations are copied fromthe current environment, where they are indexed as A�[[z1]]; ::;A�[[zk]].13



C[[(�) � � � thread (�)Ey1::yn endy1::yn � � � ]] �� � �MoveEX(A�[[y1]],1)� � �MoveEX(A�[[yn]],n)Thread(L1)Allocate(n)MoveXE(1,A� [[y1]])� � �MoveXE(n,A� [[yn]])C[[Ey1::yn ]]ReturnL1: � � �
emulate:loop f: : :case Thread(pc):Thread �thr = new Thread;thr!push(w!currentThread!pc+1, (StoreObject �)NULL);threadPool!insert(thr); GOTO(pc);: : : g;popTask:if (w!currentThread!isEmptyStack()) goto getThread;Task �t = w!currentThread!pop();w!currentThread!E = t!E; GOTO(t!PC);getThread:if (threadPool!isEmpty()) exit();w!currentThread = threadPool!extract(); goto popTask;preemptThread:w!currentThread!push(pc, w!currentThread!E);threadPool!insert(w!currentThread); goto getThread;Figure 8: Compiling and Executing a Thread.The locations from the closure are used by the Apply instruction: it copies them into Xregisters just after actual arguments. So, the procedure body expects m actual arguments inregiesters 1::m, and k environment variables in registers m+ 1::m+ k.The location of the closure that has been created is kept temporarily in a free X registernproc. The environment variable x is bound to the closure using the Bind instruction.The PAMOz variable management scheme is similar to the scheme used in imperativeprogramming languages with block structure. Oz compiler exploits typical optimizations likeusing temporary registers for short-lived variables and re-using environment slots.Data structures. Binding variables to a primitive data structure is similar to the x :=

procfxgEend example from above. Records are constructed as follows. First, a record storeobject is allocated by the Rec instrucion which is shown on Figure 7. Then, references tocomponents are set by means of the SetComp instruction. Its arguments are the temporaryregister with the location of the record object created by Rec, a symbolic component's nameand a temporary register keeping the component. Note that records are constructed in thebottom-up fashion. That is, a variable is bound to a record �rst when all record's componentsare set5.Threads. New threads are created by means of the Thread instruction (see Figure 8). Its5In fact, there is a di�erence to AMOz as presented in [MSS95]: there a not yet completed structure isbound to a variable �rst, and after that structure components are set. This solution has been choosen in orderto make possible the WAM-style access to structure elements { through an \S" pointer.14



C[[(�) � � � exch x set y get z in (�)Ex;y;z;u1::un endx;y;u1::un � � � ]] �� � �MoveEX(A�[[u1]],1)� � �MoveEX(A�[[un]],n)MoveEX(A�[[x]],n+1)MoveEX(A�[[y]],n+2)Push(L1)Allocate(n+2)MoveXE(1,A� [[u1]])� � �MoveXE(n,A� [[un]])MoveXE(n+1,A� [[x]])MoveXE(n+2,A� [[y]])Wait(A� [[x]])Exch(A� [[x]],A� [[y]],A� [[z]])C[[Ez;y;z;u1::un ]]ReturnL1: � � �

case Wait(n):StoreObject �var = w!currentThread!E[n];loop fvar = var!deref(); StoreObject �lock = lock(var);if (lock!type == Var) fw!currentThread!push(w!currentThread!pc,w!currentThread!E);lock!addBlockedThread(w!currentThread);unlock(var, lock); goto getThread;g else if (lock!type == Ref) funlock(var, lock); continue; // bound after deref();g else funlock(var, lock); DISPATCH; // a non-variable;ggcase Exch(nCell,nNewValue,nOldValue):StoreObject �cell = w!currentThread!E[nCell]!deref();w!currentThread!E[nOldValue] =cell!exchange(w!currentThread!E[nNewValue]);DISPATCH;Figure 9: Compiling and Executing a Synchronizing Operation: Cell Exchange.argument is the address of the next instruction in the current block. Since the thread's extentis not known apriori, a new environment is allocated. Variables y1::yn global to E are passedthrough X registers, which are copied for the new thread. The very last instruction in thecompiled thread body is the Return one, which terminates a thread.From time to time (e.g. when the Apply instruction occurs) the emulator checks whetherthe current thread must be preempted. The condition for preempting a thread might be, forinstannce, whether it has exceeded its time slot. In the case of preemption the emulator jumpsto the label preemptThread (see Figure 8), where the task starting at the current instruction ispushed to the thread, and the thread itself is inserted into the thread pool. After that thenext thread is taken (see at the label getThread) and its topmost task is executed (popTask).Note that locations of store objects are freely copied because store objects are never movedor destroyed. This is particularly essential when creating an environment for a new thread.Inaccessible objects are the subject for garbage collection, similarly to other programminglanguages with data's inde�nite extent.6 Synchronizing On The StoreThe PAMOz implementation of Oz synchronizing operations is presented in this section onthe example of the Oz cell exchange. The idea is shared with AMOz: a thread missing a15



case Wait(n):StoreObject �var = w!currentThread!E[n];loop fvar = var!deref();if (var!type == Var) fw!currentThread!push(w!currentThread!pc,w!currentThread!E);var!addBlockedThread(w!currentThread);goto getThread;g else if (lock!type == Ref) fcontinue; // bound after deref() - retry;g else fDISPATCH; // a non-variable;ggFigure 10: Erroneous Behavior of the Wait Instruction Without Locking in PAMOz.value of a variable is preempted and saved in the variable object. A worker executed thethread that has been blocked picks up from the thread pool a next runnable one. A threadblocked on a variable is pushed back into the thread pool �rst when this variable becomesbound. A continued thread retries the operation that has caused it to block.Compiling and executing the cell exchange operation is presented on Figure 9. The newblock � introduced by the operation is handled similarly to �local x in �E end, consideredin Section 5. Exchanging the cell proceeds in two steps. First, the Wait instruction is usedto check whether the variable denoting the cell is bound. If it is (checking the type of a valueobject is omitted here for simplicity), then the cell's content is exchanged by means of theExch instruction; otherwise Wait blocks the thread.Wait puts the thread blocked on the variable into the blockedThreads list in the variableobject. Wait in PAMOz needs to lock the variable similarly to bind. This is illustrated onFigure 10. There, a version of Wait without locking is given on the right side. On the leftside the �rst thread starts the cell exchange of a yet unbound variable, and the second threadbinds that variable to a cell. In the scenario shown on the �gure the variable Y becomesbound (at t2) when Wait has found Y to be a variable (at t1) but before the thread is putinto the blockedThreads list (at t3). The problem is that at t3 the variable object has beenoverwritten already, so the method addBlockedThread cannot be executed.When a variable is bound by bind, threads from that list are put into the thread pool:Bool StoreObject::bind(StoreObject �var, StoreObject �to) f: : :if (lock!isVar()) fthreadPool!insert(var!blockedThreads); // new code;var!type = Ref; 16



: : :gThe Exch instruction also needs to be atomic. It cannot be implemented as a couple ofread and store operations: an error happens when such \read&store" exchange is executedbetween reading and storeing the same cell by another worker. In this case there are twoconsequent reads followed by two consequent stores, so both cell exchanges return the samevalues, and the �rst value stored just disappears.Implementations of other Oz synchronizing operations are similarly split in two steps:Waiting, and performing the action hereafter. Implementing �rst-class procedures with-out synchronization has been considered before (see Section 5); the implementation of thematching conditional is rather trivial: a PAMOz code sequence for a conditional performsthe top-down matching of a structure similarly to a very naive implementation of a func-tional programming language like SML. Matching a record uses the Match instruction thatcompares a record label with then given one, and the GetComp instruction that extractsa record component into a register for further matching or accessing it within the \then"expression.7 Towards PAMOz for Full OzFull Oz is characterized by its constraint solving facilities [SSW94, MW97]:� There is uni�cation known from Prolog, and the matching conditional is extended toconditionals if thenE elseF fi, where  is a constraint which needs to be entailedby the constraint store when taking the \then" branch.� It o�ers a control mechanism suitable for programming search { �rst-class computationspaces [SSW94, Sch97c]. A computation space encapsulate threads and constraintsproduced by them. Spaces allow to explicitly exploit search alternatives. Oz as aconcurrent constraint language does not provide for the builtin search mechanism likethe backtracking-based one from Prolog; instead, the Oz synchronizing primitives waituntil su�cient information is available in the store.Oz uni�cation and general conditional can be seen as constructs orthogonal to binding andmatching conditional. The AMOz uni�cation algorithm is described in [MSS95]. PAMOzuni�cation exploits a di�erent scheme for keeping track of rational (cyclic) trees. Anotherpoint is that the variable-variable uni�cation may not neither produce endless reference chainsnor allow workers to deadlock. Techniques used in PAMOz are similar to those described ine.g. [Mon97].The �rst-class spaces and general conditionals are implemented on the top of the PAMOzlocal computation spaces. The PAMOz implementation of the Oz store together with thethreads' management routines can be seen as a primitive version of computation spaces. ThePAMOz local space can manage yet constraints on non-local variables and keep track of localthreads. 17



A local computation space is represented by an object (see Figure ??). There is theinterface between PAMOz and space objects. It consists of two parts:� Services provided by PAMOz, like creating a new thread. In order to provide it, certainPAMOz objects are conservatively extended. An example is that thread objects andvariable store objects carry a space pointer { a pointer to the space they belong to.� Services and event handlers provided by space objects. For example, the space objectprovides for binding variables and creating threads. Events in PAMOz like terminat-ing a thread in the current space are reported to the space object through methodapplications.General conditionals mentioned above can be expressed by means of spaces. The ideais to put a constraint  into a computation space: if it becomes stable, then the constraintis entailed and the \then" expression is executed. If the space fails, then the constraint isdisentailed, and the \else" expression is choosen. When a thread blocks on a space, thenthere is not yet enough information to determine entailment, the the conditional blocks.PAMOz for full Oz can be extended for the constraint programming interface(Cpi) [MW97]. Cpi is an interface between an abstract machine for Oz and propagatorswritten in C++ which are used to express non-trivial constraints. Propagators are sequen-tial programs that try to amplify information in the store. For example, if a �nite domainpropagator x = y + z sees that y and z can be either 1 or 2, then it adds the constraintsaying that x must be in the range of 2::4. Cpi provides propagators for reading and writinginformation to the store, and controls their invocation.The problem with executing propagators in a par-
Figure 12: Erroneous Behavior ofthe Sequential Cpi in PAMOz.

allel system is that the store can be ampli�ed duringthe execution of a propagator. Consider the exampleon Figure 12: the propagator fails to shrink the do-main of x to 2::4 because the additional constraint ony arrives after reading parameters by the propagator.ThePAMOz implementation ofCpi solves the prob-lem by locking the propagator's parameters during itsexecution. Note that after the modi�cation of the Cpiimplementation the propagators originally written forthe sequential Oz system are reused in the parallelone.8 Parallel Oz ImplementationPAMOz has been implemented in the parallel Oz system [Pop97]. The origin of this imple-mentation is the (sequential) DFKI Oz System [OzS]. The emulator which is implementedin C++ has been converted to the parallel one, while the Oz Compiler remained unchanged.The parallel system runs currently on SPARC multiprocessors under Solaris 5.*.18



Two questions have been considered when implementing PAMOz: how to implement itcorrectly, and what could be done in order to speed up the implementation.Correctness. Complex shared objects in PAMOz are held consistent. For instance, if athread object has the allocated task stack, then the corresponding 
ag in the object is set, andvice versa. In order to guarantee consistency methods that either (a) temporarily bring anobject into an inconsistent state and/or (b) allow to observe that inconsistency are serialized.This is done by means of mutex locks.Shared objects that relate to each other are maintained consistenly too. This is achievedby serializing transactions on them. A standard deadlock-free locking scheme is exploited,namely, each set of objects being locked together has a total order relation; objects are lockedstarting from a smallest one.Compiler optimizations in the implementation language (C++) concerning the caching ofdata in machine registers are prohibited when compiling methods protected by locks. This isbecause otherwise a compiler may move out actual memory operations from regions protectedby locks, as well as reorder them. These optimizations are switched o� by declaring C datastructures to be volatile. Note that memory cells that hold busy-waiting locks are volatilefor the same reason as well.E�ciency. The parallel system inherits all optimizations from the sequential Oz system.Though this required a substantial engineering e�ort, no design changes were necessary. Ingeneral, optimizations that are applicable to AMOz will be also applicable to PAMOz,possibly excepting those dealing with synchronizing primitives.Both sequential and parallel systems feature space- and speed- e�cient representationsof data. Primarily, they exploit tagged pointers instead of tagged data (as described e.g.in [Gud93]). Both systems exploit threaded code made possible by the GNU C compil-er [Sta96], which reduces the overhead of emulation by up to 50% [Sch97a]. Oz object-oriented capabilities are supported directly by the emulator: method applications, �rst-classmethods and attribute accesses are as fast as procedure applications and accessing recordcomponents. The speed of the sequential system is comparable to \state-of-the-art" imple-mentations of Prolog like SICStus. Detailed analysis and evaluation of optimizations can befound in [Meh97, Sch97a, Hen97].The parallel system is optimized on its own. Optimizations serve for better sequential (i.e.on a single worker) speed and/or help to obtain better parallel speedups. The most essentialone among the �rst group is the locking scheme that does not consume additional memory.The idea of the scheme is to reuse temporarily a memory cell of the object's representationfor the lock, while the content of that cell is kept as a local data in the PAMOz procedurethat has taken the lock.I believe that the most e�ective optimization among those that serve for better speedupsis the per-worker memory management scheme, as implemented in [Mon97], and to someextent in [FCRN94]. Each worker has a local memory pool that is used to allocate locallycreated store objects. This eliminates the contention on memory manager that takes placein the case of a shared memory pool. Apparently, this helps also to reduce the so-called false19



sharing of cache lines [TLH94]6.9 Related WorkOz/AMOz [MSS95]. The most direct sibling for PAMOz is the sequential abstract machinefor Oz. Both use similar data representation schemes and ideas for translating and executing(P)AMOz code. They di�er in the implementation of operations crucial for parallel exe-cution, and PAMOz o�ers an interface between a \pure" concurrent sub-language and itsconstraint solving extension, while AMOz does both parts in a rather monolithic fashion.KL1/KLIC [FCRN94]. KL1 is a �ne-grain concurrent programming language with logicvariables. The KLIC system exploits annotations to control the amount of parallelism. KLICis a native code system: KL1 programs are translated into C. The system contains both localand shared heaps. Accessing a shared variable is implemented with the help of generic objectswhich serve for synchronization between concurrent goals. Methods of a generic object areapplied whenever a variable is bound or a concurrent activity blocks on it. The genericobjects mechanism allows to preserve the sequential core unchanged at the expense of anadditional object type.KL1/Super Monaco [LMT95]. Super Monaco is also a native code system. The native codeis derived by macro-expansion from the intermediate code. Native code calls functions froma run-time library with implementations of complex operations like memory managementand uni�cation. Operations crucial for parallel execution are encapsulated in the run-timelibrary; their implementations are not described in [LMT95]. Variable objects in the systemdo not contain references to goals blocked on them; instead, suspensions are accessed througha global \hook" table. Authors motivate this solution by measurements saying that goalsblock rather seldom (which is also true for Oz). However, the impact of contention on ashared global hook table is not measured.AKL/Penny [MA95]. AKL (Agents Kernel Language [JH94]) is a concurrent constraint pro-gramming language with �ne-grain implicit concurrency. Penny exploits a store model andcompilation techniques similar to (P)AMOz. Since AKL does not contain a sub-languagewithout constraint solving facilities, the Penny abstract machine implements the whole lan-guage. Penny originated from the sequential AKL system, similar to PAMOz, but changesmade to the sequential system are not listed explicitly in publications on Penny.PAMOz among KLIC, Super Monaco and Penny. The parallel implementation ofAKL (Penny) has faced the major problem of managing �ne-grain concurrency. The problemis solved in part by exploiting various scheduling heuristics. The impact of the schedulingoverhead is reduced also by careful encoding of benchmark programs. Since threads in Oz arecreated explicitly, and concurrency in a typical Oz program appeared to be coarse-grained,this problem is less of an issue for the parallel Oz system.6False sharing takes place when a processor memory access results in prefetching a cache line that containsalso some irrelevant data being processed by other processor. As a result, two processors interactively invalidatethat cache line. Eliminating false sharing could result in 10% speedups [TLH94].20



PAMOz is inherited from AMOz by modifying some of its primitives. It seems to be thatsimilar changes are applicable in cases of other cc programing languages like KL1 and AKL.The KLIC approach of conservative extensions of the sequential core system is an alternativeway for building a parallel system. On the contrary, the Super Monaco and Penny systemsare presented in such a way like they were designed \from scratch".Oz is a language with constraint solving facilities, which appear as a conservative extensionof the base language. As mentioned before, PAMOz can be extended for that facilities. AKLis the only language among mentioned here that supports constraint solving. However, bothAKL and its parallel implementation are monolithic in the sense that they do not separateconcurrent programming and constraint solving.10 Conclusions and Further WorkIn this paper a parallel abstract machine for Oz (PAMOz) is presented. PAMOz models animplementation of a subset of Oz without constraint solving facilities. PAMOz is derivedfrom AMOz { a sequential abstract machine for Oz, which, in turn, has its origins in workson implementations of Prolog [AK91], concurrent constraint languages [JH94, Jan94], andfunctional programming languages [PJ87].It turns out that PAMOz can be derived from a sequential abstract machine like AMOzonly with a few changes. The �rst one is the implementation of primitives dealing with statefuldata structures { variables and cells. Accessing stateless data is not changed. Operationson variables are serialized for each variable, which is achieved by means of spin locks. Thecell exchange is made atomic, so cells are inaccessible between reading a previous value andstoring a new one. The second change is the PAMOz architecture: the state of the PAMOzworker is a dynamically allocated �rst-class entity, compared to AMOz's global registers.Another PAMOz contribution is that there is an interface to its extension providingfor Oz constraint solving facilities. This interface allows to add further constraint systemsconvenient for problem solving, and to extend a sequential or parallel implementation forsearch facilities (�rst-class computation spaces).PAMOz has been implemented in the parallel Oz system, which is now in a stable state.This system is derived from the sequential Oz system (DFKI Oz 2.0) and has inherited all itsoptimizations. In the future I plan the implementation of a parallel garbage collector, and acomplete evaluation of the system simultaneously with its pro�ling and further optimizations.Pro�ling is performed using both standard pro�ling techniques (like GNU gprof), as well asmemory simulators like SimICS and WARTS [MW95, HLL+95].11 AcknowledgmentsI am thankful to all members of Programming Systems Lab at the University of Saarland,Germany for fruitful discussions during my work on the parallel system and this presentationof it. Special thanks are to Seif Haridi, Joachim Niehren, Tobias Mueller, Christian Schulte,21
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